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Abstract

The truncated second-order nonlinear filter is rederived both for
discrete-time and continuous systems. The rederivation reveals that a
significant error appears in previous derivations of this filter. What
has previously been termed the modified truncated second-order filter
will be shown to be, provided a small correction is made in the discrete-

time case, the correct form of the truncated second-order filter.
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1. INTRODUCTION

Since the introduction of the Kalman filter in 1960 (1l, similar
techniques have been developed for nonlinear dynamical systems. Most
of these works were carried out and published in the late sixties, and
a thorough presentation of the different techniques was made in the book
by Jazwinski in 1970 L2i.

Of all the nonlinear filters which have appeared in the literature,

especially the so-called second-order filters, i.e., the truncated sec-

ond-order filter and the Gaussian second-order filter seem to have attract-

ed much attention. Nonlinearities are in both these filters carried to
second order only, but while third and higher order central moments are
neglected in the truncated second-order filter, fourth-order moments are
taken into account in the Gaussian second-order filter by approximating
the conditional pdf. which is involved by a normal or Gaussian pdf. Simu-
lation or experimental results with these filters clearly show that they
may improve the estimates compared with the extended Kalman filter, but
the improvement may depend on the system nonlinearities and the magnitude
of the plant and measurement noises, see Schwartz et al. L3l , Jazwinski
41, carney et al. L51, and Henriksen et al. L6I.

Andrade Netto et al. L7l have compared several nonlinear filters for
discrete-time . systems and concluded that the truncated second-order filter
should not be used because of a term in the covariance equation which tends
to decrease the covariance matrix. Jazwinski L2] also makes some comments
on the apparent discrepancy between the truncated and the Gaussian second-
order filters where a term enters the covariance equations of the two fil-
ters with opposite signs. Obviously feeling this to be disquieting,

Jazwinski suggests a third type of second-order filter, the so=-called
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modified second-order filter, where the aforementioned term has been re-

moved.

The truncated second-order nonlinear filter was first developcd by
Cazwinski (8] and independently by Bass et al. L9)l. What we are about to
show in this paper is that the truncated second-order filter, as it appears
in the literature, actually is wrong since the implications of the assump-
tions on which it is based have not been fully recognized. In fact, it
will be shown that the modified second-order filter is the correct form of
what has been termed the truncated second-order filter.

The paper is organized as follows. In Section 2 we prove the Proposi-
tion which is used to correct the truncated second-order filter, and derive
the correct form of this filter for discrete-time systems. The correct form

of the truncated second-order filter for continuous-time systems is then de-

rived in Section 3.

2. DISCRETE-TIME TRUNCATED SECOND~ORDER FILTER

Consider a discrete-time nonlinear system described by the egquations

Xl = f(xk,tk) + G(xk,tk)vk (1)

il

Y hix ,t) +w (2)

where X, and Yy are the state and observation vectors, respectively.
The noise processes {vk} and {wk} are assumed to be mutually independent
zero-mean white processes, both assumed to be independent of x.0 . The co-

variance matrices of Vi and w, are denoted by, respectively, Vk and

Wk .
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Define Yk to be the sequence of observations yb,yl,...,yk up to

time k , wviz.

Yk = (yoyyl:---,}’k) r

and define xi{k to be the expectation of X, with respect to G(Yk) ’

the O-algebra generated by Yk’ viz.

A
X.

= A .
ik = E(inO(Yk)) = E(xilyk)

Similarly, define

- o o T A D o T
X e = By 1) (g 1 )70 (0 )) = B =Ry ) Gy %) 1)

We also introduce the notation

A
E ()= E(.lc(Yk))

~

The exact equations for x and X are from Equations

k+1|k k+1|k
(1). = .{2) found to be

~

¥eal |k = B (E (L))

_ T T
xk+l|k = Ek(f(xk,tk)f (xk,tk)) + Ek(G(xk,tk)VkG (xk,tk))

~ A
T a1 [kl

Now, carrying the nonlinearities to second order only and neglect-~

ing third and higher order central moments, we find

~ - A~ l‘ A~
Merplk ~ T 0%t T2 Bk i M B

where the i'th component of the vector (Xk tk)) is given by

e i [

2
~ n jﬂ/ a fi A
P D T 1 P AN WA
J,0=1 Bxkaxk

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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where Xi%k is element (j,%) of X fi is the i'th component of

x|k !

is the j'th component of x -

: J
f while xk

Before we proceed, let us make a note about the magnitude of fourth-
order central moments compared to the square of second-order central moments.
If £ is a normal random variable with variance 02 . we know that the
fourth-order central moment of & is 304 which certainly is greater than

04 . This can easily be shown to hold for any random variable.

