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ESTIMATION OF RATIONAL EXPECTATIONS MODELS

Gregory C. Chow

INTRODUCTION

In an optimal control problem where the model is linear

= + +b +
Y Ay, Cx, + b U, (1)

and the objective function to be maximized is quadratic
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the optimal feedback rule for the vector X of the control variables is

linear in the state variables vy [cf. Chow (1975)1,

t-1
= + .
%t Ce¥e-1 * 9 (3)
. t t . .
In this paper, we assume Kt = 8K and at = ¢ a, B being a discount factor

and ¢ being a diagonal matrix, with some diagonal elements known to be

unity if the targets in a, are time-invariant. We will be concerned with
the estimation of the parameters B, K, ¢, and a in the objective function and
the parameters A, C, and b of the model, using data on (yt,xt).

In the literature of macroeconomic policy analysis following the tradi-
tion of Theil (1958) and Friedl%?der (1973), this note would be entitled the
estimation of government preference functions in policy optimization problems.
Its present title is motivated by the more recent literature on macroeconomic

modelling and analysis which has been stimulated by the works of Muth (1961)



and Lucas (1976), and further extended by Sargent (1978, 1979), Hansen and
Sargent (1980), and Taylor (1979), among others. Consider economic agents
(firms, households) facing a stochastic environment described by (1) and
having an objective function (2). They are assumed to derive their behavioral
equations (the demand equations for inputs, the consumption functions, etc.)
given by (3) through the maximization of (2) subject to the constraint (1).
Under the assumption of rational expectations, the econometrician shares the
same functions (1) and (2) with the economic agents. The econometrician's
problem is to estimate (1) and (2) by observing the data on X, and Y-
This is really a classic problem in econometric modelling, except that the
economic agents are assumed to maximize a multiperiod objective function under
a stochastic environment (with uncertainty). More on this point in Section 5.
This paper presents methods for the maximum likelihood estimation of
linear rational expectations models just described, covering the general case
and the special case when the agent's action xt does not affect the economic
environment as in the model of perfect competition. The special case is exem-
plified by the models used by Sargent (1978,79) and by Hansen and Sargent (1980).
We obtain explicit expressions for the coefficients in the agent's behavioral
equation (3) in terms of the parameters of (1) and (2) using the known results
on stochastic control theory in Chow (1975). To ease the computations in the
general case, we propose a family of consistent estimators which are analogous
to the methods of limited-information maximum likelihood and two-stage least
squares for the estimation of linear simultaneous equations. In this paper,
we will frequently be interested in estimating the parameters when the coef-
ficient matrix Gt in (3) reaches a steady state G (the rational expecta-
tions equilibrium). The results will be extended to estimating nonlinear

models.



MAXTMUM LIKELTHOOD ESTIMATION IN THE GENERAL CASE

Our problem is to estimate the parameters of (1) and (2) using observa-
tions on Yo and xt. It is understood that a system involving high-order
autoregressive and moving average processes can be written in the form (1)
where u, are serially uncorrelated and identically distributed, as is done
in Chow (1975). If one is willing to add a random residual to (3) and assume
a multivariate normal distribution for this residual and ut, the likelihood
function based on (1) and (3) is well-known. It has A, C, b, Gt, gt and the
covariance matrix of the residuals as arguments. If (1) is a set of reduced-
form equations derived from a system of linear simultaneous structural equa;
tions, the parameters A, C, b and the covariance matrix of u, will be
replaced by the corresponding structural parameters as arguments in the like-
lihood function.

What makes our problem different from the standard problem of estimating
the parameters of a system of linear structural equations is that we need to
maximize the likelihood function with respect to the parameters f, K, ¢, and
a of the objective function (with Kt = BtK and at = ¢ta) instead of the
coefficients Gt and 9 in the behavioral equation (3). To apply any gra-
dient or conjugate gradient method for maximization [cf. Goldfeld and Quandt
(1972)], it is first required to evaluate the likelihood function in terms of
the parameters A, C, b, B, K, ¢, and a (after the covariance matrix of the
residuals has been concentrated out), where A, C, and b will further be
written as functions of the coefficients of the structural equations if neces-
sary. The problem then boils down to the convenient expression of G and

t

g as functions of A, C, b, B, K, ¢ and a.

