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SELECTION OF ECONOMETRIC MODELS

BY THE INFORMATION CRITERION

Gregory C. Chow

1. Introduction

This paper provides an exposition of the information criterion, Presents
an estimate of it, discusses some of its applications to the selection of
econometric models, and compares it with the posterior probability criterion
for model selection. Recently, Sawa (1978) has given an excellent exposition
of the information criterion and obtained an estimate of it for the selection
of linear regression models. The Present exposition is different from and
complementary to Sawa's. The estimate of information suggested here is of
more general applicability while it reduces to Sawa's in the regression situa-
tion. This paper is also concerned with econometric applications other than
the selection of linear regression models.

In order to introduce the information criterion, we will first consider,
in Section 2, the selection of linear regression models for the purpose
of prediction, using the expected squared prediction error as the criterion.
We will present in Section 3 the concept of mean information, derive the
estimate of it as originally given by Akaike (1973, 1974) and suggest an
improvement of Akaike's estimate. Section 4 deals with several problems
arising frgngggw;éiééfion of simultaneous-equatibn models uéing the

information criterion. In Section 5, we compare the information criterion
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with the posterior-odds ratio advocated by some Bayesian statisticians for the
purpose of model selection, and point out their differences. The paper ends

with some brief concluding remarks in Section 6.

2. Selection of Regression Models by Prediction

Consider the choice between the regression model
(2.1) y = xB+u=xlsl+x282 + u

and the linear model using X1 alone as the explanatory variables, where X is
n by kl and X2 is n 'by k2, u being normal with covariance matrix 'Inoz .
A standard treatment is to test the null hypothesis 62 = 0 wusing the F ratio,
but this does not solve the problem as it begs the question of what level of sig-
nificance to use. A more satisfactory solution is to choose the model which is

estimated to have smaller prediction errors. Specifically, let n new observa-

tions be

~

(2.2) Y = xB + @

under the assumption that (2.1) is the true regression model, and let the model
selection criterion be the expected sum of squared prediction errors. One can
derive a rule for choosing between the two models, as given by Mallows (1973).

Using the small model with x1 alone and denoting the corresponding maxi-

mum likelihood estimate of B by §I (consisting of (Xixl)_lXiY and 0) , one
easily finds
(/%) IR B BIXIR. (/%) e xx ) o - xrx ) xix 8!
171 1727272727111 11 171 1"272%2

(2.3) E(gI"B)(gITB)’= , 1
' ' !
= ByBXoX; (X1X)) 8,8



. The expected sum of squared prediction errors is

~ o~ A

E(B -B) 'X'X (B, -B) + Eu

(2.4) E&éf-}?) ’ O?BI—Q)

£r[X'XE(B.~B) (B-8) "] + no”

2 ot ' -1 2
k10 + 82x2 [I--Xl (xlxl) Xl]XZB2 + no

where the last line hasvutilized (2.3) and the reasonable assumption

X'x

’

= XX

made to provide a standard for comparing the two models. Using the large model

(2.1) and denoting the maximum likelihood estimate of B by B= (x'

we have

(2.5) EXB-D' &R -9 = B(B-8) 'X'X(B-B) + EG'T = (kl+k2)02 + no?

-1

X)

X'y,

Comparing (2.4) and (2.5), we find that the small model should be used if and

only if

I, r ’ P‘:I. ’ —_ 2
(2.6) B XpIT-%) (XX;) "X11X,B, = BX) 1X, 1B, < k,0

-1

where Xy 4 = [I—Xl(Xin) Xi]X2 denotes the matrix of residuals of the regres-

sion of X2 on Xl .

Since we do not know 62 and 02 s we have to estimate them for the appli-

cation of (2.6). Given that 62 has mean 62 and covariance matrix

we have

3 (! 3 2 _ 2
2.1 B8y (] 1%y 1) (ByoB)/0” = mRyx) (x, 1B -85x) %, 18,)/0

ey , ’”~ _
or EBX) 1%2.1B = By (X, 1By + kzo

The selection criterion (2.6) is equivalent to

B +k02<2ko

(2.8) B %) ,X, 18, + k, .

(x!

2.1%2.1

)
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If the left-hand side of (2.8) is replaced by the unbiased estimate from (2.7)
. 2
and 0"2 on the right-hand side is replaced by the unbiased estimate s , we

obtain

(2.9) B < 2x.8% = 2k2(Y—x§)'(y-xé)/(n-kl—kz) ]

B2 2. 1 2.1 2

as the condition for selecting the small model. 1In the language of testing
hypothesis, this rule amounts to setting the critical value for the F statistic

82 2.1%2. 1B 7k, S under the null hypothesis 32 =0 to 2. We observe from

(2.4) and (2.5) that omitting the variables X. might yield a better model for

2
prediction even when 62 # 0 because E(gow)'X'X(gl‘BB in (2.4) might be smaller

than E(B-B)'X’'X(B~B) in (2.5) . In other words, a misspecification might lead to
~ A
better prediction as it reduces the covariance matrix E(B-B) (R-B)’ of estima-

tion errors.

