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ABSTRACT

How do individuals decide when to carry out certain activities? This
question is crucial to a detailed understanding of many important peaking
phenomena, such as electricity demand or urban highway congestion. This
paper generalizes allocation-of-time models to encompass the scheduling of
activitiés over time. An econometric model is derived, and estimates presented
for the problem of a commuter choosing the time-of-day of his work trip.

The econometric results, on data from the San Francisco Bay Area,
demonstrate that commuters do indeed perceive a trade-off, in the presence
of highly peaked traffic congestion, between travelling under uncongested
conditions and travelling at their preferred time of day. Furthermore,
this trade-off is affected in the expected way by the worker's official work

hours, occupational and family status, work-hour flexibility, and car

occupancy.

Finally, the implications of these results for urban transportation forecasting
and policy analysis are explored. These models explain the "shifting peak" phenomenon,
long noted empirically, by which transportation improvements affect the duration of
the peak period more than the degree of congestion. They also provide a way to
forecast the quantitative extent of this effect. Furthermore, they permit a revised
estimate of the benefits from transportation improvements, taking into account the
fact that part of the benefits are in the form of more preferred scheduling of trips

rather than decreased travel time.



I. Introduction

The analysis of time-varying demand phenomena has reached ever-increasing
sophistication, most recently spurred by the need for detailed policy guidance
in such areas as energy pricing and urban traffic congestion.l On the supply
side, detailed attention has been paid to costs of capital equipment, the exist-
ence of diverse technology, and metering and storage costs. On the demand side,
the effects of uncertainty have been analyzed.

The measurenent of time-dependent demand functions has received

somewhat less attention. Joskow (1976, pp. 203-204) states:

While the total demand for electricity by various classes of

consumers has been analyzed of late almost ad nauseam, demands

by time of day and season of the year have by necessity not been

given very much consideration by econometricians ... Better informa-

tion about own-price and cross-price elasticities would be helpful

for estimating optimal equilibrium prices as well as for determining

the revenue yield of any particular set of rates ...
In the area of urban transportation, much effort has been devoted to measuring
own- and cross-price elasticities by mode of travel (Kemp, 1973), but not by
times of day.

Theoretical work, meanwhile, has generally assumed the existence of
arbitrarily defined time periods such as peak and off peak. Analysis of
policy changes, even if cross-elasticities are known, can therefore predict
changing demand quantities only within these fixed time periods.

For example, consider the effect of adding capacity to a congested highway
corrider. By the standard analysis, travel times within a fixed peak period

would decrease by an amount depending on the own- and cross—-elasticities of

demand with respect to service levels during the two periods. Yet empirical

1See, for example, Vickrey (1963), Keeler & Small (1977), the Bell Journal
symposium introduced by Joskow (1976), and reference therein.




observation supports a quite different view. Traffic counts on the San
Francisco-0akland Bay Bridge, before and after the opening of a parallel
rapid transit line in 1974, showed that this considerable expansion of
total capacity resulted in a negligible change in the level of congestion
on the bridge, but a substantial decrease in its duration.l

This is by no means an aberrant example. The tendency of urban highways
to reach a peak level of congestion which is relatively independent of supply
and demand conditions has even earned the title of "the fundamental law of
traffic congestion," perhaps most carefully and plausibly stated by Downs
(1962). The corresponding tendency of peak periods to change in duration has
long been known to traffic engineers as the "shifting peak' phenomenon;

Joskow (1976, p. 204) notes the same effect for electricity demand.

The neglect of these shifting peaks calls into question the results of
important branches of applied microeconomic analysis. Most obviously,
predictions may be incorrect as exemplified above. Cost-benefit analyses
will then contain inaccuracies, not only from the errors in prediction, but
from the omission of benefits or disbenefits in the form of altered schedules.
As is demonstrated in this paper, a shift in the timing of an activity involves
tangible and measurable welfare effects. Finally, related types of demand
analysis, such as mode choice in the transportation example, may contain
biases due to incorrectly assuming schedules to be exogenous.

How, then, should these effects be modelled? Fundamentally, the shifting
peak phenomenon is due to demand interdependence among points in time, and

it might be thought that conventional demand estimation requires only a

lPeat, Marwick, Mitchell & Co. (1978)



sufficiently large number of time intervals to work. However, the sheer
number of cross-elasticities to be measured makes this approach difficult

to implement. Furthermore, conventional techniques utilize aggregate data,
thus preventing the analyst from taking advantage of disaggregate techniques
which have been found fruitful in some of the relevant areas of application.

