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PREFACE

The problem considered is the evaluation of the range for a
cost—of-livingvindex which is compatible with given expenditure data.

This problem, as it is to be considered, has been discussed in a
previous memorandum (No. 24), and the method developed here for treating
it involves concepts and results given in various other memoranda (Nos. T,
11,13,18 and 21).

Our method for solution of the index-number problem has a scope

much beyond this application. Tt gives the means of establishing the range

.of any characteristics of a normal preference scale admitted by given

expenditure data; for example, an equilibrium on a balance constraint, an
elasticity, properties such as substitutability, complementarity, decom-
posability, and so forth, with every concept which depends on preferences
in consumer theory. In this way it should be possible to give all such
concepts a precise meaning in terms of a finite scheme .of expenditure
data. With that done, fitting instruments would be available for the
empirical investigation of consumer behaviour, so far as that behaviour
can be grasped systematically in direct terms of the classical framework.
It is always recognized that preferences change, and therefore
will fail to be systematically consistent; and it is possible to identify

many forces controlling preferences, which can enter into an explanation

of such change and inconsistency. But so far there has been an absence

of appropriate analytical machinery for investigating the drift of an
entire preference structure under the influence of specific forces for
change. An empirical Preference structure must be .somewhat loosely

characterized, in view of the fragmentary character of the empirical
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data. The present method seems entirely appropriate in that requirement;
it precisely represents the very vagueness of preferences.

Most important is the problem, which remains to be treated, of
how inconsistent data should be analyzed. This calls for definition of
what is to be considered most nearly a solution of those inequalities
which are fundamental to the method for consistent data, but which have a
solution if and only if the data are consistent. The same definition will
determine a best solution even when there is a variety of solutions, that
is, in the case of consistency, and thus give g principle by which the
range of indeterminacy on consistent data can be narrowed‘in a significant
way. |

I wish to express my thanks to Professor T. C. Koopmans for
drawing my attention to some difficulties in the question of convex
representation, which is fundamental to the method, and for informing me
of the work of de Finettil and Fenche12 relating to it. Here T give a
simple proof for the convex representation of a continuously twice-
differentiable function with convex levels on a compact domain.

Also T have to acknowledge with thanks many useful discussions
with Robert J. Aumann ang John M. Danskin, who have contributed to some
detailed aspects of this work, as will be fully recorded in the complete
account.

The entire subject has its foundation in the revealed preference

lde Finetti, Brumo. Sulla stratificazioni convesse. ‘Ann. Mat.
Pura Appl. (4), 30(1949), 173-183. '

EFenchel, W. Convex Cones, Sets and Functions (from notes by
D. W. Blackett of lectures at Princeton University, Spring Term, 1951;
issued by the Department of Mathematics, September 1953).,
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method of Samuelson,5 as amplified by Hc:uJ(:hakk(—:‘r,LL who proved the fundamen-
tal theorem on the numerical representation of preferences, and which has
been investigated further by Uzawan5 Together with Houthakker's revealed
preference axiom, the regularity condition, which appears in Houthakker's
demonstration, and which has béen treated further by Uzawa, seems to
suffice and to be more appropriate for the needed concept of a normal
expenditure system, rather than the over-restrictive uniformity condition
which is used here. The appropriate modification of the normality concept
can, however, be deferred for the moment, since it brings no mo@ification
in the method of empirical analysis, and the brocesses of calculation which

belong to it, which are now the main object of investigation.

S. N. Afriat

Princeton, New Jersey
April 10, 1961.

