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Abstract

Equations are derived for the evolution of the conditional
mean and covariance matrix, the extended Kalman filter, the trun-
cated second-order nonlinear filter, and the iterated linear filter-
smoother for nonlinear econometric models in structural form, It
is shown that in order to get a computationally feasible solution
for the truncated second-order filter, a stronger set of assump-
tions than usually occur will have to be made. The derivation of
this filter also revealed an error which usually appears in the

engineering literature on truncated second-order nonlinear filters.



1. INTRODUCTION

The use of Kalman filtering and related algorithms has been widely
appreciated nét only among engineers but alsb among economists in the
last decade. While mostly the linear Kalman filter has been used in eco-
nomics, several non;inear filters have been developed and used in engineex-
ing. Unfortunately, none of these filters are directly applicable to non-
1inea£ econometric modélsvin struéturai form since this model structure has
almost never been assumed in engineering problems. Tﬁe pﬁrpose of this
paper is to develop nonlinear filters for eéonometiic models in structural
.form;vand to show what types of filters that actually will be ccmputation-
ally infeasible.

The derivations in this paper are primarily based on Taylor series
expansions and normal approximations of some probability densities, and
follow in that sénse along the same lines of attack as Jazwinski [1]. It
will be demonstrated, however, that some stronger assumptions will have to
be made in order to get a computationally feasible form of the truncated
second-order nonlinear filter. Some errors in Jazwinski's derivation will
also be pointed out and a more correct form of this filter will be given.

The paper is o?ganized as follows. In Section 2 we give a description
of the model beingvﬁsed and show how thié modei is related to other models
being used in econometriés. In Section 3 we derive the exact equations for
the evolution éf the conditiohal mean and cévariance matrix of the state
vector. The extended Kalman filter is derived in Section 4.1, the truncated
second-order nonlinéar filter in Section 4.2, and the iterated linear filter-
smoother in Section 4.3. Sone conclusions follow in Section 5. A rationale
f¢r the use of nonlinear filtering techniques is given in Aépendix A while
a detailed derivation of the iterated filter-smoother based on an innovations

approach is given in Appendix B.



2. DESCRIPTION OF THE MODEL

Consider a nonlinear stochastic econometric model of the form

~ where yt is the vector of endogenous variables at time t which are
explained by the model, X, is a vector of exogenous variables which may

include both control variables and variables not subject to control, while
€ is a vector of disturbance terms assumed to be zero mean and independ-
ently distributed through time. ¢(yt,yt_l,xt) is a vector function with
c i : . ; . .
omponents ¢ (Yt’ytwl’xt) while ?(yt_l,xt) is a matrix function with
el . .
ements Wij(yt—l’xt)

The model above is a system of implicit or simultaneous stochastic

difference equations where the i'th equation in the structure is of the

form

_ i i
Vi = & Wer¥p g + Vlye g exde, @

i . .
where V¥ (yt-l'xt) is the i'th row of W(yt_l,xt) . The set of equations

(1) will also be referred to as the system of structural equations.

Although we have assumed no lags of order greater than one, there is
actually no loss in generality. 1In fact, lagged endogenqus variables
dated prior to t-1 are assumed to be eliminated by introducing identi-

ties of the form yj £ while lagged exogenous variables have
e . _ _

= Yy,e-1

been eliminated by identities of the form Yo £ = ¥y a1t
P r

The form of the model is quite similar to the one used by Chow et
al. {2}, [3]. However, contrary to what is most commonly used in econo-
netric models, we have allowed the disturbance terms et to be multiplied

by a matrix function W(yt_l,xt) “instead of being purely additive. The

reason for this is twofold. First, the model becomes more general and
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allows us to take into account a larger class of disturbances, e.g.,
heteroscedasity. Second, although seemingly a more complicated model
than usually assumed, we shall see that all results in this paper can be
ocbtained with almost no additional effort compared with the simpler model.
The system of structural equations may also contain models of time=-

varying parameters, e.g.,
or even constant parameters, i.e.,

B. =8

e =By (4)

The vector Yy s usually referred to as the state vector in control theory,
may therefore include both endogenous variables, time-varying parameters,
and constant parameters.

Observations of the endogenous variables Yo is assumed to be im-
perfect in the sense that they cannot be observed without error. We assume

the observation device to be described by

(5)

z, = h(yt,t) + ut

where h may be both nonlinear and, as indicated, time dependent. U is
a vector of disturbance terms assumed to be zero mean and independently
distributed through time. The processes {et} and {ut} are furthermore
assumed to be independent.

The Errors-In-Variables Model (EVM) generally includes the possibility
that also the exogenous variables are only measuréd with errors. Since we
have not allowed this possibility in Equation (5), it seems like we would

have to assume an observation equation of the form

z, = h(yt,xt,t) + u,
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in order to allow the exogenous variables to be only partially observable.
However; Sy including only partially observable exogenous variables in

Y, » wWe can readily avoid this problem. This may introduce a slight defini-
tional problem on the part of Yy since we have referred to Y. as the
state vector. In order to be a state vector, Ye will, strictly speaking,
have to be minimal in the sense that the system of equations (1) is invert-
ible, i.e., solvable with respect to Yioy * Of course, if some or all of
the exogenous variables are independent and serially uncorrelated, this
broperty cannot generally be achieved. However, what we are going to develop
in the seqrml will be independent of whether Equation (1) is a strict state
representation or not. Partially observable exogenous vafiables are there-

fore included in Yy so that x_ consists solely of perfectly observable

t
exogenous variables.

The two basic assumptions of EVM in structural form have traditionally
been normality and serial uncorrelatedness of the explanatory variables.
Mehra [4] has shown that if the assumption of serial correlatedness is
relaxed, the EVM becomes identifiablel)’ for normal distributions. Serial
uncorrelatedness simply means that the explanatory variables must be generat-
ed by some dynamical system, and a model of this system may easily be included
in our model. It is therefore believed that the type.of model which has been

assumed will provide a fairly general framework for many applications in

econometrics.

1 Identifiable is here used in the control theory meaning of the

~word, see Mehra [5] for an explanation of similarities and differences

between this and other terms used in control theory and econometrics.
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3. THE EXACT EQUATIONS FOR THE EVOLUTION OF THE

CONDITIONAL MEAN AMD COVARIANCE MATRIX

Define »Zt to be the sequence of obsérvations zo,zl,...,zt, viz.