One way out of the dilemma is to model utility as a functional, i.e.,
as dependent on the continuous time path of consumption over the period.
Koenker (1977, 1978) has shown that such a functional, appropriately
parametrized, can lead to estimable aggregate demand equations. On the other
hand, the time paths of consumption for many activities are inherently
discontinuous: an individual will generally not spread his travel, telephone
conversation, television viewing, or perhaps even electricity use smoothly
over a large number of short time periods, but will instead make one or more
"all or nothing" choices. Thus, there is some advantage in an approach which
recognizes discreteness in the scheduling decision.

The'approach taken here is to model the scheduling of a discrete activity
directly at the individual level. The theoretical model is set out in
Section II, and is followed by a section which derives and estimates a
disaggregate econometric model for the choice of trip schedule by automobile
commuters. Finally, using the results of the econometric estimates, an
assessment is made of the implications for urban transportation. The finding
that work-trip scheduling flexibility is sufficiently great to warrant
inclusion in realistic descriptions of congested urban highway systems
suggests, I submit, that such phenomena may be of even greater importance
for other consumption activities, many of which would appear to take place

with considerably more individual freedom as to timing.



II. Theoretical Model

Ultimately, scheduling choices are part of a grand activity plan which
fits a variety of consumption, work, and transportation activities into a
schedule (Chapin, 1974; Jones, 1979; Jacobson, 1979). The consumer takes
into account preferences (sleeping at night, air conditioning in afternoon,
breakfast before work, or whatever) and external constraints (bus schedules,
penalties for arriving late for work, times at which another party is
reachable by telephone, weather patterns). -A theory such as Lancaster's
(1966), based specifically on activities, would appear an ideal starting
point. Héwever, the choice of an activity schedule to maximize an objective
function is a complex problem. Even the ordering of n activities can in
general be done in (n!) ways, and although mathematicians have devoted some
effort to the problem (Graham, 1978), the algorithms proposed have no
obvious economic interpretation.

This paper builds instead on models of time allocation pioneered by
Becker (1965), by adding scheduling considerations to both the utility
function and the constraints. fhe model postulated has a numeraire good x ,
and three types of time: leisure time & , working time h , and '"consuaption'
time t spent on some activity which provides no utility directly, but which
is complementary to consumption, leisure, or work.

This "consumption' activity, which also involves a monetary cost ¢ , must
be carried out at a specific time of day, & . For example, if the activity
is making a telephone call from city A to city B, s could be the tiae the
call is dialed. 1In the case of electricity demand, s could be the time at

which a clothes dryer is turned on.l For work trips, s could be the time

Granger et al (1977) have provided an intriguing technique for determing

when various electric home appliances are used, employing micro data on
400 Connecticut households.

h



the trip is begun, the time of arrival at work, or the time at which a
particular congested area is entered.

The complexities of scheduling considerations are represented in three
ways. First, to allow for preferences among schedule times, s is included
in the utility function. Second, to focus attention on congestion and peak-load
pricing phenomena, cost ¢ and consumption time t are allowed to depend on s
Third, to account for limitations imposed by the institutional setting within
which employment opportunities are encountered, a constraint is added relating
the schedule s and length h of the working day to exogenous parameters.

The limitations embodied in the constraint may be flexible or inflexible.
For example, if s is time of arrival at a job with fixed quitting time ¢
and a policy of docking pay for tardiness (and no other penalty), the constraint
would be s+ h=gq . Alternatively, the wage rate may effectively depend
(through promotions or merit pay increases) on s and h: w = w(s, h).

If lateness penalties are very severe, the constraint is simply s = s

O'

where s, is exogenous.

Thus, the consumer is assumed to choocse x, R, h, and s so as to

maximize

(1) u=U (x, £, h, s)
subject to

(2) Xx+c (8) =Y+ wh
(3) L +h+t (s) =T

(4) F(s, h; w) = 0

where the exogenous parameters Y, w, and T are unearned income, wage

rate and total time available, respectively.