t

The coefficients of (3) as solution to the optimal control problem (1)-

(2) are given in Chow (1975, pp. 178-179):
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for (7) if the planning horizon is N. To compute Gt’ we evaluate the right-
hand sides of (4) and (5) backward in time starting from t+N, using the initial
condition Ht+N = BNKt. Having completed these calculations, we compute Iy
by evaluating the right-hand sides of (6) and (7) backward in time starting
from +t+4N, wusing the initial condition ht+N = Kt+N Nat.

Even for fairly large N, these computations are inexpensive provided
that the (symmetric) matrix Ht is not too large, say with order less than
one hundred. Some computational experience is recorded in Chow and Megdal
(1978) . The computations consist mainly of matrix multiplications. The matrix
C'HtC to be inverted is of the same order as the number of control variables,
which is very small as judged by the cost of matrix inversion using a modern
computer. Furthermore, even if N 1is very large, experience shows that a
steady-state solution for Gt and Ht from (4) and (5) is often reached after
4 or 5 time periods backward from t+N, as illustrated in Chow (1975, pp. 208,
270) . Thus only several evaluations of (4) and (5) are required. If (4) and
(5) do converge slowly, the model of rational expectations adopted to derive
a steady-state G in eguation (3) should itself be questioned. The failure
for (4) and (5) to converge would mean that a rational expectations equilibrium

does not exist for the behavior of the economic agent. A slow convergence

means that the economic agent needs to plan many periods ahead under the



questionable assumption of a constant economic structure for all future periods

(the same matrices A and C being used in the calculations of (4) and (5)
for all future periods). We thus argue that in practice the coefficients ¢
and gt in (3) can frequently be computed inexpensively from the parameters
A, C, b, B, K, ¢ and a.

Since the computation of G and Ie is only a first step (the step of
eévaluating the likelihood function) in the method of maximum likelihood, the
second step being to maximize numerically, it would be very desirable if G
could be expressed explicitly as a function of the parameters without resort-
ing to repeated calculations of (4) and (5). In the next section, we treat

a special case where this can be done.

ESTIMATION WHEN ENVIRONMENT IS UNAFFECTED BY AGENT'S ACTION

Let the environment be described by

vy, = AY + 4 (8)

which is not affected by the agent's action X, - This special case includes
the examples given by Sargent (1978, 1979) and Hansen and Sargent (1980).
These references use an example of a firm trying to determine its optimal
employment of an input while facing a set of stochastic difference equations
(8) which explain the price of the input and a technological coefficient.
To allow for the costs of the control variables and their changes, we intro-
duce X, and Axt as state variables in the objective function and write

the model as
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which is a special case of (1) with

Al 0] 0] 0]
A = 0] 0] 0 ; c = I
0 -I 0 I .

Note the special feature of the maxrix C allowing for no effect of x on

~

Yt-
The objective function is given by (2) with
K
11 o 0
t t '
Ke = BX = B7 1K, Ky 0
0 0 X
i 33
where K22 and K33 are assumed to be diagonal, the former capturing in-—

creasing marginal costs of using the inputs X, in the example on the demand

for inputs, and the latter measuring the adjustment costs of changes in the

inputs. We are concerned with the steady-state solution of (4) and (5), namely

—(c'Hc)'lc HA (10)

9]
I

K + B(A+CG)'H(A+CG)

jas
Il

= K + BAIH(A+CG) (11)

where the second equality sign of (11) is due to (10).



