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1. INTRODUCTION

" In an influential paper, Brainard and Tobin [1968] pointed Qut the implications
of an economic agent's wealth constraint for the specification of models of finahcial
behavior. = Because wealth must eqgual the sum of its components, once the leyel éf
wealth and the specification of demand functions for all bgt one of the assets in the
agent's portfolioc are given, a unique specification for the last asset's demand func~
tion is implied. In flow terms, the budget identity is that net acquisition of‘fin—
ahcial assets minus net acquisition of financial liabilities must equal net financial
investment. Any budget restriction which must be satisfied by a set of demand egqua-
tions leads to cross-equation restrictions on the parameters characterizing the de-
mand functions.

Several authors (Bachus and Purvis [1980], Hendershott [1971, 1977],>Hendershott
and Lemmon [1975], Motley [1970], Saito [1977] and Wachtel [1972I)have utilized éhe
Brainard and Tobin approach to estimate models of the financial behavior of various
sectors in the economy. These models have been estimated with data from the Federal
Reserve Board's Flow of Funds Accounts and have typically not dealt explicitly with
certain econometric problems which érise in atteméting to implement the Brainard and
Tobin framework. For example, the Flowvof‘Funds Accounts are often criticized for
being relatively inaccurate, particularly in allocating finanéial assets among the
sectors of the economy. This measurement error problem shows up in the sizable dis-
crepancies that appear between gross saving and gross investment in some of the sec-
tor statements of saving and investment. .If'the Flow of Funds Accounts are used as
a data source for explanatory variables in a regression model»of financial behavior,
‘the standard errors in variables analysis implies that the resulting ordinary least
squares'estimators are biased and inconsistent. 1In addition, ﬁhevpreseﬁce of measure-
ment errbf means that the data for some sectors do not satisfyjthe budéet identities

which are at the heart of the_ Brainard and Tcobin approach.
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In this paper a method is developed for estimating models containing an adding-
up requirement due to a budget restriction when the observed data fail to satisfy the
budget restrictions because of measurement error. The proposed estimator has a simple
interpretation as an instrumental variable estimator,'énd, when the same set of ex-
planatory variables appears in each equation describing the sector's behavior, as in
Brainard and Tobin's original specification, parameter estimates satisfy the cross-—
equation constraintsvdue to the budget identity even though each equation is estimat-
ed separately. '

In section 2’, the basic model is specified and estimation methods for the case
of no measurement error are reviewed. The implications of measurement error are ex-
amined in g:ction 3 and estimators are developed first for the case in which each
equation contains the same explanatory variables and then for the case in which not
all equations contain the same variables. Section 4 considers the problems that
arise when the disturbahce terms are autocorrelated, while section 5 provides a sum-

mary of the paper.

2. FINANCIAL SECTOR MODELS WITHOUT MEASUREMENT ERROR

Suppose we have a set of K equations describing the allocation of an exogen-—

ously determined constraint variable y amongst X different categories si ’

i=l,...,K ;
= pb. + X, .+ €, .
(2.1) Sip = Bi¥e T XVt Gy
Xy is a lei vector of explanatory variables with coefficient vector Yi , and it

is assumed that all variables are written as deviations from their sample means. Let
| . .th
(Y.l,...,Y.K) be the vector of coefficients in all K equations of the ) ex-
3 J »
planatory variable where j=1,...,H and H is the total number of explanatory vari-

ables othexr than y .



By definition

which implies that

{2.2) ;Bi‘:—l; ;in=0 for j=1,...,H'; ):.:Eit=‘0 .
l 1 1

We make the following set of assumptions which will be maintained throughout:

.1 .
(2.3a) plim = i Y€y = 0 for all i ;
.1 ..
(2.3b) plim 7 i xjtgit = 0 for all i,j ;
’ = ~
(2.3c) € (alt,...,eKt) N(o,ze) .

The basic error terms are taken to be normally distributed with mean zero and covari-
ance matrix EE while Ve and X, are assumed to be asymptotically uncorrelated -

with the Eit's . It will also be assumed that ¢ is distributed independently

t
over time. This last assumption is relaxed in section 4.