3Samuelscn, Po A, Consumption theory in terms of revealed
preference. Economica 28 (1948), 2h3.053,

Houthakker, H. 8. Revealed preference and the utility function.
Economica 17 (1950), 159-17k4.,

5Uzawa, H. On the logical relation between preference and
revealed preference. Technical Report No. 38, Department of Economics,
Stanford University, 1956;: or Mathematical Methods in the Social Sciences,
Stanford Mathematical Studies in the Social Sciences V (Stanford, 1959).
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1. Expenditure systems and preference functions

Balance and composition spaces B, C are given by the positive

orthants of Euclidean spaces of dimension n . An expenditure system E )
with domain and range given by regions BO<: B, Co(: C , is defined by a
mapping of balance vectors u € Bo into composition vectors x e CO

subject to the balance constraint u'x =1

. — . gty = .
£ . B —> C, (u=x; ux =1)

The composition belonging to balances UV, ... are denoted by x,y, ...

x=&W), y =§(), ...,

in which case

u'x =1, vy =1, ... .

The vector pairg [u;x], [viyl, ... define the expenditure figures belonging

to the system z, o
An expenditure system ig called responsive if different composi-
tions correspond to different balances:
ufv = x £y .
In this case the expenditure system x = & (u) mapping BO onto Co is

a. one-to=-one correspondence, .and defines an inverse expenditure system

determining a unique balance uy = Eal(x) belonging to any composition
X € CO - Balances and compositions which belong to each other in a
responsive expenditure system may be called reciprocals in that system.

The base-preference relation of a responsive expenditure system

& is the relation QE between the elements of its range CO defined by

nyEu;yfle#y.

The preference relation PE of ¥ is defined as the transitive closure

of its base-preference relation:

P, =Qy
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Thus P& is transitive by construction, and is an order if it is irreflex-
ive, in which case §& is called consistent. This is the same as saying
that the relation EE’ of confusion in E, » defined by

x% Yy =xB.y A yPEX

Yelat o &

is nuil. Thex §E of irresolution in Z is the symmetrical relation defined

between elements of Co for which there is no relation of preference:

Xf’&y = ~ XPE'V A yng .

It P_. is irreflexive, then PE is reflexive, and hence is an equivalence

&
Just if it is transitive.
Generally the relation ﬁé of irresclution in a consistent system
& is not an equivalence; but, if it is, then PE will be that kind of
order which is called_a scale, which is qsymmetric and whose negation §£
is transitive, which reduces to a complete order of the classes in this

~

equivalence; and P& then defines the relation of equivalence in the

scale PE ;5 and its classes define the equivalence classes in the scale.

An expenditure system is called uniformly responsive if there

exists a number p >0 guch that
lz=y| > plu-v] ,

in which case, to a displacement u - v of balance through a certain
Fuclidean distance [uwvl there corresponds a displacement x — y of
composition through a distance Ix=y[ which is at least a fixed positive
multiple p of that distance. Obviocusly a uniformly responsive expendi-
ture is responsive, that is invertible; @nd the inverse system is con-
tinuous, giving u = Zml(x) as a continubus function of x .

For a uniformly responsive expenditure system which is consig-

tent, this defining a normal expenditure system, the irresolution

relation is an equivalence. Moreover, there exists a function ¢ , which




is continuously differentiable, and has the property

o(x) > o(y) €=>ng¥

by which it represents P& s> and by which it is called s gauge of PE .

The equivalence classes determined by the relation %E are then the level

-surfaces of ¢ . Further, the function ¢ will necessarily be strictly

increasing, and have strictly convex levels. Thus:

x Dy = o(x) > ¢ly)

and

ox) =oly) (x#y). = pxa + yB) > 9(x),0(y) (@p >0, a+ B =1)

A normal preference scale is defined as the preference relation

of a normal expenditure system. The question arises as to whether it is

possible to choose ¢, from among all the possible gauges of P » to be

&

a strictly convex function, satisfying

o(xa +yB) > o(x)a + o(y)p (B >0, a+p=1) .

This question has importance when 6 is specified only as being
a2 normal expenditure configuration possessing a certain finite set of

expenditure figures, forming an expenditure configuration F . o1t is

required to characterize the totality of Preference scales Pg such that
FC T , with & normal. This is equivalent to the problem, which is
gping to befconsidered, of characterizing all the convex increasing con-
tinuously differentiable functions whose gradients at certain points,
specified by the compositions in the figures of SF » have certain direc-
tions, specified by the corresponding‘balances, Just so long as it is

known that every such scale has a convex gauge.

