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PREFACE

According to the concept of the cost of living, it is the cost of
maintaining at given prices a given standard of living.

Commodities are consumed in the process of living. They are
consumed. in different amounts, which together define a possible composition
of consumption. The standard of living is considered as a relation deter-
mined by preferences between such possible compositions.

Thus the cost of living is made intelligible by a preference
relation between the possible compositions of consumption.

But the preferences can only be known through their effects on
choice, as expressed in expenditures. Hence expenditure data, for a variety
of different occasions, are to be the basis for measurement of the cost of
living, in respect to the prices found in .one of these occasions and the
standard of living found in another. This then is the cost of living with
these as the base and object occasions.

The history of the cost of living problem has almost entirely
been a search for an algebraical formula, involving the expenditure data
for the base and object occasions, which could with good reason be con-
sidered as an index of the cost-of-living. An index of such a form and
with such a justification was never found. All the same, the theory set
out in this memorandum can, with a suitable enlargement of ideas, be con-
sidered a continuation of that traditional pursuit. However, one may well
ask: why should the index be given by an algebraical formula; why should
it involve just the expenditure data in the base and object occasions;
why, in view of the necessary indeterminacy arising from incomplete know-

ledge of preferences, should it give a point-determination; and, finally,
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why should it always be properly definable, seeing that it depends for its
meaning on preferences, the existence of which requires a consistency of
behaviour that may not be borne out by the data?

The method which is to be adopted for pursuing the problem is
to consider all preference systems, of the normal type, that are consistent
with the expenditure data for a variety of occasions. If the data are
inconsistent, there are no such preference systems and there is no proper
basis for proceeding with the measurement. Otherwise there will be an
infinite class of such preference systems. Relative to any one, there is
a point-determination of the cost of living, with any pair of occasions
taken as base and object. It can be shown that as the preference system
ranges in the considered infinite class, this point-determination ranges
in an open interval, the extremities of which can be calculated from the
data. The calculation is not by an algebraical formula, but by a combina-
torial process, involving the solution of linear inequalities, and the
determination of the extremes of linear functions restricted by linear
inequalities.

Thus, in the framework of such a formulation, there is a negative
answer to all those questions.

This does not mean that there is no algebraical approach. But,
if an algebraical formula is found, then what kind of meaning can it
have, which can be made the source for its interpretation as an index?
It is assumed that it must have interpretation on some algebraic model
of a preference system which is consistent with the data.

It is found that, for any four occasions, and more than four
commodities, there always exists an infinite class of quadratic functions

whose gradients at the four given consumption points are in the corres-
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ponding price-directions. Subject to a certain criterion, given by alge-
braical inequalities, there will exist among these an infinite subclass
of quadratics, which are increasing and convex, and thus measure a normal
preference scale in a convex neighborhood containing the consumption
points in the four occasions. Relative to any member of this class,
there is a determination of the cost of living, for any one of the occa-
sions in respect to any other. The determination describes an open
interval, as the preference system describes its class, the extremities
of which can be calculated by an algebraical formula. However, it happens
that though there is this variance in the determination of cost of living
in respect to these preference systems, there is a strict invariance in
the determination of the order of standard of living.

This algebraically determined interval, subject to the mentioned
cfiterion,:will lie within the combinatorially determined absolute interval,
which requires only the consistency condition. A case for the use of the
algebraical method is that it is simpler in its calculations, has inter-
pretabion in terms of a constructive model, and that it has a further
interpretation in terms of the combinatprial method, from which it can be
derived; by taking a special form of solution, which is called the median
form of solution, of a system of inegqualities involved in the combinatorial
method.

In fact, this median form .of solution will be made the genesis
of the algebraical method in the context of the inequalities which are
the basis for the combinatorial method. Thus, the quadratic property of
median solutions is demonstrated, and then made the basis for the alge-
braical method.

The method is in no way dependent on any notion of approximation.
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In fact, there are no already well-defined preferencesto which approxima-
tions can be made. The problem is altogether one of arriving at a
definition in terms of the data which is in harmony with the preconceived
ideas of the sense of the cost-of-living question. The calculations made
are exact, in relation to certain underlying models, the existence of
which can be demonstrated, though‘they.need never be practically constructed.

The peculiarity of four as the number of occasions which enter
into the aléebraical algorithm can only be appreciated directly from the
algebra. A formula relating to an exact algebraical model must be based
on data for some definite number of occasions, which here turns out to be
four, irrespective of the number of commodities. It is different with
the combinatorial method, since it has no dependence on any constructive
model, and is perfectly general.

The independence, in the algebraical algorithm, of this aumber of
occasions from the number of commodities is important, in that the number
of commodities may have to be considered just as an indication of the
refinement with which consumption is characterized by separation into
different components which, in principle, could be greater or less with-
out much disturbing the resuliing measurements.

Any obvious attempt to obtain a more general, or even a differ-
ent and still adequate, algebraical approach, seems to present formidable
difficulties. But the simplest gpproach which is also adequate to the
essential structure of the questidn is also all that is wanted.

The traditional index-number, of the Paasche-laspeyres type,
will be seen to have an important role. But instead of just the .one,
from the base to the object occasion, which provides the concept for the

conventional costsof—living'index, the twelve such numbers defined between



four occasiéns are used. Since preferences are set in a somewhat elaborate
structure, a corresponding elaborateness is to be expected in any analysis
which exploits them.

A Tinal algebraic formula is not shown explicitly. It is more
natural to leave 1t implicit in the simultaneous solution of certain
algebraical equations.

The computations involved can easily be carried out on a desk
computer. But it is convenient to have a programme for an automatic com-
puter, and certainly necessary if the calculations are to be made repeat-
edly. A programme has already been prepared by Mr. Harold Samuels for the
IBM 650. It will be given in another memorandum, together with results
and interpretations for a number of examples with cbserved data, and some
further examples in two dimensions which will provide graphical illustra-
tion.

In contrast to the algebraical algorithm, evaluation of the
formulae for the absolute interval obtained by the combinatorial method,
in the memorandum which is to follow this, presents a difficult problem.
Though these formulae exhaust the cost-of-living measurement problem on
the supposition of consistent data, and present.a perfectly definite
principle of calculation, no method is as yet available for the practical
evaluation. However, here, by algebraical means; and with data satisfying
a condition not much stronger than consistency, it is possible to calcu-
late a sub-interval of the combinatorially determined absoclute interval.

The question, importance .of which has been emphasized to me by
Professor T. C. Koopmans, about what to do when the data are inconsis-
tent, belongs to a further; statistical development of the subject, in

which the inconsistencies are reconciled as far as possible by viewing
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them as arising from disturbance of a consistent system. The framework is
here for approaching that problem; but so far the concern has been only
for when consistency is provided, or even the stronger condition which is

the basis for the algebraical method now to be described.