Consider first the case in which each of the K equations contains the same
set offexplanatory variables; X, = xt for all i . Let 2z be the Tx(H+1)

matrix of observations on z, = (thi) . We can write the ith equation for all T

observations as
(2.4) s, =28, + €,
i i i

where Gi = (Yl) . Let A= (61,...,6 ) be the (H+1)xK matrix of unknown coeffi-

. K

i
cients. If 1 is a KXl vector of 1l's, the constraints on the coefficient matrix
A given by (2.2) can be written as At = (é) .

~ An instrumental variable estimator of 6i in (2.4) would be given by

2 ’ "l:
(2.5) 61 = (w'z) “w si
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where w is a Tx(H+l) matrix of instrumental variables with the properties

plim Z w'e, = 0, i=1,...,K
-
plim-w'z = Q
T =
where ei is the Txl vector of disturbances from the ith equation and Q is a

finite matrix of rank H+l . Letting s = (sl,...,sK) .
A= (wz) tu's .

A is a consistent estimator of A and

>
P
]

(w'z) T w’'sy

(w’z)-l w'y

1

() -

Hence, the parameters obtained by estimating_each equation sepafately satisfy the
constraints on the true coefficients.1

Because the same set of explanatory variables appears in éach equation, there is
no gain in jointly estimating all X equations, and, given'aSsumptions (2.3a) and
(2.3b), efficient estimates are given by OLSQ where w = z ., EBach equation can be
estimated separately to produce efficiént és£imates which éétiéfy the cross-equation
coefficien£ restrictions implied by the requirement that sy =y .

Now éonsider the case in which the same explanatory variables do not appear in
each equation (i.e., some elements of A axre known to be zero}. This produces two
complications. First, estimating each equation by OLSQ results in ineffigiept esti-
mates which will not satisfy the constraints in (2.2). Second, since eé 1 =07
Ze is a singular, so Zellner's method fof seemingly unrelated equations cannot be

appliéa'to the K eguations in the model without some modification.



Suppose we write all K equations in stacked form:

bl {
s, z1 0 61 El
{2.6) S = .. = -t + . =28 + €
K 0 Zx S x

p

where z; = (y,xi) is a TxHi+l matrix of the explanatory variables which do appear

. . B
t ' i . .
in the i h eguation, 61 = (Yl) is a 1+Hixl vector of coefficients, 2 1s
i
TK X ZHi + K and E(ee’) = (Z€ 8 I) . In the general case for which rank
L]

Za =K' < K, Theil [1971, pp. 274-289] develops the appropriate generalized least
squares estimator. Let Z; be the generalized inverse of Zg and let G be the
KxK~-K' matrix whose columns are the characteristic vectors of Zs corresponding to
its zero roots. By construction, ZeG = 0 . Premultiplying (2.6) by (G’ ® I)

yields
2.7 (¢ 818 = (6" ® )28 + (G B8 I)e .

However, E[G' ® I)ee’ (G ® I)]1 = (G' & 1)(2E ® I)(C® I) =0 so that (G' ® I)e = O.

Hence, (2.7) reduces to
(2.8) (6" ® 1)s = (G’ ® 1)z8 .

Unless (G’ ® I)Z = O , (2.8) implies the existence of cross-eguation constraints
on the elements of § . With the additional assﬁmption that rank (F' ® I)Z = ZHi +K
where F is a KXK' matrix with columns equal to the characteristic vectors of ZE
corresponding to its nonzero roots, the efficient estimator of & (Theil, p. 285)

is given by

(2.9) &% = 5 + cz (6T’ ® I)[(IG’ ® 1)z2CZ'(GI" & I)]'l(JG' ® I)(8 - ZS)

]

where 8 cz’(Z; ® I)S

1

(@]
|

(2’ (I ® 1zl
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and J is a (rank (G’ ® I)2) X K-K’ matrix of full row rank ecual to a submatrix
of the X-K' X K-K’ unit matrix.
The constraint thét Eél = 0 given in (2.2) implies that ZE(éiteﬁt) =0 so

that the rows of ZE sum to zero: I_y =0 . Assuming this is the only linear

el
dependency involving the rows of Ze . rank Ze = K-1 , and the matrix G is given

by I/VE . 'In addition,

(2.10) L_‘e = (EE -+ 11") - III/K .

