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1. INTRODUCTION

The literature on disequilibrium econometric models has grown rapidly
in recent years. While there is no universally accepted specification for
such models, in the case of a single market one quite commonly used model
has the following features: (1) quantities demanded and supplied are func-
tions of both price and exogenous variables; (2) price does not clear the
market and the quantity transacted is given as the minimum of demand and
supply; and (3) price evolves according to an adjustment rule which makes
the change in price a function of excess demand, and perhaps, a stochastic
disturbance.

The aim of the present paper is to investigate issues of estimation
and hypothesis testing in the context of the disequilibrium model just des-
cribed. We shall attempt to shed light on the following four questions:

(1) what are the small-sample properties of the maximum likelihood esti-
mator in various disequilibrium models; (2) how can one test the hypoth-
esis of equilibrium vs. disequilibrium; (3) can one reasonably estimate
the unobservable demand and supply gquantities from observable data; and
(4) what are the consequences of'using an equilibrium model instead of a
disequilibrium one, or of using a misspecified disequilibrium model. Each
of these questions will be examined with the aid of sampling experiments.

Section 2 outlines the basic structure of two types of disequilibrium
models. Section 3 considers the estimation of the unobservable demand and
supply and Section 4 discusses various possible tests of the hypothesis that
data were generated by an equilibrium structure as against various alternative
disequilibrium structures. The sampling experiments are described in Section

5, while Section 6 contains some brief concluding remarks.



2. THE BASIC MODEL

Two simple linear versions of the disequilibrium model are given in

Egns. (1) to (4):

Dy = XgpBy * %P * Uy (1)
- 2
S, xst62 +aP t U, (2)
Q. = mln(Dt,St) _ (3)
Ly (D -S,) (4a)
P Pe-1 =

Y (Dt—St) +oug, (4b)

where th R XSt are vectors of explanatory variables, the vector
(ult’uZt’u3t) is iid N(0,Z) , pt and St are unobserved, and Qt and Pt

are. observed. The two versions differ in whether the price equation is assumed
to be nonstochastic as in (4a) or stochastic as in (4b). 1In what follows we
shall refer to these as the nonstochastic price (NSP) and stochastic price (SP)
models, respectively.

Various estimating methods have been proposed for these models.
For both NSP and SP models, maximum likelihood methods are available. In addi-
tion, for NSP models a variety of two—staée, three-stage, and instrumental-vari-
ables estimators are possible (Amemiya (1974),Ito and veda (1979), Laffont and
Monfort (1979)). Both to keep things manageable and because we wish to contrast
the NSP and SP models ,we shall restrict attention to maximum likelihood methods

in the present paper. The likelihood functions for both models are well-known.



For the NSP model it has the form

L = II £(.,p) I £(Q,P) (5)
NSP APt<01 t tA%ﬁOZ £t

where fl(Qt,Pt) is the joint density of Qt and Pt when Qt = Dt and
f2(Qt,Pt) is the corresponding density when Qt =vSt . Given the joint normal-
ity of Uy e and Uy v an explicit algebraic expression for (5) can be readily
computed (see, for example, Maddala and Nelson (1974)).

Under the SP model, a precise a priori separation of the sample into demand

and supply points is not possible. As is well-known, the relevant likelihood

function has the following additive structure.

Lep = 1 J g(D,Q,P)dD + J g(Q,s,P)ds (6)
Q Q

where g(D,S,P) is the trivariate normal induced by the normality assumption
for the Uiy - Once again, an explicit form for (6) is readily available (see
Appendix) .

Various properties of the maximum likelihood estimator have
been investigated in the literature. The questian of consistency is considered
in Hartley and Mallela (1977) and Amemiya and Sen (1977). The problem of the un-
boundedness of (6) and certain computational difficulties created by covari-
ances were addressed in Goldfeld and Quandt (1979). In the present paper these
latter issues need not concern us. However, as we shall see below, computation-
al problems of a different sort will be encountered. The source of these
can be explained and indeed sheds some light on the relationship between
LNSP and LSP . In particular, as shown in the Appendix, the following limiting

. 2
property holds: lim L =L where 0, = var(u

op NSP 3 ) . That is, the SP
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1ikelihood function approaches the WSP function as the variance of the disturb-
ance in the price adjustment equation tends tc zero. What this portends is that
attempts to estimate the SP model when the underlying model is actually the NSP

model may well encounter computational difficulties. (See also Section 5.)

3. ESTIMATING THE UNOBSERVABLE DEMAND AND SUPPLY

As mentioned at the outset, one of the purposes of this paper is to inves-
tigate various measures of the unobservables, Dt and St , which can be esti-
mated from data. These estimates are typically of considerable interest since

they can be used quantitatively to characterize periods of excess demand «r ex-—

cess supply. In some instances there may be extraneous information on this, of
either a qualitative or quantitative sort, so one may get a rough check on the
reasonableness of the underl&ing model.l

The most straightforward method of characterizing the unobservable random
variables, Dt and St , 1s to calculate their expectations. Depending upon
what one assumes about the relevant information set, there are a variety of ways
to compute these expectations. To illustrate this point we first make the fol-
lowing simplifying assumptions: the parameters of‘the demand and supply func-

tions (al,az,Bl,Bz in Eqgns. (1) and (2)) are known as is the variance-
covariance matrix of the disturbances; and price can be regarded as an exogenous
variable. We are thus, for the moment, dealing with the Following simplied

disequilibrium model:

1 See Rosen and Quandt (1978) and Romer (forthcoming) for examples of this.

One might also examine whether excess demands are "large" and use this as an in-
formal indication of whether » disequilibrium oxr an equilibriur modsl is appro-

priate.



