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One of the basic postulates of the von Neumann-Morgenstern utility
theory is the completenessl postulate. It is assumed that any two outcomes
are comparable, that there is preference or indifference2 between any pair
of outcomes. This is perhaps the most questionable of all the assumptions
of utility theory. Von Neumann and Morgenstern themselves say that "it is
very dubious, whether the idealization of reality which treats this postu-
late as a valid one, is appropriate or even convenient." [5,p.630]: Here we
present a variation of the von Neumann-Morgenstern theory which makes no use
of the completeness postulate.

The fact that up to the present no utility theory has been able
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to dispense with the completeness axiom” is no accident, but is due to the
definition of utility that is usually accepted at present. In fact, no
theory using this definition is possible without the completeness axiom.

Under this definition, the utility is a function u from the outcome

space to the real numbers which faithfully represents the preference order;

to put it in symbols, we must have u(x) >u(y) if and only if x > y

lSometimes called "connectedness.” This postulate is assumed
also in the non-numerical indifference-curve approach to utility.

2Not to be confused with incomparability: Indifference between
two possible outcomes involves a positive decision that it is immaterial
whether the one or the other is chosen, whereas incomparability means that
the decision maker refuses to decide between them. Indifferent activity
vectors are comparable in the preference order, incomparable ones of
course not.

5Von Neumann and Morgenstern mention very briefly [5,p.29] that
if the completeness axiom is dropped, "a mathematical theory . . . is
still possible. It leads to what may be described as a many-dimensional
vector concept of utility. This is a more complicated and less satisfactory
set-up.” Details were never published. Professor Morgenstern has informed
me that what they had in mind was not Hausner's multidimensional utility
[2], but some kind of mapping into a partially ordered euclidean space
(Hausner's mapping is into a completely ordered euclidean space).



(x preferred to y). Since the condition is necessary and sufficient and
the real numbers are completely ordered, the original ocutcome space must
also be completely ordered.

A number of ways out suggest themselves. One is to let the
range of u Dbe some canonical partially ordered space rather than the
real numbers, in the spirit of footnote 3; we will not pursue this idea
further. Another possibility is to relax the demand that the representa-
tion be faithful. More precisely, we shall demand that x >’y‘ imply
u(x) >uly) , but not conversely.

Although such a utility will not have the uniqueness properties
of the von NeumannnMCrgenstern‘utility, it will have many of the other
useful properties. For example, we can solve maximization problems with
it: Maximization of such a "one-way" utility over a given constraint set
will always lead to a mau»cimallL element of the constraint set; conversely,
for every maximal element x there is a utility whose maximization leads
to x . Following up an idea of Shapley [6], we can even set up a theory
-of games in which the outcomes to an individual player are only partially
ordered. Just as ordinary utilities are used to give a numerical treat-
ment of games in which the outcomes are totally ordered (for each indi-
vidual player), we will be able to use the "one-way" utilities to give a
numerical treatment of such partially ordered games. In fact we will be
able to "solve" these games in a manner analogous to the completely
ordered case—obtaining an analogue of saddle points for zero-sum games,

and of Nash equilibrium points [L] for general games.

N

I.e., an element to which no other element in the constraint
set is preferred. We cannot expect to get a maximum element—i.e., an
element preferred or indifferent to all others in the constraint set—
because such an element may not exist.



We remark that the present theory is a genuine generalization
of the von Neumann-Morgenstern theory, in the sense that in case the
outcome space does happen to be completely ordered, our utilities are the
same as the von Neumann-Morgenstern utilities.

There is a significant parallel between the notion of utility

proposed here and the notion of representation as used in algebra. A

representation of a group G is a homomorphism u from G +to some fixed
canonical group H ; such as a group of matrices or the group of rationals
modulo 1. The range group H generally has more "structure™ than the
domain group G ; there are more relations in H +than in G (for example
H may be commutative and G not). Thus x = yZz .always implies
u(x) = uly)u(z) , but the converse is usually false. Although they are
homomorphisms rather than isomorphisms, representations are useful because
they enable us to use our knowledge sbout the structure of the range group
H as a tool in studying the domain group G . Moreover, we can often say
a lot about G by considering the set of all representations of G in
H , rather than a single one. For example, this set often determines the
structure of G completely.