7K
Thus, an efficient estimate of & in (2.6) is given by &* in (2.9) with Z;' given
by (2.10), G= /YK and J= 1.

~Replacing G by l/fE in (2.8) yields T equations of the form

(2.11) Lsie = LBy +Zxy,
i i i
but since X S:¢ = ¥, » the constraints on § implied by (2.8) are that ZBi =1
i
and X xitYi = 0 . This last condition is satisfied if Zin =0 .
i i

It is also satisfied if

in is the same for all i and I xit = 0 . Hendershott [1971], for example,
i

estimates a budget constrained model by specifying his explanatory variables so that

; xit = 0 and Yi =Y for all i . That is, each explanatory variable sums to zero
i .

across all K equations and has the same coefficient in each equation. Similar
treatment of yt produces a system in which (G’ X I)Z =0 so that (2.8) places no
constraints 6n § and the efficient estimator is simply 8 .3

Halinvaud [1970, p. 167] proposes estimating a model such as (2.6) with a singu-

lar variance matrix by minimizing

-1
— 2 ’
'LM =€ [(Z€ + GG') B I] €

subject to (G’ ® I)e = 0 . Theil's procedure leading to (2.9) is equivalent to

minimizing



-7 -

- 7Py -1
LT = g [Za B 11

€ = e'[((§1€+<3c;’)_l - G&') ® Il€
also subject to (G ® I)e = 0 . However,

L, = e [(Z_ + 6e’)y L 5 11e - €’ (G’ ® T)e

i

— 14 14
LM e (GG" ® I)e ,

and €'(GG' ® I)e = €' (G ® I)(G' & I)e . Since both L and L, are minimized sub-
q :
ject to (G’ ® I)E = 0 , both procedures will yield the same estimators.
In’practice, I would also have to be estimated. ‘This could be done by using

€

the residuals from estimating (2.6) by OLSQ subject to the constraints on the coeffi-
cients:

(2.11) SLS = (2'2)

1

+ (2'2) 72 e [(e'eD) (27 (37 V2 (cemy 1 g (-2 (2'2) s

The résulfing estimited covariance matrix;, §E'= (S~Z§LS)(S—ZSLS)'/T will, be singular
but its generalized inverse can be calculated from (2.10). Final estimates of §
could then be obtained by replacing f;' in (2.9).

The complications introduced by the singularity of Ee could be eliminatéd by
dropping one equation and using generalized least sgquares to estimate the remaipipg
K-1 equations. ©Unless the eliminated equation happened tq have contained ¥t plus
all the explanatory variables which appear in any of the K-1 other equations,.the
new system will still be subject to cross equation restrictions so that %he estimator
will still be of the form (2.9).:

Maximum likelihood estimators for a system such as (2.1) ha&e been studied by
Barten (1969) who shows that such estimators can be derived from the maximum likeli-
hoéd estimation of the K-1 equation obtained by dropping one equation. As long as
those cross eQuation restrictions which remain when the deleted equation”ﬁoes not con-

tain all the explanatory variables are utilized, the maximum likelihood estimators ar:

invariant with respect to the particular equation to be deleted.
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3. FINANCIAL SECTOR MODELS WITH MEASUREMENT ERROR

So far we have assumed that all the vatiables appeariné in our model can be
measured without error. 1If this is not the case, then the observed values of the
variables may not satisfy the budget identities which we know must hold émongst
the true variables. For example, the Flow of Funds Accounts report a statistical
discrepancy for some sectors that measures the difference between, in_the potation
of section 2, the observed values of Ye and Zsit , quantities which should be
equal.. If we attribute this statistical discrepancy to measurement error, the
structure of the measurement error can be utilized to develop estimato?s which
would be applicable to financial models of some of the sectoré of the Flow'of Funds
Accounts. The estimators reported below were developed specifically for the house-
hold sector.