Zt = (zo,zl,...,zt)

and define §tlT to be the conditional mean of Ye given ZT, i.e.,
Ye|r = Elyglzp) o | . (6)
and let Ytlr denote the covariance matrix of Ve given ZT, i.e.
- _A -/\ : R ' 7
Yelr SEy Yy ) g7 2 7
Finally, let

ry Cry ‘
Bleger) = Qb¢p Blugng) = RSy,

where 6tT is the Rronecker delta. We shall assume the random vectors
€. and Uy o, for all t > 0, to be independent of Yo and the segquence
of exogénous variables {xo,xi,...,xt} up to time t .

Now, assume §t-llt—1 nd Yt—l!t~i to be known. We seek expressions

for ytlt—l and “Ytlt-l . From Equation (1) we readily obtain

Velem1 = BWIZe ) = 0y o @
where

ey = g(¢(yt,yt_l,xt)izt_l) o (9)

Introducing the notatien

A - | |
E () = E(.lzt) , (10)



we can also write Egquation (8) as

A l ‘
Ve te1 = Bemy (® ) | (11)

By multiplying both sides of Equation (1) with yé and taking expec-

tations, we f£ind

Yele-1 = Bean 0¥e) * By (Youv0) = dpg¥yije (12)

where we have used the same abbreviated type of notations as in Eguation
(11). sSubstituting for yé in Equation (12) we obtain
-— I‘ Fagr [4
Yt[t—l = Et_1(¢¢ ) + Et_l(¢€t€ )+ Et_l(WEt¢ )
iy oA N '
FELL YD) - b g0, (13)

In case the model is explicit, i.e.; in reduced form ¢ will be independent

of Y, and both Equation (8) and Equation (13) will be explicit equations
for, respectively, §t|t=land Ytltwl . However, since ¢ generally is

a function of Yy v WE should expect Equation (13) to be even more compli-

cated than Egquation (12), so there is actually no improvement in going from
Equation (12) to Equation (13).

The models which until now have been used in engineering are almost
exclusively in reduced form or, in continuous time, described by differen-
tial equations. Models in structural form have therefore attracted very
little attention, which may explain why nonlinear filterifg in implicit
models is a seemingly unknown concept in control theory. With a model in
reduced form, Equation (13) would be preferred to Equation (12) since the
right-hand side of the latter is a function of known variables. Since both

¢ and Y in that case would be independent of € v the second and third

1 This is a somewhat sloppy notation since we have not listed the

arguments of ¢ which may be any triple (YT'YT—l'xT)° However, the mean-

ing of the notation should be obvious from the context.
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right-hand terms would also drop out, leaving a somewhat simpler expression
for Ytlt—l . For models in structural form, however, Equation (12) will
usually be preferred since it is believed to be far simpler in most cases.
In crder to make the previous set of equations complete we finally need
i v . i lized
expressions for Ytlt and Yt{t Letting p(ytizt) denote the (generalized)

probability density function of Yy given Zt , we have

Yele © Ep |2y = J Yy (v, |20 dv, (14)

From Bayes' rmle

plz, |y 2 _ ety |Z._;)
L AL A Lo A LI T
p(ytlzt) = f -

p(2,|€,2,_)p(Elz, ;)AL

where

P(Zt‘yt'zt—l) = plz |y,

by the assumptions on the processes {et} and ﬁzt} . Substituting into

Equation (14) we end up with

~

-1 '
Yelg = By Plaglyg))) B,y (7P (2 |y,) (15)
In a similar way, noting that
= ’ - 5 A, - " _ )
Tele By (ve¥e|2y) Ye|t¥e|e Iytytp(ytlzt)dyt Yelele|t
we find

"li r | n ")
Yt[t = [Et~1(p(ztlyﬁ))] Et—l(ytytp(ztlyt)) - ytltytlt (16)

Although conceptually not so hard to derive, it should be noted that
the right-hand sides of Equations (8), (12), and (13) generally involve

expectations that require the whole conditional probability density function
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for their evaluation, i.e., all conditional moments. The first two mcments
- of the conditional pdf therefore generally depend on all the other moments,
and in order to obtain a computationally realizable filter, scme approxi-

mations will have to be done. Equations (8), (12), and (12) are solvable

only when Equations (1) and (5) are linear in which case we obtain the

Kalman filter.

4. APPROXIMATE NONLINEAR FILTERS

4.1 Extended Kalman Filter

The extended Kalman filter can be derived:by expanding the functions

®, Y, and h in Taylor series around §t and neglect-

t=1 4 Yege
ing second and higher order terms. We find

Plyo vy _qex) = 0(E) + ¢l(t)(yt-yt‘t_l) + ¢2(t)(yt-1“yt-1|t-1) (16)

where we have introduced the notations

¢ty = ¢(Yt|t-1’yt—1]t-l’xt)
—B¢ A A
6y (&)= §§Z‘yt|t-1'yt—1|t-1'xt)
-9 > 5
¢, (8)= Byé_l(jt]t—l'yt—l[t-l'xt)
Similarly,

Vly_ 0% = V(E) + ¥Yylt): ) (17)

Vo1 Ve1]e-1
hiy,,t) = hit) + hy(t)(yt—§tlt_l) (18)

where

oY ~
7 (_Y_ o X))
oy, _; “t-1t-1""¢

Hi
i

Y (t) ) ?y(t)

P 1%t

A ah ~
h(t) = hiyy),y/) »  h (8) = ?:F{(ytlt-l't)
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Notice that V¥, (t) is a tensor and that the matrix Wyit)=(yt-1“§t-lgt‘l)
is given by
. Mig o ;

Substituting these approximations into Equation (8) we find

Yelemr = 00 = 00 ey ¥y femn %) (19)

In order to derive an approximate equation for the covariance matri:
Ytlt—l we shall assume that all third and higher order moments can be
neglected in all joint and marginal probability laws. of the system, e.g.,
the probability law of Y, or the joint probability law of Ye r Yeop *

and Et' Define

_ _z\ ‘_A ry Ly A ~

Cele-1 T Fen (WeVejen) WeogVeog|e-r) ) = Beey ve g) =00 3¥e g ey (20
== . . o AL = 4

De [tm1 Be g (G yt!t_lyet) By 1 (de0) + B, (¥0,) (21)

Substituting the previous approximations into Equations (12), (20), and

(21) we find the approximate covariance equations to be

Telea1 = Q0¥ gy + 0 (®IC, 4 + ¥(OID, |y (22)
Cefe-1 = N1 OC g + GV (23)
Pefe-1 = 01 (E)Dg ey + ¥lRIQ, (24)