Dy = XgeBy + 9y (7
Se = Egeby + Uy (8)
Qt = min (Dt’st) (9)

In this context there are two ways we can compute expectations. The first

just conditions on the exogenous variables. From Egns. (7) and (8) we have
= 10
B |Xgqp) = Xg¢By (10)
E(S X)) = X B, (11)

These expressions, however, ignore the information contained in the observable

. . " . . .
variable, Qt . Since E( it|Qt) + 0 , in estimating Dt and St we should
be able to do better in a mean-squared-error sense than Egns. (10) o1 (11) by
conditioning expectations on Qt . Suppressing the time subscript, let g(D,S)
denote the joint density of D and & , . ul 5 be the conditonal mean of D

. 2 s .
given S , and gl 5 the conditional var:l.ance.2 Further, let £(Q) Dbe the

p.d.f. for the observed variable Q , i.e.
£(Q) = I g(Q,s)ds + J g(D,Q)dp = fl(Q) + fz(Q) (12)
Q Q

Tt can then. be shown (Hartley (1977)) that

£.(Q) £,(Q)
= N el 2 2 g(,0)
EO|Q) = 0 For t Mo Tt OLrrer (13)
2 . 9 2 2,0 2
Under normality we have Ky 5 = XdBl + pa—(Q-XSBZ) and 0y.9 = Gl(l-p )
5 .

2 2
where Gl and 62 are the unconditional variances and  is the correlation

coefficient.



The expression for E(SIQ) can be obtained in corresponding fashion.

For the more general NSP model with a price equation, consisting of Egns.
(1) - (3) and (4a), we can again use Edns. (10) and (13). We require a re-
duced form expression for D analogous to Egqn. (7). This can be obtained by
substituting the price equation, (4a), into Egns. (1) and (2) and solving for
D and S as functions of the exogenous variables, Xd and Xs {(and lagged
price}. These reduced forms can then be used to obtain the natural generaliza-
tions of (10) and (13), i.e., to yield E(DIXd,XS) and E(D|Q,Xd,xs) . Basic-
ally the same approach works for the SP model except that one uses Egn. (4b) to
derive the reduced form. Since E(u3|Xd,XS) = 0 , the calculation of uncondi-
tional expectations is, in fact, identical to the NSP model.

Since price is an endogenous variable in both the SP and NSP models, one
can go one step further than Eqgn. (13) and condition expectations on price as
well. TFor the SP model, the relevant formula for E(DIP,Q) looks much like

Egn. (13), except that univariate and bivariate densities in (13) are replaced

. . . . \ . o 3
with the appropriate bivariate and trivariate densities. For the NSP

model, matters are somewhat simpler. We have APt = Y(Dt—st) , so that observ-

ing Pt (and thus APt) tells us whether Dt exceeds St or not. Given the

min condition we then know whether we have observed demand or supply. Thus,4

[Q if AP <O

E(|P,Q) =< (14)
t 0+ Ap if Ap >0
Y
and
_Ap if AP <O
(o7
E(s|p,Q) =< (15)

Footnotes 3 and 4 on following page.



We thus see, in principle at least, that for both the NSP and SP models it
is relatively straightforward to calculate expectations of Dt and St r condi-
tional on varying amounts of information. In practice, of course, the structur-
al parameters of the underlying models are not known so these conditional expec-
tations can only be estimated. The obvious procedure is to replace the unknown
parameters with consistent estimates of these parameters. In the context of
sampling experiments, it is possible to compare these estimated measures of de-
mand and supply with the generally unobservable Dt and St .5 Various compar-

isons of this sort will be reported below.

4. TESTING OF EQUILIBRIUM_VS. DISEQUILIBRIUM

We have thus far considered specification and estimation of disequilibrium
models. We turn now to the issue of hypothesis testing. In contrast to the dis-

equilibrium model of Egns. (1)-(4), the null hypothesis of equilibrium can

be represented by the equations

*
3 Bowden (1978) reports a closely related conditional expectation, E(P |P,Q) ‘

where P* is the hypothetical equilibrium price at which demand equals supply.

4 Eqns. (14) and (15) imply AP = Y[E(DIP,Q) - E(S|P,Q)] which is what

one gets by taking expectations of equation (4a).

> It may also be of interest to compare the sample estimates of the various
expectational measures with their theoretical counterparts. While we did compute

the latter for some experiments, the results reported below focus on the compar-

ison between the estimated expectations and Dt and St .



*
= +
D, = Xg By + 0P F Uy
P*+
S, = Xgiby * %P T Uyt

*' . v . . 3
where we employ Pt to denote the equilibrium price in order to distinguish it

from the solution to Egns. (1) to (4). We have

v XgeBrXgePy ()
Py = ot To-u (16)
2% 2701
0 K3 B0 X By Opup -0y,
Qt = a.—-0 + o0 (17)
2% 2%

In some intuitive sense, the equilibrium model ought to be "close" to a
disequilibrium model in which prices adjust rapidly to excess demands, i.e., in
which Yy in Eqns. ' (4a) or (4b) is large. That this is indeed the case,
can be seen in a variety of ways. For example, if we solve for the reduced form

of Pt for the NSP model we obtain

1 Fe-1
P S e W LI prvy gy (18)
—+(0,-0.) 172
Yy 21
*
It follows that, lim P_ =P, . Similarly, one may verify from the
'Y—)OO

reduced forms for D. and S¢ that 1lim D, = lim St = Qt where Qt is given
y>oo Yo

by (17). Finally, if we denote the equilibrium likelihood function by Ly v

Quandt (1978) has shown that 1lim LSP = Le , while Gourieroux, Laffont and
Yo

Monfort (1978) have demonstrated that 1lim LNSP = Le .
'Y—)OO

The abbve observations suggest that the size of Y provides a basis for a



test of the equilibrium vs. disequilibrium hypothesis. Howeyver, since it is

awkward to test whether Y 1is "large," the following reformulations of the

price equation -- due to Bowden (1978) -- are useful.
. (4a’)
Pt = th—l + (1—u)Pt
; | (4b")
Pt = “Pt—l + (l—p)Pt + uu3t

* K]
where Pt is given by Egn. (16). 1In this reformulation, equilibrium corresponds

to =0 . Although perhaps‘not immediately apparent, the Bowden formulation is
equivalent to reparameterizing Egns. (4a) and (4b). This can be seen most easily
by substituting for P; , from (16), into (4b’). The result is Egn. (18) with
U= l/(l—Y(ul—az)) . Thus, (4a’) and (4b’) are directly analogous to (4a’) and (4b)
and the equilibrium condition that 7Y=® is equivalent to y=0 . From the point of
view of hypothesis testing, the Bowden formulation is obviously of considerable
convenience.