Proposition

Let £ be a random zero-mean vector, and let F(EET) be a vector

function of ggT . Then 1

E(F(EEDIET(EET)) > B(F(EET)E(E (EED)) (10)

Proof. Absolutely trivial. We have

B [(F(EET) - E(F(EET))) (F(EET) - E(F(EET)) T

e EEDFT (EET)) -~ EFEETEFET (EET))

‘ !

P

v
o

Expanding the right-hand terms in Equation (7) in Taylor series

~

about x K taking expectations with respect to O(Yk) , and neglecting

k|

third-order central moments, we f£ind

b For two symmetric matrices A and B, A>B or A~-B2>0

means that A - B is positive semidefinite.



A (xklk’t ’Xklkfx(‘k]k't )
1 S IS T Cen R F T
BT ) G )T G 8 ) I Oy e ) B i) T it 172
+ G(xklkltk)VkG(Xklk tk) + (Xkl G (X kltk))
1 ~ -
* 2 e B e B € Oy e )
1
* 2 |k iCxx (xklk’t )G(xklk’t n*
- I E G ) (K E (% gt )T -
T D 4 s L A e

where the components of the vector L(xk—xklk)(x Xk|k)f (xklk’t )1,

and the elements of the matrices (x lk’tk)) and

(lekaGx

(XkaVkax klk’t )G(Xk’k’tk)) are given by, respectively

~ n j Aj 2 AQ 32f'
{(xk-xklk)(x xklk) Te (xklk't My §=l(xk~xk|k)(x Xklk o 8 Q(Xk[k't ) (12)
(Xkl V G (xk|k'tk))i = ; Z lekVil s (Xklk:t )QGEZ ka'tk) (13)
T 351 pt=1 F 3> o,
~ ~ S pt 32 azGij ~ ~

( V.G (%, ..t )G( )y, = L Z X —( £, )G o (% o0t )

% |1 k% e 3 B G O | B i §,9=1 ptel k| k" axﬁax; e L R R N LA
(14)

We have here assumed X and vk to be n and s vectors, respectively.

Elements of the matrices Xk!k ’ Vk , and G are denoted by, respectively,
<Pt 2
Since we have assumed fourth-order central moments to be negligible,

the second right~hand term in Equation (11) can be dropped. The remainder

of that equation then constitutes the covariance equation for the one-stage
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predicted estimate as it appears in, say, Jazwinski [1]. However, by the
previous proposition, the order of magnitude of the second right-hand term
in Equation (11) is at least as great as the last term. So if we assume
that the second right-hand term is negligible, it would be not only illogical
but even wrong to retain the last term since the sum of these two terms is

nonnegative definite, Neglecting these two terms in Equation (11) yields

_ A T ~ ~ L
Bern i = B i 8 B Jacfe B e B+ G e B Vi B e B

2/\ l ~ ~
= t
+ (inkaGx(xk[k'tk)) + z(xklkaGxx(kuk'tk)G(xklk’ k))

1 ~ A T
= 3 15
+ 2(xk|kva (xklk.tk)c(xklk,tk)) (15)

Andrade Netto et al. [7] conclude that the truncated filter should
not be used because of the last term in Equation (11) which has a tendency
to decrease the covariance matrix and eventually may force some of the
diagonal terms to be negative. Since we now know that this term is not
properly present and that Equation (15) is the correct covariance equation,
their conclusion can therefore be discarded.

~

In order to derive the equations for the filtered estimates xk+1|k+l

and xk+l!k+l » the following form usually appears in the literature

Ferl o+l T Fern]k T AV Vi i) (10)

- -5 17
Kead |kt = B ¥ Clp Va3 (an

Furthermore, if C=0 is assumed, the form is usually termed the modified
truncated second-order filter.

Filtering equations of the form given by Equations (16) -~ (17) have
been derived both for the truncated and Gaussian second-order filters,

ending up with similar expressions for the tensor C in the two cases
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but with opposite signs. Obviously disquieted by this, Jazwingki {[1] also
suggests forms with C=0 , the so~called wodified second-order filters.