S. N. Afriat

Princeton, New Jersey

March 17, 1961



1. Compensating factors

Tet zi be a normal expenditure system, therefore with preference
relation PE that is a scale; and so also with indifference relation %E
that is an equivalence. Two compositions x,y that are equivalent in the
scale are also said to represent the same standard, as decided by the
system. A consumer, having consumption with composition represented by
X , is exactly compensated in the scale, when subject to the combination
of losses and gains represented by the vector y - x , which exchange x
for another composition y . This need not imply an ultimate indifference
between x and y . Indeed, any two objects which can be distinguished
from each other could, in principle, be distinguished in preference;
though the preferences which produce the distinction may not be implicit
in the expenditure system. However, equivalence between x and y in
the scale implies that, whatever the preference between them, if either
x or y alone is subject to a loss or gain in any single component, how-
ever small, then this equivalence is destroyed, and replaced by the
preference corresponding to this loss or gain. It is impossible to observe
indifference: all that can be observed ih behaviour is preference, and
indifference here is just the absence of observed preference, in no way

implying an ultimate absence of preference.

The relative cost of a composition y .on a balance u is

defined by u'y , with x and u corresponding in the system. ©Since the
relative cost of the composition x on the balance u is unity, it is
the cost of y expressed as a fraction of the cost of x , at the same

. prices.

Now, given any two compositions x and y , there exists a

unique composition x* , equivalent to y in E , and belonging in 'E



to a balance u¥* which is parallel to the balance u belonging to x .
The relative cost, on the balance u corresponding to x , of all compo-
sitions =z not inferior to x , attains an absolute minimum at 2z = x* .

Thus, with the definition

Py oy = min {u'z ; xf%z} 5
2
there follows
= 10y
stY wE
together with
< 1
pxpy S
and provided XE%Z .
P,y = u'lz <=z = x¥
J

The number oy y ? defined for any composition x ‘taken in
2

relation to another y , will be called the compensating ratio, for x in

respect to y , or with x and y as object and base.

Por a consumer whose expenditures on different occasions are in
accordance with the system, pny gives the minimum expenditure required,
at prices of the object x-oceasion, to purchase a composition which repre-
sents a standard not inferior to that of the base y-occasion, the expendi-
ture in the object occasion being taken as unit. At the prices in the
x-occasion, with any greater expenditure a better composition could be
attained, provided the prices in the occasions are not parallel; and with
any smaller expenditure, it would be impossible to obtain a composition
that was not inferior to y . A consumer in the x-occasion, spending in
accordance with the system, has to compensate expenditure in the ratio
pxy , to achieve equivalence with the y-occasion at the same pricegs. This
equivalence is, more strictly, the threshold of non-inferiority. With

that compensation made, the composition attained is =x* , equivalent to



Yy , but not identical with it, unless the prices in the two occasions be
parallel.
If the preference relation xP.y between x and y 1is to be

13
called standard-of-living, then Py ¥ may be called the cost-of-living,
s

with x as object and y as base.
From the compensating ratio function pX g 2 the original
9
normal scale from which it is counstructed can be recovered. For
> > H
Pey ~ Px,z yP&Z 3

from which it follows that o(z) = P, , 1s a gauge for the system,
2

associated with an arbitrary point x .

2. Completions of a cgﬁfigurati@n

et F denote a given expenditure configuration, such as might
be obtained from expenditure data of some consumer.

Questions are to be asked about the consumer, on the basis of
the iﬁformation represented by F . The method of treating these ques-
tions will be to view F emﬁedded ir a normal expenditure system, in
terms of which the questions are made intelligible. A latitude in the
answering -of the questions lies in the variety of the normal systems con-
taining F .

However; in the dispersion of admissible answers, forming an
interval, there is, under proper conditions, singled out a more limited,
algebraically determined interval, with a peculiar structural position
within this wider; absolute interval. It also has peculiar properties,
in terms of underlyling systems, which have a constructive algebraical
form within the unconstructable totality of normal systems, which give

the framework for a greater power of interpretation.
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Accordingly, let @ denote the class of all normal: expenditure

systems, of the same dimension as F . Then let Q. denote the sub-class

F
of all that are completions of F . Thus:

ZEQS,_E Ee QATFCE ;

that is, & is an expenditure system of the class Qy if it is normal,

and contains F as one of its configurations.

In a corresponding fashion, let I denote the class of normal
preference systems, and HBf the sub-class that contains the preference
relation P; of ¥ , that is,

Pel PeH/\P}CP;

3 =
then

Eenf_—,s Pael'[y o

The normal expenditure systems are in a one-to-one correspondence with
the normal preference systems:

L e )l <> PE eIl .

The condition 93.+ 0 , that there exist normal completions of
F , by which condition F is called normal, immediately implies that

P?_ is an order, which is the condition that F be consistent. For if

E € Q then P%_CTP& s Where P is an order and E& transitive; and

2

is an order. The converse is also true, and will

F
this implies that P

k2
be proved elsewhere; that is, if F 1is consistent, then it is normal.
Thus the conditions of consiétency and normality for an expenditure con-
figufation are to be taken as equivalent. The criterion for the consis-
tency condition is given by the Houthakker acyclicity condition, which
depends just on the cross-structure of the given configuration. What is

important here is that this ensures the existence of normal completions

of that configuration.



3. Induced structure

Iet F = [U;X] be a consistent configuration, so the prefer-
ence relation P?_ is an .order, and ny# 0. Iet E € Qg. be any of the

therefore existing normal completions of % 5 50 that I%}Cng

It may be impossible to make any direct assertion sbout order,
let alone compensation structure, for F . For example, if all the
cross-deviations are positive, that is Drs > 0 , which is a real possi-
bility with any data, then the preference order may be null: P; =0 .
In this case, nothing at all can be asserted about a necessary ordering
of the elements. It is true, at the other extreme, Pg_ may turn out to
be a complete order; in which case order is fully determined. But gener-
ally, Pg. will be a partial order, intermediate between a null and a
complete order, which will admit refinement to a .complete order, or, more
generally, to a scale. But the scale is not unique: 1t is indeterminate
in the variety of all scales consistent with that partial order, as can
be shown.

Now, relative to the arbitrary normal completion ¢, of T
there is determined a scale sg(g) s by applying the scale PE Jjust to

the elements of F , which is necessarily a refinement of P «» It will

Jod

be called the scale in F induced by the normal completion §,. It can
be shown that as § varies, then Sg(g) variés through all the scale
refinements of P? » Thus it turns out that no further specification
of order is obtained by taking the normally induced scales rather than
the scale refinements of R} « The operation is thus of negative
significance, just so far as order is concerned.

Compensation structure, however, is a much more strict and

elaborate concept, which not only gets a determination by induction



through any normal completions, but has such an induction as its only
vehicle of definition.

Thus, with the normal completion ¢ of F , there is formed
the compensating ratio fﬁnction px,y = px,y(z) 5 and this is applied
to the elements of F , to obtain the array pg(E) = {prs} , where
Prg = pxr;xé (rys =1,...,k) which define the compensation structure

of ¥ induced by & . As & varies in Q- , the array pg(z,)

also undergoes variation. It will appear elsewhere that there exist

7

¥

e
ty that, for any r,s and any p?é 5 there exists an £e¢Q. such that

o2

with elements p?

i P . 1
two limiting arrays p31 s P .

n o
> Prg with the proper-

(£¥) = p*¥ if and only if

prs rs

4 ¥ n
Prg < Prs < Prg

Thus the elements of neither of these arrays belong +to a normally induced

compensation structure; but together they give the extremities of open

. = [ it .
intervals Irs [prs’prs] which bound the elements P 1in any normally

induced compensation structure. These may be called the absolute intervals.

