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l. Introduction

An extensive literature déals with the question of how to select one model
over another on the basis of observable data. The traditional theory deals with
the case of nested hypotheses; i.e. the case in which there exists a random
variable y , probability density functions f(ylel) and g(ylez) and where
the set of density functions {f(ylel)} is a proper subset of the set of
density functions '{g(ylez)} . In the cése in which the null hypothesis is
not nested, various methods have been suggested. Most attention has been
devoted to generalized likelihood ratio tests following the pathbreaking work
of Cox (1961, 1962). More recent work along these lines is by Atkinéon (1970},
Pesaxan (1974), and Deaton and Pesaran (1978). Embedding techniques in which a
composite density function is set up as a convex combination of the two
hypotheses have been studied by Quandt (1974).

Recently Chow (1979) has examined two additional and specific criteria for
choosing between competing models. According to Chow we should select the
model with the least information in the Kullback-Leibler (1951) sense. This
criterion is seen to be closely related in the regression case to the minimum
expected squared prediction error criterion. 1In the process of discussing
these criteria, Chow corrects the familiar Akaike criterion, The second
criterion examined by Chow is the posterior probability criterion of which the
Schwarz criterion is a special case. These two broad criteria differ from one

another in one basic respect. The information criterion is relevant if an

*The authors are grateful to Gregory C. Chow for helpful comments.
Responsibility for errors is ours alone.
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estimated model f(ylg) is to be assessed on the basis of new observations.
The posterior probability model is relevant if a sample (yl,...,yn) is to be
used for assessing a model, where "model" now refers to both the density
function £(y|8) and the prior demsity m(0) .

The generalized likelihood and the embedding approaches both permit statistical
inference of a traditional sort. In the one case the asymptotic distribution of
the generalized likelihood ratio can be obtained, at least in principle; in the
embedding case, the maximum likelihood estimate for the'mixing parameter A
may be used for inference. At thelpresent time neither the information criterion
nor the posterior probability criterion seems to permit classical (non~Bayesian)
standard statistical inference. Both criteria lead to an all or nothing choice
between two competing models. It is of interest to examine how these criteria
perform in some concrete cases. The purpose of this paper is to investigate
by some tentative Monte Carlo experiments the behavior of several variants of

the two principal criteria discussed by Chow.

2. Statement of the Criteria

The present section states formally the various criteria employed. We

assume that observations on a random variable vy, will be generated by one of
i

two density functions f(yilel) or g(yilez) . ‘The corresponding likelihood

functions are L(yle ) = Hf(y.|6 ) ., L(yle ) = Hg(y.le ) . Maximum likelihood
1 i it’1 2 i i't"2
~ .3

estimates Bl ’ 62 are obtained by maximizing the respective likelihood

functions.

1. The likelihood criterion. Form

N
L(ylel)
A= ——
A Liy|e,) A
where L(y]ei) denotes the value of the likelihood function at ei =8
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and choose the model given by f(yi,el) if and only if A > 1 .
2. The Akaike criterion. Let k1 and k2 be the number of parameters

in the vectors 61 , 6 5 Then choose the model given by f(yilel) if and

only if
. » A
log L(ylel) - kl > log L(ylez) - k2

3. The Chow 1 criterion. This criterion is derived from the information

criterion and corrects the Akaike criterion. It replaces Akaike's kl by
9logf (v]6;) dlogt (v|e) - 3%10g£ (y]6,)

-1
] * [E(

1 [
391 391 391391

)1 7}, and replaces k, by
. _ 1
22 defined similarly. Then choose f(Yilel) if and only if

21 = tr{E[

D

> log L(y,ez) - 2

"~
log L(y[6)) - 2 5

1

The above expectations are supposed to be taken with respect to the true (unknown)
model; hence the expression does not simplify to Akaike's k unless the parame-
terized model in the brackets (f in the pbresent case) is the true one.!l

The remaining criteria are more closely related to the posterior probability
model., If p(yle) denotes the density of Y conditional on the model Mj
(f or g) and if ﬂ(elej) is the corresponding prior density, one can
write (Chow, 1979a)

321og L(ylej)

~ 1 1 1
= - - = - = +
log p(yle) log L(ylej) k109 n - Slog[- = T 1 + Sklog2m
3773
+ log m(8, 1) + on™/?) (1)

where n is the sample size. We have the following possible criteria.

