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1. Introduction

The purposes of this paper are three-fold. First, it proposes an
improvement of the formula of H. Akaike (1973, 1974) for model selection
based on the information criterion. Second, it presents a simpler and
more transparent derivation of the formula of G. Schwarz (1978) for model
selection based on the posterior probability criterion, and points out
its approximation error. Third, it compares these two model selection
criteria from the viewpoint of statistical decision theory. These top-
ics will be discussed respectively in sections 2, 3 and 4.

While the first two topics are technical in nature and hopefully



-2 -
noncontroversial, the third topic is somewhat philosophical and possibly
controversial as it touches upon the foundation of statistical inference.
However, such a discussion is unavoidable if a pPractitioner is to decide
intelligently which of the two conflicting formulas should be used.

The question to be studied is the following. Given J models rep-
resented by the densities fl(-|61),...,fJ('|9J) for the explanation of
a random vector y , and given n observations, how should one model be
selected as being the best? To make our study manageable, we make two
further assumptions. First, there exists a general model £(-]6) from
which all the J competing models can be derived by imposing various
restrictions on its parameter vector 6 . Second, such a model is the
"true" model generating the observations Yyreees¥y - We will let it be
the first model for convenience. It is recognized that these assump-
tions are restrictive, as they rule out some important model-selection
problems to which the posterior probability criterion has been applied.
However, they do encompass the important classical statistical problems
of testing the null-hypothesis that the parameter vector 0 is subject
to a set of restrictions and of choosing among several non-nested models
provided that they can all be derived from restricting the parameters of

a more general model.

2. Derivation of An Information Criterion

Let f(-le°) be the true density of y and f£(-

8) be an approx-
imation of f(-[Bo) where 0 is subject to certain restrictions which
6° does not satisfy. Following Akaike (1973, 1974), we adopt the

Kullback-Leibler information measure, or the expected log-likelihood
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ratio, to discriminate between the two models using n future indepen-

dent observations (§l,...,§n) =y

n
I 16°;0] = E I [logf(§,[6°) - logf (7, |0)] (2.1)
i=1
where the expectation is evaluated by the true density f(-leo) . As ©
is unknown, we assume that n observations (yl,...,yn) =Y are avail-
able to provide a maximum likelihood estimate 8 of 0 subject to the
required restrictions. The estimated model f(-!é) is to be judged by
the expected information
E,I_[6°;6] = E_[E_logL(¥;6°) - E_logL(Y;0)] (2.2)
6" 6 Y- Y
where L denotes the likelihood function based on n future observa-
tions. Akaike (1973, 1974) has provided an estimate of Eé[E~logL(§;§)]
Y
for model selection, since the term E~logL(§;eo) ; though unknown, is
the same for all approximate models. ihis section proposes an alterna-
tive estimate, under the assumption that 6 is subject to the known
linear restriction H'6 + b =0. The reader will recognize that generali-
zation to the case of nonlinear restrictions on 6 is straight-forward
because of the work of Silvey (1959). Our derivation consists of five
steps.
First, we approximate In[GO;G] by a quadratic form in 0-6° .
Expanding logL(?;G) in a second-order Taylor series about 6° and

substituting the result into (2.1) we obtain, using the well-known fact

E[dlogL(¥;6°)/96] = 0 ,

1_16°:6] = %«e—e°)'J(e+,e°)(e-e°) (2.3)



where 6 5_9+ 5_60 and

82logL(§;e+)
96938" !

J(0%,0% = - .
Y
the parameter 8° of J(e+,e°) being used to define the distribution of
Y . J(GO;GO) is Fisher's information matrix.
Second, given the linear restrictions H'6 + b = 0 , we find the
best approximate model by minimizing the information n_lIn[Go;el with
respect to 06 subject to H'6 + b =0 . Using (2.3) for I, . we dif-

ferentiate the Lagrangian expression, suppressing the arguments of J ’
S2(8-6°) "3 (8-0%) - A’ (H'6+b)

to yield

the solution of which is
* - * —_ - _
6 = 6%+ 03t 5 A" = - atwro i L wre® + b (2.4)

*
The vector 6 can be considered the parameter of the approximate model
and is called the pseudo-true parameter of the pseudo-true model in the
language of Sawa (1978).
Ak
Third, if 6 is the maximum likelihood estimate of the parameter
* ' . Ak % * 0

