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1. INTRODUCTION

In the majority of cases, the distribution of disturbances
in econometric equations is assumed to be normal. This is by and large
true for single equation and simultaneous equation modéls, for linear and
nonlinear models.as well as for some models that do not fit exactly into
the traditional equation-fitting mold such as those involving discrete
choice. There is good reason for the pervasiveness of the normal dis-
tribution. First, to the extent that error terms are thought to repre-
sent the effects of omitted variables which are assumed to be independent
and additive, a vague appeal to some central limit theorem may justify
the assumption of normality. Secondly, in at least the simplest model
such as the single equation regression model, the assumption of normality
causes maximum likelihood estimates and the BLU least squares estimates
to coincide and allows easy derivation of the finite-sample distributions
of the estimators.

None of these points is fully convincing. Neither the additivity,
nor the independence of omitted variables is established sufficiently rig-
orously to make appeal to the central limit theorem comfortable. Given the
advances in computing, the advantages of dealing with linear estimators in
the simplest of models may not be overwhelming. Finally, in many models
currently in use, the normality of disturbances yields neither linear esti-
mators nor tractable finite-sample distributions for the estimators in any
event, and frequently only asymptotic procedures are available.

These considerations may create modest doubt whether the arguments in
favor of assuming error normality are overwhelming. Much more serious

doubt about the usefulness of normality is raised by recent developments



in qualitative choice models, disequilibrium models and certain other models
involving unobseryables. In these models, evaluation of the likelihood func-
tion typically requires the computation of multiple integrals of density func-
tions which is a difficult task if normality is assumed. Consider a choice
situation in which individuals must choose among m alternatives. Let the

ith individual's utility from choosing alternative j be given by

Uij = V(xij,B + Eij (1-1)

where the xij are measurable characteristics of individuals and alter-
natives, B represents parameters and the eij are error terms. The

probability that the kth alternative is chosen by the individual is

= - < - i
Py pr{eij €ix < Vi v.lj ¥i # k}
where we use Vij to denote V(xij,B) . If the joint pdf of the m-1
nijk = Eij - eik is given by h(nilk""’nimk) ;, we have
13—Vil Vik—vim
P.p = [ .o I h(nilk""’nimk)dnilk"'knimk . (1-2)
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Maximum likelihood estimation of the parameters B is then based on maxi-

mizing the likelihood function

V. V..
p il p 1 (1-3)
il im

B
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i=1
where n 1is the number of individuals in the sample and yij = 1 if indi-

vidual i <chooses alternative Jj and yij = 0 otherwise. If h( )



is taken to be a multiyariate normal density, (1-2) requires the evaluation
of an (m-1)-fold multiple integral of the multivariate nor_mal.l This prob-
lem may be made more tractable by assuming the errors to be independently
Weibull distributed which is é notable precedent for employing distributions
other than the normal (Domencich and McFadden (1975)).

The simplest disequilibrium model is given by

D, = B’

t lelt T

Sy = BaXpe + Uy (1-4)
Qt = min (Dt ' St)

where Dt P St are the unobserved demand and supply, Qt the observed

traded quantity in period +t , and Uiy s Uy, error terms. It is well

known (Maddala and Nelson (1974)) that the pdf of Qt is given by

h(Qt) = J f(Dt,Qt)th + J f(Qt,St)dSt (1-5)
% 2

where f(Dt,St) is the joint pdf of Dt,S obtained from (1-4). If

t
Uy 7 Uy, are jointly normal, (1-5) and the likelihood function based on
it require the evaluation of normal integrals. If m markets are in dis—
equilibrium and they are "conrected" by spillovers, the pdf corresponding to
(1-5) has 2™  terms each of which involves an m-fold integral (Gourieroux,

Laffont, Monfort (1980), Ito (1980), Goldfeld and Quandt (forthcoming)).

Similar problems arise in simultaneous probit or tobit models.