lof course, when one sets out to evaluate numerically this criterion, the
underlying true model is not known. Hence, in the sampling experiments reported
below, the expectations were replaced by their sample realizations; i.e. the first
expectation is the sample average of {(3log f(y,le )/36.) (3log f(y.,e Y/0961))
and the second expectation is the negative invefse Hess%an evaluated %t thé 9l

MLE and divided by the sample size.
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4. The Chow 2 criterion. Since (1) is not useful if the prior density

L3
is diffuse, define the approximation logﬁ(yle) as 1ogp(y|Mj) - 1og(ﬂlej) -

n—l/z)

ol (or alternately as the sum of the first four terms on the right

hand side of (1)). Then choose model 1 over model 2 if and only if

log ﬁ(y,Ml) > log ﬁ(yle)

5. Schwarz criterion. If all terms on the right hand side of (1) are
omitted except for the first two, we obtain the Schwarz criterion. Accord-

ingly, choose model 1 if and only if
LY l . N l
1ogL(y|61) - Ekllog n > log L(ylez) - Ekleg n

6. The chow 3 criterion. Assume that n1 observations are used to obtain

a posterior density for 61 and 6 leaving n. =n - n observations

2 1
A
for model selection. Then n(elej) can be replaced by the posterior pdf for

A

8. from the first nl observations and the full formula (1) can be used for

J
. -1/2
model selection (except for the term o(n

2 14

)) . Accordingly choose model 1

if and only if

log p(ylMl) > log p(yle)

Note that the idea underlying this set of criteria is that the model which is deemed
most likely given the sample will be selected. Since, however, a model with

a large number of parameters in general can be expected to perform better,

Some penalty must be attached to increasing the complexity of the model.

Hence, each of the criteria start with the loglikelihood value; they differ

only with respect to the penalty imposed. Even the B ayesian criterion can

be interpreted in this framework; in particular, the prior can impose a heavy
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Penalty. Nevertheless, since in large samples all criteria are dominated by
the loglikelihood term (which is of order n )

» asymptotically all criteria will

pick the true model.

3. Sampling Experiments

Two basic experiments were conducted. In each é pair of density functions
was selected. Alternately one and the other in the pair were taken to be the
true density and n observations on the random variable were generated from
the true density. The various criteria were evaluated and the frequency with
which each model was chosen by the several criteria was recorded over 100
replications. The sample size n ranged from 25 to 150 in increments of 25.
Values of the appropriate random variables were generated by setting the
cumulative distribution function F (x) equal to a uniformly distributed
u , distributed on (0,1) , i.e. F(x) = u, and solving for x . - Normally
distributed variates wefe obtained by applying the Box-Muller transformation

to uniform variates.

Experiment 1 contrasts the Pareto distribution with pdf

-c-1
f(x) = cx © l1<x<w, >0

with a shifted exponential distribution with pdf

e-b(x-l)

gi{x) =b l<x<o, pb>o

Both densities have exactly one parameter and are nonnested with respect to

one another. The actual parameters were ¢ = 4 , b=4

.

Experiment 2 contrasts the normal distribution

- Lexomy2
20

f(x) = e =© < x < ®

with a distribution discussed in Goldfeld and Quandt (1979), referred to as the




Sargan distribution, with pdf

gemolxl
9(x) = = (1+a|x]) o < x <

The Sargan distribution is roughly bell-shaped and has mean zero and variance
4/0&2 . The parameter o was>chosen to be 2 so that when the Sargan distribution
was chosen to generate the random variables, these would have mean zero and
variance 1. When x was normally distributed, the true u was chosen to

be 0 and the true 02 to be 1; hence the samples would be roughly comparable

in mean and dispersion irrespective of what the "truth" was.

The following interpretations emerge.from Table 1. When the truth is
Pareto, (1) no criterion is uniformly best, although the likelihood and Chow 2
criteria never are; (2) all criteria tend to improve (nonuniformly) as the
sample size increases; (3) for relatively small sample sizes (n é:SO)'no
criterion is very good, picking the right model at best 4 out of 5 times., When
the truth is exponential; (4) the likelihood criterion is the best criterion
for all sample sizes; (5) all criteria tend to improve (nonuniformly) as the
sample size increases; (6) for small Sample sizes no criterion can claim to
be acceptable overall. Results not reported in detail indicate that changes
in the parameters of the underlying distributions change substantially the

absolute performance of the criteria.