The criterion of expected squared prediction error applies to the selection
of non-nested regression models. Let the two models have regression functions
XlBl and X282 respectively, where Xy and X, are disjointed. Under the
assumption that (2.1) is the true model, we have an expression analogous to
(2.4) for the expected sum of squared prediction errors resulting from using the

second model with X2 alone as the explanatory variables. Comparing these two

expressions, we will select the first model if

2

2
(2.10) k)0 + ByX) 1Xy 1By < kyo' + BIX] X By

Replacing both sides of (2.10) by the unbiased estimates from (2.7) and rearrang-

ing terms we obtain

N A ’ ~ 2
(2.11) B2 2.1%2.182 ~ BiX3 0%y 5By < 2(ky7Kyls

as the condition for choosing the first model with Xl as the explanatory variables.



The information criterion for model selection suggested by Akaike (1973,
1974) can be viewed as an extension of the above prediction criterion. Instead
of using the expected squared prediction error of a future observation, Akaike has
adopted the mean information E[log g(¥) - log £(y)] for discrimination between
the density function g(-) of the true model and the density function £(-) of

the model used for prediction. In the nested regression example, the log-like-

~

lihood of the new observation vector Y = XR + 4 for the true model is

n
~ 2 o~ ~ ~
(2.12) Zlog9(y;) = - g-log 2m -§-log c. —»%4Y-XB)'(Y—XB)/02
1

and the log-likelihood of Y according to the estimated small model is

n . R .
v = - .r_l - n ) 2 - l o~ 0 ’ ~_L. ) /\2
(2.13) ilogf(yi)_ "3 log 27 E-log 07 E(Y XBI) (YIXBI)/GI

~ A

2 al n
where o1 = (y—XBI)’(y—XBI)/n . The mean information criterion for given BI and

~
o) is
I

n
] NZ ~ _ - - E_ 2“ ~2 _ -1:1- _ i 5 ~_~A ’ ~_~/\ ~n2
(2.14) EYl[log g(yi) log f(yi)] 5 (log o logGI) 5>~ 3 EY(Y XBI) (Y XBI)/GI

Note that the criterion (2.14) measures the goodness of the estimated model not

only by the expected sum of squared prediction errors E§(§—xél)’(§_§éI) , but

~

also by the difference between 1log 02 and log Si due to the error in Gi - as

an estimate of the residual variance 02 of the regression residual. In (2.14),

~

the estimated parameters BI and 8§ of the small model are treated as fixed

for the purpose of defining the information measure; only Y is treated as randam

when the expectation is evaluated. As the next step, one should take the expecta-

tion E@ 82 of (2.14), treating BI and Oi as random variables, in order to
I'"1

evaluate the estimated model by allowing for the sampling errors of its parameters.
Both steps were incorporated in (2.4) when the expected squared error of predic-

tion was used to evaluate this model. The expectation E(-) in (2.4) could have

been replaced by EB EY(.IEI) to make clear these two steps.
I



3. Expected Information and its Estimation

~

Let f(.]@) be used to predict n new independent observations Y = (yl,...,yn)
genérated by the true density g(.). The information measure of the discrepancy

of the predictions is

n
(3.1) [g:£(.|0)] =& I [log g(¥;) - log £(7,|0)]
i=1 ‘

where the expectation is evaluated by the true density g(.), and ;i may denote a
vector. This measure was suggested by Kullback and Leibler (1951), used by
Savage (1954), and studied more fully by Kullback (1559). Akaike (1973, 1974)
advocated the use of this measure and provided an estimate of it for model selec-
tion. It can be shown (Rao, 1973, pp; 58~59) that I[g;f('le)] is non-negative
and is equal to zero if and only if f(xle) = g(x) almost everywhere.

If two functions fa(-lea) and fb(-leb) are being considered, the
one with a smaller value for the mean information I[g;fi('lei)] will be chosen.
If ei is estimated by some estimator 6i ¢ to choose between two estimated
density functions fi(-léi) (i=a,b) , one allows for the sampling errors of éi
and selects the one having a smaller value for the expected mean information
E@ixtg;f(-léi)l :

To obtain an estimate of E@I[g;f(-l§)] r Akaike (1973) assumes that
g() = f(-leo) , with 0 = (91,62) » and that the approximating f('lel,o) is
formed by restricting a subset 92 of the parameters to be zero. Although
Akaike's estimate has been widely used, its derivation in Akaike (1973, pp. 273~
276; 1974) seems to be obscure. We hope to point out the assumptions used in ‘de-
riving his estimate and suggest an improvement of it. First, for any given esti-
mate 8 of 6 , approximate I[g;f(-[@)] by expanding .; log f(§i|@) = 1ogL(Y|§)

i=1
- in a second-order Taylor series about 90.