From Equations (23) and (24)
c = (T - ¢, (t)) Yo, ()Y
tle-1 = ¢ PR Y P (25)
D = (1 - ¢ () Twieg, | ’

while, from Equation {(22),
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1

Yt[t—1'='(1 - ¢, (£)) [¢2(t)cé|t_l + f(t)ntlt_l] (27)
or, in terms of Yt-l{t-l and gt,
— - -1 37
Yee-1 = (= 080 TIR (8)Y, y pp 395 (®)
+ ¥RQY (I - ¢ ()T (28)

Another form of the covariance equation can be derived from Equation
(13). sSubstituting the same approximations for ¢ and V¥ as previously

we f£ind

Telemy = 10V pg 01 (8) + 0 (80Y, e 185 (8)

+

9 (81 |y b (B) + by (RICEy, 107 (8)

¥y + Y(t)p’ ()

+

01 (8D 14y ele-191

+

Y(£)Q ¥ (t) (29)

where we have used the fact that the temm Et(WQtW’) in Equation

(13) can be approximated as

&

By (HQLY) ~ B, (¥(R)Q ¥ (8))
+ Et_l((Wy(t):(yt_l—yt_llt_l))Qt(?y(t):(yt_l-yt_llt_l)) )

= ¥(e)Q ¥’ (£)

+ Et_l((Wy(t):(yt_l—yt_llt_l))stsé(wy(t):(yt_l-yt_llt_l)) )

&

W(t)Qt?’(t)

by the independency of Yooy and € v and the assumptions made prior to
this derivation, It is easily verified that the solution of Equation

(29) actually is given by Equation (28).
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The previous equations enable us to compute the one-stage predicted

estimate Ytlt 1 and its covariance natrix ¥ In order to obtain

t{t -1°

the filtered estimate Ytlt and the covariance matrix Y we shall use

tlt
a normal approximation and simply compute the first and second-order
moments of the posterior pdf p(ytlzt). Using the same kind of approxi-

mations as previously we find
(z,) = hiy £) & neey
1Y% t|t-1’

h' (t) + R

((z,-h(8)) (z,-h () ") = h (€)Y .

Be-1 t]t-1"y
By (We¥e|py) 2mh(E)7) =¥,y pho(e)

By applying a well-known formula, cited in, for example, Jazwinski [1],

p. 45, we find

Vele = Tefeop * Kp(2goh(0)) (30)
Ytlt = (I ~ Kthy(t))Yt!t_l (31)
where
K, = b (8) th (£)Y, (. b’ (£) + R Jh =y oy (EiRCH (32)
t Y |e-1ly t!t 1y tlt

Equations (19), (28), and (30) ~ (32) constitute the extended Kalman

filter for a model in structural form. Thé extended Kalman filter for a
reduced-form model can be obtained by noting that ¢ is independent of

Yy, in that case. Then, simply by substituting ¢(Yt—l!t-1’xt) for

t
¢(yt|t—l’yt-l|t-l) in Equation (19) and putting @l(t) = 0 in the other

equations, we have the extended Kalman filter for a reduced-form model.
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4,2 Truncated: Second-Order FPilter

| Th; so;called truncated second—order fllter was developed for reduced-
form models by Jazwinski [6], (71, and independently by Bass, et al. [8].
Nonllnearltles in the functions ¢ , ¥ , and h are in this filter carried
bdniy'.ﬁb‘second order while third and higher order centrél moments of the

vectors Yo 1 and €1 given Z are being neglected. With a model

t-1
in structural form we generally have to take into consideration nonlinear-
ities in ¢ with respect to Yy As we shall see later on, third and

higher order central moments involving Ye given Z_ cannot generally

t
be ignored without making some Stroﬂger assumptions than one has to do with
avreduced-form model. We shall, however, always assume fiffﬂ and higher
order cehtral moments of any kind to be negligible, and the ﬁagnitude of
such terms will not be discussed in what follows.

As in the previous case, let us start by assuming that third and higher
order central moments of all probability laws involving any number of the
vectors {Yt’yt—l'et} can be neglected. Some important consequences of
this assumption will be outlined in the sequel.

Now, et & and n be arbitrary n-vectors (yt is assumed to be

an n-vector), and let us introduce the notations

2.4
(€870, (8)); = i_lgggn Byjatayz t(§tlt 17 1)e-17%¢) (33)
- n 24 . R
80Ny = i_lgjgﬁ 35 1107y eg Tele-1Ve|e R (34)
( , n 32¢i A
En $y15 ()], =j,€—l£3ng Byj tayz = l(yt|t~1'yt|t’xt) | (35)
(BE"0y1(£)) = ((EE"¢,, () senn, (BE Gy, (0D) ) (36)

(B85, (1)) = (LB, (E)) g seun (EE B, (£)) ) (37)
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(En"dy, () = ((EN"61,(E)) ,eue (BN 0y, (D) ) (38)
Furthermore,“if A is an arbitrary nxn - matrix with elements Aij ’
we §&imilarly write
n 2. i R "
(B¢, (8)), = I Bi, =l (G .3 %) (39)
e 3L By Oy o tle-1 t-llg-l t
(A¢1l(t)) = ((A¢ll(t))l,...,(A¢11(t))n)' (40)

and so on.

By expanding ¢ in a Taylor series around §t|t—1 and §t|t , carry-

ing the nonlinearities to second order only, we find

o 1
Yeleep = O+ 50 e 1003 (6) + (Cppy g6y, (6D

1 : .
+ E{Ytnllt—l¢22(t)) 7 (41)

which is the expression for tﬁe one¥stage>predicted estimate of Y, in
the truncated second-order filter.

In oxder to develop the approximate equation for Ytlt-l » let us
first use Equation (12). Again, carrying the nonlinearities only to
second order, substituting §t}t-1 from Equation (41) for $t—1 , and

ignoring all third and higher order central moments, we end up with

= (1 - -1 Y,
T L D CR ORI 14
+ YE)Q¥ (D1 = f (e (42)
- i -1 _
Cier = @ = o000 gy, (43)
D = (T - ¢ (£)) T¥E)Q (44)
t|t-1 1 “t

These are:exactly,thg same equations that were dérived for the extended

Kalman filter, viz. Equations(28), (25), and (26) respectively.
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Equation (42) can also be derived fromvKuation {13) using the same
kind of approximations as previously. However, in order to do this we
shall first have to make an observation which is closely related to our
previous assumptions. Substituting §t]t-l (as given by Equgtion (41))

for $t—l in Equation (13), we obtain a lot of "squared" second order

14

{
tlt—1¢1l‘t)) '
(£) (¥

moments, e.g., expressions like

1 '
TV [e-1922 N (g e 10, ()7, ox

1l
T fpo1byy (O

£-1]1%22(8)) " -

1l
7% )e-1%11
Now, letting £ be a i1ormal random variable, & ~ N(E,Gz) , we know that
-— 4 4 :
E({(E-E) ") = 30 > (02)2 so that the fourth-order central moment is larger

than the square of the sucond-order central moment. The following proposi-

tion states that this is in fact true for any random variable.