The parallel with our situation is clear. Here G is the
space of outcomes, H the real line; we are Tamiliar with the structure
of H , but not with that of G . An "order-isomorphism® (what we called
a faithful representation above) is obviously out of the question if @
is not completely ordered. We seek an "order-homomorphism” u s & mapping
which gives us for each relation in G a corresponding relation in H B
but not vice versa. ‘Even a single mapping of this kind gives us impor-
tant information on the original preference order; and as might be

expected, the set of all such utilities gives us even more information.
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In fact, we shall see that the preference order on the outcome space is to
a large extent determined by the set of all utilities.

We have made an attempt to concentrate the less technical part
of the paper in the first five sections; the remaining sections become

progressively more technical.

l. The Outcome Space: Formal Assumptions

The space.on which the utility will be defined is called a

mixture space: intuitively, this is the set of all probability combina-

tions of a set of "sure outcomes" or "pure prospects.” Formally, it is
a space X with a convex structure; that is, if {71’°°°’7k} is a set
of probabilities (i.e. 7, 20, Iy = 1) , and if xl,”.,,x,k e X,

then there is defined in X +the convex combination Z?_lyixl « One

‘operates with these combinations in all ways like with ordinary vector-
space sums, keeping in mind only that the coefficients must always be
non-negative and sum to unityo5 A set {xl,ooe,xk} of members of X

is said to be independent if no two distinct combinations of the xi are
equal, and a maximal independent subset of X is said to span X . We

shall assume in the sequel that X has & finite spanning subset, or in

other words that it is finite dimensional. In particular, this condi-

tion will always be satisfied when only a finite number of "sure outcomes
are possible.
We assume that on our mixture space X there is defined a

transitive and reflexive relation called preference-or-indifference and

denoted by ;g » If x,;>y and y‘2>x we will say that x is indifferent

For a set of formal axioms for a mixture space, see [2,p.169].
The treatment here is similar to that of [3].



to y and write x ~y ; if x 2>y but not x ~y , we will say that =x

is preferred to y and write x >>y o We assume that the following
conditions hold:

(1.1) if 0<y <1, then x>y if and only if 7x + (1-7)z > 7y + (1-7)z
(1.2) if yx + (1-y)y >z for all 7y >0, then not =z >y .

Assumption (1.2) is the "archimidean" or "continuity" assumption.

The relation 12> will be called a partial order; the space to-

gether with the partial order ‘;> will be called a partially ordered mixture

space. The symbol X (and occasionally Y) will denote a partially ordered
mixture space, but may sometimes also be used to denote the underlying

(unordered) mixture space; no confusion will result.

2. The Utility

A utility on a partially ordered mixture space X is a function
from X to the reals for which
(2.1) ulyx + (1-7)y) = yu(x) + (1~7)u(y)
(2.2) x>y implies u(x) > u(y)
(2.3) x ~y implies u(x) =uly) .
Condition (2.1) is the familiar "expected utility hypothesis," whereas
(2.2) and (2.3) state that u represents the preference order.

Our basic result is:

Theorem A. There is at least one utility on X .

3. Two Examples

An example .of a mixture space is Euclidean n=-space Rn , con-
sidered as a vector space over the real numbers. Two of the partial

orders most frequently encountered in the literature are the weak and the
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strong partial orders on R , which we denote by @ and respectively.
Using subscripts to denote coordinates, we write X(:)y if Xi > Yy for
all i ; we write x|y if Xy > vy for all i , but x + Yy °6 Both
orders satisfy all assumptions of the previous section; they are also both
pure, i.e., indifference holds only in the case of equality. If we normal-
ize the utilities by setting u(0) = O , then the utilities for [E] are of
the form u(x) = Z?:luixi , where (ul,ono,un)(:)o ; the utilities for (:)

are of the same form, except that now we need only have (ul,,ua,un)[gﬂo o

Y. Maximization Problems, Games, and Shapley's Theorem

7

The convex hull’ of a finite set of points in X is called a

convex polyhedron.

Theorem B. ILet E be a convex polyhedron in X , and let x € E . Then

% is maximal in E under the partial order 2>, if and only if there is a

utility u on X such that x maximizes u over E .

Theorem B enables us to deal with two-person zero-sum games
played over X . These games are similar to ordinary matrix games in all
respects, except that the payoffs are in X rather than being real numbers.
As usual, the two players each have a finite set of pure strategies, denoted
by (pl"°°’pk)’ (quooo,q{); there is a payoff function which associates

with each pair of pure strategies Py and q}j a member aij of X .