1. See Hausman and Wise (1978).



The common difficulty in all these cases is the need for multiple
integrals of the normal pdf which is not obtainable in closed form.
Numerical methods are extremely accurate and fast for one dimension, but
in spite of many ingenious approaches to integrating multivariate normal
densitiesz, the problem must be considered difficult if more than a double
integral is required and very difficult if a four- or five-tuple integral
is needed. The present paper explores the consequences in some well-known
estimation problems of using an error distribution for which the integrals
of type (1-5) or (1-2) are obtainable in closed form. Section 2 introduces
the density in question and briefly discusses some of its properties. Sec-
tion 3 applies the density to the casé of estimating the parameters of a
regression model by OLS. Section 4 applies it to the simple disequilibrium
model. Section 5 contains some conclusions and suggestions for further ap-

plications.

2. AN ALTERNATIVE DENSITY FUNCTION

To render the computational problem tractable we want the pdf of the
random variable in question to be easily integrable and to be crudely simi-
lar to the normal. Hence, we shall require the random variable u to have
a pdf which is unimodal, symmetric, with support (~®,%) and with integral
computable in closed form. A general class of such densities is given by

i} P4
£ = ke o8l 1y 7 ¥, |ul?) (2-1)
j=1 -

2. For a variety of approaches see Owen (1956), Clark (1961), Daganlzo,
Bouthelier, Sheffi (1977), Manski and Lerman (1978), Dutt (1976). TFor a

review see Quandt (1980).



where o > 0 , Yj 20, j=1,...,P , and where K depends on 0 and

3
the v's. The second-order density of this type is

ool
(w) = 2(1+y,+2Y,

)(1+ayl§u|+a2Y2u2) (2-2)

Is is easy to verify that its moment generating function is

Y o’ Y o Y aé Y o
P =+ L A 2 7+ 2 3
H(O) = (0+0, (0=6) (0+0) (0=0) (2-3)
2(l+yl+2y2)

The mean and variance are

+
2+6Y, +12Y,

2 1
° = ST, o,
ol 1 2

( )

A simpler version is the first order Sargan density

-Giua
oe
£ = — -
(w) 2(1+Yl)<1+on(l|u|) (2-4)
3. f(u) is a generalization of the Laplace density which is obtained by

setting Yj = 0 for all j . We owe the suggestion and the general type
of pdf given by (2-1) to Denis Sargan. Accordingly, we shall refer to this

class of densities as Sargan densities.



It is obvious that f(u) is continuous everywhere and that it has
continuous first and second derivatives everywhere except, possibly, at
u=0 . Since numerical optimization will be necessary for maximum likeli-
hood estimation, it will be desirable for £(u) to have continuous first

and second derivatives everywhere. 1In order to insure this, we have

Theorem 1. For all values of P in (2-1) greater than or equal to

1, £’(u) is continuous if and only if Yl =1

Proof. t is sufficient to show that at u = 0 the left and right

derivatives coincide if and only if Yl = 1 . But evaluating the deriva-

tives yields

Ko (- l+Yl) if u

v
(@]

Ko (1~ Yl if u

A
o

o
£f'(0) =<
l

from which the conclusion follows. We assume henceforth that Yy = 1
Theorem 2. For all values of P > 1 , £"(u) is continuous at u = 0

Proof. Evaluating the right and left second derivatives at the origin

vields

2
Ko, (l—2Y1+2Y2)

fll (O) = 2
Ko (l—2Yl+2Y2)

—— A —

which are identical for all values of the parameters. The extent to which



Sargan densities can resemble the normal density can be shown as follows.
Consider the comparison of N(0,1) and of a second-order Sargan pdf which

has variance = 1 and which has the. same density at the origin as N(O,1). (Ob—
viously there are many other ways in which "similar" Sargan pdf's can be found.)
The implied values of the parameters are o = 2.11907 , Y, = 1.0, Y, = .32807 .
The densities of the normal and Sargan pdf's. for selected values of u are
displayed in Table 1. Obviously the similarity will be somewhat less marked for

a first order density with Yi = 1 . We now concentrate on this simple

case.
TABLE 1.
Normal and Sargan Densities
u Normal Densities Sargan Densities
0 .399 .399
.5 .352 .336
1.0 .242 .220
1.5 .130 .124 i
2.0 .054 .064
2.5 .018 .031
3.0 .004 .014 !
!
i
The log likelihood function for a sample of n uis is
logL = nlogd - nlog4 - uZluil + Zlog(l+a|ui|) (2-5)
‘ i - i

We now state
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Theorem 3. The maximum likelihood estimator is a unique o > 0 .