The matter is easily settled if the conditions for a normal
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expenditure system Z are strengthened to include continuous differenti-
ability, and the domain of the system is compact. In this case g gauge o
exists which is continuously twice differentiable, having a matrix ¢&X,

of second derivatives, which, existing and being continuous, must be
symuetric. These conditions correspond exactly to the ones familiar in the
theory of Slutzky, and which are necessafy for the development of that
theory, the essence of which is the symmetry condition. With these condi-
tions, the possibility of the convexification of the preference function,
by transformation to an equivalent one which is convex, has a simple and
direct proof.

But to suppose an expenditure system is normal, that is uniformly
responsive and consistent, is enough to get, in a behaviouristic fashion—
that is, directly in terms of expenditures, rather than hypothetical under-
lying constructions—all the characteristics of the systems by which,
either explicitly or implicitly, the consumer is usually pictured in
economics; that is, with a numeriéally represented preference structure
with smooth, strictly convex levels. This concept .of normality seems to
provide the simplest adequate ana%ysis of this picture. A commitment to
viewing the considered problem in terms of such systems is desirable. But
the possibility of convexification for such systems is not yet demon-
strated, though it is plausible.

A way around this difficulty, without altering this commitment,
would be to show that it is possible to approximate uniformly the levels
of a continuously differentiable function, with strictly convex levels
in a compact domain, by the levels of a strictly convex function. Again,
this possibility is plausible though it is not yet proved. Also, it

would suffice for the general validity of the method which is going to




be investigated.
Should convexification, and even approximate convexification,

fail, normal expenditure systems must be defined more restrictively, to be

differentiable. Then twice differentiable preference functions are obtained,

and PFenchel's result may be used. But the validity of the method to be
investigated must be considered correspondingly limited.

These questions will be left tentative for the moment. In the
exposition, it is taken, as seeming a safe conjecture, that convexification
is possible for preference Tunctions of normal expenditure systems whose
domains are compact. " But approximate convexification would suffice for the
validity of the final results. In the meanwhile, an independent proof will
be given for the convexification of continuously twice-differentiable
functions with strictly convex levels, which can also be derived as é
special case of Fenchel's theorem. Tt may be noted that this will give
another approach to the possibility of approximate convexification, if the
following question could be answered affirmatively. Iet the €-average
of a continuous function in a compact dc@ain ‘@ be the function obtained
by replacing the value of ¢ at x by its average in the sphere centre
X and radius € . If ¢ 1is differentiable, the second €-averages will
be continuously twice differentiéble approximations to ¢ . If the levels
of o are strictly convex, it is asked if the levels of these approxi-
mations are also strictly convex for sufficiently small e . Tf this ecan
be asserted, then the possibility of approximate convexification follows
Trom the possibility of the convexification of these approximations.

Iet EJ be an invertible and continuously differentisble expendi-
ture system, so the matrix X of partial derivatives of the elements of

X with respect to the elements of u°? everywhere exists, and is regular




and continuous. Assume the domain, and therefore also the range CO of E
to be compact.

Let

s = xu'(l?ux*) .
Then a necessary and sufficient condition for the consistency of E is that
s be symmetric, and its quadratic form be negative in every direction not
parallel to u :
s =s', du'sdu <0 (dudu) .

The existence, continuity and symetry of g implies the existence of a

function ¢ , with gradient ?x » Which is such that

where ) = x‘@x since u'x = 1 » and which is continuously twice-
differentiable, determining the inverse Uy ©of the continuous matrix

X from the relation

u¥

(1-ux')og

et = (ux,+ uut)N .,

The negativity condition then implies P€ to be a scale, and ¢ to be a
function with the broperty

WX)>¢@)<=9X%Y:
and which is strictly increasing, and has smooth strictly convex levels.