The terminology may sound reversed to the reader, but it has
some justification. One partial order is stronger than another if it has
more relations; we consider a total order stronger than a partial one.

7The convex hull of a set D is the set of all convex combin-
ations of members of D .
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If the players use mixed strategies c = (7l’°°°’7k) and d = (Slﬂauo,aﬁ)

respectively, then the outcome is the point Zi j
2

in X . The preference order ‘2> is associated with the first player; the

y.0.a,. (abbreviated cAd)
Jd 1d

i
second player has the opposite order, i.e., he prefers x to y or is in-
different between them, if and only if y E'X . Corresponding to a saddle-

point in ordinary matrix games, we here have equilibrium points; these are

pairs of mixed strategies (cg,do) which are "good against each other™ in the
sense that c°Ad° is maximal in the set F of all points in X of the form
cAd® >, and minimal in the set G of all points in X of the form c®Ad .
These equilibrium points have just about all the nice properties of saddle
points in ordinary matrix games. For example, the interchangeability proper-
ty holds: each player has a set of "good" strategies, such that the equili-
brium points are precisely the pairs of good strategies. Furthermore, a
player not only achieves "best possible” for himself by playing a good
strategy, but he also protects himself against loss; if the other player
changes his strategy, the result will either be another equilibrium point,
or a point that (from our player's point of view) is actually preferred to
an equilibrium point. However, there is nothing in this kind of game that
corresponds to the unique value of ordinary matrix games.

Do equilibrium points always exist? If so, how can they be

calculated? These questions are answered by the following theorem:

Theorem C. (co,do) is an equilibrium point in the matrix game A

if and only if there is a pair (u,v) of utilities on X such that

(co,do) is an equilibrium point (in the sense of Nash [4]) in the

8

bimatrix game (u(4), -v(a)) .

I.e., the two-person non-zero sum game whose strategy spaces
are the same as in the original game, but in which the payoff to (Si,tj)

is u(aij) to player 1 and =v(ajj) to player 2.
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This theorem generalizes a result of Shapley [6]. Shapley con-
sidered the case in which the underlying mixtufe space 1is Rn and the
order is either the weak or the strong order. He defined "weak" and "strong"
equilibrium points accordingly, and by exhibiting the utilities explicitly,
proved what amounts to Theorem C for each of these two special cases sepa-
rately. Our proof (see section 8) is essentially the same as one of
Shapley's two proofs. We quote Theorem C here chiefly as an application of
our utilities; it serves to unify Shapley's two results, includes a far
larger class of preference orders, and, we believe, exhibits his results in
their proper context.

Theorem C can be extended to n-person games. FEach player i has
a Tinite set Pi of pure strategies, and an outcome space Xi satisfying
the assumptions of section 1. With each n-tuple (pl,ooo,pn) of pure
strategies, there is associated an n-tuple (xl,ooo,xn) of payoffs, where
= e X . We now define an n=-tuple (clyoou,cn) of mixed strategies to be
an equilibrium point if each ot is "good" against the combination of the
n=-1 others. The result is that (cl,ooo,cn) is an equilibrium point if
and only if it is a Nash equilibrium point for some n-tuple of utilities

1 n 1 n
U je0e,U 0N X 50005X o

5. Discussion

A. The Assumptions All of our assumptions hold in the von Neumann-Morgenstern

model, except for the finite dimensionality assumption; with this exception,

therefore, our theory is a true generalization of the von Neumann-Morgenstern



theory.9

As we remarked in section 1, finite dimensionality holds in all
cases in which there are only a finite number of pure prospects; this
includes most cases of practical interestalo The assumption of finite
dimensionality cannot be dropped. To see this, let X be the get of all
infinite sequences of real numbers, and impose the strong order. Then X
satisfies all our assumptions except finite dimensionality, but has no
utility.ll

Assumption (1.1) is taken from Hausner's set of axioms [2].
Assumption (1.2) is an extremely weak version of the "archimidean"
or "continuity" principle; it is weaker than any variant I have seen. Tt
serves only to exclude the case in which the direction of strict preference
between a point 2z and a closed line segment [xy] goes in one direction
for one of the end points y and in precisely the opposite direction for

the entire remainder of the segment. Two cases which are not excluded are

illustrated by the weak and the strong orders respectively (Figure 1).
» X

o Z /y

Figure 1

9Wé can strengthen our theory in a trivial fashion so as actually
to include the von Neumann-Morgenstern theory, by extending it to all
spaces which become finite dimensional when the indifference relation is
divided out.

lo'But not all, because it is ocecasionally useful to build a model
in which a certain variable can take a continuum of values, though in
actuality there are only finitely many possibilities; price is an example.
In most of these cases, however, our theory still applies, because by
dividing out the indifference relation we can often get a finite-dimensional
space §though usually not one that is the convex hull of a finite number of
points).

llThe dimensionality of X is the cardinality of the continuum.