A careful computation, applying the previous proposition, will actual-
ly reveal that C=0 b in the truncated Ffilter when the structure given
by Equations {16) - (17) is assumed. Therefore, the term modified is
quite superfluous and should not be used in connection with the truncated
second~order filter. Assuming that third and fourth-order central moments
are negligible will in fact imply that the truncated second-order filter
becomes "modified" if we still may use that term. The structure of the
filtering equations is given in Equations (20) - (22).

Summing up, the true and only truncated second-order filter is of

the following form:

Prediction

A

- ~ l ~
xk+l!k+l = f(xklk'tk) + Z(Xklkfxx(xklk'tk)) (18)
~ T'A
M|k = Fx xS Befat x(xk|k't )+ G(xklk'tk)va”(xklk'tk)
2 & L YG (%, 1o o))
R P P SR N AL P xx(xklk't Gy 1k %%

~ ~ T
AN NS LICHNND . (19)

Filtering

~

~ - 1 ~ .
¥erd i = Bk ¥ et Wien P Beer [t~ T et |l B |1 Frr?)

(20)

1 The elaboraté computation of the matrices A and B, and the tensor

C is dropped since the filtering equations, once C=0 has been verified,
are quite easily obtained, see the end of this section. Also see the next

section where the result C=0 is shown to hold in the continuous-time case.
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Ker |+l = 8Py (xk+1!k’tk+1)]xk+1lk (21)

vhere

Ker1 = Farfx x(xk+1|k'tk+l)[h (xk+1|k’tk+l k+1|kh (xk+l|k'tk+l)+wk+1]

(22)

. .
The i'th component of the vector (xk+l|khxx(xk+llk'tk+l)) in

Equation (20) is of the form

2
3 h,

"~

(x ) (23)

e [k Bt | B s = k+1|k’ Fr+l

3 2
T 90

The terms which erroneously have been retained in previous papers on
truncated second-order filters will appear in Equations (19) and (22). The
filter above is almost identical to what has been termed the modified trun-
cated second-order filter in Jazwinski [1]. However, another term,

1 . T
2 By Bt |1 Biern?? Bt kP Faerd [k Freen))

A

arpears inside the
brackets in Equation (22) in that book. Using the previous proposition we
again find that this term should be dropped.

The filtering equations, Equations (20) - (22), can easily be obtained
by assuming Gaussian distributions and simply computing the first and

second order moments of the posterior pdf. p(xk+1|Yk+l) .

3. CONTINUOUS-TIME TRUNCATED SECOND ORDER FILTER

Consider a system governed by the following set of Ito stochastic

differential equations:

dx(t)

i

Fix(t),t)at + clx(t),t)as(t) (25)

dz(t) hi{x(t),t)at + dan(t) (26)
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where {B(t)'tZFo} and {n(t),tZ;o} are mutually independent Wiener
processes, both assumed to be independent of x(to) . Furthermore, assume
E(dB(t)dBT (t))= v(t)dt and E(dn(t)dn’ (t))= W(t)dt .

Define %(tlt) and X(tlt) to be, respectively, the mean and co-
variance matrix of x(t) given 2Z(t) = {z(1) , tO <T f_t} . Furthermore,
let Et denote the expectation operator with respect to O (Z{(t)), Equations
for the evalé@%ién of-;(t’t) and X(t|t) aré'dérived in Jazwinski [1], pp.182-.

184. For the conditional mean x(t|t) we have
d§(t|t) = Et(f{x(t),t)3at +[Et(x(t)hT(X(t),t))
- x(e|0E 6 (0,010 (1) [@2(0) - E, (hx(0),t))at] (27)

Taking nonlinearities to second order and neglecting third and fourth-order

central moments, we end up with

ax(t]t) = [£(x(t[t),t) + -]Zl(x(tlt)fxx(:?(tlt),t))]dt

+ Rt {dz(t) - hx(e]e),0 + x(e|on G|, )lat) (28)
where
T oA -1
K(£) = x(e[t)h Ge(t|e),£)u ™ (t) (29)
~ n azfi ~
(X(e [ £ (x(t]t), 80, = L xjk(t:]-t)mm(tlt),t) (30)
k=1 ik
n n Bzhi N
(elen elo),e), = 1 Xjk(tlt)m(x(tlt),t) (31)
j, k=1 i Tk