0 of the approximate model, we substitute (6 -8 ) + (8 -6 )  for

(6—80) in (2.3) to obtain the information measure for the estimated

model
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N Ak A
1 16%6] = %{6*—6)'J(8*—6*) + %{6*—60)'J(6*—90) (2.5)

AN * *
where the cross-product (8 -8 )’'J(9 —60) has vanished on account of
*
(2.4) and H'6 =H'® =-Db . Parenthetically, the method of maximum
likelihood is justified as it chooses © to minimize the information

measure based on the sample Y = (yl,...,yn) , 1.e.,

n o ’
L logf(y,|6°) -

logf (y, |6) .
. 1
i=1 1

s

1

Fourth, given a sample Y = (yl,...,yn) of n observations, we

will estimate the second term of (2.5) as follows.

~%<e*-e°)'J(e*-e°) In[e°;e*] = ElogL(Y;0°) - ElogL(¥;8™)

2

ElogL (Y;6°) - logL(Y;0") (2.6)

~ * *
wilere we have estimated ElogL(Y;0 ) by its sample analogue logL(Y;0 ).

AR *
We will find the maximum likelihood estimate 6 and expand logL(Y;0 )

~k Nk
in a second-order Taylor series about 6 . © is found by differenti-
ating
-1 r [
n “logL(Y;0) + A’ (H'6+b)
to yield

-1 3logL(y;0 )
n 30 -

* Nk
Expanding logL(Y;0 ) in (2.6) about 6 , we obtain



%(9*-60)'J(6*—6°) o ElogL(?;eo).- logL(Y;g*)

* *x v 2 e*
_ %{6 -3 ) d logL(Yi )
26396

* A%

6)

(6

A%k

* ' Ak
where we have observed (6 -6 ) [9logL(Y;0 )/38]1 = 0 on account of the
. Ak * A%k f
likelihood equation for 6 and (6 -6 ) H = 0.
2 * . . * 0
If -9"1logL(Y;6 )/3600' is replaced by its expectation J(6 ,67),

and the above equation is combined with (2.5), the result is
o A% ~ O Ak PE I * o Ak %
In[e i1 = ElogL(¥;6") - logL(Y;B ) + (B -6 ) J(6 ,867)(6 -6 ).

Since ElogL(?;Go), though unknown, is constant among alternative
models obtained by specifying different sets of restrictions on 6, it
can be ignored for the purpose of model selection.
Fifth, we arrive at a criterion for model selection by taking the
A%

Ak
expectation of -In[eo;e ] over the sampling distribution of 8 '

(pPlus the above constant term), i.e.

- EA*In[g;f(.lé*)] + ElogL(¥;6°)
B (2.7)

Ak * o Ak kL k % 1
= logL(Y;6 ) -~ tr{J(® ,0)EM®B -8 )(6 -0 ) }.

The models will be ranked by (2.7), the one having the highest value to
*
be selected. The remaining problem is to provide estimates of J(8 ,60)
Ak Kk .k %
and E(6 -6 )(B -8 ).
To find the distribution of the maximum likelihood estimator

*
subject to the restrictions HO = -b, we use the result of Silvey



A%k *
(1959, Lemma 1). The joint distribution of (6 -0) and the Lagran-

o *
gean multiplier (A-1) are asymptotically normal with mean O and

covariance matrix equal to n_l times
Pe* ve* Pe* Pe* Ve* Qe*

Qé* Ve* Pe* Qé* Ve* Qe*

* *
where, denoting L(¥;® ) by L ,

* *
- - dlogL  dlogL ] _ 3ElogL* 3ElogL*
o 30 367 | 36 ° a0
and
- - - * _-1

i Pe* Qe* n lJ(e ’ eo) ~-H

0 Rox -H' 0

nJ - - nJ_lH(H'J—lH) "l gl s lmo Ty L
~@ gty gt -t (g a7t .