A i) v o ~ 2 ~~V N
(3.2) log L(Z|8) = log n(¥[6°) + (e-e°)'31°9315‘Yle L+ 2(6-0% 12 l°gegé%le’(e—e°)
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~N

where 6 < 6 §n9° . Substitution of (3.2) into (3.1) gives

21 a0 T
(3.3) 1Ig;£(-|81]1 = Eglleg L(¥[6%) ~ log L(¥|8)]

il

1l

o , .
8 20y 1. dlog LI [6%), _ 1.4 o 9°1log (¥ [9), A_a°
- (8- ey GLL RO )y 2 (6-6%) rm, (2T LUID, (§-g0)

It

2(8-6°)"3(8,6% (8-0°)

where we have observed

31 a0 - o
£y 2Log LY|67), _ J 1 dreg L(x|67) | n(x|6%)ax = o

36 L(XIGO) 86

and have defined

(3.4) 3(5,6% L |6%)ax .

_ .82109 L (Xlé)
EEERE

Note that J(e°,e°) is Fisher's information matrix for the density function

L(-]eo) - In the approximation used by Akaike, J(é,e°) in (3.3) was replaced
o .0 . , ~ 0, ,

by J(67,67), but we will retain J(6,8 ) in (3.3).

Second, we define the best approximate model £¢(-

* ~
61,0) for predicting Y by

(3.5) I[g;f(°|6I,0)]_<_I[g;f('|91,0)] or
~ * ~
By [1og L.(¥]6,,0] > Ej[109 L(¥[6,,0]

*
In the terminology of Sawa (1978), 61 is the pseudo-true parameter of the

pseudo~-true model £ (-

*
61,0) . Using the quadratic approximation (3.3), we find

*
61 by minimizing

’

1 (e} o', o

(3.6) Ilg;£(-[6,,0)1 = FUO6)" =8, 1 1Ty Ty | (6178
o
Jo1 Y22 =0,

~

where the arguments of J(e,e°) are omitted. Differentiation of (3.6) yields

* o) -1 fo)
(3.7) 61 = 61 + Jll le 62 .



In the regression example of (2.3), (3.7) would imply

* [ -1,
(3.8) Bl = Bl + (xlxl) X1X282 .
~k

Ak
As the third step, we evaluate I[g;f('lel,ol where 61

*
of el s using equations (3.3), (3.7) and the identity

is an estimate

Ak o o Nk * * [o) [e)
(elro) - (61162) = (ello) = (ello) + (elro) - (61162) ’

. ./\* _i /\*_o' _o A*—o
(3.9)  Tlgif(-[8),001 = F1(6 6" -601 | 3 3, | | 60
(o]
Jo1 Ia2 -0,
a l-A*_ *., A*_ * i. *_ o., _ a0 - *_ o
= 2107011797, 18,70, 1+ T8, -0) " =071 | 3y 3y, | | 0,67
o]
Ja1 J22 =0, i
—LA*_ * ' A*_ * lo' -1 o
= 300.76,173,, 18,611 + 36, 13,,~7,,3,73,,16,

where the cross-product term on the second line vanishes because of (3.7),
and the second term on the last line is also due to (3.7). Note that the
first term (on the last line) of (3.9) measures the contribution of the

A% *
sampling error 61-61 » and the second term measures the contribution of the

* *
specification error 6 -6° = (61,0) - (ei,eg) + to the discrepancy

~k ~%k
I[g;f(-lel,o)] between the estimated model f£(-* 81,0) and the true density

g(:) = f(-lei,eg) . If 6; is the maximum likelihood estimator, the expecta-
tions of these two terms will correspond to the first two terms on the last
line of (2.4) in our regression example. (The last term n02 in (2.4) is

not applicable because the true model still has a prediction error and we are
measuring the discrepency between the predictive abilities of the true model

and the estimated, approximate model.)

Fourth, we evaluate the second term using the quadratic approximation (3.3),



_9_
* ' * * ~, O ~ k
(3.10) %—(e -6%) 3(6-6”) = 1[g:i£(.|6)] = EglogL(¥|8") - EglogL(¥|e )
Given a sample Y = (yl,...,yn) of n independent observations, we estimate

~ * *
E?lOgL(Yle ) by logL(Y|6 ) and expand the latter about the maximum likelihood

» Ak
estimate (61,0),

(3.11) E§logL(§|6*) o logL(Y,e*)
2 A
- 5 0y 4 1 (@0t o e o0
= logL(¥;9,,0) + 3 (6,-9,) 56,067 (6,-6;
A 1 @* *x 1 X o Ak k
= logL(¥;8,,0) - > (8;-68,) 3,,(6,6%) (B -6.)