The problem of testing for disequilibrium thus reduces to a test of u=0
There are, in fact, several general ways in which this could be carried ocut.

(1) The disequilibrium model could be estimated and the estimate for | compared

Note that neither (4a,b) nor (4a’,b’) is useful if either the demand or supply
function is perfectly horizontal. Even if such a case is ruled out a priori, some
ambiguity remains in a test of U , since it is a joint test of Y , oy and uz .
On the other hand, if the original formulation of the problem had used (4a’) or
(4b"), then (4a) or (4b) would have been regarded as a reparameterization and its
coefficient an amalgam of U , Oy and Oy - There is complete symmetry between
these views and one's concern for what the "natural" test is will be influenced by
whether (4a,b) or {(4a’,b’) are taken as the "natural" structural relations. In the

light of this, it may be preferable to test 1/Y rather than U , although see al-

so footnote 21. For a still different approach see Hwang (1980).
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with its asymptotic standard error.  (2) Under maximum likelihood, a likelihood
ratio test is also available via a comparison of LNSP oxr LSP with Le . (3)
A simpler approach is to estimate the reduced-form price equation, (18) by OLS.

This involves regressing Pt on X ’ XS . Since the coefficient

at , and P

t t-1

of Pt 1 provides an estimate of 1} , this can be tested directly. It should be

emphasized that this test only works when X and Xs

at do not include a lagged

t
price variable.

Several points are worth noting about these tests. The
likelihood ratio statistic for the NSP model, _ZlOg(Le/LNSP) ,
involves one restriction, iméiying that its asymptotic distribution is xz(l) .
\The SP model contains two more parameters than the equilibrium model -- U and
Oi . While this naively suggests that x2(2) is appropriate, there is a prob-
lem in that, with u=0 , Gi is not identified. 1In view of this ambiguity, we
empirically examine both xz(l) and x2(2) for the SP model. There may, in
fact, be a deeper problem involved since this observation raises the question of
whether the likelihood ratio test based on the X2 distribution is strictly ap-
plicable in this instance at all.

A somewhat different but related point has recently been raised by Gourieroux
and Monfort (1980). They argue fhat in testing whether u=0 one can obtain a
more powerful test by imposing the restriction that uiO .7 The problem then be-
comes one of testing whether U is on the boundary of the constraired interval.
The statistical methodology for carrying out such a test has been developed in

Gourieroux, Holly and Monfort (1979). The details of their proposed procedure

depend on precisely which test is being utilized.

As Gourieroux and Monfort seem to suggest, one might go further and impose
0<p<l . The test they actually propose, however, only involves the one-sided in-

equality.



Consider first the case of the simple test of regressing Pt on th ’

N » .
X £ ! and Pt 1 - Denoting by U .the OLS estimator of U , the constrained
s -

~

estimator is 1 if ﬁ;o, and zero otherwise. The relevant test statistic t ,
is the conventional t-statistic if ﬁ;o and zero otherwise. Gourieroux and
Monfort (1979) show that if a <ritical value, ¢ , is chosen so that

Prob (E>C|Ho) =0 , then ¢ is identical to the critical value for the uncon-
strained test at level ‘2a . A similar procedure can be applied to the likeli-
hood ratio test. One first computes the constrained maximum likelihood estima-
tor and uses this to calculate the likelihood ratio statistic, -2 logA . The
asymptotic critical region at level 0 is =2 logA>c where ¢ is chosen so
that Prob [X2(l)>c] = 20, . For the NSP model this procedure is a relatively
straightforward alternative to the unconstrained approach. In the SP model, the

identification problem noted above appears to be a potential problem for the con-

strained approach as well.

5. SOME SAMPLING EXPERIMENTS

In this section we describs the results of some limited computer experiments
designed to shed light on the issues of testing and estimation raised earlier.

In essence we seek to improve on and extend the results obtained by Quandt (1978).

These earlier results suffered from some shertcomings: a high failure rate

. . 8
in the computations and extremely high type-I errors. In addition,

Quandt (1978) estimated covariances which, as noted above, can be a source
of computational failures. In the present experiments zero covariances are as-

sumed. In addition, the use of analytic derivatives substantially improved the .

ease with which . estimates can be computed.
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Quandt (1978) employed 1/Y as the test statistic rather than the potential-
ly more useful 1} and also did not examine the NS model. As we shall see
below, this latter is both the easiest and also a quite reliable source of

tests of equilibrium vs. disequilibrium.