The Lagrangian for this problem is
(5) L=v+r[y+wh-x-c ()] +ulr-2-t(s) - vECs, b w)
Maximizing over x, &, and h (for fixed s) yields the time-allocation
problem considered by Johnson (1966) except for the additional constraint (4).
The value of leisure time is found to be

(6) u/A = w + (Uh + \)Fh)/Ux

s
indicating that if the scheduling constraint is binding, the relation

between value of time and wage rate is modified not only by enjoyment of work
time as noted by Johnson, buy by scheduling considerations as well. An indirect
utility functional V may be defined as the utility achieved at the optimum

. * * %
choice (x , 2, h' ) conditional on s
* Low *
{7) Vic(s), t(s), s) =U(x (s), & (s) h (s), s) .
If s 1is continuous and if second-order conditions are satisfied,
maximization over s yields
(8) US = Ac7(s) + ut’(s) + st

where the prime denotes differentiation.

Eliminating v from (6) and (8) and noting that Ux = A, we obtain
w + Uh/UX + (Fh/FS) (US/UX ~c”)
1+ (Fh/Fs)t

(9)

X
A

This formula displays the complexities introduced into the value of time by
scheduling considerations, and can be rewritten in a form which makes clear
the marginal trade-off between congestion and other scheduling considerations:
(10) c“(s) + W/ Nt (s) = US/UX + (w + Uh/Ux - u/A) (—Bh/as)F

We see that in choosing schedule time s , the consumer equates (at the

margin) the additional cost plus the value of additional consumption time



incurred, due to a change in schedule, to the value of utility gained
both directly and through the additional work hours permitted. With
appropriate functional forms assumed for /N, (US/UX), (Uh/UX),
and (—Bh/as)F » equation (10) could serve as an econometric specification.

The difficulties of such a procedure should not be minimized, however.
For typical peaking phenomena, both the first and second derivatives of the
congestion function t(s) change sign as s varies over the peak
period, making it difficult to ensure the fulfillment of second-order
conditions. If discontinuous peak-load pricing is in effect, some individuals
will probably be at corner solutions (e.g., making telephone calls just
after the evening rates go into effect). 1In addition, the slopes t”(s)
may be measured very inaccurately, and s itself may be subject to considerable
rounding error.

An enticing alternative is to view s as a discrete variable and to
specify and estimate equation (7) directly. This is especially attractive
if the déta on s are rounded off. Given such data, the discrete
specification would appear more plausible a priori, and it has the advantage
of being able to accept peaking functions of any shape. It is this approach

which forms the basis for the empirical work described in Section ITI.

ITI. Empirical Results: Work Trips
In order to apply discrete choice techniques (McFadden, 1973) to the
estimation of equation (7), assume that, for a given consumer i , indirect
utility Vi contains universal ("strict utility") and ideosyncratic

(""stochastic'") components:

an Vi), 1), 8) =wiele), the), s, sh vl



where §F is a vector of observable characteristics of individual i .
The costs and times are superscripted to emphasize that the "menu"
available to each consumer need not be the same.*
The most computationally tractable model for multiple alternatives
is the multinomial logit, obtained by assuming the stochastic elements ei to

be identically and independently distributed with the extreme value

distribution. The resulting probabilities are
i i i

(12) P o= G‘-XP(WS)/E exp(W))

where

(13) W=, the, s, sh

is the function to be specified and estimated by maximum likelihood techniques.

As is well known, the assumption of mutual independence of the stochastic
terms for different alternatives is dubious when those alternatives can be
grouped in some natural way. 1In the present case, it would seem that
unobserved stochastic tastes for the scheduling alternatives would be correlated
among nearby alternatives. For example, a commuter whose boss is unusually
lax about lateness may have a positive stochastic term for ,all the alternatives
which involve arriving late. It is possible, still using the computational
algorithms for the logit model, to test for departures from the independence
assumption (McFadden, Train, & Tye, 1977; McFadden, 1977); two such tests

are described below, in order to assess the severity of the independence

To the extent that such differences result from choices which are
not independent of schedule shoice, endogeneity bias will result. This is

discussed further following the empirical estimates.

~



assumption in the present case.

Specification Issues

The problem addressed here is that of scheduling trips to work on a
given mode, so as to arrive at the place of work at time s , when congestion
results in a travel-time curve t(s) facing the individual. Since peak-load
pricing is not practiced on most urban transportation systems, the variation
of cost with time-of-day can be neglected.l Thus, indirect utility depends

on s through the utility function U, through the travel-time curve t (s) ,

and through the work-hours constraint 4).
How should the function W be empirically specified? The strongest
influence on work trip scheduling is, of course, the official work hours.