From Table 2 we conclude the following. When the truth is normal, (1) the
Chow 1, Chow 2, Akaike and Schwarz criteria produce unacceptable results; (2)
among these four criteria the Schwarz criterion is always the worst, and the
Akaike criterion is always the best, (3) for the likelihood criterion, unlike the
other criteria, no improvement occurs as the sample size increases. When the

truth is Sargan; (4) all criteria improve with sample size; (5) the Schwarz




Table 1

Comparison of Pareto and Exponential Distributions. Relative
Frequency of Choosing the Pareto Distribution

Truth = Pareto

n
Criterion* 25 50 75 100 125 150
Likelihood .47 .71 .65 .87 .86 .86
Chow 1 «065 .80 .76 .20 .88 .89
Chow 2 .62 " .78 72 .89 .87 .86
Chow 3%% .69 .71 .81 .83 .85 .92

Truth = Exponential

Likelihood .18 .19 .11 .16 .12 .08
Chow 1 31 .28 .13 22 .17 .11
Chow 2 .27 .24 .12 .21 .14 .10
Chow 3*% .39 .32 .22 .19 .17 .15

*The Akaike and Schwarz criteria yield the same answer in the
bresent case as the likelihood criterion.

**Gamma priors were used with different barameters. They all
gave substantially similar results. The figures reported are
for a gamme prior Arx¥~le- X/T(r) with r = 3.0 and A =
2.5. The values of n for the various sample sizes were

10, 15, 20, 25, 30, 35}




Table 2

Comparison of Normal and Sargan Distributions. Relative
Frequency of Choosing the Normal Distribution

Truth = Normal

n
Criterion 25 50 75 100 125 150
Likelihood .93 .89 .88 .92 .86 .95
Chow 1 .53 .49 .63 .69 .73 .84
Chow 2 .62 .47 .63 .66 .66 .80
Akaike .60 .62 .71 77 .79 .88
Schwarz .27 «24 .42 .50 .50 .67

Truth = Sargan

Likelihood .62 .44 .37 .30 .19 .21
Chow 1 .22 .19 120 .14 .10 .05
Chow 2 .22 .17 .10 .08 .05 .04
Akaike- .23 .23 .20 .16 12 .09

Schwarz .13 .10 .04 .06 .03 .02
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criterion is uniformly best; (6) the likelihood criterion is unacceptable,
picking the wrong model 1 out of every five times even for the largest sample

sizes.2

4. Conclusions

The sampling experiments were simple. In both basic experiments the two
hypotheses were nommested. In one case the two competing pdf's had the same
number of bParameters, in the other there was a difference of one. The single-
most startling conclusion is that when the two experiments are assessed together,
no criterion dominates. The performance.of the criteria differs between the
twWwo experiments and also within an experiment, depending on what the truth is.
This lack of symmetry is illustrated by the Schwarz criterion in Table 2 which

is worst when the truth is normal but best when it is Sargan.3 For large samples

well; this result suggests that as a practical matter the more easily computed
Akaike criterion may be preferred.

Chow has argued forcefully that when selecting a model one might be brimarily
concerned with prediction; the estimated model which will best predict over

future replications is the one selected. Thus selecting the "true" model does

2an ideal form (unattainable in Practice) of the Chow 1 criterion would be
obtained if the expectations &, are evaluated exactly given knowledge of the
true density. This ideal Chow i criterion was examined in two cases (truth =
Sargan and truth = Pareto) in which the expectation could be computed with
reasonable ease. 1In both cases and for all sample sizes and regardless of whether
true or estimated parameter values were employed, the ideal cChow 1 criterion picked
the correct model in 89 percent of the cases or more.

3This result is perhaps not so surprising when one realizes that the Schwarz
criterion imposes the heaviest penalty for extra parameters. 1In effect, the
Schwarz criterion predominantely chooses the smaller model when the sample gjze
is small. As the sample size increases, the loglikelihood term increasingly
dominates the ¥ k log n term; nevertheless, the smaller model is picked more
than under the straight loglikelihood criterion.
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not necessarily imply having a model which will predict better. Better
prediction may result from dropping parameters from a true model as it reduces

the sampling errors of the remaining parameters. Of course, our experiments do not

follow the strategy implied by this prediction rule. Instead, we test how well
each criterion performs in choosing the true model which generated a particular

sample. We feel that in many cases this question is pPrecisely the one which

one wants to address. 1In fact, excepting the special case of regression
models which are explicitly worked out by Chow, it is not possible to compute

the Chow 1 criterion, since it involves the true unknown model.
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