Design of experiments

The basic disequilibrium model utilized had the following form.
Dy = By *+ By¥ ¢ ¥ Ba¥pp + 0Py T Uy
Sy = By + Boxy * Bg¥ye * 0P * Uae

APt = Y(Dt—st) +oug,
Qt = min(Dt,St)

In the standard experiments the true values of the parameters were Bl = 18.0 ;

B, = =-.37, 83 = 1.6 , 84 = 0.0 , 85 = -.54 , 86 = .2, o = - 13.0,OL2 = 3.5,

: 2 ‘ . ' .
1 18.0 , and g, = 7.6 . The exogenous variables were identical in repeated samples

Q
it

were generated in most cases from the uniform distribution over the ranges (20,90)

for X, ., (40, 120) for X

1 (1,7) for X

, and (135,400) for X, . In ad-

2! 3 4

dition to this "standard set" of exogenous variables, several other sets of ex-

ogencus variables were used. The general nature of these variants is given in

Table 1, which doc.ments the salient characteristics of the experlments9 Aside

9 . . . .
As should be evident from the price-adjustment equation, the experiments also

require an observation on Pt at time O . In essence, we selected PO by com-
‘puting the equilibrium price corresponding to the mean values of the exogenous vari-
ables and the disturbances. Given symmetry, this tended to produce disequilibrium

data with roughly half demand and half supply points.

and
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from the exogenous variables, the experiments differed from one another in terms

of sample size, error variances, and value of Y (or J.) . This latter paramet-
er is a critical one, since it determines the extent to which disequilibrium be-
havior is present in the experimental data. The other parameter of critical infer-
est is Oi + the variance of the error in the price-adjustment equation. For 0§ =0
the NSP model is the correct one, while as Oi gets larger, the NSP model should in-

volve an increasing element of misspecification.

An individual experiment consisted of 50 replications of generating data ac-
cording to one of the three possible truths -- the equilibrium model, the NSP dis-
equilibrium model, and the SP.diSeéuilibrium model -~ and then estimating all three
models. The one exception was that in those experiments where the underlying truth
was the equilibrium model, we estimated the SP model in only two of the four exper-

iments. The reason for this was the relatively high expense of computing SP esti-

mates with equilibrium data.

Some Computational Details

Numerical optimization was generally performed by the Davidon-Fletcher-Powell
(DFP) algorithm. DFP was used with numerical first derivatives when estimating
the ecuilibrium model and the NSP model, and with analytic first derivatives
when estimating the SP model. 1In all cases, however, the asymptotic variance-
covariance matrix was calculated directly from the matrix of second partials and
not from the so-called H matrix. In the few instances in which we estimated the
SP model from underlying equilibrium data we made use of the quadratic hill-climb-

ing algorithm.lO

10 Considerable use was made of the quadratic hill-climbing algoritim in pre-

liminary experiments, both to check on the reliability of DFP and to calibrate

various control parameters for DFP.
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Our computational experience was generally quite good, with no problems of
unboundedness. In instances where we estimated the correct model, there were
virtually no computational failures.ll While the number of such failures
was quite limited, in those cases where we estimated the incorrect model,
two sorts of computational problems did arise. Almost invariably these arose
in instances in which we estimated a more general model than the true un-
derlying model. Specifically,when estimating the SP model with both equilibrium
and NSP data, 02 tended to be driven to zero about 36% of the time.

3

The fact that O§ was sometimes driven to zero when estimating the SP model
where it was inappropriate should hardly be surprising. Recalling that the limit
of the SP likelihood function as O§+O is the NSP function, the data are simply

trying to tell ﬁs that the Ngp Model is more appropriate. This is clearly sensible

when the NSP model is the true one, and should not be particularly surprising when

the underlying model is one of equilibrium. As a consequence, in those repli-

. 2 . . -
cations where 03 is driven to less than .8X10 > (typically associated with
computational indigestion of one sort or another), we did not discard the repli-

cation. Rather, we accepted the results at‘face value and took the SP estimates
to be identical to the NSP estimates.12

The second computational problem arose when estimating the NSP model with
equilibrium data. In about one-half of the replications, the optimized value of

the NSP likelihood function did not exceed the optimized equilibrium likelihood

11 out of 750 replications there were two instances -~ both with sample size 25

—— when the SP model failed to converge in the allowable number of iterations.

These were the only failures when the correct model was estimated. See also the

next footnote.
12 In experiment 14 where the data come from an equilibrium-like version of
the SP model, Gi was also driven to zero in 36% of the cases. For the other

SP experiments, this happened 1% of the time (only in experiments 10 and 13).
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function, although the differences were typically quite small. Since we know
that the NSP function value can be made arbitrarily close to the eqguilibrium
value (by choosing the equilibrium parameter estimates and letting >0 ) , the
most plausible interpretation of this situation is that we have only achieved
a local maximum and that the global maximum for these replications occurs at
the boundary where Wu=0 . As a consequence, for purposes of computing type-I
errors when the equilibrium hypothesis was indeed true, we treated these cases

as ones in which the hypothesis of equilibrium was accepted.13

Properties of the parameter estimates -

Given all the raw data generated by the sampling experiments, there
are many ways to compare the various parameter estimates. For éimplicity,
we shall £focus on a few representative summary statistics, which
are given in the upper parts of Tables 2-4. Each table corresponds to a par-
ticular underlying model with, for example, Table .2 containing the results

for cases (1)-(4) in which the equilibrium model was used to generate the data.

13 A gimilar issue arose in estimating the SP model from equilibrium data

where roughly 25% of the SP likelihood function values were less than the cor-

responding equilibrium values.



- 16 -

The equilibrium model has 10 parameters in common with the NSP and SP mod-
els while the two disequilibrium models have 1l parameters in common. For each
table corresponding to a particular underlying model, the first two rows report
the number of instances that the mean absolute deviation (MAD) is smaller for
the two incorrect models. The next two rows contain the medians of the ratios
obtained by dividing for each parameter the MADs of the two incorrect models by
the corresponding MAD for the correctly specified model.. This statistic provides
a rough measure of the effects of misspecification on the parameter estimates.