Define schedule delay SD(s) to be the difference between the chosen time of

arrival and the official work start time. Arriving early (SD < 0) is

likely to involve some time wasted, or at least less productively used,

and thereby to decrease utility. Arriving late (SD > 0) has, for most
workers, more severe repercussions. It is the trade—off between scheduling
considerations, as represented by the variable SD , and travel time ¢t
which is crucial for studying the impact of scheduling behavior on congestion,
and upon which the work here is focussed. '

The coefficients of this trade-off, reflecting the desires of and

1Automobile running costs vary relatively little with congegtion over a-
wide range of speeds (Keeler and Small, 1977); furthermore, running costs are
only part of the costs of auto commuting, espeC}allY to downtown areas where
parking fees are high. Singapore has recent%y 1nst%tut§d a Peak—perlod
congestion pricing scheme in its central business district; it should prove
most interesting to estimate models with cost variables on the data collected

following that innovation.
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constraints upon the commuter, must depend on such factors as family status,
occupation, choice of transport mode, and the employer's policy toward

work-hour flexibility. These are the variables which compose the characteristics
vector S . Of course, the trade-off depends as well on unobservable traits
such as availability of a comfortable place to read the newspaper or to

have breakfast, ability to work at home, strength of desire to spend time

with the family, necessity to take family members to school or work, and so

forth; all of these are subsumed in the stochastic terms e; .

Finally, reported work-arrival times obtained from surveys are likely
to be rounded off to convenient points such as the nearest quarter-hour.
In order to explain them, therefore, it may be necessary to include variables
which take on positive values for the most popular rounding points. We
denote the effects of such variables by R(s) .

In summary, it is postulated that the "strict utility" function, W(.)

of equation (13), can be written as follows:

(14) W = R(s) +u(s)t(s) + £(SD(s) ,S)

The specification of the functions R, v, and £ are dealt with below.

Data

The sample consists of 527 auto commuters in the San Francisco Bay

Area.l All report some official work start time, and all report a regular

lA subsample of the "TDFP Pre-BART'" sample compiled by the Urban Travel

Demand Forecasting Project, Institute of Transportation Studies, University of
California, Berkeley, under the direction of Daniel McFadden. The travel time
data was calculated using a road network maintained by the Metropolitan Trans-
portation Commission, supplemented by floating-car observations of travel time
over the peak periods on major expressways: see Faris, Reid and Small (1976) .
Some preliminary work on models of trip timing using this sample has been

done by S. Cosslett and D. McFadden (McFadden et al., 1977).

24
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time of arrival between 42% minutes early and 17% minutes late. These times
are grouped into twelve five-minute intervals, and each commuter is assumed
to select his or her arrival time from one of these twelve alternatives,
which are indexed by s=1, ..., 12. A number of socioeconomic and
transportation-mode variables are also available, including the answer to

the question, "How many minutes late can you arrive at work without it
mattering very much?"

" As the frequency distribution in Table 1 demonstrates, nearly two-thirds
of the sample report arriving at work regularly at some time outside the
five~minute interval centered around their official work start time; over
one-third report having some flexibility for arriving late, and about four
percent actually do arrive late. Many of the sample members face a perfectly
flat travel-time curve, but a substantial fraction (consisting mainly of thcse
crossing the San Francisco Bay Bridge) face differentials amounting to a

substantial fraction of their total commuting time.l

The use of discrete five-minute intervals to describe the scheduling
possibilities nicely eliminates the problem caused by the survey respondents’
tendency to round off their answers to the nearest five minutes. However,
preliminary investigation suggested that they also round oﬁf to either 10 or 15
minutes. In order to account for this, two "reporting error" variables were
defined as in Table 2, footnote a, so that R(s) in equation (14) is assumed
to be given by
(15) R (s) = BlRlB(s) + BoR10(s)

where Bl and 62 are coefficients to be estimated.

Segmenting the sample according to whether or not the Bay Bridge is
crossed did not substantially alter the results.