A%k
where, on the second line, we have observed that BlogL(Y;E)l,O)/BGl is zero
: *
and, on the last line, we have replaced leogL(Y;él,O)/Belaei by the expecta-
*
tion —Jil(e ,eo), noting that the data y, are generated by the true density
*

A . *
f(y|e°) and that the maximum likelihood estimator el converges to 91. We will

* *
discuss the convergence of @l'to 6, below.

Combining (3.9), (3.10), and (3.11), we write
A¥ * Ak * ! * * *
- . = . - - -8
(3.12) 1fg:£C. [8,0)] logr(v; 8,00 - (8[-0)) 7,,(8",6)(8-0)
- E?logL(§|9°).

Note that the first argument of Jll in (3.9) is  which is defined in (3.2)

to satisfy B < 8 5_60; it is replaced by 9* in (3.12). If all models to

be compared are specified by setting a subset of the parameters © in the true
density f(.le) equal to zero, the last term -E§1ogL(§|8°) in (3.12) is common
to all models and does not have to be estimated. The rule is to choose the
model with the largest —E@II[g;f(.lgz,O)]lwhich, by (3.12), can be estimated by

* * k1t * o * % ~ | AD
(3.13) logr(v;8,,0) -E6;(91—61> [3,, (6,001 (B-6)) - E§1ogL(Y|6 )
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where the constant term —Eylog L(§16°) can be ignored. Let 61 contain
k parameters. Akaike (1973, p. 275) writes, "“it can be shown that ...
8oy 6%,0%)1(8.~60) i tat i
[ox ( 1" l) [ Jll( 01 ¢( 1~ l) in our notations] is asymp-
totically distributed as a chi~square variable with k degrees of freedam."
*
If this claim is valid, and if we replace Jll(e ,60) in (3.13) by
Jll(e°,e°) then the second term of (3.13) will equal k . The selection cri-
terion amounts to the maximum value of the log-likelihood minus the number k
of parameters. It is known as Akaike's Information Criterion.
However, the above claim of Akaike may be questioned. If the obser-
*
vations were generated by the approximate model f(°|61,0) , then
AKX Kk * % Nk Kk 2
(61—61)[ Jll(e 9 )](61-91) would be asymptotically x (k) . In the present

situation, the observations are generated by the model £(-|6°)  but the max-

Nk

imum likelihood estimate el is based on the approximate (incorrect) model

* * -
f(-le :0) . Akaike's information criterion presumes that [ Jll(e ,90)] ! is

~k
a good approximation to the covariance matrix of the estimator 61 which is

computed from the approximate density function f(-Iel,O) . Let us therefore

Nk
derive the asymptotic distribution of 61 by a Taylor expansion of

Ak
'BlogL(Y;Gl,O)/Bel about 6; :

~k * *
dlog L(v;0,,0) 3log L(Y;6,,0) 9%1og L(Y;6),0)

(3.14) = + ; + o(n) ] (6*-6%)=
36, 36, [ 36,007 171

o

* ‘ *
SlogL(Y;Gl,O)/BGl has expectation zero since 61 is derived by maximizing
(differentiating) ElogL(Y;el,O) with respect to 61. It is the sum of n
*
independent 1log f(yilel,O)/ael and is therefore asymptotically normal by the
central limit theorem. 1Its covariance matrix will be denoted by
* AR *
Cov[BlogL(Y;e )/aei]. The matrix coefficient of (61—61) in (3.14) has expec-
' 2 8™)/36. 96, 8",6° 6. -0, i
tation E[a logL(Y;6 ) /9 13 l] = —Jll( ,07). Therefore, ( 1" l) as a solution

to (3.14) is asymptotically normal with zero mean and covariance matrix
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* o, .9-1 BlogL(Y-e*) . * o.1-1

(3.15) o = [3,00,0] Cov[—-—-aTl'———][Jll(e 0] .
‘The result (3.15)-ca; $e Aeduced-from Lemma 1 of Silvey (1959, p. 394) who
considers the distribution of the maximum likelihood estimator subject to
more general restrictions of the form h(6) = 0 under the condition that
~ ~k *
the restrictions are incorrect. Substituting (3.15) for E(e;—e;)(el—el)

in (3.13) we obtain the following criterion for model selection

*
N 91 (x|e) * o1y o v | g°
(3.16) logL (Y;GI,O) - tr{cov [ %ell 109,, (67,6717} - Eglog L [67)