Proof. By differentiating,

n
=~ Zlu,| + I
oa o it i l+a[u I
2
9" logL oDy Yy
2 277 2 :
30, o i (l+oc[u |)

. . . . . n
Setting the first derivative equal to zero, we can write i Z|u l -

;(Iui]/(l+u[ui|)) - As 0 goes to infinity, the left-hand side decreases
i

monotonically to zero and the right-hand side is monotone increasing; hence the

graphs of the two sides intersect. Since the second derivative is negative
everywhere, the theorem follows. It is an immediate corollary that a suf-
ficient condition for the uniqueness of the maximum likelihood estimator in

the second order case with Yl =1 and Y, known is that 2Y2 <1.

3. THE ORDINARY REGRESSION MODEL

Consider the model
Y=XB +u (3-1)

where X 1s nXk of rank k and where u is a vector of iid error

terms distributed according to the first order Sargan distribution with



Yl = 1 . Three questions are of interest: (1) Are ML estimates routinely
computable? (a) Do they yield reasonable results in finite samples? (3)
How do they compare with OLS estimates in terms of efficiency and asymp-~

totic efficiency?

We shall examine the last question first. We first prove

Theorem 4. The asymptotic distribution of the maximum likelihood esti-

3.375 X'%X, -1
5 () 7).
¢

mator /H(EML-B) is N(O,

Proof. Writing the regression for the ith observation as y, =

B'Xi + u; and denoting by X and I summation over positive and nega-
+ -

tive terms of Y, - B'xi respectively, we have

9logL _ n ;=B x; v;=B'xy
S =2 o7 (y.-B'x.) + 2 (y.-B'x.) + I — = —t 1
oa a (Yl B ;) i v B xg) ¥ + l+a(yi—8 %) l—a(yi—B %)
dlogL . 9%y 0y 5
= 0Lx,, - 0Ix.. + I 7 + Z —=7
Bﬁj S -1 Isaly-BTx) D Loy, -B'x,)
_pr 2 -B’ 2
leogL _ n 5 (yi B Xi) -3 (yi Xi)
.2 T T " , 2 . , 2
do. o + {1+a(yi—8 ;)] {1 a(yi—B xi)]
5 2.2 022 (3-2)
8°logL _ _ & % %Kiy . *i5
2 , 2 , 2
BBj + [1+0L(yi-6 %.)] - [L-aly;-B"x,)]
2 X, . X, .
TRtk = Tagy - By - 3 = 7t 2 T
3 o+ -y [1+o(y;=B"x,)] - [1-a(y,-B"x.)]
2 o} azx X
9%logL *i5%ik 1374k
36.08, - - 7+ I 2 :
i Tk o+ [l+a(yi—8’xi)] - [l—a(yi-B’Xi)]



- 10 -

In order to find the asymptotic distribution of the maximum likelihood

estimates, we require the probability limits of the second partial deriva-

tives.
It can be shown with tedious algebra that, defining 6 = (a,B’) ,
(2+.439%)n
—_— 0
2 a3
. 9" logL
plim| |- —a—ea-e—,l | =
0 .109%%e (x'X)_
Hence (3-3)
3
S 0
| 5%10g, (-1 _ | (2*-43%)n
plin| |- S5gzgrl | -
x'x "t
0 2
L .10%" e
Hence the asymptotic distribution of vn BML—B) is N(0,3'§75(§E§)_1) .
o
Remark. The asymptotic efficiency of the OLS estimator
is approximately .84. This can be shown by
noting that the covariance matrix of the OLS estimator is 82(X’X)--l ;
. . . . ~ . 4 X'X -1 X
hence the asymptotic distribution of /H(BQLS-B) is N(0r~§07;—) ) , since
o
plim 02 = —% . The asymptotic efficiency therefore is 24%25 ; .84 .
o