The strict level-convexity of ¢ provides that dx'@xx,dx be

negative definite under the constraint q&vdx = 0 . The wanted convexity
condition is that ¢%x’ be unrestrictedly negative definite; and it may
not be satisfied. Tt is asked if ¢ can be transformed by a continuously
twice~differentiable increasing function w(t) +o an equivalent function
?* = o(p) for which this condition will be satisfied.

Now, for any such transform,

* =
P = o' (@le,




and
Pt = 9000, + ol (o),

= w'(CP)(CPXX, - ocPXCPX.)

L
o .=~ %%%%% ; and o'(p) >0 .

Thus it is just asked that there exists a function w such that

where

o' (@) >0, and

¢

xxt T PP Py
be negative definite, it being given that Qxx' is negative definite under
the constraint determined by QX « But, by a general theorem on constrained
quadratic forms, with this given and not otherwise, all that is required is
that
p>a0 ,

where 0 is defined as the maximum root of the equation

| Pyr - 020, =0,
and is therefore a continuous function of x € Co « At points where

Q@ is regular, it is easy to see that

xx!
7= (@t
If ¢ is already convex, .so ?xx’ is negative definite, then o < 0 .
In this case p >0 if o is a convex function, sinceé then p. >0 ; in
which case % will Just be another convex function, equivalent to P .
Otherwise o 20, and it is required to find an & -such that p >0

everywhere in Co o

Since CO is compact, and @,0 are continuous, it is possible

to define

o(t) = max o (x) »
XGCO,¢(X)=t

and this will be continuous in CO s Since @,0 are continuous, and




CO compact. Without loss in generality, assume

min @(x) =0 .
XGCO

With an arbitrary continuous function e(t) >0 » there can be determined
8 unique continuously twice differentiable function 2(t) such that
Q"(t) —
T O (¢ = o(t) +€(t) ’
and

Q(0) =0, ar(0) =1 ;

and then Q is an example .of a function w with the desired broperties.

THEOREM. If o is a continuously twice-differentiable function in a

compact domain CO » With strictly convex levels, then it can be trans-

formed into a strictly convex function o* = w(p) s by an increasing,

continuously twice-differentiable function o(t) .

Iet x =&(u) (u'x = 1) be an expenditure system satisfying the

regularity condition |
[ EE) - EE) | < ool ,

50 called by Uzawa in his investigation, and which was introduced by
Houthakker in proving his fundamental theorem.

Let £ De any path between U, and Uy s described by a con-
tinuously differentiable function u(t) (0 <+t < 1) such that

u(o) = U u(l) = u -
Then the differential'equation
E(}é) "g% =1, with p(o) =1,

has a unique solution p(t) , determining a number 'pol(i) =p(1) ,
depending on the path Jf, between ?o and Uy . The path K> described
by % defines the correction‘of the path L. No further modification of

& path is obtained by repeated correction. The number Py (L) defines the

1
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total correction between U, and Uy along the path &L .

The expenditure system is called integrable if the differential
form Z(u)‘du is integrable, having an,infegrating factor p and an
integral ¥  such that

w&(u) tdu = ay .
In this case d¥ =0 along a corrected path. For, by virtue of the balance

constraint

the differential equations

= au u ,d(%)
(E) Fre 1 and E(E) = =0

are equivalent.

Integrability is equivalent to the condition that, for any path
&L which is a cycle, the corrected path J is also a cycle. It is also
equivalent to the condition that the total correction .pol(i) along a path
L, is the same for all paths with the same extremities.

Now Houthakker's conditions of regularity and consistency, in view
of his result by the method of ascending and descending sequences, imply
integrability, and therefore that 901 = pol(L) is a number defined inde-
pendently of the path X, for its construction. This number is identified
with the threshold ratio in which expenditure must change to compensate
in preference for a change of balance between ug and Uy . The contin-
uous process of compensating adjustment, keeping the integral w(%)
constant along any path of u , is defined by the differential equation,
and then determines the total compensating adjustment from one extremity
to the other. This adjustment pol is also defined irrespective of any

congideration of a path between Uysty e It yields a unique point



u
xio) = E(El—) » on a balance parallel to Uy and equivalent in preference
ol
to the point X, = Z(uo) on u_ , which replaces the point x, = E(ul)

when expenditure is changed in the ratio Po1 while money prices remain
fixed. The number Po1 is also the unique number defined by the

condition
Y
pol

\1’( )=W(u),

where V¥ is the function, the same as the indirect preference function of
Houthakker, whose levels can be scanned by the method of path-correction,

and which can be constructed by a process of integration.