The results in the first four rows of Tables 2-4 are as expected and have
the following features. (1) When the truth is equilibrium, the equilibrium mod-
el almost invariably yields smaller MADs than either disequilibrium model. (2)
With either disequilibrium truth, the equilibrium model uniformly yields larger
MADs, except for a few instances in cases (13) and (14). These cases have both
a small sample size and a large value of Y which tends to bring the disequilib-
rium model closer to an equilibrium one. (3) When the truth is equilibrium,
the median MADs for the disequilibrium models are 6 to 18% larger than the equil-

. 14 . . . ey .
ibrium MADs. (4) Conversely, with either disequilibrium truth, the median

equilibrium MADs are substantially higher than the disequilibrium MADs, again

with the exception of cases (13) and (14). As seen in Table 3 and the first

three columns of Table 4, the misspecification inherent in the equilibrium model

14 These percentages may overstate the consequences of misspecifying the equil-

ibrium model sincerin computing the summary statistics in Table 2, we did not make

any adjustments for those cases where the equilibrium function values exceeded the

disequilibrium value.
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declines as Y increases,15 Nevertheless, there is an asymmetry in that

it is considerably more costly to use an equilibrium model when a disequilibrium
model is appropriate than vice versa. (5). To a lesser extent, a similar asym-
metry exists between the two disequilibrium models in that the SP model works
better for NSP data than vice versa. As anticipated, the two diseguilibrium mod-
els behave more similarly the smaller is O§ and the larger is Y -

We now turn briefly to some other features of the results. One. issue we ex-
amined was the consequence of correlated exogenous variables. 1In case (15) we
generated normally distributed exogenous variables which are equicorrelated with
a coefficient of .7 . 1In all other respects case (15) is identical to case (9).
The primary effect of the correlation was a mild increase in the variance of the
sampling distribution of the parameter estimates.16 We also examined, via the
Shapiro-Wilk test, the normality of the sampling distribution of the estimated
parameters. Normality was almost invariably accepted for the equilibrium model,
regardless of the true underlying model. With the exception of 7Y(H) and Oi ’
the same was true for two disequilibrium models. Finally, for each parameter
estimated, we examined the ratio of the average asymptotic standard deviation to
the corresponding RMSE. For consistent estimates this ratio should be close to

unity. Table 5 summarizes the frequency distribution of this statistic where we

15
Although not shown, the levels of the MADs tended to decrease as Y increased.

16 s . .
The coefficient-by-coefficient ratios of MADs for the SP model in case (15) to

MADs in case (9) have a median of 1.22, suggesting a 22% increase in MADs due to

multicollinearity in this'median'sense. The median RMSE increase was 15%.
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have aggregated over the various experiments of a given type. The distributions
are clearly tightest when the correct model is used for estimation. As in earlier
results,there are several notable asymmetries. In particular, the equilibrium
distribution is quite poor when the underlying model is a disequilibrium one while
the reverse is not true. Similarly, the NSP distribution is substantially more

dispersed when the SP model is appropriate than vice versa.

Estimating Dt and St

In Section 3 we outlined several ways of estimating the expected values of
Dt and St conditional on varying amounts of information. In particular, for
both the SP and NSP models we suggested three measures of E(DtIIt) and E(St|1t) ’

where the information set, I, , consisted of (th,X

t ) oor (XgeXgy Q) oF

st
(th'xst'Qt'Pt) . As these calculations yield an estimate for each observation,
they produce a vast quantity of data which must be severely compressed for summary
purposes. Table 6 presents by experiment the average RMSE for each method of es-
timation.v The numbers in this table were obtained by computing the RMSE of
E(DtIIt) around Dt for a given replication and then averaging over replications.
Table 7 presents corresponding estimates for the average bias for each case, al-
though to preserve space we have only reported results for the largest information
set. Finally, Table 8 gives the average correlation between the estimates of
E(Dt|It) - E(StIIt) and (Dt—St) . This table gives some indication of the use-
fulness of the various estimates in characterizing periodsvof excess demand or ex-

17
cess supply.

The following summary observations apply to experiments (5)-(7) for which

17 Although not reported, we have also computed RMSEs and the sign concordance for

the excess demand measures. These additional statistics tell the same story as

those we have reported.



the NSP model is the underlying truth. (1) All the average bias statistics are
quite small.18 (2) The average RMSEs indicate a clear gain from conditioning on
more information, both for the NSP model and for the SP model as well. (3) For

a given information set, the correct NSP model yields systematically smaller RMSEs
than the SP model which involves estimating an additional parameter.19 As compar-
ed with the next set of experiments, however, the differences are not particularly
large. (4) All measures of estimated excess demand are highly correlated with
actual excess demand.

We turn next to the cases in which the SP model was the underlying true one.
Given the greater diversity of the characteristics of the experiments, the
results are harder to summarize but the following generalizations seem appro-
priate. (1) The average bias statistics are small for the SP model but more sub-
stantial for the misspecified NSP model. This is particularly apparent in cases
(11) and (13) which have relatively large values of O§ and case (8) which has
the smallest value of <Yy (i.e., in which disequilibrium behavior is most pronounc-

ed). (2) For the SP model, conditioning on more information improves both the

18 . .
To put these in perspective, we note that the mean values of demand and supply

in the various cases ranged from 70-75, except in cases (13) and (14) where the
range was 50-55.

19 . L
As noted earlier, expected demand conditional on (Xd,XS) should be identical

for the NSP and SP models. With estimated parameter values, however, they need not
be the same. 1In cases (5), (6), and (7), the NSP and SP parameter values are close
enough to yield virtually identical estimates of expected demand. This is not true

in the remaining cases.
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average RMSEs and the average correlation coefficients-20 The improvement in the
correlation coefficients is most pronounced when 0§ is large (cases (11) and
(13)). TFor the misspecified NSP model the RMSEs and correlation coefficients do
not systematically improve with increased information. Furthermore, for a given
information set, there is frequently a substantial cost to using the misspecified
NSP model. Not surprisingly, thié effect is particularly pronounced for large
values of O§ or small values of 7Y . This suggests it may be of considerable

interest to be able to distinguish between the SP and NSP models. Fortunately,

as we shall now see, we are able to do this quite well when it matters most.

Hypothesis Testing

In Section 4  we outlined tests of the hypothesis of equilibrium vs. diseguil-
ibrium based on J and on the likelihood ratio statistic. The lower portions of
Tables 2-4 contain the relevant results for these tests.