It would be interesting to know whether or not there is a counter-example
with denumerable dimensionality.
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Hefe y and 2z are on the same horizontal line. For both orders all points
in the half—openl2 segment [xy) are preferred to z ; the difference between
the two orders is expressed in the relation between 2z and the end-point
y . For the weak order y and =z are incomparable, and for the strong
order y 1is preferred to =z ; in neither case, though, is z actually
preferred to y . It can also happen that all points in [xy) are preferred
to z , while y and 2z are indifferent (not pictured).

In practice the effect of (1.2) is to exclude the lexicographic
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order™ and other orders inspired by the lexicographic order. We remark

that if we drop (1.2) we can still build a utility theory, but the values of
the utility functions will be points in a lexicographically ordered euclidean
space rather than real numbers; this generalization of the present theory is
analogous to Hausner's generalization [2] of the von Neumann-Morgenstern

theory. It will still be possible to solve maximization problems and games

under exactly the same conditiong as before (compare ['f])‘,llF

lgI.ee, the segment [xy] without the point y .

13The lexicographic order on R2 is the pure order for which
X >y if and only if: either X >y, 0or x =y, and X, >y, . The

definition may be generalized to R .

I personally believe the archimidean principle to be very com-
pelling, notwithstanding some of the counter-intuitive examples that have
been offered in the literature. For example, it is sometimes argued that a
trivial prize such as two pins may not be worth any probability of death,
no matter how small. But many people drive their cars every day for, say,
$50, although they know that this involves a positive probability of death;
and by using postulates of utility theory other than the archimidean prin-
ciple, one can convince oneself that $50 is "comparable” to two pins (by
going up a pin at a time, say). The counter-intuitive flavor .of the example
may be traceable to aspects of the preference axioms other than the archi-
midean principle; for example, the idealization that asserts the ability to
differentiate between probability combinations that are very close to each
other may be involved. In spite of all this, there may certainly be situa-
tions in which the lexicographic order or something similar constitutes the
most convenient model, so it is desirable to have a theory that covers it.
(I am indebted to J. Brand for this argument. )
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B. Idinear Transformations As in the von Neumann-Morgenstern theory, if

u 1is a utility, then so is aqu + 8 , where & >0 and B is an arbi-
trary real number. Two utilities connected in this way are called

equivalent.

C. Uniqueness The utilities are not unique up to linear transformation;

a given preference order may (and usually will) have many different inequiva-

lent utilities.

6. The Structure of Partially Ordered Mixture Spaces

In this section we will give 8 constructive characterization of
spaces X satisfying the assumptions of section 1. Iet us first consider
the case in which the mixture space involved is Rn o Assumptions (1.1)
and (1.2) may then be restated as follows:

(6.1) x>y implies x +Z>Y +2

a >0 implies Otxéay;
(6.2) ax>z for all a >0 implies not z > 0 .
A utility in this context is merely a real function on X which represents
the order in the sense of (2.2) and (2.3), and which is linear in the
ordinary (vector-space) sense; that is, there is a vector (ul,ao,,un)
and a scalar c¢ , such that u(x) =c + Z?:luixi . Different c's yield
"equivalent” utilities; we will usually normalizel5 by setting ¢ = 0 .

We will denote the vector (ul,090jun) by u , and call it a utility as

l5'I'his normalization sets u(0) = 0 ; there is also a multipli-
cative parameter that could be normalized, but there seems to be no unique
natural way in which to do this. Note that the "natursl" way in which we
have fixed the additive parameter depended on the existence of an origin;
this is a feature of RY when considered as a vector-space, but it is not
inherent in the mixture-space structure of R2 .
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well. Thus u(x) is the same as the inner product ux ; no confusion will
result.