Consider first the case of common explanatory variables in each equation; in
this situation, there is no loss of generality if we assume that Yo is the only

explanatory variable. The model is thus

* = * = . i= ;
(3.1) s¥. Biyt €ip i=1,...;K

where the * denotes the true value of the variable and, again, Zs;t = yz
so that ZBi = 1 and zeit = 0 . Suppose that instead of .observing s; and
i i '

v* we observe

. ., = 8% 4+ u, i=1,...
(3.2a) Sip T SIL tu i=1, K

= *
(3.2b) Y, = ¥i+ v
where uit and vy are random measurement errors assumed to be normally distributed
with mean zercaml covariance matrix given, if u; = (ult’°"'uKt) , by
ut Zu Guv
¥ — - .
(3.3) Bl gl =g g 1=0

uv vv
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Assume also that u_ and v_ dre independent of €, and are independently distrib-

t t t

uted over time. Substituting (3.2a) into (3.1) yields

- *
(3.4) Sip Biyt + (Eit f uit) .

In order to derive the maximum likelihood estimator of the' Si's in (3.4) it is
necessary to assume that yg is normally distributed with mean zero and variénce
G;y“ As pointed out by Hsiao [1976], this is a very strong assumption and certainly
unlikeiy to be satisfied in a time series setting unless we are dealing with detrend-
ed, seasonally adjusted variables. The maximum likelihood estimator of (3.1) will be
shown, however, to have a simple interpretation as an instrumental variable estimator.
Consequently, it will continue to have desirable properties even when y* is not
normally distributed. It will also be assumed that y* and the random measurement
errors are asymptotically uncorrelated.

Consider (3.2b) and (3.4). In this form, the framework is one of multiple in-
dicators of the unobservable yg' where the covariance matrix of the.observable indi-
catoxrs is. |

1 5 , BB" B . 0
(3.5 E Y, {st yt] = c;y g 1| + 0+ 6 o
where B’ = (Bl,...,BK) . Goldberger [1974] discusses models of this type under the
assumption that -Q is diaggngl and develops maximum likelihood meﬁhods of estimation
for K> 2 (if K < 2 the system is unidentified). In the present case, §{ is not
assumed to be diagonal so without further restrictions the system is unidentified for
all XK.

We will make the following assumption: Gu v = 0 for i=1,...,K so that
_ o u
(3.6) Q= [O 1 .

That is, the measurement errors contained in the variables Sit are independent of
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any measurement error in Yy - To justify this assumption, suppose we are dealing
with a model of the financial behavior of the household sector.  1In this case, Y,
could be interpreted as total household saving, defined as disposable income minus

consumer expenditures, while s would be net acquisitions of various

1t Ske

categories of financial assets or, with negative signs, liabilities. Since y would
normally be cbtained from the National Income and Product Rccounts while s; would

come rror the Tlow of Funds Mccounts, it would seem reasonable to- assume —gu v”="0 -
‘ Pt i

Tiliis is particularly so for the household sector since each _sit for that sector is:

‘calculated as a residual, equal to the difference botween total investment in the

.th BN L .
i~ asset and the investment by the non-household sectors in that assct.

This aésumption of independence hetween the measurement error in the constraint
variable and the measurement errors in the component variables cannot -be made for all
sectors in the Flow of Funds Accounts. For example, in the farm business sector, Ye

is defined as the sum of the s. 's . 1In this case, v,_ = Xu, and O - is obvi-
it t i it u.v

ously not zero for all i . Thus, the applicability of any estimation method based

upon the assumption that Gu v = 0 will depend crucially upon the sector of the
i
economy being studied.,