(1) The underlying truth is equilibrium (Table 2). There are three possible

test statistics based on | depending on whether we use SP, NSP, or OLS
estimates. Given a 5% significance level, the fractions in Table 2

should be of the order of .05, For the unconstrained parameter

estimates the relevant critical value is a "t-statistic" of 1.96 which yields an

20 The RMSEs for the SP model also tend to decline with increasing Yy . This

is consistent with the earlier observation that larger Y makes for more precise

parameter estimates.
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average type I error of 9% for uSP , 6.5% for MUNSP and 1.5% for pOLS.21
Since all of the estimated values of SP and NSP are strictly positive, the
unconstrained and constrained estimates are identical. As a consequence, follow-
ing the Gourieroux and Monfort (1980) suggestion yields average type I errors of
18% and 12.5% for SP and NSP respectively. For WOLS , their suggestion is right
on the mark as using a critical value of 1.64 yields an average type I error of
precisely 5%.

Table 2 also gives results for the various likelihood ratio tests based on
the X2 distribution. For the SP model, as anticipated, x%Z) works best yield-
ing an average type I error of 7%, while for the NSP model Xz(l) yields an aver-
age type I error of 9%.22 While it is probably desirable to increase the number
of replications to pin these percentages down more accurately, these limited ex-
periments suggest that tests based on } and on the likelihood ratio behave quite

reasonably when the null hypothesis of equilibrium is indeed true.

2 . . . . . .
1 It should be noted that estimation was carried out using the parameterization

based on Y rather than u . The implied value of U was then computed along
with its approximate standard error. In some preliminary experiments énalogous to
case (1) we also used the J-parameterization and found the direct and indirect
estimates of } were identical and that the standard errors of Y were virtually
identical. We have a slight suspicion that the accuracy of the standard errors may
have deteriorated a bit in case (2) which has larger structural variances. This
may well account for the relatively high type-I errors in case (2). In retrospect,

it also suggests that the u-parameterization may be preferable for estimation.

22 . : . .
As with tests based on uSP and UNSP , the Gourieroux-Monfort suggestion

gives substantially larger type-I errors.
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(2) Underlying truth is disequilibrium (Tables 3 and 4). 1In cases (5)

to (11) all of the tests are able to reject the hypothesis of equilibrium 100%
of the time. In particular, for these cases tests based on the SP or the NSP
models work equally well, regardless-of which type of disequilibrium model is
the underlying truth. The remaining three cases were designed especially to
make it harder to detect disequilibrium. Case (12) is identical to case (9) ex~-

cept Xl was chosen to be highly correlated with Pt—l (the average correlation

t
coefficient is roughly .99). As anticipated, this sharply reduces the power of the

reduced-form test based on  UOLS but the remaining tests work as well as before.

cases (13) and (14), which have a sample size of 25 and the largest value of
Y we tried, are in many ways the most interesting. The smaller sample size and the
greater equilibrium character of the data (from the larger 7Y ) should reduce
our ability to detect disequilibrium and this is borne out in Table 4. In case
(13), both tests based on the SP model yield a power of 82%. Tests based on the
NSP model and OLS price regression have still lower power. In case (14), which
differs from (13) only in that G§ is smaller, the superiority of tests based
on the correct SP model remains but, as expected, the differences in power are
narrower. What this and the earlier results on parameter estimates suggest is
that it is desirable to be able to distinguish between the NSP and SP disequilib-
rium models.

This question is addressed in the last two rows of Tables 3 and 4 where we
have reported a likelihood ratio test for the NSP vs. the SP model. Heuristical-
ly, the likelihood ratio test involves testing the restriction that O§ =0 .
Since, however, Oi is bounded from below, appeal. to the |

. 2
Gourieroux-Monfort view suggests that the use of a critical value based on X lO(l)

might be appropriate. This seems to be borne out in the last row of Table 3,
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where the NSP model is true, as the.average type-I error is 6%. Using -X?o5(l)
yields an average type I error of 2% which is a bit too low. In

Table 4, where the SP model is true, the power of the test varies quite a

bit. It is generally excellent when Y is small so that disequilibrium behavior
is pronounced and when Gi is large -- cases (8) and (11). Looking at the med-
ian MAD ratios in row 4, we see that these are precisely the cases where it is

important to be able to distinguish between the two models.

6. CONCLUDING REMARKS

The results of the previous section suggest that maximum likelihood methods
can be quite successfully applied to estimate the types of disequilibrium models
we have considered. Such methods yield parameter estimates which have guite ac-
ceptable small sample properties. Furthermore, these parameter estimates can easi-
ly be used to compute reasonable estimates of the expected values of the unob-
servable demand and supply variables.

As for hypothesis testing, both tests based on U and on the likelihood
ratio statistic  work quite well in discriminating between equilibrium and
disequilibrium models. A likelihood ratio test 1is also satisfactory
for distinguishing between the NSP and SP models. As a practical matter, as long
as lagged price does not appear in the demand or supply functions, the reduced-
form OLS test on U would appear to be a natural first step in testing for equil-
ibrium. As we have seen, however, there are a variety of circumstances in which
this test has relatively low power; The NSP model, which is relatively easy to
compute offers a somewhat more reliable and effective test. There is no escaping
the fact, however, that if 02 is non-zero, the most reliable tests require the

3

estimation of the SP model.
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TABLE 1

Sample

Case True Model Size
1 Equilibrium 50
2 Equilibrium 50
3 Equilibrium 100
4 Equilibrium 50
5 NSP 50
6 NSP 50
7 NSP 50
8 SP 50
9 SP 50
10 SP 50
11 SP 50
12 SP 50
13 SPp 25
14 SP 25
15 SP 50

Y (1)

@ (0)

«(0)

®(0)

@ (0)

. 045

.150

.242

.045

.150

.242

.150

.150

.360

.360

.150

(.576)
(.288)
(.200)
(.576)
(.288)
(.200)
(.288)
(.288)

(.144)

(.144) .