The final problem is the computation of these limiting arrays, Or any par-
ticular elements in them. But here a more special problem is being
investigated, which does, however, have to be viewed in relation to the
general problem. |

Instead of considering the totality O of normal expenditure
systems of the same dimension as F , and then thelc%Z:Sof those which
are completions of ¥ , one may start with some special class o*C e,
and consider the completions Q§ of F which belong to Q% . According
to the narrowness of the class Q¥ , there will be a narrowing down of

the varieties of order and compensation structure induced on F relative

to completions in Q¥ . Thus S?(Ef) may not exhaust all the scale



refinements of 33 as &¥* ranges in Q% ; and the elements p?s of
p?(Zf) may range in intervals I?é narrower than the absolute intervals
Irs .

If Q% consists of expenditure systems on some algebraic model,
then it becomes an algebraical problem to find the criterion for Q§ 4= 0,
and to determine the arrays @;V , %:" of limits of the intervals Iﬁé s
defined under this criterion.,

For example, 0% could be the class of normal expenditure
systems determined by normal preference functions“on.some convex region
containing the base elements of F which are given by quadratic function,
increasing and convex in that region. The algebraical criterion for
0% + 0 will be found in this case. And it will turn out, scmewhat
remarkably, that Sg(l*) is invariant as ¥* ranges in ng, thus de-
fining a unique scale induced an F relative to the class Qg . Moreover,
p}(zf) turns out to be a one-parametric family of arrays. There is a
natural parameter M defined with an algebraically determined critical
value ﬁ » 8iving the Q*-induced compensation structures in the paramet=
ric forms pg(M)(ﬁ <M <) in which they appear with the monotonicity
property

Prg (M) < P (W) M>N) .
Moreover, the interval limits, excluded by the admissible range.of M,

are derived as limits obtained by letting M +tend to the limits of its

range. Thus

rs rs’ rs
where
~ _ lim
rs  M&M Prs (a0) Prg (M)
~ _lim
rs  Mbow prs(M) *
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The most advantageous approach is not direct, but is made through
the concept of a median solution, which links the algebraical method with
the combinatorial method; and then through consideration of the existence
and the variety of quadratics which can be associated with such a solution.

First, since the considered order and compensation structures are
expressed by numbers, some clarification will be made of the relation
between these numbers in their different roles.

Given a normal expenditure system E, , 1ts preference relation
PE» is a partial order, but of that special type which is called a scale,
which reduces to a complete order of equivalence clagses. The direct con-
struction .of the relation PE s Tollowing the rule of its definition, is

preference
impossible, since it involves the construction of all possible baseJchains

of unrestricted finite length. However, the existence is known of a

differentiable function ¢ with the property

o(x) > o(y) e>>£1F’&:>f s

by which it completely represents P. . Moreover, the differential form

13
u'dx is integrable, and

Autdx = do
where A 1is some integrating factor, gives a construction for such a
function ¢ , which is called a gauge for Z, and A the conjugate
multiplier. If o(t) is any differentiable increasing function, then
®* = @(p) is another such gauge and A¥ = o'\ the conjugate multiplier,
where o' = o'(9) is the derivaﬁﬁeof ®w ., It is always possible to choose
® so0 as to be convex on some compact domain. But, generally, ¢ will be
a Tunction just with convex levels.

The compensating ratio function is determined as the single-

valued solution © = Py - of the equation
J



u
vE) = v)

where Y(u) = @(&(u)) and where x =g(u) , y = &(v) , first obtained as

a function of u,v and then converted into a function of x,y .

Now
pXJy

u, de
oly) - o) = @) 22
o e
1
considering A = AN(x) = N(E(u)) as a function of u . Therefore, with
A continuous, if B = p - 1 is "infinitesimally small," there

X5 ¥ X,y

is the relation

) = o(x) = N>
oly) - @ e,y ?
but, generally, this relation by no means holds finitely.
Now let @,A be a gauge and conjugate multiplier for some normal

completion & .of F . The corresponding level and multiplier sets

¢ = {Qr} s A= {hr] are determined by

¢r = @(Xr) P hr =~K(Xr) .

Ifr Drs = ur’xs—l s 1t can be shown that the conditions

> -
>"r 05 XrDrs > P =
are necessary and sufficient for (&, A} to be constructable relative to

some convex gauge of some normal completion of F . For the .scale

S = S}(E) on ¥, induced relative to % , there is the condition

P, > P =2 erXs .

Now the completion T of F has a compensation ratio function px ¥
J

which induces compensation ratios for F given by

p =p

Xrgxs
From remarks just made, provided the figures belonging to r and s are
considered close to each other, the relation

%%

Brs A
T
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where Srs = prs_l s could be,considered to hold correspondingly closely.
But, apart from this inference; there is no way of constructing the compen-
satiﬁg ratios from the levels and multipliers. Indeed, there is an infinity
of systems E; which complete ¥ , produce identical sets of levels and
multipliers on F » but different compensating ratios. The possible level
and multiplier sets are constructed from the cross-structure of ¥ alone;
and generally there is no way of inferring compensation structure from them
-alone. The approximation principle .only states what is, conceptually, the
local relation between levels, multipliers, and compensating ratios, and it
yields nothing for a discrete set of figures, such as compose any configur-
ations .obtained from observed expenditure data. In order to achieve an
analysis of compensation structure for the configuration, it is necessary
to go beyond information contained Just in cross-structure, and take into

account, unreduced, the entire information presented by the configuration

itself.

4, Median levels and multipliers

The normal system of levels and multipliers (wr,Kr) are

determined gg the solutions of the normal inequalities

'&r >0, errs > P - P
Thus it is asked that the differences P - P belong to the intervals
T rs’ T

[~AD KSDSB},, these intervals being positive subject to the positive

interval condition

A D + A D >0 .
T rs s sr

Now there is an infinite variety of solutions to the normal

inequalities, which will be called normal solutions. There is the liberty

to be more restrictive. It may be asked, more stringently, that these
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differences all lie, if possible, at the mid-points of these intervals; that
is,

1
Pp =9 = §(stsr - x?Drs) °

iy

These will be called the median equations. Any set of levels and multi-

pliers which satisfy them will be called a median solution. The positive

multiplier and positive interval condition is necessary and sufficient for
a median solution also to be a normal solution.

Thus in searching for normal solutions it is peossible first to
search for a median solution, and then see if the positive interval condi-
tion holds. If it does;, then a normal median solution has been obtained.
Such a normal solution, with the median property that the level differences
lie not just anywhere in the prescribed intervals, but at their mid-points,
is to be taken as a model form.of solution. Any solution can be charac-
terized through its deviation from this median model, even if no exact
median solution exists. However, the more fundamental question is to know
.of the existence, and the variety, of median solutions.

The median consistency of a configuration may be defined through

the existence of a normal median solution. It is a condition generally
stronger than consistency.