From (3.5) and (3.6) it is clear that we will not be able to separately identify
Ze and Zu since they enter (3.5) only in the form Z€+ Zu . To simplify the form
of the equations to follow, Zs , will be dropped. In the remainder of the paper

then, Zu can be interpreted as the covariance matrix of €t + u_ -

Letting ’P; = (sl seeesS } , the likelihood function of our sample of T

t ke Ve

observations on P is given, apart from a constant, by

t
-T :
(3.7) L= |e| % expl- -;— E P;G-lPt]
-T
= |o] 2 exp (- -:;—T tr(e'lzi)]
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1 . . X - . .
where M = EEPtPé is the matrix of sample variances and covariances among the observ-

able variables. The maximization of L with respect to the unknown parameters of the
model must be carried out subject to two types of constraints. First, we have the re-
lationship between the reduced form parameters in © and the structural parameters
consisting of B , Zu B Ovv , and O;Y - This relationship is;given by (3.5) and

(3.6) (with ZE subsumed in Zu ). We can rewrite these equations as

BB’ B Zu 0
(3.8) Of | + = 0 .
In addition,
(3.9) ; Bi = 1.
i

Equation (3.8) expresses the -%(K+l)(K+2) elements of O in terms of O;Y ' B ’
va » and the..% K(K}l{ elemgnts of Zu . Eguation (3.9) implies that B 'Qontains o
only‘ R-1 free parametg;s,vso_the total nuwxber bﬁ free structural parameters is
l+(K—l)+1+ %K(K¥;5 = %{Kf;)(KfZ) . The model is just identifiedfg(B.B) and (3.9)
place no reétrictions on © so that O can he estimated by the value that maximizes

(3.7). The maximum_likglihood estimator of O ié therefore given by
(3.10) O =u.

The maximum likelihood estimators of G;Y v B“’VQVV" and Zu can then be obtained as
the solutions to (3.8) and (3.9) with O replacing O .

If Mxy is the sample covariance between variables x.and vy ,

M u . BR" B L, 0
(3.11) S SY | -9 = ar | N .
1 M o B 1 0 o
sy vy . v

#

Hence we have that M;y 8§yB' .- Post multiplying both sides by  yields
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Ml —/\*A, —/\*
\ 1-—0’61—0'

sy Yy Yy
since @1 = 1 . Therefore
B = w /G = M" /ii" = ‘M' I M
sy’ Tyy sy/'sy 1 sy/j sjy
and
(3.12) B, =m /o
i s, y'. Ts.
¥y 55
=M SH~
SiY Yy

o

where §t = Zojt « The maxirwn likelihood estimator of Bi is thus equal to the
3 B .

instrumental variable estimator from the regression of S;. On §t with Yy used

t

as the instrumental variable.

To see why this is the case, note that (3.1) can be written as

3.13 .. = B.y . .. = B.
( ) slt Blyt + El + ult B:L?uit

1

t

since y. = Is,
t i it i it i t
result in estimates for the Bi's which satisfy the adding-up requirement. This

= X (s;t +u,, ) = yé +Zz u;, - Using OLSQ to estimate (3.13) will
pProcedure of using the sum of the dependént variables as the constraint variable is

the normal way of treating the problem of Zsi not equalling Yo - However, §t

t
is clearly correlated with the error term in each equation so that OLSQ estimators
are biased and inconsistent.

Because E(uityt) = E(uitvt) = 0 , and E(§tyt) = G;Y #0 , y, can be used és
an instrumental variable for §t . As shown in Section 2, any instrumental variable
estimator of (3.13) will produce éstimates which satisfy the cross-equation con-
straint on the coefficients, and using yt"as‘the instrumental variable produces the

maximum likelihood estimator.