*
It is well-known that if the true density were f(°l6 ) , Fisher's in-
*
* % ) L(Y |8 .
formation matrix Jll(e /0 ) equals Cove*[alOg Bé )] . However, if the

\ o} * 0 R
observations are generated by the true density f(~|9 ) Jll(G 07) is in

dlog L (7 [67).
30,

matrices for the application of (3.16) to model selection, we propose to use

general not equal to Coveo[ . In order to estimate these two

respectively

2 A%
) logL(Y;elIO) 8logL(Y;6*) . BlogL(Y;e*)

(3.17) - and E =
861861 o 361 861

)

*
where the parameters 6° and 6 of the last expectation will be replaced by

their maximum likelihood estimates. Berndt, Hall, Hall and Hausman (1974)

-1 dlog f(yilé) dlog f(yi|§)
have proposed to use the inverse of n % 56 . 35" to
i

estimate the covariance matrix of 6. This procedure is valid only if the model

is correctly specified. When some explanatory variables are omitted from the
model, Cov[Blog f(inGI,O)/BGﬂ does not equal E(dlog f*/361)(alog f*/BGi)
because E[alog f(inGI,O)/Beﬂ is not zero; only E[BlogL(Y;GI,O)/Beﬂ is zero
by the definition of 6;. In this case (3.15) - (3.17) should be used to

Ak
estimate Cov(el).

To apply our information criterion (3.16) to estimate —E@.I[g;f] for
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a linear regression model Ff ¢ let the true model g be (2.1) and let f
be the model with 82 = 0 . Using the definition (3.5), we maximize
E?[log L(§|§l,0,02)] with respect to Bl and Oz,assuming Y =3 +7, with

~ *
X = X. The results are Bl as given by (3.8) and

* -
(3.18) o 2% = n"tgrx’

2
2%2.1%2.1By t O

2 , , ‘ \ .
where o is the true residual variance of (2.1). Denoting the partial

derivatives of logL(?lBl,O,Gz) with respect to Bl and 02 evaluated
*

* *
at Bl and o 2 simply by 09log L , one easily derives

*
dlog L 1 % * 1 ~
(3.19) — = 5 X] (¥-X.B.) = == x'u
881 o 271" T1it1 o 271
dlog L' *
~ ~ %*
(3.20) °92L = - n*z + 1*4(Y—x161)’(Y—x181)
d0 20 20
= - Pt ABIx) x, B, + TE o+ 2a'x. LB
* *
2572 20 4'72%2.1%2,1"2 2.1%2
from which one deduces
.2 * 2 * ] B ]
d"log L  3°log L 1l
5 #X1% O
o 98,08; 86180 o
§3.21) J..(0,0°) = - E =
11 2 * 5 *
0"log L 0 log L n
302387 3(c?)2 ° 204 ;
o] o]
_ 1 n . _
[ 3209 1" | [ &2 |
o9 L G*4xixl 0
881 a
(3.22) cCov =
* 2. %2 2
dlog L 0 no (20 “~g%)
*
R 802 a N 20 8 N

In deriving (3.22), we have made use of E(ﬁ'ﬁ)2 = (2n+n2)04 and EU(U’d) = 0

because the elements Gi of u are normal and independent. Substituting
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(3.21) and (3.22) into the trace of (3.16) we find, for the approximate

regression model,

2 2
(3.23) tr{Cov alogL 3. (6,6 = I [k, +2- 2]
11 Fz *2

2, . . , *2 .
where 0 is the residual variance of the true regression, © is the resid-
ual variance of the best approximate regression, kl is the number of coef-

ficients in Bl,and k1 + 1 is the number of parameters. The result (3.23) is

identical with the estimate of —E@*I[g;fJ for the linear regression model

by Sawa (1978, Theorem 3.2, p. 1280). Our criterion (3.16) is more general.
The required trace in (3.16), which depends on the unknown parameters of the
approximate and true models as illustrated by (3.23), can be estimated by
using the maximum likelihood estimates of these barameters.

A by-product of the derivation of (3.16) is the covariance matrix
given by (3.15) for the asymptotic distribution of the maximum likelihood
estimator when the model ig incorrectly specified. It can be estimated by
using (3.17). The analysis of this section could be extended to the case
%here the successive observations ;i (i =1,...,n) are not independent as
long as they are generated by the same mechanism which has generated the

sample observations v, (i =1,...,n). But this topic will not be pursued

in this paper.