Proposition

Let & be a random variable with mean E'. Then

(- DY > @E-an? (45)

Proof. By Jensen's Temma {(cited and proved in Swordexr [91, pp. 27-28),
any convex real valued function f of a random vector r satisfies
the inequality E(£(r)) > £(E(x)). Taking (.)2 tobe £ and £ to

be r , we immediately have the result. l::]

Having made the cbservation stated in the previous propositicn, we
easily see the consequences of assuming that all fourth-order central
moments are negligible., All “squared" second-order moments will also have
to be neglected including, by our previous assumptions, all products of
second-order moments. Doing that, we find the proper approximation of

-~ /\,
Y e-1e|e-1 TO Pe
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5 'Ai . 7 1, 1
Ve |e1¥e ey ® GEEIOT(E) + SO T0Y, |y 50y, ()T

+ 2(ct[t-l¢l2(t))’ + (Yt—llt—1¢22(t))']
F I e () + 2(C 6,0
2"t |e-111 tlt-1 ¥12
g e bpp (001070

Tﬁ;s poigt has been overlooked in many of‘thé Qapers and books on
nonlinear filtering which have appeared in the engineering literature,
and even Jazwinsky [1}, (61, [7] makes the same error by ignoring fourth-
or@er central moments of the state while retaining the square of second-~

order ceatral moments.

Substituting the Taylor series expansions for ¢ and ¥ into

Equation (13) we find

Yele-r = ¢1(t)Yt!t~1¢i(t) + ¢2(t)Yt_l!t_l¢é(t)
+ ¢1(t)ct[t~1¢é(t) + ¢2(t)cé|t-1¢i‘t)

¥ (t) + ¥(t)p/

+ ¢l(t)D t|t~l¢l

tlt—l (t)

+ Y(E)Q ¥ () : (46)

the solution of which, by referring to the extended Kalmaﬁ filter, is
given by Equation (42).

Subject t6 the assumption that all third and highei oider central
moments of all the probability laws which are inVolvéd in céméuting the
one~stage predictions can be neglected, we ended up with the prediction
part of the truncated second-order filter to consist éf Equations (41) -~
(44) . The only difference fiom the extended Xalman filter is the equation
- for the conditional mean gtlt-l . vHowévéf, since the system éf equations

is coupled, we will generally not obtain the same solution in the two cases.
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Derivation of the equations for the filtered estimates §tlt and
tht can be carrded cut along several different lines of attack, e.gd.,
by assuming that only first-order terms of z, are needed in these

equations or that first-order terms are needed in the equation for §t|t

while Ytlt can be assumed to be independent of =z_ . Intuitively, the

t
latter seems to be fairly attractive since this is the form of the Kalman
filter, and it can be argued both on computational and stability grounds
that the latter is superior. However, the author of this paper has shown
[24] that this is the correct form of the filter, no matter which of

the two forms we assunme. It is easily seen that this form of the
filtering equations can be derived by assuming normal distributions and
simply computing the first and second-order moments of the posterior dis-
tribution, carrying the nonlinearities in h to second-order. Doing this,

we end up with

-~

' = 5 l
3t|t = ytlt_l + Kt(zt - h(t) - E(Ytlt-lhyy(t”) (47)
Ytlt = (I - Kthy(t))ytlt_l (48)
where
X =y h' () [h (t) hi(t) + R ]—l
Yo T Yelealy W I 0N By t
Y, | B’ (E)R.T (49)
tlty e

A similar error as previously appears in the filtering equations in

Jazwinsky {11, pp. 364-365, where the covariance matrix of z, - h(yt,t)

given zt—l is found to be
r l 7
BO(E)Y, o gy (6) + Ry = Sy b (€D (71 gb (8))

However, a careful computation using the previous proposition actually shows
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that the proper approximation of this covariance matrix is

h'{t) +R

By ()Y |eaaly t

The form of the truncated secondnérdéi £ilter which we have developed
is given by Eqnationé (41) - (45) aﬁd Equatibns (47) ~ (49). It was derived
by assuming that third'and highe£ order central momeﬁts of the involved
probability laws could be ﬁeglected. The filter is, except for the equations
for §tlt~1 and §tit" identical to the extended Ralman filter which was
derived in the previous section. This similarity originates from our assump-
‘tion about higher order ceﬁtralvméments.

Now, before wé terﬁinate this section, let us investigate more thoroughly
what the assumptions undérlying the trunéated second-order filter really
amount to. In orxder to do tﬁis we shall use Equation (12) by carrying non-—
linearities to second order. For the sake of simplicity, let us assume the
system to be scalar since we are 6n1y going to show the order of magnitude of

the neglected terms. Developing the term Et—1(¢yt) we find

Beog (0v) = By (16€€) + 6 () vy = ¥y ey

, ~ 1 -2 2
ALK AR ARTIIRUI L UTEL A M AT

-1 : ~ 2 ) . v _ A _ ~
* 5022 (g = Yeg) T ¥ 0 ey - Ve |er) (e T Yeled)!
x [ytlt-l + (v, "ytlt-ll) (50)

Equation (1) defines y£ “implicitly as a function of Yeay g 7

and et ;s Viz.

which'when linearized around' et = 0 becomes of the form
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where G , whether ¥ is assumed to be independent of Yeoy ©OF not,
generally will be a function of Yoy °

First, let us investigate the order of magnitude of the term
Et_l((yt-ytlt_l)J) . Using Equation (51) and carrying the nonlinearities

in £ and G to first-order only for the sake of simplicity, we find

A 3 ’
Et_l((yt~ytlt_l) ) = 4fy(t)G(t)Gy(t)Yt_llt_th

' by ignoring third-order central moments of Yioy® Thus, generally, the

. N 3
t - 3 .
magnitude of Et—l((yt ytlt—l)‘) is of the order Y i.e., the

t-1]t-1%’
roduct i i .
p . ct of the covariances of Yeoq and €, given )
The same thing applies to another of the higher order terms in’

Equation (50). We find

~ A 2 -
Beop (Wey ¥eg fea1) @ ¥e ey ) 7 260G (00T, 400

by the same approximation as previously .