In terms of the structure of the Flow of Funds Accounts,
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- = * 4 - * 4 = -
Ye = ¥ = pf +v) - v iuit) Ve ?ui

t t

is equal to the statistical discrepancy reported in the Accounts.
Suppose we now consider the case in which not all the explanatory variables ap-

pear in every equation so that the model takes the form of (2.1), rewritten here in

terms of the true variables:

. * = B.v* + x, . o, 3 i=1,...,K .
(3.14) si. Blyt X Vg ¥ €y i=1, K
It is assumed that the variables in the xit vectors are observed without error.

i i - * v - * . in terms of the

Substituting Sip T Wy for ste and Y, Euit for yE r we have,
observable variables,

. = -~ . . 2 . - " M H 1= e K .
(3.15) sy = Byyy ¥ ®ie¥i T Eip Uy Bliult 1=lyeees

Let the error term in (3.15) be denoted by ¢, and let ¢, be the KX1 vector of
error terms for the ttF ‘observation.

Define Z¢ = E($,¢{) .. The rank of Z¢‘ is only K-1 since (B =1 and 1'e, =0
implies that
r . ’
Vo, =1'¢€

r ¥ -
ct U Bl)ut o .

The K equations in (3.14) could be estimated by using a procedure which com-
bines the generalized least squares estimator in the presence of a siggglar covariance
matrix that was given in (2.9) together with the use of y, asan instrumental vari-

able for §t . Using the notation of (2.6) for the system of K equations written

~

in stacked form with Ei = (§"%£' z, = (y xg,'”z = diag(zi,...,Zk)', and

i

Z = diag(zl,,,.,zK) . we have

(3.16) S =28+ o



and
(3.17) 8 =8 + cEG B (G B 1)zcZ(G ® 1)17T (@7 ® 1) (S - Z8).
where
§ =cz' (T ® 1)s
¢ ~
. e A o "‘l
C = 1[z2'(Z, & 1)z7]
VI
I =[5, + GG’}'l - GG’
¢ ¢
and G =

1/& .

Since the values taken on by the exogenous variables are arbitrary in thefééﬁsé
that we wish to place no constraints on the values they can take, it §ii1'be mégé
convenient to rewrite the restrictions contained in equation (2.8) and.utilized in
(3.17) in a form that more explicitly shows the restrictions'being élaced on § . Ve
can define an (H+1) X (ZHi+K) matrix R (whgre" H is thé total nuﬁbér of’éxpiéna-
tory variables other than Yé appearing anywhere in the model) dbnéiétiné of ééros

and ones such that

ZBi

(3.18) RS =

[ne
o <
=
[N

01
-<.I.0

The cross-equation constraints can now be expressed as

1

(3.19) RS = (0

) =1r .
"~

' ~ g o
The estimator &* can be written then as

~A
A

(3.17) §% = § + CR'[RCR’] T (x-RS) . : .
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Given the budget identity and X-1 eguations the KFh equation provides no
additional'information. We could drop any one equation and apply our instrumental '
variable-generalized least squares method to the remaining K-1 .. The covariance

matrix of the error terms for the K~1 etguations, which we can write as X, 8 I ,

_ , =4
will be nonsingular. Let a bar beneath a variable denote that the terms involving
th . ‘ - '
the K equation have been deleted. Let R differ from R in that ‘R represents

only the constraints on the coefficients of those explanatory varlables which do not
t
appear in the K h equation. Since . y; is assumed to appear in all K. ecuatlons,

the constraints on 6 are that RS = 0 . Then,”

(3.200 & =8 - cr'IRGR'1
" where §!= C”(§¢ ¥ I)S
c=1z'¢z, szt .

24

§¢ will normally not be known, but it can be estimated frOm the residuals obtained
by estlmatlng each equation separately u51ng Y, as an instrumental varlable for

"~

v . jmr’ Z : . -

Y Slnce plim T§_¢ 0 , this will yleld a con51sten# estimator, Ly ef §¢
s & -1 - . : .