Using equation (10) and the definitions for A and C , with (symmetric)

H partitioned into 3 by 3 Dblocks corresponding to XK , we have

—_ _ 14 -1 r [4 _
G = [H22+H23+H23+H33] [ (H12+Hl3)Al (H23+H33) 0] (12)
Since A’ has all zeros in its last row, so does BA'H(A+CG) . By equation
(11) the last row of H equals the last row of K , i.e.,
! = K’ = - ’ = ! = . = 7
Hy3 = K305 Hyg =Ky3 =05 Hyy=Kyg . (13)
Using (13), we write (12) as
G = - [H +K..1 [ .a K 0] (14)
- 22 "33 1271 33

We need to find only H22 and le to evaluate G . Using (14) and letting

0 = [H2 +K ]_l , we have

2 733
= 7 ’ r -
By (Hy=Hy 00 )R, AJH 0K,y 0 1
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A'H(A+CG) = K339H12Al LS K336K33 0 (15)
0 0 0
Equations (15) and (11) imply
H,. =K. _ + BK,, - BK__[H. +K. ] 'K (16)
22 7 22 33 337722 733 33
H.. = K. _ + BA'H _[H._+K_.]1 'k (17)
12 12 1712722 733 33
Since K22 and K33 are diagonal by assumption, a diagonal H22 is a
solution of (16), with its i-th diagonal element satisfying
K33,
h,, .=k . . +8Bk,, .-B—m—"——— or
22,1 22,1 33,1 h22,i+k33,i
2
2,1 7 ®22,3%%33,1F %33,30 P00, 5 7 Kaa,4%33,1 T O (18)
which can be solved for h22 I We take the smaller root of the quadratic
14



equation (18) as we wish to make h22 ; as small as possible. The dynamic pro-
r

gramming solution to the linear-quadratic control problem [cf. (Chow, 1975)]
transforms a multiperiod maximization problem into many one-period problems. For
each period t , one minimizes the expectation of a quadratic function in Ye in-

volving YéHthr Ht > 0 . Hence H should be diagonal with small elements.

22

Having obtained H22 , we use (17) to compute le = (hlZ,ij) Denoting the

, . -1 .
diagonal matrix [H, +K,,] Ky; by D= Dlag{di} » and the elements of A, by
a,. , we have

1]

P12,45 T Xiz,55 T B E2psdehys (19)
The elements h .. 1in the j-th column of H satisfy a set of linear
12,ij 12

equations (19). We have thus provided an explicit expression for G as a func-

tion of Al ;, B and K by using formulas (14), (18) and (19).

As an illustration for a scalar X, consider the example of Sargent (1979,

P. 335) and Hansen and Sargent (1980) where xt (our notation) denotes the demand for

an input labor; Yq¢ is technology which satisfies a g-th order univariate
autoregression
= + ... + F
Y1e T #11¥1,¢-1 T Y1, t-g T Yt

Yor = yl,t—l""’yq+l,t = yl,t—q are introduced to make the model first-order;

and vy is the wage rate which satisfies an r-th order multivariate auto-

gt2,t

regression. This model can certainly be written as our equation (1).

The objective function is, for the current period 0 ,

T Y
t 12 § 2
Es t§16 A e o e Tl L
where Yl = K22 and ¢ = K33 in our notation, both being scalars. Equations
(16) and (18) are identical for a scalar x, . They become

t



2 A 1 —_ 1} .
h22 - (Yl+53—5)h22 - Y16 = 0 , implying

1 / 2
h,, = 3[(yl+6e-a)-/(yl+5e-5> +4y_8)

The matrix le becomes a column vector consisting of the coefficients of the

products of xt and yit in the objective function. Since H22+K33 in (17) is

the scalar h22+6 s We can write the solution of (17) as

1 1

, .-
Al] k .

H = [1—66(h22+6) 12

12

The coefficient of X g in the optimal feedback control equation (or a
-1

demand for labor equation) is [H22+K33] K33 according to equation (14), or

6/(h22+6) - This result agrees with the coefficient obtained by Sargent (1979, p.
336) and Hansen and Sargent.(l980) using classic (pre-1970) control technicques. Their

coefficient pl is the inverse of the (smaller) root of the quadratic equation
- 2
B - (Yl+6+68)z + 6z7 =0 .

The explicit solution of this section breaks down when the matrix C does

. -1 .
not have a submatrix of zeros, for then (C'"HC) can no longer be written asg

1 . . .
[H22+K33] as in (14) and one cannot solve an equation corresponding to (1€} ex-

plicitly for the elements of H even if K is diagonal.