2. Admissible preference hypotheses

let F = {Er} = [U;X] be an expenditure configuration with

figures E = [ur;xr] forming balance and composition sets U = {ur] ,
X = {xr} » such that wu, Do, X, )0 and u'x =1 (r =1,...,k) .
It is assumed that X, £ X 5 U, # U (r £s) .

Iet C denote the camposition space, this being the positive

.orthant of a Fuclidean space, whose points are given by the vectors

x )0 . Let B denote the balance space, this being a replica of C ,

whose points are the balance vectors u )0 .
The cross-structure of ¥ is given by P;= {Drs] » Where

Drs = ur'xs - 1 . The base-preference relation Q; of ¥ is defined

by

xQx =D <0 (r #s) .



The preference relation ,Py of F is the transitive closure of the base-
preference relation
-
Py = Qg -
Thus the relation P?_ is transitive; and the configuration F 1is called
consistent if this relation is also irreflexive, and therefore an order.
Let<g denote the normal preference scales on C .  For any such
8scale S e/é there exists a continuously differentiable function ¢ ,
called a gauge for S , which represents S by the property
9(x) > oly) < =8y .
It is to be granted that ¢ , in any case increasing, and with convex
levels, can be chosen convex on any given compact domain Co in C.

Any normal scale containing ,3} defines an admissible preference

hypothesis for F . The preference spread of F is defined by the totality
A4; of admissible preference hypotheses:
Seéz_—-SeA,\Pst.
For every S € /5é there exists a non-empty class Ig of
gauges of S which are convex on a compact domain C0 of C chosen to
contain X . The collection of these, for all scales admissible for ¥ ,

is

F§=UI‘§.
Seﬁ}

The scales in /53 s restricted to the domain Co s determine and

are determined by the functions . in Fg‘,‘also restricted to Co .

The configuration F is called normal if Jég £0 » that is,

if there exists a normal scale S which is an admissible preference
hypothesis for F

If S e x& s and @ € Ig then a necessary and sufficient condi-
tion for S e /ég_is given by the equilibrium conditions of ¢ with
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(1 - urxr”)g(xr) =0 (r =1,...,k) ,

where g is the gradient of ¢ .
Reversely, if ¢ 1is a differentiasble function, increasing and
convex in CO » 1t determines a normal scale S for which it is a gauge,
convex on CO : Q€ Ig « And if ¢ satisfies the equilibrium conditions
with ¥ , then, and only then, S € /g} .
It follows that the functions in -f; are the differentiable

functions which are increasing and convex in CO and satisfy the equilj-

brium conditions with .

Thus the following appears:

THEOREM. The differentiable functions which are increasing and convex in

any compact domagin C0 containing X 5> and satisfy the equilibrium condi-

tions with JF , are gauges for scales which represent in Co all the

normal preference scales which are admissible hypotheses for F .

_Thus, investigation of the scales which are admissible prefer-
ence hypotheses for F is reduced to investigation .of all the differen-
tiable functions which satisfy the equilibrium,conditions with F , and
are increasing and convex in an arbitrary compact domsin CO containing
X . Meny of these functions, each of which must represent one of these
scales, will represent the same scale. But each of these scales will be

represented by at least one, and in fact an infinity, of these functions.

5. Gradient directors

A,gradientrdirector specifies the direction .of the gradient of

a differentiable function at each of a set of points.