Developing the term Et_l(?etyt) in Equation (12) we obtain
w = _A '
Bo_, (Yo v,) = B (I¥(t)e, + ‘}’y(t)(yt_l Yt—1|t-f€t
2wy, -9 126 119, o1t @Y o)D) (52)
2 yy t-1"Ye-1]e-1" Gt e |e-1" e Ve -1
Again, carrying the nonlinearities in Equation (51) to first order, we find

)) = Gy(t)y

B (e ¥eg -1 8 We Ve |ean £-1]t-1%¢

))= G(t)Y

A 2 ~
By (Weog¥eoy |e-1) e W Ve|e-1 £-1]e-1%

We have somewhat informally shown that the assumptions underlying the
previous second-order filter are generally permissible only if products of

the covariances of the vectors Vi1 and o given Zt—l are neglible.
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In order to show that these assumptions actually are permissible

" if the above mentioned products are negligible, we would have to do a more
céreful ccmputation.“Carrying the nonlinearities in Equation (12) to second-
crdef we obtain a lot of third and fourth-order central moment involving

(yt'yt[t—l) . (Yt-l-yt-llt-l) and €. - The order of magnitude of each of

these moments could then be expressed as a linear function of terms involving

2 2 ,
, SO a d 3 - » .
Yt-l‘t-l ' Yt—l|t~l9t' nd Q. s+ and third and fourth-order moments involving

(yt~yt|t—l) to some power greater than O . Doing this with every third

and fourth-order moment involving we would obtain a linear set

(Yt'ytlt v

of equations where terms involving (yt ) to scme power greater than 0

Yt]t 1

.2
would be the unknowns while terms involving Yt 1|t -1 ! Yt~l|t th , and Qt
would be known.  All the unknown terms can therefore be expressed as linear

2 2
£ i i ird-
unctions of Yt&l £m1’ Yt-llt—lgt , and Q% if we assume thlrd order
~ central moments of Yeq and €, given 2 to be negligible. Generally,

t t-1

without having said anything about the functions
¢ and V¥ , we do not know whether the terms involving, for example,
Yt—l]t—th actually are negligible. But if we make the assumption that
: 2 o 2 :
t (]
erms involving Yt~1]t~l ’ Yt—llt—lgt , and Qt are negligible, it is
clearly seen that the assumptions underlying the previous second-order filter

are permissible.

Theorem

Third and’fourth-order_central moments involving (yt-§t|t-l) ‘

n
(yt—l_yt—lft-l) . and €, are negligible, given Zt—l , if a?d only if all

t-1|e-1,9) are

terms involving pioducts of elements of the matrix [Y

negligible.

The assumptions underlying the previous second-order nonlinear filter

are therefore permissible if and only if this theorem is satisfied. Tt should
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be noted that these assumptions are stronger than the ones which usually are
made for reduced-form models. They are, however, necessary in order to get a
computationally feasjple solution. If we had been forced to take third and
fourth-order central moments in' i -y

ents involving (y, yt]t—l) ’(Yt-lfyt-llt-l) » and €,
into account, the filter would have become so complicated that it is gquestlion -

able whether it could ever be used for any practical purposes.

If ¢ is independent of Yy o i.e., ¢l(t) = 0 , we obtain the following

form of the predictor:

v - 1
Teley = O8O + 50 4 1 10p5 (8N (53)
Telemn = $ap 0¥ g o195, (8) + ¥IEIQ ¥ (£) (54)

However, in chis case it is not necessary to assume products of terms involv-
ing Yt-llt-l and ¢ *to be negligible in order to get a computationally
feasible solution. Retaining these terms, we find the covariance equation

for a nonlinear reduced-form model to be of the form L

Y, £-1 = ¢22(t)yt_llt_l¢52(t) *o¥(E)g Y (t)

+

2 1
b4 [o} ool )
¢ t-1]t-1%t y(t)) +2(Yt-l|t—th\Pyy(t)‘y(t)

1 : ' .
T |ea1@eyy (O F(ED) (55)

where the elements of the matrices ( W;(t)) and

Ye-1|e-1%
(Yt_llt_thWyy(t)W(t)) are given by

2 s n ok 3% awij awa
¥, _ Q.Y (1)), = I r ¥Er o (t) (t) (56)
t 1|t-l t'y ig 3,21 p,k=1 t llt 1=t ayp,t—l ayk't_l
SR LAY ®)Y_,(£) (57)
(v Q¥ (B)¥(£)), = I Yyt t t) (57
t-1 t-1<t’yy 175 =1 pk=1 © 1it-1 ayp,‘___l'ayk't___1 ql

b Subscript 2 still means the partial derivative of ¢ with respect

to Yeop
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We have here assumed Y, and g tobe n and s vectors, respectively.

t
Components of y, are denoted by vat while eléments of the matrices
- P

Ytlt v Q. » and Y are denoted by, respectively, Yt!t

v,

E4

1§ .
’ Qg » &nd
An additional term,

1 ,
T TWe e-1822 (D) (g g 8pp (DT

' appears on the right-hand side of Equation (55) in Jazwinski [1]1. By the

previous proposition, however, we note that this term should be dropped
since its order of magnitude is less than another term which has already
been neglected. Equation (55) is therefore a more correct form of the
covariance equation in case all terms involving products of elements of the
matrices Yt?llt—i and Qo cannot be neglected.

.\ édmparison'between Equations (54) and (55) clearly shows which terms
we actually have neglected by making the strdnger set of assumptiohs that un-
derlie our truncated second-order filter. Hoéwever, since third and
fourth-order central moments of Y., given 2z . are assumed to be
negligibie; Wé'should also exPecﬁ third and fourth-order central moments of

€ to be negligible. Moreover, this would imply that the elements of the

matrices Y2

tﬁllt—l and Qi' also were negligible which finally indicates

that the assumptibn being made about terms involving products of elements

of the matrix 1 is quite reasonable. Of course, without having

e1)e-1 EQt
said anything about the functional forms of ¢ ahd ¥ , we cannot generally
conclude that thesé'terms are negligible-éﬁen if third and higher order
moments y,_, and £ given Zt "actually are. But it is 2t least a
quite reasdnable assumption.