The behavior of the ML estimator in finite samples was examined through Monte

Carlo experiments. Data were generated from the model yi = Bl + B2xi + ui with
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u, having Sargan distribution with mean zero and o = .2 and with Bl =
82 = 1.0 . For sample sizes N = 50, 100, 200, 400 fifty replications
eéch were generated and the mean biases and mean square errors determined.
These are displayed in Table 2. Although the mean biases show no clear
pattern, the MSE's of the ML estimates are uniformly smaller than those

of the OLS estimator. Moreover, the ratios of the MSE's of ML and OLS es-
timates bracket the theoretical figure of .84 rather closely, ranging from
.67 to .88 and averaging .78. Since the computation of the ML estimator
requires nonlinear optimization techniques, it is of interest that no com-
putational failures were encountered. Although in the regression context
there may be no barticular reason to assume Sargan-distributed erxrors, it
is useful to know that the ML estimates based on this distribution are

reasonable.

4. THE SIMPLE DISEQUILIBRIUM MODEL

The Likelihood Function and Its Properties. The simple disequilibrium

model is stated in (1-4) and the density function of the observed variable

Q@ in (1-5). Assuming that U, and Usp have independent first order

Sargan distributions with parameters 0y and O respectively, g(D,S)

is

o, —OLl|D—Bix o —azls—B’x

1| 2 2

2 ,
g(D,s) = [z (L+a, [D- rx, [)11~Fe (1+a, |s-B2x, )] (4-1)

where the subscript t has been omitted for simplicity. Obtaining (1-5)

is thus simply a matter of integrating (4-1).
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oy -0y [0-B{x,|
£(Qs0y /By rx;) = e (4] [o-B7x, ) (4-2)

-a, (0-B!x.) -a. (0-B.x.)
1 ’
b @0y Bx) =3e T T wl Blxde T T T (4-3)
, . 1% @B8ix) , @5 (9Bix;)
brpQrog Boox) =1 - 3 7% (Q-Bix. e (4-4)
It follows directly that
(
E(Q’ul’sl’xl)wl(Q’a2’62’x2) + g(Qla2I821X2)wI(QlullBllxl)
if 02 8% . Q2 B,
E(Qlallgllxl)wi(QIQ2I82IX2) + E(Qlazlgzlxz)wll(QldlIBllxl)
i if Q<B:'Lxl, Q;Béxz
h(Q) = (4-5)

if 9 > BIx

< I
11 0 Q< Byx,

E(QlalIBllxl)wII(Qlazlszlxz) + g(Q1a21621X2)wII(Qlallellxl)

if 9 < Bixy . Q< Byx,

Restoring the subscript indexing the observations the likelihood function is

simply
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L =1Ih(Q) . (4-6)
t

Likelihood functions which come in pieces which depend on the current
values of the parameters are frequently poorly behaved. Fortunately, major

difficulties are avoided in the present case as a result of Theorem 5.

Theorem 5. The likelihood function (4~6) is continuous and has con-

tinuous first partial derivatives.

Proof. Problems may arise only on the boundaries Q = B and

r
1%1
Q= Béx2 of the regions corresponding to the four parts of h{(Q) . We
thus confine ourselves to these boundaries. Since complete symmetry pre-

vails, it is sufficient to examine a single boundary, say Q = and,

1*1

correspondingly, the first and second pieces of h(Q) .
(a) The continuity of h(Q) is established by noting that on the in-
dicated boundary h(Q) = alwI(Q,az,BZ,xz)/4 + g(Q,a2,82,x2)/2 irrespective

of whether the first or second piece of h(Q) is employed in (4-5).

(b) In order to establish the continuity of the first partial deriva-

, . ro_ ’ ’ ’ . Then
tives we define 61 (Bl,al) and 92 (82,@2)

BQ(Q,d;éilrxl)’\pI(Q,0L2,82,x2) f'.5<Qroc2,62,x2)awlgiial'sl'xl)

sh() _ | e oo
ael_7a£(oc8x) o
- géll, l wI(Qlazlsz'xz) + 8Qay, B,y x)) Igel’ -

L if Q< Blx
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and ( » awI(Q,OLZIByXZ) EE(Q,OCZIBZIXZ)
E(QrOﬂl:Bl;Xl) aez + 362 ‘PI(QIOLlIBlrxl)
. > 1 4
sn(Q) _ ! if Q2 Bix
a6 B
2
oy_(Q,a,,B,,x,)  9E(Q,a,,B,,x,)
I 27272 2172772 .
g(QlalIBllxl) 862 + 362 \PII (Q,OLl,Bl,Xl)

if 9 < Bixl

Evaluating the various partial derivatives from (4-2), (4-3), (4-4) at
Q= Bixl shows that the partial derivatives Bh(Q)/Bel and 8h(Q)/862
are the same on the boundaries, irrespective of whether the first or second
piece of (4-5) is employed, thus proving the assertion.