22 22

4. A FAMILY OF CONSISTENT ESTIMATORS FOR THE GENERAIL, CASE

A family of consistent estimators is proposed for the general case. It is
based on the observations that the least-squares estimator G of the coeffi-

cients G in the regression of x {(which includes x as a sub-

£ O Yig t-1

vector) is consistent, and that, if the rational expectations model is correct,
G should satisfy equations (10) and (11). The situation is analagous to the

estimation of structural parameters (B ) in linear simultaneous equations by




- 10 -

the use of the least-squares estimates ﬁ of the reduced-form coefficients 1l .
The latter are consistent, and, if the model is correct, I satisfies BI="
which corresponds to (10) and (11) in the present problem. Therefore, if we
solve (10) and (11) for H , K and B (the structural parameters) using the
least-squares estimate é for G and consistent estimates A and ¢ for A
and C , we will obtain consistent estimates of the former, as we will obtain
consistent estiMates of B and T by solving BlI=T .

As the first step of this method, we obtain least-squares estimates G of

the coefficients in the multivariate regression of x on y, g - If the target

t

vector a, and the intercept bt in the model are constant through time, ht
is also a constant satisfying equation (7) with the subscript t+1 replaced by
t . We have 9,59 - Other@ise, the coefficients 8 will be estimated by adding
some smooth :rends in the regression equations.

Having obtained 6 y we will find H , K and B to satisfy equations

(10) and (11), but as in the case of overidentified structural equations, there

may be more equations than unknowns. Defining R = (r..) = a + 66, we write these

1]
equations as
C'HR = 0 (20)
K = H-BR'HR (21)

Let H be a symmetric pXp matrix with elements hij ;, and let C be a

pxXq matrix with elements cij . These two equations imply respectively

P
= = .o ; = . e 22
.Z.cimrjlhij 0 (m=1, (9 =1, /P) (22)
1,37
P
- L= i k. = 23
h o [33..Z:l|rmir:.|SLhi:| 0 if k o= 0 (23)

(22) and (23) are linear equations in hij = hji . Let h be the column vector

consisting of the p(p+l)/2 elements hij(i=l,...,p; j2i) . Write (22) and
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(23) as
oh =0 (24)

Exact, over or wunder identification occurs according as the rank of Q is
equal to, larger or smaller than p(p+l)/2 minus one. 1In the overidentified case,
there will be more equations than unknowns in (24) ; the elements on its right-hand
side cannot all vanish. Corresponding to the method of indirect least squares,
one can suggest discarding extra equations in (24) and solving the remaining
p(p+l) /2 LKomogeneous linear equations which are made nonhomogeneous by a nor-
malization hpp=l . This method is still consistent but it discards useful infor-
mation. Corresponding to the method of two-stage least squares, according to‘the
interpretation of Chow (1964), we normalize by setting hpp=l (or any hii=l) ’

partition Q and h’' =zespectively as (Ql q2) and (h£ 1) to write (24) as
thl+q2 =0 (25)

ana estimate hl by ﬁl = - (Q]’_Ql)_lQ]'_q2 using the method of least squares.
Corresponding to the method of limited-information maximum likelihood, ac-
cording to the interpretation of Chow (1964), we normalize symmetrically by
sétting h'h = constant and find h to minimize h'Q'oh subject to this
normalization constraint. The minimizing h is the characteristic vector
associated with the smallest characteristic roct of 0Q’Q . Unlike the method
of two-stage least squares, this method yields a vector estimate of h which
is invariant with respect to the choice of the variable for normalization. How-
ever, if the order of Q is very large, the symmetric normalization is not
recommended as it is computationally expensive. If B is unknown, one has to
find a scalar to minimize the appropriate sum of squares, be it hiQinhl or

h'Q’0Oh , but this is an easy problem. Having obtained h and B , we use the

remaining equations of (21), other than (23), to compute the nonzero elements
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A ~

of K. Given H, A and C ; We can obtain a new estimate g from (10).

(2)
If the estimates of H, B angd K by the method of this section are not
accepted as final, they can serve as initial estimates to be used in the (mzre
expensive) maximization of the likelihood function by the method of section 2. The

consistent estimates of this section can be recommended if the numerical maxi-

mization of the likelihood function is too expensive.