Inquiry will have to be made into the possibility of finding
median solutions. It will appear equivalent to the possiblility of finding
multipliers which obtain a condition of cycle-reversibility. It will also
appear that for a configuration of four figures, a median solution always
exists, and is essentlally unique. For fewer than four figures, median
solutions exist, with an essential indeterminacy. But with more than four,
exact median solutions do not generally exist. The question which then

naturally arises, of the determination of solutions which conform as
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exactly as possible to the median model, is tied to the more general inves-
tigation of the analysis of configurations which can even be inconsistent.
Therefore, it is most fittingly excluded from this investigation, which
is committed to the consistent preference hypothesis in its exact form.
This hypothesis must nevertheless always be recognized as of limited
application, since expenditure configurations, such as may be obtained from
observed data, and in any case in principle, need not conform to this model
of consistency. The consumer, as pictu;ed, is at liberty to purchase in
the most disorderly manner. |

However, analysis is the investigation of order, and economic
analysis is, classically, committed to the existence of that order in the
Torm that is expressed by consistent preferences. And that hypothesis,
without being given an algebraical form, involving more restrictive, but
congstructive models, is not tractable for algebraical treatment, such as
is wanted now. The peculiar concept of a median solution, Jjoined with the
calculations which will proceed on the basis of it, is singled out by a
peculiar workability, for the purpose of putting the hypothesis in a
restricted algebraical form which 1is an effective basis for developing an

algebraical method for the .questions now considered.

5. Determination of medians

If (qE,AT) is a medisn solution, then for any r,s,t there are

the relations

1

- P = §(stsr _'thrs)
1

g = P = §(XtDts - Astt)

1
P - P = §('>\'rDrt - '}\'tDtr) °

By addition .of these, the levels are eliminated, and there is obtained the
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relation

NrDrs + hstt + KtDtr - hrDrt + KtDts + hstr

for the multipliers. Let

rst r rs s 8t t Ttr
then this relation is

rst = “rts
The number Srst s Tormed from any set of multipliers Ar , for a configura-
tion with given cross-deviations Drs ; depends just on the cyclic order
of r,s,t . There are two cyclic orders for three elements. Thus when
r;s,t are permuted, Srst changes its value Jjust when the cyclic order
is reversed, yielding two generally distinct values corresponding to
every r,s,t . The considered condition on the multiplier is that these

two generally distinct values obtained should be identical.

The number Srst may be called a cycle coefficient of the con-

figuration, for a cycle of three elements r,s,t corresponding to a set
of multipliers Xr . The considered invariance of value when the cyclic

order is reversed defines the condition of 3-cycle reversibility .on the

multipliers.

THEOREM 1. 3-cycle reversibility is a necessary and sufficient condition

for multipliers to belong to a median solution; and the levels which

belong with them are determined uniquely, but for an arbitrary additive

constant.

The necessity has already been shown. To prove the sufficiency,
suppose now that {KT] is a . set of multipliers with 3-cycle reversibility.
One of the numbers ¢} to be found can be chosen arbitrarily, say 9, -

Then ?, (r +m) can be determined from
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L

o, - @ =3AD - AD ) .

m mr r.m

By subtracting this from the same expression for P and using the

3=cycle reversibility relation, it is verified that

1
Q. -9, =5AD_ -AD ),

s sr T rs
50 a median solution {@r,hr} has been found, to which the multipliers
{XT} belong.

It follows that in order to find median levels and multipliers
there only have to be found multipliers with 3-cycle reversibility; and
any such multiplier may be joined with essentially unique levels to .obtain
a median solution.

In order to decide if a median solution is also a normal solu-
tion, it only has to be inspected for the normal condition }T»> 0o,

together with the positive interval condition

AD . +AD_ >0,
rrs 8 sr

which, like the reversibility condition, applies to the multipliers alone.
Now, for a .normal solution, there are the relations

?\.I'DI‘S > CPS - cpI‘

Kstt Z O - @

xtDtr > P = P s

which, by addition, give

which may be called the 3-cycle positivity condition. Thus the 3-cycles
are not only reversible, for a normal solution, but also positive. Hence

there may be added:

THEOREM 2. The 3=-cycles are all positive for a normal solution.

The numbers
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are antisymmetric for permutation of r,s,t preserving value when cyclic
order is preserved, and changing sign when it is reversed. They may be

called antisymmetric cycle coefficients. They give the statement

Crst =0

for cycle reversibility.

6. Cycle reversibility and positivity

More generally, given any elements r,s,t,...,q in the cyclic
order determined from this order, with the first element following the

last, there may be formed the cycle coefficient

rSte..p KrDrs + Xstt toeee quqr ?

corresponding to any set of multipliers {Kr} . The general condition of

cycle reversibility is now defined by the condition that this coefficient

on any cycle, of any number of elements, should remain unchanged when the

cyclic order is reversed, thus:

Srst...p - sp..,tsr '

Now any cycle can be expressed as a sum of 3-cycles and 2-cycles, and the
reverse cycle is the sum of these 3-cycles and 2-cycles reversed. But
there is no change in reversing a 2-cycle since there are no distinct

cyclic orders for two elements. Thus, reversibility in respect to three

cycles implies reversibility in respect to all cycles. Hence, to elaborate

on the significance of 3-cycle reversibility:

THEOREM 1. For general cycle reversibility, 3-cycle reversibility is

sufficient.

Now a general condition of cycle positivity is defined by

Srst,..p >0 .
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The following is easily established:

THEOREM 2. All cycles are positive provided they are reversible and all

intervals are positive.

For if

Srst,..q = Sq...tsr ?
then

28rst.o.p = Srst...q + Sq.o.tsr

provided intervals SrS >0 .

(. Four-base determinacy

let F = [Er} be a configuration of four figures E} 5 indexed
by r =0aB,7,% . The cross-structure is then specified by the 4 x L

array Dg = {Drs] . The cycle-reversibility condition for a set of multi-

pliers {hr} is given by

Crst =0

where

C = AN (D _-1D

rst rrs rt) =0

+ xs(Dst— Dsr) + Kt(Dtr_ Dts)

and where r,s,t is any of the four sets of three distinct elements taken
from the four elements «,B,7,5 without regard for order, since the same

equation Crst =0 1is obtained when vr,s,t are permuted. Thus there are

the conditions

0575 = 0, CSGB = 0, C;BG

providing a simultaneous system of four homogeneous linear equations for

= 0, =0,

Ca67

5 ° But there is the

the ratios of the four multipliers Ad’ XB, xy, A

identity

C + C

By =0

+C C .
oy sop * 7B
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Therefore the equations are automatically consistent and can be solved for

ratios of the A's . Thus, in matrix form, the system is

© P "% D" Pp Pepm Dyy\ [ Pa\ <O
Daﬁ - Da7 0 D7a - D75 D67 - D66 KB
Daﬁ - Pos DBS - Daa 0 D - DSB >‘7
Py " P Paam Py Dp D 0 s

and the matrix of the system is singular, since its rows sum to zero.
Moreover, in general, any three equations of the system are
independent, since any three rows of the matrix of the system are, in gen-
eral, independent. Therefore the matrix of the system is generally of
rank 5; and the system determines uniquely the three independent ratios

for the four A's .

THEOREM 1. For a four figure configuration, multipliers which obtain

cycle-reversibility always exist, and their ratios with each other are in

general uniquely determined.

Now with such a set of multipliers {%T} » uniquely determined,
but for multiplication by an arbitrary constant, there is determined a set
of levels {¢}] » uniquely determined but for multiplication and addition
with arbitrary constants such that {@r,xr} is a median solution, satis;
fying

¢

1
- ¢, = 5(%SDsr - errs) ) (r +.S: rys = QyB,7,d) .

s
Ir {q&,kr} is any such solution, then any other one is of the form
(w + o9 Gkr) ; obtained from it by a change of origin, defined by w ,

and of scale, defined by o . In these terms:
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THEOREM 2. For a four-figure configuration, median levels and multipliers

exist, and are uniquely determined but forﬁan indeterminacy in origin and

magnitude of scale.