Substituting .§¢ for §¢ 1 in (3.20) results in essentially a.thxee stage least

squares estimator subject to cross equetien coefficient restrictions. Under the as-

sumptions we have made, §* will be a consistent estimator of § and VT (5*-8)

will have a normal limiting distribution with mean zero. To find the covariance

matrix of this limiting distribution, we define the folilowing:

(3.2) Q= plinEg’ (§¢'-l 5 1217 = plimizz*’ (§¢",?“ 5 1)zt

where 2z* differs from 2 (Z) ornly in that ' y* appears rather than y (y) . Let
Pi = (vi 0) be the T X (Hi+l) matrix of measurement errors. in Zi' (by assumption,

only y is measured with error). Pp= dlag(pl,..,,pK l) . -Define

0, = plim{%?_’ (_2_:(;1 ® I)®?] .
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Finaly, let B = Q - Qg’(gggf)flgg . The covariance matrix of the limiting distrib-

ution of VT(6*-8) is given by
(3.22)  V=B+E)B .

If we were able to observe y* , the asymptotic covariance matrix for the gener-
alized least squares estimator of ¢ would just be B . When we observe y and y

" but not y* , the covariance matrix is given by (3.22) which exceeds B by a positive

semidefinite matrix, BQQB .

4. ESTIMATION WITH AUTOCORRELATED DISTURBANCES

So far we have assumed that the random disturbance terﬁs, Eit ' uit ( and

v, » are distributed independently over time. With aggregate economic models, however

this assumption is often invalid. For example, if the lagged dependent variable,

*

{¢_p + 3Ppears as an explanatory variable, replacing it with S; g-1 7 will result

in the lagged value of the measurement error, uit'].' appearing in the errxor term.

Also, the statistical discrepancy for the household sector in the Flow of Funds

Accounts is highly serially correlated. Since this discrepancy is equalvto vt - 1'ut

either v, or u  , or ksth, must be serially correlated. .If it is only Ve which

is serially correlatecl,5 then the error term in (3.15) wiil still bg serially indepen-
dent (in thé absence of lagged dependent variables on the right hand side), and the
estimation methods discussed in section 3 can be used withbut'moaification. Since it
is unlikely, however, that the structure’of the disturbance terms would take such a
fortuitous form it is necessary to éonsider the estimation of (3.16) when the struc-
ture diéturgances u and €, are serially cqrrelated,

t t

Under the assumption that u,  and €

t

¢ are covariance stationary linearly non-

-deterministic stochastic processes, the multivariate generalization of Wold's

decomposition theorem implies that we can express u, and et as multivariate



moving average processes,

u A(L) 0
= n

e . 0. B(L) ®
where A(L) and B(L) are KXK matrices of polynomials in the lag operator L
and h£"is a 2kx1 vector white noise process with the properties that. E(nt) =0,
E(ntn;) =0 for t # s , and E(nﬁné) is a diagonal matrix. :The error term for
the X ”equations in (3.15),

I-8¢y" O u I-By' 0 A(L) 0

(b = = v S .; 'n e
t 0 Il e 0 p 0  B(L) t

is a composite disturbance term (see Pagan [1973]),>and cén.also bé’éxpréssed'as a
multivariate moving average process .(Granger and Morris [1976]);” Since i’¢t =0,

th . . :
we can delete the K = equation and write Qé = (¢1t"'°'¢K~l,t) y

(4.1 ¢ =mMY,

where H(L) is a (K-1) X (K-1) matrix of polynomials in L and Wt is a (kki)

X 1. vector white noise process, E(Wt) =0, E(Wtwé) =0 for t# s , and

E(WtWé) = Z?‘ is a diagonal'matrix. It will be assumed that the roots of IH(Z)|“
all lie outside the unit circle and that H(z)} has full rank foi‘all ;"in or on
the unit circle. H(L) can éhuS'be taken to have an inverse, assumed t5 be of fini£e

order and denoted by C(L) . We then have the autoregréssive representation

(4.2) cwy, =Y .

Writing the first K-1 équations for the o variables in ‘stacked form as in

section 3 yields

(4.3) s = 2_6 + ¢



- 18 -

where we now have (C(L) & I)g_= Y. Premultiplying both sides of (4.3) by

(C(L) & I) produces
(4.4) (C(L) 8 I)s = (C(L) ® 1)28 + V.