{.288)

52
3
0

o

.34

.34

.34

2.72

Other Features

2 2
461 1402

All X ranges <+ 2

Xlt correlated with Pt—l

All X ranges + 2

All X ranges + 2

|
X's normally distributed i
and equicorrelated {£=.7)
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TABLE 2

SUMMARY RESULTS FOR EQUILIBRIUM MODEL TRUTH

|V

i 1 !
Case 1 | Case 2 Case 3 Case 4 |
No. of parameters with smaller 0 1 _ - j
MAD in SP model
No .of parameters with smaller 0 1 0 )
MAD in NSP model
median (SP MAD + EQ MAD) 1.08 1.13 - -
median (NSP MAD + EQ MAD) 1.08 1l.16 1.18 1.06
Fraction USP significant (1.96)  0.06 0.12 - - :
Fraction USP significant (1.64) = 0.14 0.22 - - ?
Fraction UNSP significant(l.96) 0.04 0.08 0.08 0.06
Fraction UNSP significant(l.64) 0.16 0.16 0.10 0.08
Fraction UOLS significant(1.96)  0.02 0.02 0.0 0.02
Fraction UOLS significant(1.64) 0.06 0.06 0.02 0.06
- |
Fraction 2 log(Le/LSP)
2
> 0.08 . - -
2 X5 (D) 0.10
2
> 0.14 0.22 - -
2 X100 |
2 !
0.06 0.08 - -
Z X052 |
2
> 0.06 0.10 - -
2 X,10¢%)
Fraction - 2 log (Le/LNSP)
> X205(l) 0.06 0.08 0.18 0.04
2 0.10 0.16 0.22 0.08
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TABLE 3

SUMMARY RESULTS FOR NSP MODEL TRUTH

| T
Case 5 y Case 6 Ccase 7 !
No. of parameters with smaller 0 2 0 0 E
MAD in EQ moael : :
No. of parameters with smaller 0 % 4 4
MAD in SP model %
median (EQ MAD *+ NSP MAD) 13.51 4.2 3.13
i
median (SP MAD % NSP MAD) 1.05 L 1.00 1.00 |
Fraction USP significant (1.96) 1.00 | 1.00 1.00
Fraction UNSP significant(1.96) 1.00 L 1.00 1.00
Fraction HOLS significant(1.96) 1.00 | 1.00 1.00
. 2
- > . . .
Fraction -2 log (Le/LSP) __x.05(2) 1.00 1.00 1.00
2
i - > i. i. .
Fraction -2 log (Le/LNSP)—-X.OS(l) oC 1.00 1.00 |
. 2 {
- > . . . t
Fraction -2 log(LNSP/LSP)—-X.OS(l) 0.04 0.02 0.0 |
2 |
- i -2 > ' L
;Fractlon IOg(LNSP/LSP)—X.lo(l) 0.04 0.08 0.06 :
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TABLE 4

SUMMARY RESULTS FOR SP MODEL TRUTH

"

SR S S

—

: ! |
Case 8 ' Case 9 ' Case 10 Case 1l |Case 12 Case 13 Case 14

No. of Parameters with smaller MAD 0 0 0 0 .0 1 3
in EQ model {

No. of parameters with smaller MAD 0 i 2 W 5 .0 .0 2 10
in NSP model H : “

median(EQ MAD * SP MAD) W 7.71 W 3.58 M 2.67  3.43 M 7.47  1.20 1.05
median(NSP MAD * SP MAD) 1.81 W 1.19 W 1.07 w 1.89 M 1.30 1.11 0.92
Fraction USP significant (1.96) 1.00 .W 1.00 M 1.00 w 1.00 W 1.00 = 0.82 w 0.94
Fraction UNSP significant (1.96) 1.00 1.00 | 1.00 W 1.00  1.00  0.70 0.90
Fraction UOLS significant (1.96) 1.00 1.00 W 1.00 W 1.00 W 0.18 | 0.54 : 0.72
Fraction HOLS significant (1.64) 1.00 1.00 | 1.00 W 1.00 0.24 W 0.74 W 0.80
Fraction -2 log (L_/L)) w.xWomANv 1.00 1.00 1.00 1,00 1.00 0.82 | 0.90
Fraction -2 log Awm\Bmevw.xWomAHv 1.00 1.00 1.00 1.00 1.00 0.66 0.84
Fraction -2 log Amem\rmwvwxWomAHv | 1.00 0.84 0.30 1.00 0.84 0.62 0.20
Fraction -2 log (Lo /L)X 0(1) | 1.00 | 0.90 | 0.48 | 1.00 | 0.90 | 0.74 ' 0.22 |




FREQUENCY DISTRIBUTION OF RATIO OF AVERAGE
ASYMPTOTIC STANDARD DEVIATION TO RMSE
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TABLE 5

! ! ! I
ESTIMATION i

METHOD | TRUTH <.75 |.75-.85 |.85-.95 |.95-1.05 i1.05—1.15 11.15-1.25 j>1.25
SP SP 0.0 20.8 % 38.9 30.6 4.2 4.2 1.4
SP NSP 0.0 3.7 é 37.0 40.7 14.8 3.7 0.0
SP EQ 0.0 5.6 ? 27.8 22.2 27.8 5.6 ?11.1
NSP SP 9.7 12.5 2 38.9 25.0 5.6 é 5.6 % 2.8
NSP NSP 0.0 3.7 | 37.0 44.4 7.4 % 7.4 % 0.0
NSP EQ . 0.0 5.6 33.3 30.6 16.7 % 5.6 i 8.3

i
EQ Sp 40.6 10.9 9.4 9.4 4.7 6.3 E18.8
EQ NSP 41.7 0.0 4.2 16.7 12.5 0.0 25.0
EQ EQ 0.0 0.0 6.3 65.6 15.6 12.5 0.0
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TABLE ©