Table 1

Distribution of Key Variables
San Francisco Bay Area Sample

12,

Chosen Schedule Delay Total %
Flexibility
(minutes) Early On Time Late
(1-8) (9) (10-12)
0 239 91 4 334 63.4
1-15 33 42 10 85 16.1
>15 46 54 8 108 20.5
Total 318 187 22 527
% 60.3 35.5 4.2 100.0
Definitions:

Chosen schedule delay:

Flexibility:

difference between actual work arrival

time and official work start time.

answer to question,

"How many minutes late

can you arrive at work without it mattering

very much?"
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Results

The various models reported in Table 2 all differ in their specification
of the (indirect) utility of travel time, u(S8) , and of the scheduling
considerations, £(SD(s),S) , in equation (14). Model (1) is a "bare-bones"

specification, with u constant and with f given by

(16) £(SD(s),s) = B, SDE + B *SDL + 565D1L ,

with the variables as defined following Table 2. Allowing separate coefficients
on the early- and late-arrival variables SDE and SDL takes into account
the quite different disincentives involved

3 since penalties for late

arrival are often strong, one expects to find B5 < B, < 0. The "late
dummy" DI1L allows for a discrete jump in utility at the point at which a

2s-minute margin of safety for arriving on time is exceeded; one expects

BG < 0.

The coefficient estimates for Model (1) verify these expectations.

The marginal rate of substitution between minutes of travel time and minutes

of early arrival is 0.61. Late arrival is more onerous, with arrival

outside the "margin of safety" equivalent to 5.5 minutes of travel time, plus 2.4

minutes for every minute late. This amounts to a penalty of 41.5 minutes of
equivalent travel time for arriving 15 minutes late, which apparently explains

why only one of the 527 commuters in the sample reports making this choice.l

The models reported in Table 2 were not sensitive to deletion of this
individual from the sample, except for model (4a) which contains a more detailed
specification of the late-side disutility. It should be mentioned here that
these marginal rates of substitution involve congested travel time, since the
component of travel time which does not vary according to time-of-day has no
effect on these results. It is plausible, though unproven, that travel time is
considered more onerous under congested than uncongested conditions; if that
is true, the marginal rates of substitution given above are lower than those
applicable to uncongested travel time.
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Table 2. Work Trip Scheduling Models

Independent Maximum Likelihood Coefficient Estimates
Variable? (asymptotic standard errors in parentheses)
(1) (2) 3) (4) () (4a) (4b) (4c)
Reporting Error:
R15 1.09 1.07 0.99 1.05 0.93 1.10 1.06 1.10
(0.12) (0.12) (0.12) (0.11) (0.11) (0.1) (0.11) (0.10)
R10 0.38 0.38 0.38 0.43 0.33 0.44 0.41 0.40
(0.12) (0.12) (0.13) (0.11) (0.12) (0.12) (0.11) (0.10)
Travel time:
TIM -.106 -.038 -.142 -.147 -.056 -.143 -.134 -.093
(.038) (.042) (.061) (.06Q) (.070) (-060) (.054) (.039)
TIM-SGL -.272 -.201
(.107) (.117)
TIM-CP .097 .096 .052 .097 .092
(.079) (.080) (.085) (.079) (.078)
Early arrival:
SDE -.065 -.063 ~.072 -.076 -.067 -.083 -.065 -.067
(.007) (.007) (.009) (.007) (.008) (.018) (.009) (.005)
SDE . SGL -.022 -.013
(.012) (.012)
SDE-CP .022 .022 .022 .022 .020
(.009) (.009) (.009) (.009) (.009)
SDE * SDE -0002
(.0005)
Late arrival:
SDL -.254 -.530 -.363 -.156 -.443 -.002 -.138 -.175
(.030) (.184) (.076) (.029) (.184) (.093) (.031) (.029)
SDL-WC .290 .270
(.184) (.184)
SDL-FL .168
(.080)
SDLX -.206 -.171 ~.234 -.190 -.217
(.080) (.081) (.088) (.079) (.081)
SDL-SDL -.0136
(.0081)
DIL -0.58 -1.11 -1.05
(0.21) (0.26) (0.24)
D1L-WC 0.78 D.62
(0.20)
D1L-FL 1.32 (0.19)
(0.21)
D2L -1.14 -1.29° -1.21 -1.19  -1.03
(0.18) (0.19) (0.20) (0.19) (0.17)
WNEAR -.311
(.179)
Sample Size 527 522 453 453 448 453 453 527
Lik.Rat,Ind.b .218 237 . 227 .227 .242 .228 .228 .238
Re-Estimate on
Common Samplef
Lik.Rat.Ind.D .206 .221 .233 .233 242

Log-Likelihood?