The (i,t)'th component of X(t|t) will satisfy the equation

ax

ty

~ ~ T
i3 {[Et(xifj) - xiEt(fj)] + [Et(xjfi) - ijt(fi)A]r + Et(GVG )ij

¥

A T -1 ~
[Et(xih) - xiEt(h)l,W [Et(xjh) - ijt(h)]}dt

+

[Et(xixjh) - Et(xixj)Et(h) - xiEt(xjh)

~ AN T..l
ijt(Xih) + inijt(h)] W [dZ-Et(h)dt] (32)
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where all arguments of the functions have been dropped for the sake of
simplicity.
First, consider the term in front of [dz-Et(h)dt] . Taking the non-

linearities to second order, we find

- -l\ . _l\ ) +2A.I\.
[Et(xixjh) Et(xixj)Et(h) xiEt(xjh) ijt(xlh) xliEt(h)l

R T 2 23 (gey T _ i (33)
‘z’Et{ (x,-x,) (xj xj> [ (x~%) (x-X) hxx]} %45 (xh_)

where the term [(x—g)(x-g)Thxx] has a similar interpretation as the

term (thx) which is defined in Equation (31). Neglecting fourth-order
central moments in Equation (33)and. not being aware of the previous propo-
sition, the term - %xij(thx) has been retained in previous papers on
truncated second-order filters, thus obtaining a random forcing term in
the covariance equation. However, the proper approximation of the right-~
hand side of Equation (3.3) is actually O which completely eliminates the
random forcing term from the covariance eguation.

Taking the nonlinearities of the remainder of Equation (31) to second

order, we finally end up with the covariance equation being

d
EX(t't)

fx&(tlt),t)x(tlt) + X(tlt)f'i(;{(tlt) ,t)
+ exe|n), 0VEIE (Rie]t) ,£)
s (X(tlt)V(t)Gi(;i(tlt) ,£))
+—2—(X(t|t)V(t)G (?c(tlt),t)c;(;(tlt),t))
XX
+ Lxelnvme, xE]lo et £
2 xX d '

- X(tlt)hi(;(tlt),t)W_l(t)hx(;(tlt),t)x(tlt) (34
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where the matrices (X(E| £V (£) G2 (x (e[ £) ,£)) and
(X(tlt)V(t)Gxx(;c(tlt) SE)G(x(E]E) ) have a similar interpretation as
in the previous section.

Summing up, the correct form of the truncated second~order nonlinear

filter for continuous-time systems consists of the following equations
ax(ele) = (£Giee), 0 + Sxeloe Gl ,o)lat
+ Ko {dz(e) - |, 0 + 2xElon  G|o,e)la) (35)
Sxtele) = £ xte), 0x(elo) + xe|o€Le]e
+ aGit|e), 0V ke, + &E|ovme G|, o)
+ 2x(elovine Gt vekE|o,e)
+ sxeelovine Gielo,0e@EE|o, T - xeuEK © (36)
where
K(t) = x(tlt)hz&(tlt),t)w"l (t) (37)

A random forcing term appears in the covariance equation in previous
papers on the truncated second-order filter, see, say, Jazwinski [1], but
we have shown that this term is not properly present in this filter. A
similar term is, however, properly present in the Gaussian second-order
filter, but it enters with the opposite sign of what it seemed to do in
the truncated filtexr. Obviously disquieted by this, Jazwinski also sug-
gests a modified second-order filter where the random forcing term is re-
moved from the covariance equation. That filter is identical to the fil-
ter which has been derived here, but, as we have already pointed out in

the discrete-time case, there is no need to use the term modified.
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4. CONCLUSION

We have rederived the truncated second-order nonlinear filter for
both discrete-time and continuous~time systems and have shown that pre-
vious derivations contain a significant error. This is due to the fact
that the full implications of the assumptions have not been recognized in
previous papers. The derivations in this paper reveal that what has pre-
viously been termed the modified truncated second-order filter is the cox~
rect form of the truncated filter provided a small correction is made in
the discrete-~time case. The term modified can therefore be dropped in
connection with the truncated second-order filter.

A truncated second-order filter for discrete-time implicit systems
has been derived by Henriksen {10,11]. However, in order to obtain a
computationally feasible solution, it is shown in those papers that a

stronger set of assumptions than appears in this paper will have to be

made.
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