The equation system (4.4) has-an error term which is serially uncorrelated. In
addition, the disturbancé terms are uncorrelated across equations.
Estimation when C(L) is known is straightfcrﬁéfd. Letting §* = (C(L) & I)g,

z* = (C(L) 8 1)Z , and 2Z* = (C(L) & I)Z where Z differs from Z. in that y

appears in placejof ¥ , the instrumental variable estimator of & is given by

1

(SIV _ (,_Z-*i.z"—'*)" AR

(4.5)

‘There is no.gain in efficiency if all equations are estimated jointly. However, (4.5}
ignores the cross—equétion restrictions placed on §_ byﬂthe‘budget identity if
not all the model's explanatory variables appear in the KFh equaﬁion. If there
are such restrictions, estimation should proceed by using (3.20) withv gf , .z? and
$* replacing Z , é_, and S .

In the general case C{(L) 1is, of course, not known and must be estimatedf In
this situation the methods discusséd in Fair [1972] can be modified to apply to
the estimation of F4.4). rirst, estimate (4.3), ignoring the serial coirelation in
¢ , using y as an instrumental variable for ¥ . Instrumental vaiiables will
also be needed if any lagged values of S; appear as explanatory vériables in 5 .
The ‘calculated residuals, é_, from such a regression will be cénsisteni eetimators
of ¢ . Normélizing the coefficient on - ¢it in thg‘ ith equaﬁion to équal one, we

can write the typical equation in (4.2) as

4.6) =L c. ¢6.. .+ T I e, P T S |
@O b= Eooy g DT b b -

Since VY, ig serially uncorrelated and E Y V. =
it st it

the K-1 equations of the form (4.6) can be estimated by OLSQ with $it in place

0 , each of
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of ¢it . In addition to providing estimates of ¢(L) , this procedure also produces
an estimate of ZY » which can be used if cross-equation restrictions require the
joint estimation of all X-1 equations. The matrices Zf ’ éf , and S* can be

calculated using the estimated C(L) , and then & can be estimated using equation

(4.5) or, in the case of cross-equation restrictions, (3.20) with the appropriate

substitutions.

5. - SUMMARY

The Flow of Funds Accounts provide data on the net acquisition of various assets
and liabilities by the different sectors of the economy. Each sector is subject to
a bﬁdget constraint, Zs;t = yé , which impliés cross—eéuatibn restrictions on the
sector's asset demand equations. In specifying eguations for the sit‘s‘, yg will
appear as an explanatory variable. For some sectors, however, we have, due to
measurement error, two alternative measures of y: : Zsit or ¥y - The common
practice is to usé Zsit as a measure of y; since this choice ensures, if the
same variable appear in each equation, that OLSQ applied to each equation yields co-
efficient estimates which satisfy the restrictions implied by thg budget identity.
This procedure ﬁeglects the information contained in vyt and wiliAProduce biased‘and

inconsistent estimators. It was shown that a simple solution to this problem is to

. For

use Zsit as a proxy for y% and Yy, asan instrumental variable for Zsit

the case of identical explanatory variables in each equation, this instrumental vari-
able estimator is equal to the maximum likelihood estimator and produces estimates

which satisfy the cross-equation restrictions on the coefficients.



FOOTNOTES
l'I‘his result is well-known. See Denton ([1978].
2 \

See Theil {1971, p. 274].

3Hendershott [1971]1 ignores the nonsingularity of Ze ;, assumes it is diagonal,
and obtains estimates of the diagonal elements from the OLSQ residuals from (2.6).
Powell [1969] also considers a model similar to (2.6} in which X is partitioned

as [Xt' Eit] where X, is a vector of variables common to all equations and Eit

are variables in equation i that do not appear in all X equations. He then re-

.quires that ZEit = 0 and ?; =Y for all 1 where ?; is the vector of coeffic-
i

ients of x,
it

4. .. C . . . e
Again, this is with the proviso that only Z€+ Zu can be identified.

5 .. . ' . .

This could be tested since from data on y and the statistical discrepancy we
can obtain the sample autocorrelations of v which could be compared with those of
the statistical discrepancy.. I1f the ui's are serially independent, these would be

the same.
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