The type of truncated second-order filter which has been derived here

has the same form of the covariance equations as the extended Kalman filter.
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However, the equations for the conditional means are different and this is
believed to be the most important part since the main reason for introduc-
ing higher order terms in these equations is to remove biases. The truncated
second-order filter should therefore perform significantly better in many
Cases, e.g., when the nonlinearities are strong or the uncertainties are
large.

In the so-called Gaussian second-order filter nonlinearities are taken
to second-order while third-order central moments are neglected, and fourth-
order central moments are approximated by making a normal approximation of
the probability laws. Having seen the kind of assumptions which had to be
made in order to get a computationally feasible solution for the truncated
second-order filter, it is easily.understood why the Gaussian second-order
filter generally will become so extremely complicated. In addition to
retaining the terms which were neglected in the truncated fiiter, we would
also have to approximate all fourth~-order central moments. Needless to say,
the computational effort involved would probably cause the filter to be
without interest in most practical cases. We shall therefore not pursue
this matter any further. The Gaussian second-order filter for reduced-form
models has been derived in, say, Jazwinski [1].

Whether the truncated second-order filter actually will be good enough
cannot generally be ascertained. Each case will have to be evaluated separate-
ly. The crucial point is of course whether fourth-order central moments can
be neglected or not. To give the reader an idea of when considerable biases
can arise, let us take a closer look at the covariance matrix of 2, given
Zt-l . Assuming for simplicity the system to be scalar and taking fourth-order

central mcments of ze given 2 into account, we find

t~1

2 1 2.2
Cov(z, [z, 1) = (b (£) Tejeay + Ry + 3B, (N

2.2
by a normal approximation of the pdf. If R,_ >> %{hyy(t)) Ytlt-l

« ; we would
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not ekpect much improvement by taking the nonlinearities into account since
their effect is more or less "masked out" by the large obsérvation uncertainty.

However, if

2

1o .02
R f zih (t)) Ytlt—l '

t YY

it is obvious that the observation nonlinearities will become significant.
Similar observations can be made about the nonlinearities in the
structural equations. If Qt is large compared to fourth~order central

moments, we would expect the covariance equations for ¥ to be a good

t]e-1
approximation. - However, if this is not true, the-usefulness of Equation

(42) becomes more questionable,

4.3 TIterated Linear Filter-Smoother

In order to improve the filtered'estimatés'of the extended Kalman filter
when h is strongly nonlinear, an iterator can be derived from Equation (30).
Furthermo;e, strong nonlinearities in ¢ can be hand;ed by devglpping a one-
staée backwardé sméothér foi y£_1 . Iterated filter-smoothers have previously
beén derived for nénlineaf ieducéd—form modéls énd systems described by
stochastic differential equations, first apparently by Wishner et al. [10].
we shall in this section derive a similar iterated filter-smoother for models
in structural form.

Define

=3 =3 (58)
M = Yele-1 ¢ 51 % Yeaa|e-1

v ‘the s va i Vo1 is obtained from the
where yt—llt—l is the previous value while ytlt—l is obtain
extended Kalman filter. Let gi denote the smoothed estimate of vy, ,

after the i’th iteration and let ni denote the filtgred estimate of Yy -
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Developing all nonlinear terms in Taylor series expansions around Ei ro Ny

or/and ni+1 » and taking all nonlinearities to first-order only, we f£ind

the filtered estimate ni+l to be

= ot A1

where

Al _1
Vele-r = @ = 0 (ngsE,x ) 7 100, L€ x,)

+ ¢2‘“i'€1'xt)‘gt—llt-l'gi’ = O g s &y X dnyl - (8o
K(t;E,,n,) = Y5 _h (n,,t) th (n,, )Y, h'(n.,t) + R (61)
PoieNy tle-17y My B R ANy B Ry t
1 _ -1
Yt|t-l = (I - ¢l(ni,£i,xt))
x {¢2(ni,Ei,xt)Yt_l]t_l¢§(ni.ii.xt)
+ ‘P(&i,xt)Qt‘P' {Ei,xt)]
, -1 o
X (T - Cbl(ﬂifii,xt)) (62)

Furthermore, having computed N4 We obtain the smoothed estimate €i+l

of Yeo1 from one of the following two equations (see Appendix B for more

details):
fia1 T Veafeor * MEELN ) (2 - hing 8
= h (N, ) G2y, =N, )] (63a)
y ' itl’ t]t-1 7 i41
or
ST A I L TTL R R LI A (63B)
where

"2

-1
Veleor = (B = &y r85e%d) TIOM, 0800



2
Ytlt“l = ¢1(n +1l€ilx ))
__ LU LA L ]t-l¢§ QUTCLNE
RT3 5B QY (L ,x)]
4 -l
x (I - by Ny q08;0%.)) (65)
- _ -1
Cefer T T 08 X)) TNy 0B XY ey (e6)
MBI E M) = tlt 1 y(ni+1't)
-1
X [hy(n1+l't)yt]t 1h (n 4108 4 R.] (67a)
N(t;E,,n, ) o ’(Yz y~L (67B)
e R P51 tlt-1""t|t~1

Finally, assume the iterated filter-smoother has converged to within the

desired range of accuracy after the {'th ‘iteration. Then

Yele Mg - (68)

Y

I - K(t:&z.nz)hy(nz,t)iv

t]t t]t=1

(z ~ K(tigg’lng‘) hy (ngit) )Ytlt._'l

o+

K(tc Cg:nz) RtK, (ti gzlnl)

-1 -1
tlt l] (69)

it

b’ (T}l,t)R h (nz.t) +Y

where Yt[t-l is obtained from Equation (62) with Ny =ngand g = 52 .
Any of the three forms of the covariance equation, Equation (69) may be used,

~but the second is believed to be computationally more stable than the first
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and computationally more efficient than the third. Similar expressions can
be used in the other equations for Yélt' i.e., Equations (31) and (48) .
A fairly detailed derivation of the iterated linear filter-smoother for

structural models is given in Appendix B using an innovations approach.

5. CONCLUSION

We have seen some of the difficulties encountered in developing non-
linear filtering algorithms for nonlinear econometric models in structural
form. Specifically, in order to geé a computationally feasible form of
the truncated second-order filter we had to make a stronger set of assump-
tions than usually appear in the engineering literature on the subject.

We have also derived the extended Kalman filter, the iterated linear
filter-smoother, and the exact equations for the evolution of tSe condition~
a2l mean and covariance matrix. Although they all resemble the forms which
have previously been developed for nonlinear reduced-form models, they still
contain some new and interesting features.