To close this section, let us compare Akaike's information criterion
with the criterion (2.9) for the'choice between the two nested models in

section 2. The formex criterion fayors. the small model if the maximum value
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of its likelihood is larger than the maximuﬁ value of the likelihood for the

large model minus k2 , 1.e., if

Nk A
(3.24) - D10g(5"2/6%) > - k,

where

a2 1 Loy vy A
(3.25) 62 = T(v-x, 8))" (vx 1B = 0w aB %, 0B,

~%k A ~k S
If we approximate log (o 2/0'2) roughly by (o 2/0'2)-1 -and use (3.25), (3.24)

becomes

(3.26) B < 2k O

62X2 1%2.1

which is nearly the same as the condition (2.9) derived from the expected
squared prediction error criterion. One reason why Akaike's Information Cri-
terion (with the rough approximation of log(8*2/82) above) is so close to
(2.9) in spite of its error in estimating Cov(@I) is that the expected
squared prediction error criterion is itself only a rough approximation of
expected information. The expected information criterion penalizes a regres-
sion model when it has an incorrect value for the residual variance whereas

the expected squared prediction error criterion does not, as we have seen from

(2.14).

4. Selection of Systems of Simultaneous Equations

In this section, we consider three problems arising from the selection
among models of simultaneous equations. First, consider the choice between a

simultaneous model
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(4-1) | By By | | ¥ Ty Y1t
+ xt =
By1 Ba Yot Ty ot
and a block-recursive model obtained by the restrictions B12 = 0 and
212 = Eultuét = 0 . The information criterion (3.16)-(3.17) can be applied

if the method of (full-information) maximum likelihood is used to estimate

the parameters of both models. A statistical criterion is thus provided to
decide whether a system of simultaneous econometric equations should be de-
composed into two recursive blocks. The issue is equivalent to deciding
whether a general equilibrium or a partial equilibrium model should be selec-
ted to predict a subset Yor of endogenous variables, . the latter model treat-
ing Yy As exogenous. The criterion is applicable even if the simultaneous
model is nonlinear, as long as the recursive model is obtained by restricting

a subset of its parameters to be zero.

The second problem is to choose between two simultaneous—equation models
having different sets of endogenous variables. Let the first model be (4.1)
and the second be a linear model having Yie and Y3, @as endogenous vari-
ables. To make this problem meaningful, we propose that the criterion be
better prediction of a common subset Yyt of endogenous variables. For ex-
ample, one may ask which model can better predict GNP, the inflation rate
and the unemployment rate as measured by expected information. The two models
may differ a great deal in size, one being very aggregative, for instance. To
solve this problem, we consider the reduced-form of each model. Under the
assumption of normal, serially uncorrelated residuals, the log-likelihood
function of Y1 via its reduced form (for Model A say, with subscript a

omitted) is

n
n 1 y~=1
(4.2) 1log L(Yl;e) = const - 3 log lglll— Eégl(ylt—ﬂlxt) Qll(ylt—Hlxt)

= -1 L
= const - 3 log !n tzi(ylt—nlxt)(ylt—nlxt)'[
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where the second line gives the concentrated log-likelihood after the co-
variance matrix Qll is eliminated by step-wise maximization. If the reduc-
ed-form coefficients Hl are estimated by maximizing (4.2) without imposing
the possible over-identifying restrictions due to the specification of the
structure, the information criterion (3.16)-(3.17) can be applied to the
selection between two models A and B.

The third problem is a version of the second problem when the parameters
Hl in the reduced-form for Y,y are estimated by maximum likelihood subject
to the over-identifying restrictions. The derivation of the information cri-
terion (3.16)-(3.17) in section 3 has to be modified to account for these re-
strictions. To retrace the four steps in section 3, let the parameter vector
0 of the true model include the coefficients I of the exogenous variables

1

in Model A , the coefficients H2 of the exogenous variables in Model B but
not Model A, and a covariance matrix §} of the residuals. Model A is thus
an approximation of a true multivariate regression model by restricting a
subset of its parameters to be zero. TIts parameter vector 61 consists of
the elements of Hl and those of a covariance matrix Qll . In addition,
however, 91 is subject to a set of restrictions h(el) = 0 which are due
to the overidentified structural equations of Model A. (strictly speaking,
the arguments of h(-) include also the coefficients of the reduced-form
equations explaining the other endogenous variables in Model A than Yig ¢
but we treat these arguments as constants equal to their maximum likelihood
estimates.)

Define 6° as the parameters of the true reduced-form, 6: as the
(pseudo-true) parameters of the best approximate Model A, and 6; as the

*
maximum likelihood estimate of 61 subhject to the restrictions h(el) =0 .