The equilibrium conditions, for a differentiable increasing
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function ¢ with an expenditure configuration ¥ , are just that TF ,
considered as a gradient director, should admit ¢ . For the conditions
are
g(xr) = urh(xr) s (r=1,...,k)
where A =x'g and g 1is the gradient of ¢ . Now x ) 0 ; and, since
@ 1s increasing, g ) O ; so that A >0 . (Given a differentiable function

¢ , the function A will be called the conjugate multiplier function; and

it is always positive, for an increasing function in the positive orthant.

Thus the functions being investigated are all those which are
increasing and convex, and which F admits as a gradient director.

But a convex function which is increasing at a set of points must
also be increasing everywhere in the convex closure of those points. . There-
fore if F , as a gradient director, admits a convex function ¢ , then
g(xr) = urk(xr) where .k(xr) >0, so that g(xr)‘:)o , since also
u, )0 . Hence ¢ is increasing at the points of X ; and since convex,
must be increasing throughout the convex closure X » and therefore has

a continuation which is differentiable, convex and increasing in the

compact domsgin _CO containing X .

THEOREM I. The differentiable convex functions which are increasing in

CO and satisfy the equilibrium conditions with an expenditure configura-

tion F are continuations of those which are just defined on X and are

admitted by the gradient director provided by F .

A convex gradient director is defined to be a gradient director

which admits a convex function. If the gradient director provided by an
expenditure configuration F is convex, it follows that there exist
normal preference scales which are admissible hypotheses for F

, Or

that F is normal; and conversely.
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THEOREM II. The conditions for the normality of an expenditure configura-

tion and its convexity as a gradient director, are equivalent.

L. Gradient configurations

A gradient configuration determines the gradient at each of a

*

set of points of any differentiable function which possesses it.
Any -set of gradients G = {gr} in the directions given by

U-= {ur} are of the form

& 7 ur%T ?
corresponding to any set A = {Ar} )0, of multipliers hr >0 .
The gradient configurations admitted by the gradient director
provided by the expenditure configuration F are those of the form (x,G6) ,
for any A )0, possessed by any differentiable function with gradient
gr at X, - The functions admitted by the gradient director are precisely
those which possess some gradient configuration admitted by the director.

To every such function ¢ , there corresponds a multiplier set A = {hr} o0,

determined, by the relation A, = h(xr) ; from the conjugate multiplier

function A .

The existence of a convex function admitted by a gradient director
is thus equivalent to the existence of a multiplier set A ) 0 such that
there exists a convex function possessing the corresponding gradient configura-

tion admitted by the director.

5. Skeletons
A functional skeleton specifies the value and the gradient at
each of a set of points of any differentiable function which is on it.

Thus, a set of points X = {xr} » together with a set of levels
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® = {9,} and a set of vectors G = (g } defines the skeleton
r T

2 = (X)(D)G) = {XI"(Pr’gI‘}

with base, level and gradient sets X, ® and G . The triads (xr,qg,gr)
(r =1,...,k) are the skeleton components. The condition for a function
¢ with gradient g to be on ¥ is that

@(xr) =9, g(xr) = 8, (r =1,...,k) .

Also, with @ and X given, X can be defined as the skeleton of P

on X .
A skeleton X is also determined when a gradient configuration
(X,G) is taken together with a level set ¢ . However, a gradient

configuration is determined when a gradient director ¥ is taken with a
multiplier set A . Therefore, to a gradient director ¥F together with

multiplier and level sets A,@  there corresponds a skeleton, which can be

denoted by ZgﬂA,@) > and called the skeleton on the director F for the

multiplier and level sets A, @

Reversely, given a skeleton ¥ = (X,0,G) with components
e g . . ;
(xr,¢r,gr) such that &r =x.'8, f 0, it determines a unique gradient
director F with director figures [ur;xr] such that u.'x =1, where

g

T ' ,
u, = X; « And then 3 = ZgﬁA,@) s, Where A = {Lr} .

With a fixed gradient director ¥ given, there is a one-to-one
correspondence between the skeletons X which are on it, and the multi-
plier and level sets (A,0) .