In the important special case when the restrictions consist en-
tirely of zero restrictions on a subset of parameters, we write

* *
6 = (61 Q), H' = [0 Il, and

70%,0% = Jll(e*,eo) J12<e*,e°)

* o * o
J2l(6 ,07) J22(9 :67)



The matrix PG* above becomes

-1, ,* o0
Pox = nJll(e ,67) 0
0 0
- * *
and the covariance matrix of (@1—91) becomes

* *
logL _ logL
1

361 361

-1,,* 0 -1,,* 40
Jll(e 07 |E Jll(e :07)

*

*
since O9ElogL /36l =0 as Gl

is obtained by maximizing (differen-

tiating) ElogL(Y;Sl,O) with respect to el. Using this result for the

- nk
covariance matrix of 6 in (2.7), we have the following model selec-

tion criterion in the case of zero restrictions:

* *
ologL  dlogL | -1,.* .o
861 aei Jll(e ,6)} (2.8)

logL(v;87) - triE

- *
Akaike (1973) was incorrect in claiming that Jli(e ,Go) is the asymp-

Ak

totic covariance matrix of 91, as we have just shown. If this claim

were valid, the trace term in (2.7) would become k, the number of

unknown parameters in 6 and (2.7) would become Akaike's information

l’
criterion by which one selects the model having the largest value for

the maximum log-likelihood minus the number of parameters to be esti-

mated. The claim is incorrect because only when the model is correctly

o

* —_ * *
specified, i.e., when 8 =6, do we have Jli(e ,0 ) as the asymp-

Ak
totic covariance matrix of 6 .

To illustrate the error in approximating the trace of (2.7) by k,

consider the example of a true normal linear regression model for n



observations
o o) o
Y = + + = =
XlBl X282 u XB~ + u (Cov u = 10 )
which is being approximated by the smaller model

* *
Y = + .
XlBl u

*

*
The pseudo-true parameters Bl and O 2 can be obtained by maximizing

~ 2 .
E?[logL(YlBl,O,G )] with respect to Bl and 02, where the new

observations to be predicted are assumed to satisfy ¥ = XB~ + u. The

results are

* o ' -1." (o)

By B+ (XX "X X,B)
*2 -1," ! R I 0?
o = n Bzxz[I—xl(xlxl) xl]x262 + 0 .

. . . . 2 ,
Denoting the partial derivatives of logL(YIBl,O,G ) with respect to

* * *
Bl and 02 evaluated at Bl and O 2 by - dlogL , one finds
dlogr. 1
logL ' * 1 "o
—_— = — X_(Y-X_B.) = X.u
* *
BBl . 21 171 - 271
3logL’ 1 x *
ogL n > Vs
——5— = - =5+ g (T-x B (3% B.)
x0 . %
302 og 2 5 4 171 171
n 1 o' ! o ~'e ~' o
= - + —5(B) XM X B +uu + 2u MX_R)
*2 %
50 2 20 4°72 72717272 1°272

! -1
where M denotes I - Xl(Xle) Xl. From the last two equations,

1

one derives
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’- * * ] =
leogL 82109L F 1 !
' 2 *2 Xle ©
3B, 08 9B, 30 oj
v o 1 1
J (9 ,6 ) = -E = H
11 5 * 5 *
d logl. 3 logL 0 n
J *
30%38.  3(0%)? 20™4
L 1 i L J
% ] B 7
dlogL 002 X'X 0
3B *q 171
1 . . o
logL logL
B 3B! 2 -

* L 1 90 02 %3 o2
dloglL ng_ (20 “-0 )
—_— 0

2 *8
- 90 . _ 20 1 .

The derivation of the last equation has made use of the relations

~ta 2 2 ~ e ~
E(ua ™ = (2nin )004 and Eu(u u) = 0 because the elements of ui of

u are normal and independent.
Using these results for the trace in (2.7), we get, for the approx-
imate model

* *
dlogL _ 3logL

861 aei

13,,087,6917 = 6°/6") 2 [ke1- (/0™

tr{E

*
where k is the number of parameters (including the elements of Bl and

*9 . * 0
0 ). If the approximate model were true, 0 = o and the trace term

*

would equal k as Akaike claims. In general o > GO, and the trace

term is smaller than k. For example, if the true model contains eight
parameters (seven coefficients plus Go) and the approximate model con-
tains seven parameters (with the last explanatory variable omitted),

*
and if (GO/O )2 = .9, the difference between the two trace terms to



be subtracted from the respective maximum log-likelihood functions is
8 - .9[8-.9]= 1.61, as compared with 8-7 = 1 by Akaike's formula.
The selection rule (2.7) turns out to favor the small model more than
Akaike's rule. The above adjustment constant is in agreement with the
result of Sawa (1978, Theorem 3.2, p. 1280) who has studied the infor-
mation criterion for the selection of linear regression models in par-
ticular. Our formula (2.7) has more general applicability. Note that

* *
*
to evaluate E[BlggL . Blgg? 1 and Jll(e ,60), one needs to specify
1 1

the true model as the most general of the models to be selected and
*
replace the required parameters 0 and 6° by their maximum likeli-

hood estimates.