Ak
The quadratic approximation (3.3) still applies to I[g;f('|61,0)] , but
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*
(3.7) no longer holds for 61 because (3.6) will haye to be minimized subject
to the restrictions h(@l) = 0 . The second line of (3.9) will become, with

* *
S »denoting (91,0) ,

8 L6 6%y 73, (7="e L(o™0%) 5 (0" -6%) 4 (0" 6°) '3|6.-0,

(4.3) TIg;£(-|81,001 = 5(8,-6;) "3, (B,-8))+ (0 =6°)"3(6 ~67)+ (6 - 1791
0
where the last cross-product term remains because (3.7) no longer holds. In
, l,.* o, * 0o
the fourth step, we try to estimate the second term 5{9 =-07)'3(6 -07) by (3.10)
%

as before. Equation (3.11) will include one extra term because dlog L(y;el,O)/ael
no longer vanishes; it becomes

~k
alOgL(Y;el,O) s *

(6,-6,) .
891 171

(4 4) Bl L ? 6* - ~k 1 0% * ’ ~k *
. 7log LE|6) = log L(¥;6,,0) = 5(8,-0,) '3, (B,-0) +

Combining (4.3), (3.10) and (4.4), we obtain an equation similar to (3.12),
except that there are two extra terms involving (@I-GI) which are respective-
ly derived from the last terms of (4.3) and (4.4). However, when we take expec-
tations of this equation to estimate -E@*I[g;f(-léz,o)] + these extra terms

Ak Ak
can be ignored because 0O, subject to the - restrictions h(el) = 0 is an

1
*
asymptotically unbiased estimator of el according to Lemma 1 of Silvey (1959,

p. 394). Therefore, the model selection criterion (3.13) remains valid and

can be rewritten as

A~k * o ~k o
(4.5)  log L(¥;0,,0) - tr{ J,,(6 ,07)-Cov(8)} - FElog L &][67) .

Ak
The covariance matrix of the asymptotic distribution of 6 is given by Lemma

1
1 of Silvey (1959). (The subject of constrained maximum likelihood estima-
tion is further studied by Rothenberg (1973) and Wegge (1978) in the context
*
of simultaneous equations.) We can continue to estimate Jll(e ,eo) by the

expression on the left side of (3.17). Thus, in theory the problem of estima-

ting the mean information of an approximate linear reduced-form model for
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predicting a subset Yie of endogenous variables can be solved by using (4.5),

where the estimate é; is obtained by the method of maximum likelihood sub-

ject to the overidentifying restrictions. We have not dealt with the computa-

tional problems involved in estimating Cov(@I)lby Silvey's formula and in

estimating Jll(efe°) by (3.17). Nor have we examined the estimation errors

which may result from using the covariance matrix of only the asymptotic dis-
~k

tribution of 61 and from replacing the parameters in this covariance matrix

by the maximum likelihood estimates.

5. Comparison with the Posterior Probability Criterion

Having explained the expected inférmation criterion and discussed some of
its applications, we would like to compare briefly its logic with that of the
posterior probability criterion. The latter has been advocated by Jeffreys
(1961) and adopted by Zellner (1971), S. Geisel (1975), Schwarz (1978) and
Leamer (1978), among others. 1In choosing from models Mj(j=l,...,J) and as-
suming a symmetric loss function, one selects the model with the highest poster-
ior probability p(Mj |¥) given the data v= (y;r---,v ) . By the Bayes theorem ,

p (M, ,¥) p(yimj)p(mj)
p(¥Y) Ip(Y|M.)p(M,)
3 ] J

(5.1) p(Mj]Y) =

Since the denominator p(Y) is common to all models, if the prior probability
p(Mj) is the same for all models, the posterior probability p(MjlY) is pro-
14

portional to the likelihood p(Yle) of the data Y given the model Mj

which is evaluated by

(5.2) p(r|m,) = J Lj(Y;G)pi(e)dG-

n
where Lj = 1 fj(yile) is the likelihood function of the model and pj(G)
i=1
is the prior density of the parameter vector of the jth model.
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Schwarz (1978) has tried to estimate (5.2) for large samples and obtain-
ed a different formula for model selection fram Akaike's formula based on thé
information criterion; The difference.occurs because the definitions of the
word "models" used by these two selection criteria are different. When the
posterior probability criterion is applied, the model Mj refers to the density
function fj(yle) together with the prior density pj(e) ¢ as it can be seen
from (5.2). The criterion is used to decide whether the model so defined is in
agreement with-the sample Y=(yl,...,yn) . This is done by evaluating the
likelihood p(Yle) of the sample Y given the model Mj using (5.2). The
sample Y is used to judge the model which was specified before the sample is
available.