It is well-known that the diseéuilibrium likelihood function is unbound-
ed in parameter space if the underlying errors are normal (Goldfeld and Quandt
(1978)). It is in principle possible for (4-6) to become unbounded as well.

The demonstration is contained in the following Theorem and Remarks.

Theorem 6. The disequilibrium likelihood function L(al,Bl,uz,Bz)

with Sargan error densities is unbounded.

Proof. Define the sets

Tpo=lelog 2 Bix) 0 o 2 Bixy )
T, = felog < Bix, v o 2 By%oet
T3 = {t|Qt 28X 0 Q< Bixy )
Ty = lelog < Bix b oo < Bix,)

where membership in the sets clearly depends on how Bl and 52

are chosen in the estimation process.
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The likelihood function is

L= 1 [E(Qt'al'sl'xlt)wl(Qt'QZ'BZ'XZt) + E(Qt’QZ'BZ'XZt)wI(Qt'al'Bl'xlt)]
teT

1

xth [6(Q, 70y /By rx) MV (Qur0y By ik, ) + E':(Qt'f)‘z'Bz’xzt’wn(Qt'o‘l'el’xlt)]
2

xth [g(Qt'al'Bl'xlt)wII(Qtra2’82'x2t)+ g(Qtrazrszrxzt)wI(Qtralrsllxlt)]
3

thT [E(Qtlallsllxlt)wII(Qtlazl 21X2t>+ E(Qt'azlszlxét)wll(Qt’ul'Bl’xlt)]

4

Now assume that Bl has k elements and that the number of members of T

1 1
. < . = ’
and T, together is < kl Choose Bl such that Qr lelt for all
t e TltJ T3 . By the assumption about the number of elements in Tlt) T3
this can always be done. Now let o) * with 82 ;o Oy being bounded.
Then:
F € U > .
(1) or t Tl T3 I g(QtlulIBllxlt) «©
(2) For t € TlL) T3 r wI(Qt,u2’B2’X2t)
and wII(Qt'a2'BZ'X2t) are not equal to zero.

(3) For t € T2U T4 ’ g(Qt,az,Bz,x2t) # 0

(4) For t € T2U T, wII.‘Qt'al’Bl'xlt) > 1 .

It follows that L(a.,B.,0

17Byr0y0B)) >

Remark 1. If the number of elements in TlLJ T, were greater than

3

. . . . 5w
kl , it would be impossible to f;nd Bl such that all E(Qt,ul,Bl,xlt)

for t € TlLJ T_ . There would be at least one value of t , say t* , for

3

which g(Qt*,al,Bl,xlt*) -+ 0 . Also, for that value t* , wI(Qt*’al'Bl'xlt*)

> Ob
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Hence at least one term of the likelihood function goes to zero. More-
over, the unbounded terms are of order O(qi) whereas the term going to
zero is of order strictly less than 0(&12)' . Hence the likelihood is
bounded. This remark shows, in effect, that the_likelihood can become

unbounded if and only if the number of elements in T2LIT3 is < kl .

Remark 2. Assume that the number of elements of 82 is k., . Un-

2

boundedness cannot occur with al and uz both =+ ® if the number of

elements in Tzk) 'I‘4 is greater than k2 . For in that case at least

one E(Qt,a2,52,x2t) >0 for terT,Y T, and all E(Qt,ul,ﬁ -0

17%1¢)
for t ¢ T2() T4

Sampling Experiments. The introduction of Sargan-distributed errors

in the disequilibrium model raises at least three questions: (1) Are es-
timates with Sargan-distributed errors routinely computable? (2) What
practical difference does it make whether the error distribution is as-
sumed to be normal or Sargan? (3) ﬁoes the new error pdf vyield a com-
putational advantage? In order to provide some tentative answers to these
questions, we report the results of some limited sampling experiments.