3. THE POSTERIOR PROBABILITY CRITERION

To state the Jeffreys-Bayes posterior probability criterion, let
p(Mj) be the prior probability for model N% to be correct, and
p(GINH) be the prior density for the kj—dimensional parameter vector
‘6j conditioned on NH being correct. Assume that a random sample of
n observations (Yl'y2""'yn) =Y is available. By Bayes' theorem

the posterior probability of the 3j-th model being correct is

p(M.)p(¥Y|M,) p(M,)p(Y|M,)
pm |v) = J 1 - )] i
J p(Y) Zp (M) p(Y|M,)
3 J J
where
. = L.(Y,0 0|M,)d 3.1
P(Yle) JJ( )p (0] ;)48 (3.1)

with L,(Y,0.,) denoting the likelihood function for the j-th model.
] J
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Since p(Y) is a common factor for all models, the model with the
highest posterior probability of being correct is the one with the

maximum value for

. ) = . (Y, .)ae .
p(Mj)p<Ylw5) p (M) ij(Y e)p(elMJ)d

If the prior probabilities p(Mj) are equal for the models, the one

with the highest p(YIMj) will be selected.

To evaluate p(Y]Mj) for large samples, we apply a well-known
theorem of Jeffreys (1961, p. 193 ff), cited in Zellner (1977, pp. 31-
33), on the posterior density p(elY,Mj) of ej given model Mj:

L, Y,e P 6 M.
P Y|M,

p(elY,Mj) =

Sy
N =
[ =

- 2(6-B.) "s(0-8,) -
= (2m [s|© e J T n+om )

N

where 6j is the maximum likelihood estimate of ej and the inverse
covariance matrix S = —(82long/8689')§ = nRj is of order n. Eval-
uating both sides of the above equation at 6 = @j and taking natural

logarithms, we obtain

k

A j 1
lo YiM, = logL,(¥,8.) - = log n - =1lo R,
9 p(Y[M,) gLy (¥,8,) - 3= log > log R, |
Kk ) -1
+ 32 log(2m + log p(ejIMj) +0(n 9 (3.2)

. A 1
If we retain only the first two terms long(Y,Gj) and ‘kj(5'109 n)

in (3.2), we obtain the formula of Schwarz (1978).
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How well can log p(YIMj) be approximated by using only the first
two terms of (3.2)? How much will it depend on the prior density
pj(ele) of the parameter vector chosen for each model Mj? Bayesian
statisticians including Jeffreys (1961), Pratt (1975), and Leamer (1978),
among others, have recognized the difficult problem of choosing a prior
distribution pj(ele) for the parameters of each model to be used to

compute p(Y]Mj). The difficulty of this problem can be seen from the

equation
L, (v,0,)p(@, |M,)
p(YlMJ) — J AJ J 3]
(6.]Y,M.)
P Jl J
5001
=~ L.(Y,0.)p(0,[M.)-(2m) nR, .
s RS Lt JI 3 | Jl
Observe that, given Lj(Y,@j) and p(éjlY,Mj), p(Yle) is proportional

to p(élej). Thus one can change p(Yle) by a multiplicative factor
simply by changing p(éjIMj) by that factor. If one wishes to use a
diffuse prior density p(ele), many such densities are reasonable but
. they can give very different results. To illustrate, let p(GIMj) in
(3.2) be kj—variate normal with mean @j (just for illustration) and

covariance matrix (eRj)_l. Equation (3.2) will become

e

_ Ay -1 n
log p(YIMj) = long(Y,Gj) 5 kj log(x) + 0(n ). (3.3)

o

The adjustment constant suggested by the formula of Schwarz (1978) will
1 1 n .
be changed from - E-kj logn to - E-kj log(EO. There is no reason

why € might not change by a factor of two or three, making Schwarz'

formula a poor approximation to log p(YIMj) for finite samples.
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4. Comparative Evaluation of the Two Criteria

We will begin by evaluating the information criterion from the view-
point of Bayesian estimation theory, as Leamer (1979) has done. Under
the assumption stated in the Introduction, the true model is the most
general model f(-]e°) with unknown parameter 6° . 1[6°;8] in (2.1)
specifies a loss function for the approximate model f(-]@) .