Our analysis of the truncated second-order nonlinear filter has also
helped us in pointing out an error which usually appears in the engineering
literature on these filters. Using the soméwhat'weaker set of assumptions
which usually are made in the engineering';iterature, we were able to
derive a more correct form of the truncated second-order filter for non-

linear reduced-form models.
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APPENDIX A

A Rationale for Nonlinear Filtering in Econometric Models

The use of recursive filtering techniques has, since the introduction
of the Kalman filter in 1960 [11], been widespread among control engineers
for both control, identification, and estimation purposes. These techni-
ques have also become widely appreciated in economics, see Athans [23],
introducing new lines of attack for estimating both constant and time-varying
parameters, and states which are not directly observable. We are here
going to point out why nonlinear filtering techniques may be suéerior to
the linear ones based on a linearized model, and to show some possible
applications of these techniques.

The main reason for taking second and possibly higher order terms into
account is to remove biases from the estimates. Whether these biases
actually will be significant or not can only be determined in each specific
case. Simulation or experimental results, see [1], [12], [13], or [14],
clearly indicate that system nonlinearities may play an important part
although some of the experimental results are inconclusive. With only weak
nonlinearities it can probably be stated that the extended Kalman filter
will generally be sufficient, see [15]. Strong nonlinearities may, however,
generate biases which can only be removed by nonlinear techniques.

Now, considering applications of nonlinear filtering techniques, there
are at least two apparent ones. First, since the introduction of the separation
principle, see Wonham [21], it has become fairly common to use fixed struc-
ture controllers consisting of, among others, an estimator for the states
and, possibly, parameters, see Tse [22]. Almost needless to say, the per-
formance of such controllers is highly dependent on the performance of the
estimator, the latter of which may only perform satisfactorily by the use

of nonlinear filtering techniques.
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Second, a more familiar problem in econometrics may be the estimation
of unknown parameters in a model. Using the techniques which have been
~ derived in this paper, unknown parameters can be estimated eithér by so-called
state augmentation or by the méximum likelihood method.

The method of étaté éugmentation has alfeédy"been out;inéd in Section 2
where the possibility that some components of Y, may contain unknown constant
oxr tlme—varylng parameters was assumed. There is not much more ‘to say about
this. The final estimate B of an unknown ﬁarameter vector B given a
set of observations Zt will then simply be part of the estimated augmented
state vector ytlt . This technique is frequently the only feasible solution
in real-time applications, but it may not be so important in economics where
sample periods are very large.

The maximum likelihood method is widely used in economics. We are going
to conclude this Appendlx by deriving the maximum llkellhood method for
general state models, and by showing its relatipnshlp to the previous filter-
ing methods.

Let 6 be the vector of unknown parameters whiéh we want to estimate,
and let p(lee) be the condiﬁional pdf. of Zy ‘given 6 . The ML estimate

of © given zﬂ is given by .
8= Arg{max (2, IG)} = arg{max log p(2Zy |b)} (a1)
0 0 :
Factorizing p(znle) , we £ind

p(znle)

]

p(zo,zl,...,zNie)

p(zN1ZN~l,6)p(ZN_l§9Y

= plzy |2y OVp oy ; By 5 ®IP 5|0

N o L
T plz, |28 (a2)
t=0
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Therefore

log p(z,|6) = JEIOlOg plz |2z, _,,0) » )A3)

The evaluation of the true ML estimate would require the calculation

of p(ztIZ 8) using an optimal honlinear filter‘to compute all the

t-1'

moments of 2

A given 2 and 6 . However, using a normal approxima-

t-1

tion of p(ztlzt_l,e) with mean and covariance matrix given by one of the

| previous filters, we are able to find a computationally feasible solution.

Define

Z¢ |e-1 = Elz |21, | (ad)
= (

Sgfe-y = Coviz |z,_; .8 AS)

Using the normal approximation of p(ztlzt_l,e) we find

log p(ZNIS) = - -X [vtstlt Ve F 1°g'st]t l]] +C (a6)

where vt » the innovations process, is defined as

N

Ve =z - Elz.]z,_,,0) =z - “ele-1 (a7)
Using the extended Kalman filter, we find

z = h(y £) 2 nee) (28)

t|t-1 t]t-1° '

Stlt-l = hy(t)Ytlt 1 y(t) + Rt (n9)
Ve =z, - h(ytlt—l't) | | (Al10)
Using the truncated second-order filter,we obtain

A ~ 1

= h =

Ze|t-1 (ytlt-l) * 2‘Yt]t-1hyy(t’) , (a11)
St!t-l = hy(t)Ytlt 1By (t) + Rt (a12)
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Ve = Ze T B ley) Tt Wby e o o (a13)

In case the itefated linear filter-smooﬁher is being used, we find, since
s T Al _ A2 A 1 ) A
approximately ¥y i3 = Yele1 = Ye|e-) and Telt-1 7 t]t 1 Yele
when sufficient convergence has been obtained , ‘ ‘

"~

Ztlt‘“l = h(ﬂwt) + hy(nz,t) (Ytlt_l"ﬂz) . (a14)
stlt_l =h (nm,t)‘ztlt ho(ng,t) + R | ‘ (a15)

Derivation of similar results can be found in Kashyap [16] and Mehra

{41, 7).

APPENDIX B

Derivation of the Iterated Linear F jlter-Smoother Uging an Innovations Approach

We start by deriving the smoothing equations for a linear reduced-form
model. The resﬁlté frcm that are then transferred to a linearized version

of the structural model.

Let

= (B1)
Yy tyt -1 + C ¢ + G Et |
2 =HyY +u SRR ‘ (B2)
zt tht + ut v R

be .a linear - reduced-form model and let gtlt—l denote thé conditional
mean of y,  given 32, = (zo,...,gt_l) . ?he ignova;;ggg{grocess, Ve r
is defined as

Ve = Z T el . ' ' . ' ‘ (B3)
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i.e., the difference between the actual observation =z and the one-~stage

t

predicted observation zt|t—1 or simply the one-stage prediction error.