-833.6 -867.3

-85308 -85308 -843-7
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Footnotes to Table 2

#pefinition of independent variables:

SD = Schedule Delay: actual arrival time minus official work start time, in
minutes rounded to nearest 5

RPTR15 = { 1 if sD = -30, -15, 0, 15
0 otherwise
RPTR10 = { 1 if sb = -30, -20, -10, 0, 10
0 otherwise
TIM = Travel Time in minutes = t(s)
SDE = Min. {-SD, 0}
SDL = Min. { SD, 0}
D1L = {l if SD > 0O
0 otherwise
FLEX = Reported flexibility for arriving late, in minutes
D2L = {l if SO 2> FLEX
0 otherwise
SGL = dummy for one-person household
CP. = dummy for carpool
wC = dummy for white collar
FL = dummy for FLEX > O
SDLX = Min. {SD - FLEX, 0}

WNEAR = average utility of 4 nearby alternatives, using model(4) coefficients

b_. . . 2 . . A
Likelihood Ratio Index (p~) is defined as [L(B) - L(D)]/IL(O)I where
L(B) and L(0) are the log-likelihood with. coefficients equal to their

estimated values and to zero, respectively. See McFadden (1973). Not
comparable between samples of different sizes.

c . '
Sample size = 448, log-likelihood with all coefficients zero = - 1113.

With coefficients equal to their estimated values.
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We now come to the question of the determinants of scheduling
flexibility. It should be possible to find subgroups for which these
rates of substitution differ substantially. Although Chapin (1974) has
demonstrated the importance of several demographic variables on time
budgets, the literature provides little guidance concerning the scheduling
decision specifically. In the present stﬁdy, four variables are used, each
of which might in principle interact with travel time or with any of
the scheduling variables in equation (16). In order to reduce the number of
interactions, I argue below that some of these variables (family status and
transportation mode) affect mainly the desirability of early arrival
and travel time, whereas others (occupation and work-hour flexibility)
affect mainly the work-hour constraints and therefore involve late arrival.

Experimentation confirmed that these were the most important interactions.

(a) Family Status is represented by a dummy variable SGL equal to one

if the commuter resides in a'one—person household. It is hypothesized
that, because of fewer family demands, single workers are more flexible
in their preferences with regard to early arrival; they may also
evaluate travel time differently. Thus, SGL is interacted with SDE and
TIM, with a positive sign anticipated in the former case (arriving
early is less onerous for single workers). As seen'from Models (2) and
(5) of Table 2, this expectation is not confirmed, the coefficient

of SDE-SGL being negative and just short of significance at a 5% level.
Furthermore, the coefficient on TIM:SGL is very large, whereas that on
TIM drops to a statistically insignificant level, suggesting that

commuters living in households with more than one member place very
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little value on travel time. The standard errors are sufficiently
large to cast some doubt on this, and I conclude only that there are
significant differences between single and other workers which could

stand further exploration.

(b) Transportation mode is represented by a dummy variable CP equal

to one for commuters who regularly carpool. The necessity to match
schedules with other ‘riders should make carpoolers more likely to
arrive early for work. In addition, travel time is probably less
onerous. These hypotheses are confirmed by Models (3), (4), and (5),
though in the case of travel time the interaction coefficients are

not statistically significant.

(c) Occupation is represented by a dummy variable WC equal to one for
white~collar workers. On the hypothesis that white collar workers
are less averse to late arrival, WC is interacted with SDL and D11,
with positive signs expected. This is confirmed by Models (2) and (5),

in which the interaction coefficients are significant at a 10% level

or better (one-tailed test).

(d) Reported work-hour flexibility is available from the question,
asked of all respondents, reproduced in Table 1. Like occupational
status, the variable FLEX which is the answer to this question should
reflect constraints on late arrival. In Model (3), a dummy variable FL,
indicating whether or not FLEX is greater than zero, is interacted

with the late-arrival variables. The resulting positive coefficients

confirm anticipations that late arrival is less onerous for workers who
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report some flexibility. Models (4) and (5) employ a more concise
specification, in which the dummy variable D2L incorporates a revised
"margin-of-safety'" hypothesis by picking out those arrival times not
within 2% minutes of the limit reported for late-side flexibility;

and in which the variable SDLX measures the number of minutes beyond
that limit. The coefficients of these variables achieve the expected
signs with a high degree of statistical significance. To clarify the
assumptions behind these alternative specifications, the function
-(1/w£(SD(s),S) is plotted for non-carpoolers in Figures 1 and 2, from

the results of Models (3) and (4), respectively.