For a geometric characterization, we turn to the set S (= SX)
of points in R" that are 2>O o It is not difficult to see that the
order is completely determined by S . Of more significance than 8 in
the analysis, however, is the set T (= TX) of points in R' that are
>>O 5 this may be defined in terms of S by T = S\\(-S)A, where \\\
denotes set-theoretic subtraction. From (1.1) it follows that
(6.3) S is a convex cone,:L

and from (1.2) that

(6.4)

TN (-T) =4,

where the bar denotes closure; conversely, if these conditions are satis-
fied, then S defines a partial order. Note that T is also a convex
cone, but does not contain the origin. A utility is geometrically charac-

terized by an open support of T s 1.e., an open half-space containing T ,

and whose bounding hyperplane contains the origin; the inner normal to the
bounding hyperplane provides the utility.

Yor the examples of section 3, T is the open positive orthant
for the weak order, and for the strong order it is the closed positive
orthant minus the origin. Orders on R> between" the weak and the
strong order are obtaihed by choosing T to be between these two; for
>0, x

example, for n =2 we could stipulate T = {x: x >0} . Other

1

possibilities for T are open half spaces, open half-spaces of linear

2

subspaces of R™ s Circular cones. BExcluded are closed half-spaces, or

half-spaces that are partly open and partly closed (such as the open

16A cone is a subset € of Rn such that x € C and a4 >0

imply axe C .
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half-plane Xq > 0 to which has been adjoined the positive x2—axis, which
would yield the lexicographic order on ‘Rg)o Candidates for S can some-
times be obtained from candidates for T by judiciously adding to T
points from T ; details are omitted, but we mention that a closed half-
space is a possibility for S, but a partly open half space like the one
described above is excluded.

Up to now we have assumed that the underlying mixture space of
X is R . Hausner [2] has proved that any,ﬁixture space may be imbedded
in a real vector-space, and from our finite-dimensionality assumption it
follows that the vector space will be ‘an R . It is not difficult to
extend the partial order as well. Thus any partially ordered mixture space
X can be described as a convex subset of a partially;ordered space Y
whose underlying space is R » such that the order on X is the restric-

tion to X of the order on Y . Furthermore, the utilities on X will be

precisely the restrictions to X of the utilities on Y .

{. Duality

In this section we wish to answer the question: To what extent
does the set of utilities on X determine the order on X2

To this end, we introduce the duality notion. The dual of a
cone C in R is defined to be the cone (% consisting of all u ¢ R*
such that ux >0 for all x € ¢ .  For example, the open positive orthant
and the closed positive orthant without the origin are mutually dual, as
are R and ¢ » an open half-space and the ray normal to its bounding
hyperplane, and concentric open and closed right circular cones (the latter
without the origin) whose half-angles add to 90O o The cone
{x € B°: x

>0, x, > 0} is self-dual.

1 2
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In all the above examples C*¥ = C . Tt is of interest to ask
under what general conditions this holds. If we calculate C** , we find
that it is precisely the intersection of the open supports of C . Thus

we have

Theorem D. A necessary and sufficient condition that C*¥ = C ig that

C be the intersection of its open supports.

The importance of Theorem D lies in the fact that the condition
given is of wide applicability. Iet us call s cone satisfying the condi-
tion regular. A regular cone must be convex, and unless it is all of
r* s it may not contain the origin; but aside of these restrictions, almost
any cone "liable to come up in practice® is regular. Of course the examples
we brought above all involve regular cones. More generally: Any open cone
is regular. If C 1is a convex cone obtained from a closed cone by removing
the origin, then C is regular. The set of all x satisfying a given set

of homogeneous linear inequalities, which may contain both weak and strong

inequalities, is regular if it contains at least one strong inequality

(which may, for example, serve only to remove the origin). If € 1is an
.open circular cone, then any cone between C and C that does not contain
0 1is regular. On the other hand, if we add the positive half of one of
the axes to the open positive octant in Rj s the result is a cone which
is not regular, though it is convex and does not contain the origin.

If X 1is a partially ordered copy of R s then the set of all
(normalized) utilities on X is precisely T¥ (where T, is the set of

X X
all points preferred to 0). Hence if we know that TX is regular, we
can recover the order from the set of all utilities. Thus the set of all
utilities on a given X "almost" determines the order, and determines it

completely if the set of orders under consideration is suitably restricted.



Our definition of duality is somewhat different from the ordinary
definition, in which C* is defined to be the set of all u such that
ux < 0 for all x € C . Under that definition the necessary and suffi-
cient condition that C*¥ =C is that C be the intersection of its

closed supports, or equivalently that it be convex and closed.