RMSEs OF EXPECTED DEMAND AND SUPPLY
FOR VARYING INFORMATIONAL ASSUMPTIONS

NSP DEMAND SP DEMAND N3P SUPPLY SP SUPPLY

EXPERIMENT CONDITIONED ON CONDITIONED ON CONDITIONED ON CONDITIONED ON

| T
NSP-truth X X,0 Wx.w~© X X,0 X,P,0 X m X,0 X,P,0 X X,0 X,P,0
5 2.97 1.20 371 2,97 1.91 .48 2.49 w 1.69 .36 2.51 1.71 .53
6 2.42 1.07 .41} 2.42 1.09 .51 2.38 m 1.10 .39 2.38 . 1.14 .56
7 2.35 0.82 .42 2.35 .88 W .55 2.35 M .85 .40 2.35 .93 .59

SP-truth W
8 5.88 | 4.73 8.09 5.27 4.11 3.16 3.76 W 4,46 8.05 2.89 2.34 2.26
9 3.29 2.09 2.59f 3.25 1 2.25 2.09 2.57 2.23 2.75 2.51 1.84 1.82
10 2.79 1.50 1.68} 2.78 1.62 1.54 2.44 1l.61 1.77 2.43 1.52 1.50
11 7.00 5.30 6.75] 6.53 5.11 2.99 3.88 m 5.86 7.13 3.04 2.57 2.27
12 3.37 W 2.20 2.69] 3.31 | 2.26 2.14 2.60 w 2.30 2.81 | 2.54  1.84 1.82
13 3.83 | 2.76 3.00| 3.71 | 3.05 2.40 2.80 m 2.71 2.94 | 2.63 - 2.22 N 2.16
14 2,51 1.23 1.28; 2.51 1.48 1.40 2.36 m 1.24 ] 1.30 2.37 1.39 W 1.42
,
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TABLE 7

AVERAGE BIAS OF EXPECTED DEMAND AND SUPPLY

NSP SP NSP ﬁ SP

EXPERIMENT DEMAND DEMAND SUPPLY | SUPPLY
NSP-truth

5 - .04 - .04 - .04 - .04

6 - .03 - .01 - .03 - .0l

7 - .03 - .ol - .03 - .00
SP-truth

8 - 1.24 .00 - 1.08 - .03

9 - .34 .02 - .33 - .04

10 - .21 - .01 - .21 - .05

11 - 1.82 .04 - 1.78 - .0l

12 - .42 - .09 - .42 - .12

13 - .99 .08 - .93 .23

14 - .25 .02 - .19 .04
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TABLE 8

AVERAGE CORRELATION OF ESTIMATED

AND ACTUAL EXCESS DEMAND

NSP EXCESS DEMAND

SP EXCESS DEMAND

EXPERIMENT CONDITIONED ON CONDITIONED ON

NSP-truth X X,0 X,P,0 X x,0 [x,p0
5 .993 .998 | 1.00 .993 .995 | 1.00

6 .994 .995 | 1.00 .994 .994 .999

7 .995_j .995 | 1.00 .995 .994 .998

SP-truth

8 965 971 .877 .969 .982 .987

9 .974 .975 .960 .974 | .979 .978

10 .976 .976 .970 .976 .977 .977

11 .859 .849 .738 .865 .926 .968

12 .978 .979 .967 .978 .983 .983

13 .699 .689 .607 .702 .751 .786

14 .934 .934 .930 .934 .918 .907
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APPENDIX

Assume for the sake of simplicity that the error terms u r U , u

1t 2t 3t

in the SP model are normally distributed and independent of one another. We

then prove the following

Theorem. lim LSP = LNSP
020

3

Proof. It is sufficient to prove that the pdf of the endogenous variables

in the SP model converges to that of the NSP model as O%*O . It was shown in

Quandt (1978) that the SP density may be written as

| 14y (ay-0) | " Bie/? e—th/2
hQ /P) = 555 175 (1m0 )) o+ T (-0 (R,))
17273 A A
- l 4 R
where

B = (A, A —A2 ) /A
1t - 3t T2t / 1
B = (A__A —A2 Y /A
2t et 4 U5t /By

2 2 2
A, = 1/07+Y" /0]

) » 2
By~ (0P +X g B1) /0 Y (YQ AP, ) /0

2 2 2 2 2 2
By= (0P +X3 B)) /07 +(Q -0 P - B)) /0,4 (YQ +AP,) /04

2 2 2
A4 = 1/02+Y /03
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2 2
A5t”'(“2Pt+xst82)/°2+(APt'YQt)Y/03
2,2 2,2 2,2
Rge= (Qu=0 P ~X3,B)) /07 + (0P +X , B)) “/05+ (AP ~YQ, ) */0]
12
L. = Al (Qt+A2t/Al)

1t

. 1/2
Loe= Ay QA /A

and whexe @( ) denotes cumulative standard normal distribution. The following

are easy to verify:

. ]l+y(a2—al)1 |1/y+u2eal .
(a) 1im 12" oo for i=1,4
03+0 2ﬂ010203Ai 172
(Q,-0._P 2 B )2 (Q.+AP /Y-0.P -X_. B )2
o QP X By QAP /Y=00 Py X ae By
(b) lﬁm B = 5 o+ 5
4o 1t S o
3. 2 1
(©.-0.P.-X.. B.)%  (0.-AP./y-0.P.~X .B.)>
Lim B = e Xaefy) QAR YoP X By
éﬂo 2t 2 2
05 o] o
© if Ap_< 0
{c) ;ﬁzozlt = - ;iEOQZt = -0 if APt >0
3 3 0 if Ap -0

Substituting these limits in h(Qt,Pt) yields the pdf for the NSP model.