With each of these four proxies, the assumption that only those interactions
discussed above are important was tested. In every case the applicable
coefficient was statistically insignificant at a 10% level (2-tailed test)
and in most cases was smaller than its standard error.

The models presented in Table 2 group these four proxy variables into

the socioeconomic indicators used in Models (2) and (5), and the behavioral

indicators included in Models (3), (4) and (5). There is reason to suspect
that the latter variables are not truly exogenous, since car occupancy and
reported work-hour flexibility may both be influenced by the actual time-of-day
decision.l This raises the possibility, not testable within the present
framework, of endogeneity bias in the coefficients of Models (3) through (5.
On the other hand, these models, particularly (4), are more appealing in

their completeness, conciseness, and plausibility of results.

lror psychological reasons well known to survey researchers, reported
values of independent variables may be influenced by the choice itself
because respondents try to justify their behavior post hoc. This concern
is strengthened by the observation that, among the 193 respondents reporting
some flexibility, not one chooses to arrive regularly at a time later than
that indicated as being the latest time permitted.
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Many tests of additional variables have been carried out.l One might
hypothesize that each minute of early (late) arrival becomes more onerous
the earlier (later) one already is. The results of including quadratic
terms in schedule delay (Model L4a) confirm this on the late though not
the early side. This result, unlike the others shown,is sensitive to segmen-
tation of the sample and to specification of fhe rounding-error term R(s).
Other variables tried and found lacking in explanatory power include: a
dummy for the on-time alternative; the ratio of travel time to its minimum
value among all twelve alternatives; and travel time multiplied by the
dummy D1L. Finally, interactions between the wage rate and other variables
gave somewhat ambiguous results suggesting that scheduling considerations may

become more important relative to travel time for high-wage workers,

Tests of the Toglt Model

As discussed earlier, there is reason in the case to doubt the assumption
of "independence from irrelevant alternatives" which characterizes the logit
model, since the alternatives fall onto a natural scale from the earliest
to the latest, Two tests have been designed to detect departures from this
assumption,

The first test is based on the observation that, if nearby alternatives
are closer substitutes than distant ones, the probability of choosing any
particular alternative should be negatively and directly affected (ihat is,

through the numerator as well as the denominator of equation (12)) by the

lFurther details are available from the author on request.



20.

desirability of those nearby alternmatives, Thus I have computed, for each
alternative, the average over several adjacent alternatives of the last two
terms in equation (1), using the coefficient estimates of Model (4). The
hypothesis to be tesied is that the presence of attiractive nearby alterna-
tives, as indicated by this variable (WNEAR), reduces the choice probability, causing
a negative coefficient, Model 4(b) confirms this expectation, the coefficient
being negative and significant at a 5 percént level using a one-tailed test.
Although this verifies the anticipated violation of the independence assump-
tion, the coefficients on other variables are not greatly affected, thus
providing some evidence that the coefficient estimates are robust to this
type of violationm.

The second test makes use of a property of "nested logit" models.
McFadden (1977) has shown that non-independence within subsets of alternatives
can be tested by first estimating the parameters of the model on one or more

of the subsets, then forming an "inclusive value"

(17) ﬁK = 1log SEK exp(ws)

for each subset K , and finally estimating the choice among subsets by using

a logit model with @ as independent variable., A coefficient on @ of less
than unity indicates that the stochastic terms ei are more closely correlated
within than between subgroups. To implement this, the alternatives were grouped
into early (s=1-8), on-time (s=9), and late (s=10-12) subsets, AS many of

the parameters of Model (L) as were identified were then estimated on the
subsample choosing among the early alternatives; the remaining parameters

were estimated using the late alternatives. The logit estimate of choice

among subsets then produced an estimate for the coefficient of @ of 0.872,
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with an asymptotic standard error of 0.078. The departure from unity is
of the expected sign, and is of small but statistically significant magni-
tude (one-tailed test, 5 percent level), Once again, the impression is
given that the true choice model does depart from the independence assump-
tion, but not enough to cast doubt on the approximate validity of the

logit model.