8. Proofs

Proof of Theorem -A. We assume that the underlying mixture space of X 1is

R ; this involves no loss of generality because any finite-dimensional
mixture space can be imbedded in such a mixture space. The proof is by
induction on n . If n =1 the order must either be total or all elements
are incomparable; in either case the theorem is trivial. Suppose the
theorem has been proved for all dimensions up to but not inecluding n . If
there is an element of X other than Q +that is indifferent to O s then
we may "divide out” the indifference relation, i.e., consider equivalence
classes under indifference; this yields a space of lower dimension, to which
the induction hypothesis applies. We may therefore assume without loss of
generality that the order on X is pure, so that § = TUu{0o} (cf. sec-
tion 6). Suppose first that the closure of T ((-T) is not all of X ,

and let w be a point not in that closure. Iet Y be a subspace of X
such that every x € X is uniquely of the form Bw+y , where B 1is

real and y € Y ; for example, take ¥ +to be the orthogonal complement of
the line ‘IM' spanned by w . Define an order on ¥ by y‘2>0 if and

only if there is a B such that y + Bw> 0 in X ; geometrically, Sy

is the projection of S on ¥ din the direction of LW « Hence S

X Y

is a convex cone, and to prove that the order on Y satisfies our

assumptions, it remains only to establish that E% and —TY do not
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meet. Indeed, suppose y is in their intersection. Noting that TY is

the projection of TX on ¥ in the direction of Ih" we deduce that

there is a B and sequences {51,62, veo )} and {yl,yg, oe. } such that
Vg > Y5 ¥; +BY S0 in X, and 0>y 48w in X . Iet B, be a

limit point (possibly infinite) of the B; ; without loss of generality

we may assume that it is actually the limit. IFf Qm =B , then

vy + Bwe TX{](mTX) , contrary to (6.4). If B, £ B but is finite, then

W o= + + W oy

B, - B B.- P B -P

oQ

and hence w is the sum of a term that is either >>O or @ 0 .(according
as Q” >p or -Qw < B) and terms that tend to O , contrary to the assump-

tion that w is not in the closure of ?X(J(=TX) » If B =+ o , then

Wzyi+Biw +y=yiai
B, B, B; ?

1 1

and again w 1is the sum .of a term that is >’O or <‘O and terms that
tend to O , yielding a contradiction. This proves that the order on Y
satisfies our assumptions, and since Y is of lower dimension than X , we
can apply the induction hypothesis to construct a utility on ¥ . This
utility can now be extended to X by setting uly + gw) = uly) .

Finally, suppose that the closure of TU(-T) exhausts X .
If we could show that T is open, then since O ¢ T, it would follow that
there must be a hyperplane through O +that does not intersect T (ef. for
example [1,p.19, Theorem T]); the normal to this hyperplane in the direc-
tion of the half-space occupied by T would then provide a utility. It
remains therefore to show that T is open. Contrariwise, suppose x ¢ T
is on the boundary of T . ILet H be a support hyperplane for T through

X . Any neighborhood of x will contain points on both sides.of H , and



-17-

therefore in particular it will contain a point that is not in T ; this
point must therefore be in the closure of -T . Therefore x itself will
be in the closure of the closure of =T » Which is the same as =T .

Therefore -x € T . But since x € T » 1t follows that =x ¢ =T ; so

-x € TN (-T) » contradicting T() (-T) =.¢ .

Proof of Theorem B. The "if" statement follows from the definition of

utility (2.2). To prove the "only if" half, we assume again that the
underlying space is R and that the order is pure. The remainder of the
proof follows Shapley's proof precisely; it is included only for the sake
of completeness. Iet D be the set of points dominated by members of
E, i.e.

D={y: @z € E such that z >y} .
D 1is a polyhedral set; let D" be the unique r-dimensional face of D
whose (relative)‘interior contains x . Iet H be a.supporting hyperplane
for D that meets D precisely in D" . Then if u is the normal to
H , we have u(x=y).2 O for all y e D, with equality only if vy e I o
We claim that u(x-y) > 0 whenever x >>y . If not, there would be a
y € D' such that x >y . But, since x 1is in the relative interior .of
D » there would also be & z € D' (of the form z = x + e(x-y) , € >0)
such that =z > x . This contradicts the maximality of x . Thus our

claim is substantiated, and it follows that u is a utility.

Theorem C follows at once from Theorem B.
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