8. Median consistency

Iet F now be any configuration, of some k figures. It has
appeared that if k > I there is in general no exact median solution
unless k =4 ; but if there is one, it is essentially unique. Also, if
k <k , then there is always a variety .of such solutions.

Suppose a median solution {xr,qe] exists. For normality, the.
A's must be determined with positive ratios, so they can be chosen posi-

tive:

Then it is required further that

krDrs + kstr >0

Now define the median scale S , corresponding to that median solution, by

>q@ .

erX = Q s

] r

Ir k> L ) 8 is generally unique if it exists; and it always exists
for k =% . The normality conditions imply

D <0= D _ >0,

rs — sr
vhich i1s a statement of the well-known Samuelson condition, that is a part
of the Houthakker condition. From this, together with kr > 0, it follows
that

D <0 = @S -0

1
rs - E(h Drg = Kstr) <0,

T rs
and therefore that

P S .

7 C

¥ transitive, PgL must be an order, so

F 1is consistent. Thus, for any configuration F , median consistency or

Now since S 1is a scale, and P



=19-

the existence of a normal median solution, implies consistency. Moreover,
the median scale S 1is then a consistent scale of the configuration, being

consistent with its preference order 2; o

THEOREMs» Median consistency implies consistency, and that the corresponding

median scale, generally complete, is a refinement of the preference .order,

which is generally incomplete.

Thus, for a four-figure configuration, there is always defined a
scale which is in general a complete order, since the median levels are in
general distinct. Moreover, with medign normality, this is a refinement of
the preference order. The preference order is generally a partial order;
it may even be null, giving no order distinction at all, since it is pos-
sible that every Drs >0 . But even in this case, the median scale is
defined, and, in general, is a complete .order, but never conflicting with
the preference order even when that order is not null.

When standard-of-living is the only issue, it may be decided in
a unique fashion according to the median scalé, under the normality condi-
tion. But there is still not the means for decision on the cost-of-living
question. To this end, there has to be investigation of the expenditure

systems in which configurations that admit medians can be embedded.

9. Quadratic property of medians

let F = {Er} be a configuration with figures E = [ur;xr]

- = = ? - . i
and cross-structure Dg {Drs} , Where Drs u, X 1 ; and suppose it

has a median with level and multiplier sets o = {q;} s A= {hr} s satis-

Tying
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Associate with the point X, the vector

g, =uX (r =1,00.,k) ,

so as to form a vector configuration {X,G} with base and object sets
X = {Xr], G = {g.} - Then, with
- ¥ 3 4 -
Kr =X g. » since u,t'x, = i,

the median equations give

,_{8
1
=8
I

xS

=

n
2]

nXr_l) - Kf(urvxs-l))
(gg " (x ~x) - g, (x~x ))

I
= POl o=

(x ~x ) (g, + &) -

Now form the skeleton = = {X,G,2} , which associates the scalar
P, and the vector g, with the point X, and is defined to admit any
differentiable function ¢ , with gradient g , whose value and gradient

at X, 1s 9, and g, ; that is, such that

olx.) =9, , 8lx) =g, .

Now the condition

P -

1 . |

sl -x ) (g + 8)

is necessary and sufficient for the skeleton to admit = quadratic function
® (Res. Mem. No. 20); and the condition that such a skeleton can be con-
structed on the expenditure configuration F is equivalent to the exis-

tence of multipliers which obtain eycle-reversibility.

THEOREM. Let u, be a vector associated with a point X, » such that

w'x, =1 (r=1,...,k) , and let Dg=u'x~1. Iet ¢ =0(x) bea

differentiable function, with gradient g = g(x) ; let

— — = ¥
olx) =05 8x) =8, , A =x'g
and let

A= {xr} and @ = {@r} .
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Iet A* denote any non-trivial solution of the equation

¥ " # = ¥ * #
errs + kstt + htDtr ktDts + >\'str + KTDrt

and (X,g) any non-trivial solution of the equations

~ ~ 1, ~

b = B = E(Kstr - ArDrs) )

N

(A) solutions (A¥) exist if and only if solutions (A,0) exist.
(A') For every solution A¥* there exists a solution (X,@) with A = A% ,

(A") . Every solution (R,@) provides a solution A* with A* = A

(B) If k >4 there are generally no solutions of these equations.

(B') If k =L there exists a solution (3,0) which, generally, is

linearly unique, in that any other solution is of the form

((ho), {90 +0}) (c40) .

(B") If k <k, there exists a variety .of solutions, without linear

uniqueness.

o

(¢) ' Solutions (K,%) are identical with the (A,®) for quadratics such

that
I 1 - .
(leux ')g = 0

If such quadratics exist, they are generally lihearly unique only for k >n .

COROLLARY. The existence of a median solution is necessary and sufficient

for the existence of guadratics whose gradients at the consumption points

are parallel to the price-directions. This condition is automatic only

for k <k.

COROLIARY+ If a variety of quadratics are constrained to have their

gradients determined in a common direction at not less than four points,

then also their values and the magnitudes of their gradients are essen-

tially determined at those points, the indeterminacy corresponding just to

addition and multiplication with a constant.

If k <n , the property of admitting a quadratic is a porism,
in that if one is admitted, then so will be an infinity, these forming

a parametric family -of dimension depending generally just on k and n .
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10. Median closure

0,1,0e.,k=1) ,

Let ¥ = [U;X] , where U = {ur} , X = {Xr} , (r

be an expenditure configuration, with cross-deviations Drs ur‘xs- 1,
admitting a median-solution with multipliers A = {Kr} ; and define
= N
& = Wy
To any point
Xy = Xlal + oee + xqu

in the convex closure X of X , where

Oy eee 5 G >0, 0 oo + O =1,

let there correspond the vector

ga =glcxl + oeo +gkdk 5
and define
hd = xa‘ga .
Now, provided Na + 0 , take
Ya = i@
61

as a vector corresponding to Xy o such that
¥ =
ua xa 1.
Provided X = {xr} s G = {gr} are simplicial, and every A, £ 0, the

correspondence

defining u as a function

u(x) = u, (x = x_)

of x on the convex closure X of X s is invertible. There is obtained
the continuous configuration whose figures are [ua;xa] include those of

F , and whose base set {xa} is the convex closure of the base set

{xr} of ¥ . This continuous configuration may be denoted by iﬁ, and
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called the median closure of F .

It is easy to see the following:

THEOREM. If ¥ is a median configuration, then so is every configuration

3*C F in its median closure, and F*( F

In other words, the median closure of a median configuration is
always a continuation of the median closure of any configuration in its
own median closure.

Proceeding further, the median condition is necessary and suffi-
clent for the existence of a vector c¢ and a symmetric matrix B such

that
In this case, also

= Bua&x .
Consider the correspondence x = x(u) defined by

X - ¢ = Buh ,

where
- i-u’c e =
A= TTBL 2 SO that u'x =1 .
It gives
x(u) = X, (u = ua) 5

so that it extends the median closure F of F . It is continuous, so
that if uaj) O , there exists a neighborhood N of X such that wu(x) DEe
(x € N) . But, given X, D0, g, 0 0 , and necessary and sufficient condi-
tion for this is hr > 0 . In this case, there is obtained an expenditure
system x(u) , determined by the vector ¢ and matrix B . Provided the
matrix {(Xrnxo)“(gr-go)} is regular, the matrix B can be chosen regular.
Then the system can be inverted to give u(x) D)0 for every x € N . And

since B 1is symmetric, this system is integrable. For, with A = B—l
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(x-c) 'Ax~c) .