E,_ I[e°;§i]
Aei
Gi which is subject to the restrictions defining the i-th model. Since

= Ri(e°) in (2.2) is the risk function for the estimator

the risk Ri(e°) depends on the specification of the model (i.e., the
estimator) and the unknown 6° r one cannot select the model (estimator)
with minimum risk without knowing 8° . a Bayesian will specify a prior
density for 6° , take the expectations EeoRi(Go) (i=1,...,3) , and
choose the model i with the smallest expected risk. Instead, the pro-
posal of section 2 is to evaluate Ri(éo) using the maximum-likelihood
estimator 8° of 6° . This procedure appears ad hoc from the view-
point of Bayesian estimation theory. Furthermore, since all Bayesian
estimators defined by different prior densities on 6° form a complete
class of admissible estimators, and the above ad hoc procedure is not

a Bayesian estimator, it is inadmissible.

A defense of the information criterion against the criticism from
Bayesian estimation theory can be made as follows. First, if the risk
Ri(e°) is adopted for ranking the i-th model or estimator, using a max-
imum likelihood estimate Ri(éo) of it at least has large-sample justi-
fication from the viewpoint of sampling theory. Second, a Bayesian is

challenged to provide an alternative Procedure for model selection
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which, from the sampling theory viewpoint, will on the average select a
better model as judged by (2.1) than the information criterion. We will
consider three Bayesian procedures below.

The first procedure is based on Bayesian estimation theory. Given
a prior density on 6° and given the loss function I[Go,é] , one can
find an estimator é, to minimize expected loss Eeo[eo,él where the ex-
pectation is evaluated by the posterior density of 6° . There are two
problems with this procedure. First, it might not perform well from the
sampling viewpoint. Second, it will never recommend imposing zero re-
strictions on any parameters, or d:opping any explanatory variables in a
regression model, unless the prior distribution of 6° assigns probabil-
ity one to these restrictions in the first place. Thus this procedure
always leads to selecting the largest model in the problem formulated in
the Introduction.

To justify the dropping of variables in statistical practice, two
other Bayesian procedures can be mentioned, as discussed in Dickey (1975),
for example. One involves introducing a reward for simplicity by sub-
tracting a constant from the loss-function 2(60,§) when 6 satisfies
the restrictions of a small model. The second is a Bayesian procedure for
hypothesis testing. Given two hypotheses or models My and M2 , it is
required to specify a prior probability P(Mi) for each model to be cor-
rect, a prior density pi(GiIMi) of the parameter ei for each model
Mi , and a utility function U(d;M) where d can take only two values
di (for the decision to choose Mi) , i=1, 2 . If M stands for

1

the general model with parameter 60 = 6° and M2 is obtained by re-

strictions on 6 , the utility function can be written as U(d;0) . The
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model Mi will be selected if EeU(di}e) is larger where the expecta-
tion is evaluated by the posterior density of 6 . Note that this utility
function is different from the loss function used in Bayesian estimation
theory where the argument 8 ig a continuous variable indicating the pa-
rameter estimate. Here di is a discrete variable referring to the de-
cision to choose Mi r for an unspecified burpose except that U(dl,eo)

* *
> U(dz,eo) and U(d2,6 ) > U(dl,G ) where M is the restrictive model

2
*
with parameter 6 . Under the assumptions of a symmetrical utility

function, i.e.,
u(a;,6% =u(@,,8") ana v, = u@.,e"
1’ = 2! an 27 - 1’ '

this selection procedure amounts to selecting the model with the higher
posterior probability p(Mi]Y) of being correct. It further reduces to
the selection by p(YIMi) when p(Ml) = p(MZ) + as discussed in section
3.