Let Yilee1 denotevthe conditional expectation of Y. given Zt' We
have the relation‘
z = = "
t|t-1 Elz |2, ;) He¥ee-1 (B4)
The innovations process can be shown to be a white, zero-mean
process with covariance matrix
’ — ’
E(Wve) = H Y g JHD + Ry (B5)
where
= o= ’ r
Yele-1 T OVOr[Z ) =AY 1B + 606) (B6)
Letting ytlt denote the conditional expectation of yT given
Zt + it can be shown to satisfy the orthogonality condition
o ' = =
E(y, yTlt)vslzt) 0, §=0,...,t (87)

In the linear case, when E((YT - §Tlt)vélzt) actually can be shown to

be independent of Z Equation (37) reduces to

t r

E((Yt -y

yTIt)vé) =0, s=0,...,t (B8)

see Kailath {18].

Similar results also hold in the nonlinear case. The process Ve
will still be white, but its covariance matrix will be different from the one
given by Equation (B5). Furthermore, the orthogonality condition given
in Equation (B7) will also have to be modified, see Kailath et al; {191, [20].

It can also be shown that the processes V., and z, are statistically

t
equivalent in the sense that they are both obtainable from the other by
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causal and causally invertible linear operators, see Kallath [18] for a
proof of this. The meaning of this is simply that all conditional expec-
tations can be carried out given {vo,...,vt} vinstead of‘{zo,...,zt}
without changing the result.

Since the system described by Equations (Bl) -~ (B2) is linear, the
estimate §T|t can be expressed in terms of the innovations process as
~ t )
YT't = IM_ vV (B9)

s=0 VT,S ]

where the matrices MT g can be found by using the orthogonality condi-
, ,
tion and the whiteness of vs .

Specifically, let T = t-1 . Using Equation (B8) we find

7 —
Bly, Vi) =M, (HY + R (B10)

L, s]s~1H;

- _1
= ’ v 1
Mee1,s Elyp1Vg) g¥g |1 + Ry) (B11)

Substituting into Equation (B9) we f£ind

Ye-1]t SEOMt-l,s“s M1,V T Yeerfe-1 T Mee1, eV (B12)
Furthermore,
Yy - 5 ’
BlyegVe) = By 3 (B2 ey )
‘.A IHI
= Blyy g O ¥e)ean) e
14 ’
= Yeo1]e-1Pefe -
i.e.,
-1
- Fry? v Bl3
Mee1,t Tyo1|e-1Pefe Be¥e|e-1fe ¥ Ry (B13)
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The filtered estimate §t ¢ can be written as

Yele © Yt]t 1F KV e

i.e.,

KeVe = Yele = Ye|e-1

T
he process Ktvt

its covariance matrix may be singular since rank K =

dim Vk =

(B14)

will also be white but generally not of full rank, i.e.,

dim z < dim % -

We can, however, still express the smoothed estimate §t-1|t in terms of the

process sts . First, note that

Iep? — 14
E(stsvsxs) (H H + Q )K

s s‘s -1"s

Since sts has the same rank as vs s W& can write

t
I N K v =
s=0 t-1,s8"s s=0

e

™

Yeo1le =

A

Yeed[e-1 * Neo1,e Wepe = Y fe-n)

Nt--l,s(ysls - ys]s-l)

(B15)

(B16)

Again, using the orthogonality condition in Equation (B8) and noting

that rank Ki = dim Vt ; we find

(4 7 I
Ee qVeke) = Weop oK Y gBE + QK]

Furthermore,

rorry erig?
Ere gVeR0) = Yeop|e-1PBeXe

Substituting the expression for Kt ’

H( H+W)l,

t = Yefe-1Pe Pty -1t

we find the solution of Equation (El7) to be

(B17)



| -1
- 14 '
Nee1,6 = Ye-1je-12e%e fe-1 - (B18)

Now, returning to the iterated linear filter-smoother, assume ni
and Ei to be given at the i'th stage of iteration. Linearizing h(yt,t)

around ny (which is believed to be the best estimate of Yt) we find
hiy,,t) = h(ni,t) + hy(ni.t) ly, - n,)
Taking the conditional expectation given ’zt-l yields
n = ;l + K(t;E, ,n) Iy, - hin,,t) -
i+l tle-1 T TR M 1
- h{n,, v @ - )] : (819)
$ Ny’ tle-1 7 i
where §t‘t-1 , from the partially linearized eystem equation
-1
yt = (I = ¢l(ni'£ilxt)_ [¢(ni!€ilxt)
+ ?2(ni,giaxt)(yt_l - Ei) - ¢1(ni:§i:xt)ﬂi
- (B20)
+ W(yt_l,xt)btl P

is found to be

Al _1
Yt't_l = (I ~ ¢1(ni,Ei:xt)) [¢(ni:€inxt)

+ 0,y 0By %) Wiy feog — B 7 L peBy eIy (821)
Furthermore,
cvh bt B (BN BN, ) + R (22)
K(t"’gi'”i} - Y1:[1:--1 v Ny» v i e ey t
where
. v -1 )
Yélt_l = (I - ¢l(ﬂir€i,t)). ®¢2(ni'gi’t)yt*l't-l¢2(ni'gi’t)

+

’ -1
W(Ei,xt)QtW'(Ei,xt)](I~¢1(ni,£i,xt)) (B23)
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Now, having obtained a presumably better estimate N of Ye *
we relinearize the functions h{yt,t) and ¢(yt,yt_1,xt) around N, . -
From Equation (Bl2) we obtain the smoothed estimate Eii1 ‘of y, , as

. N

Eial = Yep|eey ¥ MO8 My IV
where

v =y, = hin t) - h (n t)(;z - N )

t t i+l’ y ' i+l’ t]t-1 i+l’,

52 or - -1 ‘

ULV SRR R B AU R LY

whereas, from Equation (B13),

o = ’ H
MeesE n, ) Yt_l|t_1A (€:8, g, )hy(”1+1't)
x Th( tw B (N, ..,t) + R
yMip17 t]e-10y i1 ® + Re
where
, , -1
Al . ) = (X = 0,00 Ex)) Vo, )

_ -1,
Veleey = @ = Oy 085,80 TI0HMN  h 8 X )Yy g e 182 Myyqr &5 %)

~1

+

Since

Cejem1 = BEE M) ey

we can rewrite Equation (B27) as

MG M) = Gy i B Iy (g1 g gPy (g ) + Ry ™

(B24)

(B25)

(B26)

(B27)

(B28)

{B29)

(B30)

(831)



- 39 -
Finally, using Equation (Bl8) we find

~ . ~ ~2
Ei'i'l = Yt-l]t-l + N (t;Eiyﬂi+l) {yt"llt"l - yt’t-l] {(B32)

where

2 -1
N(t:E50n;,4) = ctlt_l(ytlt__l) . (B323)