POf

Autdx = dp , where ¢ =

Moreover, every such system must contain §? . Accordingly:

THEOREM. If F = [U;X] is a median expenditure configuration, with base

and cobject set X = {xr} and U = {ur} , and multipliers A = {Kr}

(r = 0,1,.0.,k=1) s and if g, = urkr ;, then, if and only if the matrix

[(xr-xo)'(gr-go)} is regular, and hr > 0, there exist invertible and

integrable expenditure systems, whose integrals are guadratic functions,

in which F can be embedded; and all these extend the median closure

F of F .

11. Quadratic consistency

The question to ask now is whether among such quadratics there
are any that are convex in, and are therefore normal preference functions
over the convex closure of X , and therefore determining normal expendi-
ture systems in which F can be embedded.

The normality conditions for the multipliers in a median solu-
tion are
>\.>O,>\.SD +AND_ >0 ;
and since ur )0, prices and expenditure being positive, these become
the conditions

g, D0, (x-x)'(g g ) <O0.

The condition g, ) 0 1is necessary and sufficient for any
quadratic @ , with gradient g, at X, s to be monotone increasing in the
convex closure X of X = {xr} o Assuming multipliers which obtain rever-
sibility, the condition (xr—xs)'(grags) < 0 1is necessary and sufficient
for the existence of a convex function ¢ with gradient g, at x

T 2
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but it is not sufficient for the existence of such a function which is also
quadratic. It has appeared that there exist such functions which are
quadratic but not convex. Now a necessary and sufficient condition for
the existence of a convex quadratic among these is given by the stronger
condition

(xxg) ' (gr8g) <O
for all distributions @,B (Res. Mem. No. 20); and this is equivalent to
the negative definiteness of the matrix GO'Xo » square and of order k - 1 ,
where
G = (gr»go} ) X = [xr—xo} (r =1,.0.,k-1)

(o]

are matrices of order nx(k-1l) (Res. Mem. No. 20).

THEOREM i. If ¥ is any expenditure configuration with k figures

[ur;xr] (r = 0y00.,k-1) , if g, =u M, for any multipliers A. , and if

Gb = {gr"go} ’ Xo = {Xr_Xo}

then the multipliers obtain cycle-reversibility if and only if the matrix

G-O‘Xo is symmetric. Under this condition, there exist quadratic func-

tions @ with gradient gr at X, A necessary and sufficient condi-

tion for these quadratics to be monotone increasing in the convex closure

of the points X, is that Kr >0 .

Let the quadratic consistency of the configuration F be

defined by the existence of a quadratic function which is a normal pref-
erence function in the neighbourhood of the convex closure of its base

points X, and which is compatible with it.

COROLIARY. The quadratic consistency of F is equivalent to the exis-

tence of multipliers Kr > 0 such that GO‘XO is symmetric and

negative definite.
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The three forms of consistency which have been defined for an

expenditure configuration have the following relations:

THEOREM 2. The conditions of consistency, median consistency, and quad-

ratic consistency for an expenditure configuration are increasingly

restrictive, each being implied by the following one, and no pair being

equivalent.

12, Quadratic maxima

A convex quadratic @ 1is specified by its centre c , which
is the unique point at which its gradient vanishes, by its initial value
M , which is the value it takes at its centre, and by a negative definite
characteristic matrix A , which give it in the form
o =M+ %(x—c)'A(x—c) .

Thus, the gradient is

g = A(x-c) ,
and it is seen that
gle) =0, ple) =M .

Also, with A negative definite

o(x) <M,
with equality if and only if x =c¢ . So M is the absolute maximum of
® , attained at its centre c .

If ¥ is a quadratically consistent configuration of no less
than four figures, then, but for a positive factor of proportionality,
there exists an essentially unique set of multipliers Kr > 0 such that
g, = urhr determines the gradient at X, for all the admissible quad-

ratic preference functions. It should be noted that quadratic consistency

is possible, but with a zero measure of likelihood, for more than four
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figures, and with a positive measure of likelihood for no more than four.
This multiplier set A = {KT} may be joined with a level set
¢ = {¢}} s unique but for an additive constant, so as to obtain a median
solution {A,®} . Then P, determines the value at X, of all these
functions, but for multiplication and addition with constants.
Thus every admissible quadratic preference function o ,
suitably normalized by multiplication and addition with constants, is

such that

o) =0, , glx,) =g, ,

where g 1is the gradient of ¢ . One may ask of these quadratics, thus
normalized, what is the locus of their centres, and what is the range of
their initial wvalues.
The answer (Res. Mem. No. 20) is that their centres c must
satisfy the condition
G "% = X '8p = Gy'e s
together with the condition

go‘(c-a) >0,

where

~ -1
— - v
¢ =% Xo(Go Xo) Xog-o °

Now, further, it appears that the initial, or maximum value M
of any such quadratic is determined by a function M = M(c) of its

centre, given by
- Lix —e)n
M(C) - CPO - Q(XO C) go °
Iet
M o= M(8) ,

so that

T o= i' !"lu
M= % T 3% Xo(Gb Xo> Xo & *

Then, from the inequality which applies to c¢ , there follows the
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inequality
A
M>M
specifying the range of M , which thus can be any finite number greater
than ﬁ . From the negative definiteness of G-o“Xo it follows that
>
M Qr

for every v = 0,1,...,k-1 &

TEEOREM. If they exist, the maxima of the convex quadratics @ , with

gradient g , constrained by the conditions

Q(X ) = ¢ (r = O;l:°°')k'l) p)

v .5 8lx,) =¢g

r

describe all values greater than

i t 7 -1 ]
mo + 2go Xo(Gb Xo) Xo go
where

X, = {xr—xo} > G = {gr-go} 5

and a necessary and sufficient condition for the existence of such quad-

ratics, given the vectors 8, , and for some values P > is that Gb'Xo

be symmetric and negative definite, and, given this condition, then that

i ox )

Q. - 9 =5x,mx ) (g 8,) -
It is noted that one element X is here distinguished from

the k elements X, (r = 0)1,.+0,k=1) . But the distinction is arbitrary;

and nothing is changed if the elements are permuted, so that X, is

replaced by any .other element X, - Thus, given the symmetry of G~O'XO P

it follows from

1
L E(erxo)'(gr+ go)
that
1
e, - o, =5(x-x )" (g +8]) ;

and from this alone there follows again the symmetry of G-O'Xo s or .of the

same matrix with any interchange of elements, which may leave any X, in
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place of X, . Similarly, for the expression giving the lower bound of

the maxima, the distinction of the (-element from the rest is inessential.

13. Linear price systems

The expenditure needed to purchase any amount € of a simple
commodity at a given market price =n 1is determined by the market equation
€ = wE .