5. THE ASSUMPTIONS OF RATIONAL EXPECTATIONS MODELS

Besides providing practical methods, the above discussion has pin-pointed the
problems involved in the estimation of linear rational expectations models. It
should be pointed out that even when the problems are overcome, the estimates
by the method of section 2 will still not satisfy the assumptions of rational ex-
pectations.

If the economic agents and the econometrician share the same model (1) and
(1) indeed is the true model of the economic environment (two strong assump-
tions), the optimal policy for maximizing the expectation of the objective
function (2), correctly specified by the econometrician (another assumption),
is not equation (3) with coefficients given by (4)-(7) because the economic agents
do not know (and are not assumed to know) the numerical values of the parameters
A, C and b exactly. Given uncertainty concerning A, C and b , equations
(4)-(7) no longer specify the parameters of the optimal behavioral equation for
the agents to maximize the expectation of (2). 1In fact, no one knows how to
compute the truly optimal behavidral equation. Some perhaps nearly optimal solu-
tions are given in chapters 10 and 11 of Chow (1975), for example. Equations
(4)-(7) only specify the certainty-equivalent solution which is not optimal when
A, C and b are uncertain. Strictly speaking, a true believer in rational

expectations models should use the optimal behavioral equation which no one knows,
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or at least the more complicated, but more nearly optimal behavioral equation as
referenced above. Economists who build models othar than rational expectations
models have been criticized for their failure to take optimizing behavior into
account. The question is how far one should push optimizing behavior in building
economic models for multiperiod decision under uncertainty and where one should
stop.

As it has been recognized, current practitioners of rational expectations
models often ignore, or fail to model explicitly, the process of learning by the
economic agents about the economic environment (1) and assume, as in the method of
section 3, that a steady-state is always observed for the optimal behavioral
equation (3). The modeling of learning will automatically be incorporated if
one uses a behavioral equaﬁion which is more nearly optimal than the certainty-
equivalent strategy by taking into account the uncertainty in the model parameters.
Such behavioral equation incorporates the process of learning, is strictly speak-
ing nonlinear in Ve and is time~dependent. The estimation of such models is
much more difficult. Again, how far should one push the assumption of optimal
behavior? How useful are the models based on approximate solutions (how approxi-

mate?) to optimal behavior as exemplified by the methods of this paper?

€. ESTIMATING NONLINEAR RATIONAL EXPECTATIONS MODELS

It is well recognized that the assunption of raticnal expectations makes the
construction of nonlinear models difficult (because the expectation of a nonlinear
function is not the nonlinear function of the expectation). Insofar as the world
is nonlinear, it becomes an unattractive assumption to use. Since this assump-
tion is not strictly followed by its practitioners even for linear models with
uncertain coefficients, one may boldly apply the certainty-equivalent strategy
to nonlinear stochastic models by first linearizing the modcls as suggested in

Chow (1975, Chapter 12). The methods of this paper will then be applicable to
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the estimation of nonlinear models by introducing the following modifications.

(a)

(c)

(d)

(")

For the methods of sections 2 and 3:

Starting with some estimates of the parameter vector © of a nonlinear
model (1) and the parameters @ + K, ¢ and a of the objective func-

tion (2), linearize the model (1) to yield
yt = Ay + C . x, + bt +u,_ .

T e-1 tt t

Compute the coefficients Gt and I of the optimal linear feedback
control equation (3) using the linear model and the parameters of (2).

Note that equations (4) - (7) will have time subscripts for A and ¢ .
Evaluate the likelihooa function for models (1) and (3).

Take one step in a numerical maximization algorithm and return to (a).
For the method of section 4:

Using a consistent estimate 8 of the parameter vector of a nonlinear

model (1), linearize the model as in (a) above.

Compute least-squares estimates & and g of the coefficients in a
I

regression of X,  on yt-l and appropriate trends.
Define Rt = (ﬁt+éta) - For each t , follow the methods of section 4 to
form cht =0 , solve for ht (not to be confused with the vector in

eéquation (7)) to be used as elements of the matrix H and proceed as

tl

before.
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