For all cases considered the model was

[ 2]
1l
Q
+
Q
]
+
Q
%
+
o

(4-7)

10
1
=]
]._l.
[}
C
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with ul = 200.0 , o, =-8.0, o.=1.0 ’ a4 = 100.0 , u5 = .10.0 ,

a6 = 2.0 and with Xip v Xy v X, being exogenous, having been gener-

ated once-and-for-all from uniform densities over the ranges (2.5,‘12_5),
(25.0, 85.0), (0.0, 20.0) respectively. The substance of the experiments
was (1) to generate repeated samples of Qt from (4-7) with the specifica-

tion that u ;y u

1t are independently normal and then estimate the

2t

parameters of the equations both under the (correct) assumption that the

u's are normal and the (incorrect) assumption that they are Sargan-distrihlited;

(2) to generate samples of Qt with the specification that the u's are
Sargan-distributed and estimate the parameters under the (incorrect) as-
sumption of normality and the (correct) assumption of the Sargan pdf.

The parameters of the Sargan pdf used for generating errors were u7 = .2

and a8 = .2 for the pdf's of upy and Uy, respectively. When the

normal distributions were used for generating errors they were assumed to

- . . . . 2
have the same variances as the Sargan distributions (4/&3 = 4/&8 = 100)
so that u and u have the same mean (0) and variance (100) ir-

it 2t

respective of whether they were normally or Sargan-distributed. Sample
sizes N were 30, 60 and 100. Optimization was by the quadratic hill
climbing algorithm GRADX (Goldfeld and Quandt (1972)) and analytic first
and second partial derivatives were used in optimization. The experiments

. . 4
were replicated 50 times.

4. For N = 30 we also performed 10 replications each for normal and
Sargan-distributed u's with optimization based on numerically evaluated

first and second derivatives.
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Only two computational failures occurred in the total of 600 optimi-
zation problems solved (2 states of the true error distribution X 2 esti-
mating methods X 3 sample sizes X 50 replications per case). We con-
clude that the computation of estimates is straightforward.

Table 3 displays the root mean square errors {RMSE's) for all cases.
Table 4 contains the- ratios of the asymptotic standard errors of the co-
efficients to the RMSE's, where the former are estimated from the negative in-
verse Hessian of the log likelihood and averaged over the replications. For
consistent estimators these ratios are asymptotically unity. Table 5 contains
the ratios of the RMSE's in each case when estimation is based on the assump-
tion of Sargan errors to the RMSE's in the corresponding case when
estimation is based on normal errors. Table 6 contains the fractions of
times that the correctly specified likelihood exceeds the incorrectly spec-
ified one. We note the following: (1) When in truth the errors are nor-
mal, the RMSE's based oﬁ the assumption of Sargan errors are always higher.
With the exception of two coefficients in the case of N = 30,7the increase
due to misspecification is 2 +to 18 percent, with an overall median of
12 percent. (2) When in truth the errors are Sargan-distributed, the RMSE's
based on normality exceed those of the correctly specified estimation pro-
cedure in 10 out of 18 instances. In the cases in which the incorrectly
specified estimation procedure does have an apparent advantage in terms of
RMSE, this advantage is negligible in size. The median disadvantage of the
incorrect estimating method is 2 percent. (3) The RMSE's for both
correctly and incorrectly specified estimating procedures decline with
the sample size. What is remarkable is that the percentage declines are