Summary of Results

Some marginal rates of substitution implied by the models described
in this section are compared in Table 3 for selected population subgroups.
A reasonable characterization of these results is that, on average, urban
commuters will shift their schedules by one to two minutes toward the early
side, or by one-fourth to one-half minute toward the late side, in order
to save a minute of travel time. Furthermore, there is considerable variation
depending on family status, occupation, transportation mode, and employer's

policy toward work-hour flexibility, The import of these findings is the

subject of the next section,

IV. Implications

It was suggested in the introduction that scheduling considerations have
widespread ramifications, With the empirical results of Section III, we can
better assess their importance, and indicate the kinds of analysis required

to fully incorporate scheduling behavior into other areas of economics.
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Table 3

Marginal Rates of Substitution

Minutes of Travel Time equivalent to:

one minute one minute one minute arrival
Characteris- Equa- early late late arrival beyond
tic tion arrival arrival outside flex., range flex, range
(aTINB (BTIM) _(BTIM OTIM ) (BTIM 3TIN5
9SDE 9SDL 3SDL BSDLX o217, oD1I,
A1l (Le) .72 1.9 L.2 11.1
Drive alone  (4) .52 1.1 2.5 7.8
Carpool (W) 1.06 3.1 7.1 22.4
Drive alone, household
with two or more
members:
Blue collar (5) 1.20 7.9 11.0 23.0
White collar (5) 1.20 3.1 6.1 12,0
Drive alone, household
with one member:
Blue collar (5) 0.31 1.7 2.4 5.0
White collar (5) 0.31 0.7 1.3 2,6
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Value of Time

One implication of scheduling considerations is that, when a consump-
tion activity is subject to peaking, the value of a time saving depends
on when it occurs, For example, consider a work trip consisting of a
"line-haul" portion on a congested freeway with travel time curve t(s),
plus "access" and "egress" portions involving fixed amounts of travel time.
It can be shown that the value of a minute of time saved on the "egress"
portion differs from that on the "access" portion by a factor (1-t7). This
is because the access-time saving can be taken directly in increased leisure,
and is therefore evaluated at the goods-leisure tradeoff, whereas a unit
reduction of egress time permits more or less than one unit of additional
leisure, depending on the sign of t~ ,

A perusal of the San Francisco Bay area data used in Section III reveals
that many commuters face travel-time slopes of absolute value !t'[ = 0.25
(minutes travel time per minute time-of-day), and it is not uncommon to
find.slopes as large as 0.5, Thus, this phenomenon could exert a significant
influence on measurements of value of time, and may account for some of the

discrepancies in the literature on that subject.

Transportation Mode Choice

As mentioned earlier, models of mode cholce assume that the travel
times for the various modes are exogenous. Faris, Reid, and Small (1976)
have investigated the effects on mode choice models of imprecise representa-
tion of the variation of travel time with time-of-day; their findings suggest
that total neglect of time-of-day variation produces substantial bias, but
that rough approximations work quite‘well. One might expect, then, that

treating travel time as endogenous, due to the possibilities of altering
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schedules, would have a rather small effect on the results of mode choice
models, A natural way to investigate this question would be through simul-

taneous models of mode and schedule choice.

Forecasting

The most important result of the empirical work presented here is
that the marginal rates of substitution between travel time and schedule
delay for many individuals, particularly for single white-collar workers,
are comparable in size to frequently-encountered values of [t'(s)l , the
slope of the travel time curve. It is therefore likely that many commuters
are currently travelling at other than their preferred times of day in
order to avoid traffic congestion, This Suggests that the concerns expressed
at the beginning of this paper are indeed of quantitative significance: a
sharp reduction in congestion can be expected to induce considerable shifting
of travel schedules, This affects both the resulting equilibrium and the
benefits from any proposed policy., The computation of these effects requires

combining a scheduling model, such as has been presented in this paper, with

a simulation model of considerable sophistication for the transportation

facility.

V. Conclusion

This paper has demonstrated that the scheduling of activities by con-
sumers can be explicitly modelled in a theoretically satisfactory and empirically
productive way. Even in the case of urban work trips, probably one of the
most tightly constrained of everyday activities, schedule shifting has been
found to be of quantitative importance for the understanding of urban trans-

portation systems. Considerable effort will be required to fully assess the
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implications of this type of behavior for such important areas of transporta-
tion analysis as demand studies, value-of-time measurement, policy simula-
tion, and cost-benefit analysis, Meanwhile, it seems likely that this approach
can be productively applied to other goods subject to peaked demands, including

electricity, telephone service, computer services, and products with

- Seasonal demands. 1In short, it has been argued here that much of economic

analysis could be profitably modified to include scheduling behavior,
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Figure 1

Disutility of Schedule Delay: Model (3)
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Figure 2
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