Thus, with = fixed, there follow the relations

.1
b1

£ _ ot _ 1
€ € =

3 2

which shows that, in the nafure of the market mechanism, with a fixed
price for every unit, irrespective of the number of units, there is no
distinction between average price, marginal price and market price for a
simple commodity. However, when generalization is made for a composite
commodity by means of a normal preference function which is to measure a
level for a composite amount, these price concepts become distinct from
each other.
Relative to a normal pfeference function ¢@ for a composite

commodity, there is obtained a level

X = o(x)
for any composition x . Given the market price vector p and the
expenditure e , the composition x is not directly determined Just by
the market constraint

p'x =e,
as in the simple case, but as the unique equilibrium, in respect to the
normal preference system under that constraint. It is determined, accord-

ingly, by the condition
g =uh,
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where g is the gradient of @ , u =

% , and A .=x'g . This condition

determines x as a function of u = % , and, correspondingly, X as a

function of g . Then the partial derivative of X with respect to e

with p fixed is defined as given by

oX - 1
e P’
where
A
F=c

defines the marginal price, for attaining a level X , as measured by the
gauge ¢ , when the market prices are p . A small increment dX in the
level X attained at price p is achieved by an increment de in the
expenditure e , given by

de = PdX .
But it cannot generally be asserted that

f - e = P(Y¥-X)

where, with prices fixed at p , X and Y are the levels of the compo-
sition attained by expenditures e and £ ; in other words, that the
marginal price P is independent of expenditure e , and is purely a func-
tion .of market price p . However, should this be the case, and with
prices fixed, the level attained will be a linear function of the expendi-

ture. In this case, therefore, a linear price system may be said to

operate. When the prices p are fixed, and P is known, the change in
expenditure to achieve a given change in level is then decided, and is
independent of the level at which the change is made. This is in direct
analogy with the market equation for a simple commodity, when the simple
physical amount is used as the measure of level.

While for a simple commodity there can, quite trivially, be

.only one expenditure system; and, for this expenditure system, while a
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variety of gauges are assoclated with it, the one defined by physical
amount is singled out in a most obvious way, there is gquite a different
situation for composite commodities. TFirstly, a particular normal expendi-
ture system has to be involved; and, without empirical or other external
guidance, there is a variety of undifferentiated possibilities. Then,

even when there is a commitment to a particular normal expenditure system,
the possible gauges, though equivalent to each other, as belonging to the
same system, again form a variety. Should one gauge happen to determine

a linear price system, the others which are not linear functions of it will
not. So, given a normal expenditure system, it may be asked whether or not
it possesses a gauge which provides a linear price system, this being of
particular importance in the method for approaching the problem being
considered. It will appear that should a system have a quadratic gauge,
then it is possible to find another gauge which is not quadratic, but which
has the linear price -property. An importance for this is that any four-
figure configuration can be embedded in a system with a quadratic gauge.

In fact, this can be done in an infinity of ways. By analysis of this
construction, it will be possible to elaborate further on the problem of

the construction of a cost-of-living index.

1%. Generalized market equation

Consider a system in which any composition x , in a compact
convex region CO , 1s assigned a level ¢(x) by a quadratic function o ,
which, in CO 5 1s strictly increasing, and has convex level surfaces.
But a quadratic with convex levels in a neighbourhood must be a convex
function. Thus ¢ must be convex, énd hence of the form

o =M+ %—(x-c)'A(X-C) s



-32-
where A 1is negative definite, and therefore with inverse B = A-l .

The gradient of ¢ is
g = A(x-c) .

The associated expenditure system is determined by the equilibrium condi-

tion

g =uh,
where AN = x'g since u'x =1 . Hence the system is
A(x~c) = uh , where A .= x'A(x-c) .

Inversely,

i-ute:
u'Bu :

Thus u 1is determined as a function of x ; which inverts to give x

x - ¢ = BuN , where A.

a function of u . Moreover, it follows that
(x-c)'A(x-c) = (L-u'c)r ,

whence

2(p-M
(9%—)~= 1l1-nulc,

and
E(Q%M) =u'Bu .
A
It appears that if V(u) = @(x) is the function derived from @ by

substituting x as a function of u , then

2
_ 1(l-u'e)
v(u) =M+ 5

It is noted that, substituting u = g 3

A _e-p'c
e p'Bp '’

and this is not purely a function of pi, but depends also on e ; so

the linear price condition is not satisfied.

as

However, if, instead of the quadratic, there is taken the nega-

tive square root of the negative of its principal part as a measure of

level, representing an equivalent .scale, then it appears that the linear
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price condition is satisfied.

For, define

1
X =={-(x-c)'A(x-c) )7 ,
so that
2
X = -2(¢-M) ;
1 , s o X
and let T = X denote the corresponding multiplier, where X = 5 -

Then the operation esg sy Where u .= %-, gives

2XX = -2@ H

and, with A = é , this gives

ale
|
1
>

Therefore

Ci\)

_ I
"ol o
it
1

X
?
?’m E

==-u'Bu .

Accordingly, with

o

i}
o I8
s

a
1
@ [+d

it appears that

)
i

= ~p'Bp .
Thus P 1is independent of e , and is purely a function of p . There~
fore the linear price condition is satigfied.

With p given, the level attained by any expenditure e is

given by )
-{-2(p-M) 2

b
I

(L-~ute) &
-{- u’Bu ¥

(Loute) (cu'Bu)2 .

1
Therefore, with u = % , and P = -(-p'Bp)2

1
-(e-pte)(-p'Bp) 2
_&-p'c

= =& .

X
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Thus there is established the relation
PX =e - p'c,
in generalization of the form of the simple market equation
gt =€ .
With p fixed, and therefore P fixed, the change in level AX
corresponding to a change of expenditure Ae satisfies
PAX = Le ,
in perfect generalization, preserving exactly the form, of the correspond-
ing relation
TAE = Ae ,
obtained from the simple market equation.'

It is noted that AX depends only on 2Ae , and not on X , or,
equivalently, e . Thus it can be said that, whatever the initial level,
the change in expenditure required to bring about a given change in level
depends only on the prices. The changes in expenditure and level are pro-
portional, and the prices enter through their ratio.

Thus, with such a system applying to a composite commodity, there
is obtained a perfect generalization .of the market system for a simple
commodity, The price index P , a function.of the price vector p , has
exactly the role of the simple market price = Tfor a simple commodity,
where, instead of purchase being for a direct simple physical amount, it
is for a level associated with a composition of several physical amounts.

Now suppose on two occasions o©0,1 the prices are Py Py and
the expenditures are ey € s and it is known that the indices of price
and level attained according to such a system are Po’ Pl and XO,X .

1

Then it is possible to calculate the expenditure eol needed to attain,

at the prices of occasion o , the level of occasion 1 . Thus
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o1 " % ~ Po(xl—xo) s
Hence
Pop =1+ Uo(xl-xo) 5
where c P
L oLy _lo
Por T 2 Yo T e
o o]

The number Po1 is the ratio in which expenditure in . occasion o has to
be adjusted in order that, with prices remaining the same, the level of
.occasion 1 is attained. It thus measures the cost-of-living with 1

and © as base and object occasions.

15. Ranging the cost-of=1living

The position is now clear for developing an algebraical formula
for ranging the cost of living. It involves the expenditure data for four
occasions. It assigns limits to the cost of maintaining, at the prices of
any one of the four occasions, the standard of living attained in any other
one.

Together with the algebraical formula, there is a criterion .of
quadratic consistency glven by certain algebraic inequalities, by which it
is possible to extrapolate the expenditures on a normal quadratic model.
Since the criterion is given by algebraic inequalities, there is always a
positive measure of likelihood that it will be satisfied.