By contrast, as the expositions of sections 2 and 3 have made clear, when
the information criterion is applied, the model Mj refers to the density
function fj(yfg) where the parameter value 6 is estimated by the sample
data Y . It is a post-sample model, whereas the posterior probability cri-
terion is concerned with a pre-sample model. The sample Y is now used to
estimate 6 in the model, and not té judge whether a pre—sampie model is

§) will be judged by predictions of future

good. The post-sample model fj('
Observations not yet available. The logic of this post-sample prediction cri-
terion was made clear in section 2 where the criterion was the accuracy of
predicting the observations ¥ . of (2.2) which are not yet available. The
only change in section 3 was to use the information concept rather than
the mean squared prediction error to measure the accuracy of prediction.

In summary, if the dafa are used to estimate the model and the estimated
model fj(-lg) is to be judged by new observations, the information criterion
is relevant. Surely, the information concept could be applied to measure how

well a pre-sample model fits the sample data Y , but the information criterion
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as adopted by Akaike (1973, 1974) and described in this paper refers to its
I 8]

application to measure future predictions by a model fj('le)  © hayving

been estimated by the sample data Y . On the other hand, if a model is

defined by the density function £ (-|6) where 0 is specified by some

3
prior density pj(e) without using the sample Y , and if the sample Y
is used to judge this pre-sample model, the posterior-probability criterion

is relevant.

Let M, be a large model and M

2 be a smaller model obtained by re-

1

stricting some parameters of M2 to be zero. Let the pre-sample informa-

tion consist of 50 observations which were used to obtain the prior densities
pl(el) and p2(6) of the parameters of these two models. The current sample

Y consists of 100 observations. The pre-sample M might be a better-predic-

1
tive model than the pre-sample M2 because it is smaller; the additional
parameters in M2 caused larger sampling errors in the parameter estimates

and could generate larger errors in prediction as we have observed in the
discussion following (2.9). If these two Pre-sample models are judged by the
sample Y , the conclusion obtained by the posterior-probability criterion
might favor the small pre-sample model Ml . However, once the sample data Y
are used to estimate both models (with 150 observations being used in total),
the larger post-sample model M2 might be judged by the information criterion
to be likely to yield better predictions in the future.

The usefulness of the information criterion lies in its ability to dis-
criminate between models having different numbers of parameters. Its main weak-
ness is that only a point estimate is used to estimate expected information
(or expected predictive ability) without regard to its sampling errors. This

weakness is apparent from the decision rule (2.11) for choosing between two

non-nested regression models. The issue of sampling errors in the estimate
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deserves further investigation. When the numbers of parameters are equal in
two models, the distinction between a pre-sample and a post-sample model be-
comes less important, as the discussion of the last paragraph suggests. Never-
theless, insofar as the current sample Y is already available, it may be de-
sirable to use it to estimate the parameters of both models and compare (the
point estimates of) their expected predictive ability using the information
criterion. Note that the information criterion, like a test of significance,
becomes invalid if the extra explanatory variables in a larger model are in-
cluded after much data mining, as it is clear from our discussion of the selec-
tion criterion (2.9). Note also that the posterior probability criterion can
be supplemented by using the prior probabilities p(Mj) of the models and by
considering an explicit loss-function. Hopefully these remarks are helpful

to the reader in judging the applicability of these two criteria to the model

selection problem at hand.

6. Concluding Remarks

In this paper, we have provided an exposition of the information criter-
ion, suggested an estimate of expected information, illustrated its applicabil-
ity to problems of econometric model selection, and compared its logic with that
of the posterior probability criterion. Although the information critérion is
far from being the final answer to the general problem of model selection, it
is sufficiently promising to deserve the consideration of econometricians
especially when the problem is to select from models having different numbers
of parameters. It should not be surprising to find Bayesians who would argue
in favor of the posterior-probability criterion more strongly than the author
did in section 5. Furthermore, critics of the information criterion could

point out that the pre-test procedures in sections 2 and 3 are inadmissible,
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as Sawa (1978, p. 1274) has recognized. Insofar as the procedures described
are non-Bayesian, they might not appeal to the Bayesian statisticians.
Nevgrtheless, this author believes that these procedures are of practical
value and should be presented clearly to applied econometricians for their
final judgment.

Our discussion has also generated several interesting problems for
further study, including the estimation of the covariance matrix of a maximum
likelihood estimator (3.15) when the model has omitted some explanatory vari-
ables, the generalization of Section 3 to the cases when the successive
observations are not independent and when the restrictions imposed by the
approximate model f are other than the omission of variables, the problem
of sampling errors of our point estimate of expected information, and the
estimation of expected information for the selection of simultaneous-
equation models which are estimated by methods other than maximum likelihood.
As the last remark, although the method of Section 3 is non-Bayesian, it
could be supplemented by a Bayesian analysis. Once the measure of expected
information is converted into a function of the parameters 60 of the true
@odel as obtained by taking the expectation of (3.9) and using (3.7),
Bayesian parameter estimation theory could be applied to its estimation,

which is another topic for further research.
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