essentially the same, irrespective of whether the estimating method is
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correctly specified or not with respect to the distribution of the error
terms. By just looking at the improvements in RMSE's as sample size in-
creases there is no way of telling which is the correctly specified esti-
mating procedure. (4) The pattern‘of ratios of Fhe mean asymptotic stand-
ard errors to the RMSE's (Table 4) suggests that the misspecified normal
is somewhat bétter‘than the misspecified Sargan but all ratios are reason-
ably close to unity. (5) The correctly specified likelihood function
tends to exceed in value the incorrectly specified one, but not overwhelm-
ingly except perhaps for the largest of sample sizes considered (Table 6).
The computational times displayed in Table 7 indicate somewhat slower
estimation for the Sargan specification, with the advantage of the normal
specification inéreasing with sample size.5 Since the operations required
to evaluate the normal and the Sargan likelihood functions are comparable,
the advantage of the normal likelihood function is due principally to yield-
ing somewhat faster convergence to the optimum. Because of the very signi-
ficant increase in computer time that occurs with the normal likelihood as
one goes from an m-market to an (m+l)-market model (Goldfeld and Quandt
(forthcoming)), and since the computer time necessary to evaluate the Sargan
likelihood increases only modestly as the number of interrelated markets goes
up, one may expect that estimation in much larger disequilibrium models will
be feasible if Sargan densities are eméioyed. ' The disadvantage of Sargan
densities is, of course, that a substantial once-and-for-all effort must

be incurred to calculate the required integrals in closed form.

5. Computations were performed on an IBM 370/3033.
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5. CONCLUSIONS

The Sargan distribution appears to be a viable alternative to the
normal distribﬁtion in a number of contexts in which maximum likelihood
estimation requires the repeated evaluation of integrals of the underlying
density function. In particular, in the single-market disequilibrium model,
employment of the Sargan likelihood function yields estimates that are dif-
ficult to distinguish from those obtained by maximizing the normal likeli-
hood, whether the underlying errors are Sargan-distributed or normal. 1In
this sense, the family of pdf's given by (2-1) represents a robust al-
ternative to the normal density with distinct computational advantages.

Several aspects of employing (2-1) remain to be investigated. The
principal ones:; to be investigated in future work, are as follows. (1)
Will the computational savings in larger disequilibrium models become as
substantial as predicted? (2) Will the assumption of the error distribu-
tion (2-1) yield tractable procedures and sensible answers in other types
of models such as discrete choice models? (3) Which members of the class
(2-1) will be most useful overall? (4) Will the tractability of the Sarxgan
likelihood hold up if errors are not assumed to be independent? (5) Will
the application of the Sargan likélihood yield sensible economic parameter
estimates in concrete economic models previously estimated by maximizing
normal likelihoods? We shall attempt to answef some of these questions in

future work.



Mean Bias and Mean Square Error

TABLE 2

Mean Bias

Sargan Estimates

OLS Estimates

N Bl B2 Bl BZ
é 50 -.04076 .00617 .01063 -.00310
flOO . 00007 .00184 .02564 -.00224
i
; 200 .03232 -.00286 .02316 -.00083
|
i 400 03273 -.00112 . 03455 -.00143
i
i Mean Square Error
* |
; 50 .28956 i .00750 .38104 .01115
!

! 100 .17352 j .00478 .19638 .00538
: |
; 200 .04933 7 .00146 .06644 .00187

400 .02538 .00100 .03582 .00128
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TABLE 5

Ratio of RMSE's from Assumed Sargan Errors

to RMSE's from Assumed Normal Errors

True Error Dis-

. N
tribution ormal Sargan
Sample Size N 30 60 100 30 60 100
Coefficients
oy 1.44 | 1.02 | 1.11 .99 1.05 1.08
a, 1.39 | 1.05 . 1.12 .95 1.07 1.04
| ;
oy 1.12 | 1.12 1.13 .99 .96 .95
o, 1.14 © 1.08 1.07 .97 1.13 1.04
o 1.18 | 1.08 1.14 .95 1.15 .94
O 1.02 | 1.13 1.04 | 1.04 1.12 i 1.04
: |
TABLE 6

Fraction of Times That the Correctly Specified Likelihood

Exceeds the Incorrectly Specified Likelihood

Normal Errors

Truth

Sargan Errors

30
60
100

.64
.68
.82

.54
.56
.76
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TABLE 7

Average Time in Seconds for Obtaining Estimates

Truth
Normal Errors ' Sargan Errors
Estimation Normal Sargan Normal Sargan

N

30 .59 .65 .57 .69
60 .83 .99 .78 - 1.04
100 1.08 1.42 1.04 1.48
30 (numerical 5.17 5.55 5.13 5.65

derivatives)
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