When it is satisfied, there always exists an infinity of such
gquadratic models extrapolating the data. Fach of these will give a cost-
of-living determination; and the totality of such determinations is
identical with the open interval obtained from the formula.

Now, quadratic consistency implies consistency; and, given

caonsistency, there is a larger class of normal preference systems, including
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the quadratic class; which range the cost of living in a larger, absolute
interval, containing the interval corresponding to the quadratic class.
Thus the algebraic formula, given quadratic consistency, can be considered
as ranging the cost of living within the absolute interval. The absolute
interval camnnot be calculated by algebraical means, but requires combina-
torial methods, which present a much more elaborate computation problem.
Thus, though the absolute interval, which is defined under the
condition of consistency, cannot be determined algebraically, under the
stronger conditions of quadratic consistency it is possible to calculate a

sub-interval of it by algebraical means.

ALGORITHM. Iet F = {Er} be an expenditure configuration of four figures

E. = [ur;xr] (r = 0,1,2,3) , with cross deviations determined by

D =u ' - 1.
rs r s

Iet A= {Af} be four multipliers whose three independent ratios are

determined from the cycle-reversibility equation

Coyp =05 Cgpg =05 Cuzy =0

where

Cops = (AODOI_ + hrD

or rs T %sto) - (&spsr +AD, t Aopos) )

Then let & = {Cpr} ‘be four levels whose intervals are determined from the

median equation

. -1
- % = 2(hoDor _'ATDro) :

.

r

These multipliers and levels are uniquely determined by arbitrarily taking

}\.O=l,q)o='00

Now let

and form the matrices
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%= {Xr'xo} > Gy = {gr-go)

of order nx.3%5 . The 3 x5 matrix XO"Gb should be symmetric, by

consequence of the conditions determining the numbers KT .

The criterion for quadratic consistency is %1,h2,k5 >0, and

that Xo‘Gb be negative definite.

Calculate

Now calculate

_ l—,w v'lv
M= P + 38 Xo(Xo Gb) Xo & *

Quadratic consistency provided, it is necessary that

s0 it is possible to calculate

r/\
§ oo
O W
T
and then
5 )
rs Uf(Xé-Xi :
With quadratic consistency given, it should be found automatic-
ally that
5 <5 <D .
rs s rs

Assuming n >4 s Quadratic consistency implies the existence

of an infinity .of normal completions of the configurations which belong

to quadratic preference functions. Any .one of these gives a determination

of the fractional change 6rs in the expenditure of occasion r which

exactly compensates for the price-change from occasion s . The totality

of these determinations describes the .open interval

erb4

<95 <
rs rs rs



~38-

The explanation.of this algorithm is as follows. Iet A, & De
determined according to the algorithm, and suppose the quadratic consistency
criterion is satisfied. Then it is known that there exists an infinite

class of convex quadratic functions ¢ , with gradient g , such that

glx) =g, , ox.) =0 .
All these functions determine normal completions of F , and
any such quadratic, which determines a normal completion, can be normalized,
by addition and multiplication with a constant, so as to satisfy these
conditions.
Also it is known that corresponding to any number M > M , there
exists a subclass of these quadratics with M as maximum value, thus:
Q=M +-%(x—c)‘A(x—c)
where c¢ 1is some vector and A some negative definite matrix. If
X = (= (x-c) "A(x-c) P

it follows that

1
= o { - 2
X, (-2(9-M))
and that Xr
U, = -5 -
T
But it is known that
5 =U (X =X ) »
Ts rs ‘r

The admissible class of quadratics is thus resolved into subclasses cor-
responding to every M > ﬁ . All the members in these subclasses induce
the same determination of '6rs » which is evaluated by these formulae as

a function & =8 (M) of M.
s rs

Now, more explicitly,

2M=-X X 20

5 = rs _ _'r

rs N A ’
r r

and this varies with M , according to the variation of

QM-XX)
r s
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or according to the variastion. of

[N

M- ((Fe )Mo ) )2 .
By differentiation with respect to M , there is obtained the expression

L

(e ) (M-9) 2 ~ 3{(e,) + (%9)]
(M-9,) (M-9_)

The numerator is the defect of the arithmetic mean of two positive numbers
M- mr 5 M.— ms from their arithmetic means. But this is always non-
positive, and is zero if and .only if the numbers are equal, by the general
theorem on the relation between the arithmetic and geometric mean. It
follows that if ?. + Py > the considered expression, and therefore also
8. 5 is a strictly decreasing function of M . It is next asked if the

rs

function is bounded, and, if bounded, what is its limit. But

¢.0
- TrTg
(¢r+ ?s)'_ M
- - = Pr . x
M- {(M Qr)(Nqu)} 14 {(lw—ﬁ )(1_5%?}2
¢+ 0Q
Therefore
5 cpr+ qJs _ 2@r
rs A A
T T
%" P
= 5 .
T
Thus, with the definition
x Py = P
‘Srs = - 5

there is the proposition

8rs Vo, 6rs 6rs (M =)

Thus as M increases indefinitely, all the calculable numbers srs

decrease simultaneously, approaching indefinitely closely, but never finally

~

attaining, their calculable limits Brs
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Iet grs denote the upper limit of the number Srs for the
N
admissible M > M . By continuity, this is evaluated simply by setting

~
M =M., Then
A ~ A ~
5 <38 (M>M) , 5 —> d M— M) .
rs rs rs rs

Thus it may be asserted that

5. >8 >8  (M<M<w),
rs rs rs

with limits of © and limits of M taken correspondingly. Moreover, it

is known that

<D (M>M) .
rs rs
Hence it follows that
5 <bp .
rs — s
In general,
5 <p_,
rs rs

provided p, H—ps (r +s) .

Now the following can be asserted:

THEOREM. Any expenditure configuration of four figures can always be

embedded in a class of integrable expenditure systems belonging to quad-

ratic functions, provided the median multipliers hr are positive. That

the symmetric matrix Gb'Xb be negative definite is necessary and suffi-

cient for the existence among these of a class of normal expenditure

systems, belonging to convex quadratic functions, which induce sets of

compensating fractional expenditure adjustments srs lying in an open

~

interval whose limits grs s 6rs are determined from the algorithm. The

induced numbers ars form a one-parametric family of arrays {BrS(M)}

~
(M <M <o), such that

5 (M) <3 _(N) (M <M< N)
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and

”~ ~
lim & (M) =8 , lim & (M) =& __ .
M ﬁ rs rs Mty oo rs rs

It also appears from the expression for Srs that

1
b =% = E(st&sr h &rars) ?
is an identity in M . Thus, remarkably, the A's and @'s are deter-

mined from the D's s0 as to satisfy the relation

Q. - @ = oD - aD ) .

r s 2" 8 sr rre
Then the A's and @' together with a value of M go to determine the
8's , which turn out then, together with the A's and @'s , to satisfy
the relation in which they take on the role.of the D'%s . An importance
might well be found for this identity in regard to the process by which,
instead of proceeding directly with measurements for a group of commodities,
that group is first formed into subgroups, and then the results of measure~
ment for these subgroups taken independently are combined, as if the
measures for these subgroups of commodities were to belong to single

commodities. Such a composite process is of cobvious practical interest

when there is .a large and complicated variety .of commodities.
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