What can be said about the posterior probability criterion for mod-
el selection? When applied to the choice between two nested models Ml
and M2 r the assumption of a symmetrical utility function becomes un-
reasonable since U(dl,G*) depends on how far 6* is from @° , and
U(al,e°) cannot reasonably be set equal to U(dz,e*) for all values of
6° ana 6* . More importantly, the model Mi selected for having a
higher value for EeU(di,e) + as evaluated by the posterior density of
0 , is not meant to be the model which, when estimated by maximum like-
lihood using a finite sample, will on the average predict future obser-

vations well by the information measure (2.1). Similarly, neither is

the model having a higher p(YIMi) meant to be the one which we should
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estimate for prediction Purposes. In our analysis, we have already as-
sumed the most general or the largest model to be the true one, and yet
imposing restrictions might produce a better model for prediction, given
a finite sample.

To put the last point differently, the information criterion maxi-
mizes

E.E_logL(Y;0)
0y

with the expectation evaluated by the sampling distribution of e,

whereas the posterior probability criterion maximizes
logEeL(Y;e) = logfL(Y;G)p(@[Mj)dG

with the expectation evaluated by the prior density of 6 . This com~
parison brings out the basic difference between the two criteria as they
attempt to answer two different questions. One asks which "model"
f(-]@) as it is estimated by the given data Y should be used to pre-~
dict the future § - The other asks which "model" as defined by

f(-l@) and the prior density p(@IM) is judged by the sample data Y
to have the highest probability of being correct. This distinction is
not éxplicitly recognized in the literature. Schwarz (1978), in presen-
ting his estimate of the posterior probability of a model being correct
for large samples, stated that he was proposing an alternative formula
to Akaike's for solving the same problem. Akaike (1978) asserted that
he and Schwarz were trying to solve the same problem, and attempted to
derive a formula close to his formula by using the posterior probability

criterion. This could be done, for example, by choosing the prior



density
k.
~ _-él -2 i
6.IM.) = (27 ne R,|2
p(B, M) = (2m I 5
in (3.2) to make the entire adjustment factor equal to - kj instead of

- kj(%iogn) + but there is no need to justify the information criterion
in terms of the posterior probability criterion as they are designed to
answer different questions.

The above comparison also brings out the difficulty in choosing a
robust prior density function p(ele) for the model selection problem.
The "model" to be judged by the sample data Y usiné the posterior
probability criterion is precisely defined by this prior density togeth-
er with the function f(-le) . Varying the prior density p(@IMj) will
vary significantly the "model" to be judged. Therefore, it is difficult
to avoid choosing a specific prior density for the model selection prob-
lem using the posterior probability criterion. One might be tempted to
resolve this difficulty by using a part Yl of the sample Y = (Yl Y2)
to obtain a preliminary p(BIYl,Mj) from a diffuse p(SIMj) , and then

using the remaining data Y to judge the "model" now specified by

2

p(@[Yl,Mj) together with the function f(-[G) . This suggestion can
certainly be carried out, but it will answer the question whether the

"model" based on the data Y was good as judged by the data Y

1 , and

2
not whether the original model with a diffuse prior was good as judged
by ~Yl and Y2 - Nor will it answer the interesting question whether
the model estimated by using all the data Y will be good in future

predictions.

In conclusion, although the information criterion is subject to
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criticism from Bayesian estimation theory, it can be justified by sam-
pling theory as it applies maximum likelihood to estimate the risk func~
tion Ri<e°) . There are three Bayesian answers to the model selection
problem posed in our Introduction. First, from Bayesian estimation the-
ory with continuous loss and prior density functions, the largest model
will always be selected, implying that explanatory variables should nev-
er be dropped from regression analysis. The estimator should take full
account of the loss and prior density functions and not be restricted to
maximum likelihood estimation of either the large or the small model, as
is often done in statistical practice. The second answer justifies the
selection of a smaller model by introducing discontinuity in the loss
function (extra utility for imposing restrictions) and the third by in-
troducing discontinuities in the prior density function and in the deci-
sion variable. If one accepts prediction as the criterion for model
building, any of these three answers will have to be evaluated by its

ability to produce good predictions.

I would like to thank Richard Quandt and James Trussel for helpful
comments and to acknowledge financial support from the National Science

Foundation.
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