A convex skeleton is defined to be a skeleton which has some

convex function on it. Accordingly, a gradient director is convex if it
can be taken together with some level set to form a convex skeleton; and
a gradient director F is convex if it can be taken together with socme

multiplier and level sets A,0 to form a skeleton .5 (A,@) which is convex.
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6. Consistency, convexity and normality

Consider a given expenditure configuration F . It is consistent
if its preference relation Pé ; in any case transitive, is irreflexive,
and therefore an order.

Also F is normal if its normal preference spread /5} is
non-empty: /4;% 0 . In this case there exists a scale & 6/53 such that

P}Cs,

Since a scale S is irreflexive, it follows that P, is irreflexive;

¥
that is, F 1is consistent. Therefore normality for F implies its con-
sistency.

Now the convexity of ¥ , as a gradient director, has been seen
to be equivalent to its normality. It is to appear that convexity is
equivalent to consistency. It will follow that the three conditions of
consistency, convexity and normality for an expenditure configuration are
equivalent.

It only has to be shown that consistency implies convexity.

Consistency is directly equivalent to the condition:

(p) o <0, D, <0, «c. , D

s = < 0 is impossible for all distinct

ar

elements r,s8,t,...,4 from 1l,...,k .

But this condition (D) has been shown (Res. Mem. No. 21) equiva-
lent to the condition:

(D*) There exists a multiplier set A such that

%>Oy%%s+%%t+”.f%%r>o

Tor all sets of distinct elements r,s;t,...,q from 1,...,k .

But, further, this condition (A) has been shown (Res. Mem.
Nos. 18,21) equivalent to the condition

(D") There exist multiplier and level sets A,® such that
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>\'I' > 0, %rDrs > - @

for all distinct elements r,s from 1ye0o,k

Thus the three conditions D, D' and D" on the cross-structure
D = {Drs} of an expenditure configuration F are equivalent.

Moreover, it is easy to see that D' is satisfied for the A in

every A,® which satisfy D" . Also it can be shown (Res. Mem.. No. 18)

that for every A which satisfies DY ; there exists a & such that

A, @ satisfy D" .

Now consider any skeleton X » and the conditions on this
skeleton given by
" . - ' - .
'j((z) ° gr‘D 0 (Xs Xr) &, = P - @
Also consider the condition

N

F

on multiplier and level sets Ay @ in respect to an expenditure configura-

(8,0) M =0 AD >0 - P

tion F .

With 2 = %(A,®) , these conditions are equivalent:

F
Nizn,0)) <= N (a,0) .

When J«}Z) is seen equivalent to the condition that X admit
a function which is convex and increasing, and therefore a gauge for a
normal preference scale, then the existence of A,® such that LA@;A,Q) 5
already observed to be equivalent to the consistency of F , will be seen
equivalent to the existence of a normal preference scale which JF admits
on a gradient director. This latter condition is equivalent to the
existence of a normal preference scalé which is an admissible hypothesis
for F , in other words, to the condition /53'% 0 , for the normality
of 33. It will follow thus that the condition for the consistency and

normality of F are equivalent.
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THEOREM I. A necessary and sufficient condition for a functional skeleton

with components (xr,q%,gr) to be convex is that
'(Xr—xs)igs Z P - Py

A necessary and sufficient condition for a differentiable func-

tion ¢ , with gradient g , to be convex is that
(v=x)'g8(x) > o(y) - o(x) (v #x).

Therefore, if the function is convex, and is admitted by the skeleton, then,
with =x = X ¥ o= X, and g(xs) = gs » 1t follows that the skeleton must
satisfy the condition in the theorem.

Now suppose this condition holds for the skeleton. Considé} the

piece-wise linear function

®(x) = min {cpr + (x—xr)'gr} .
r=ly...,k

It is an almost everywhere differentiable convex function, differentiable
in the neighborhood of every point X, with gradient 8. and value ?.
at X, e It thus fails to be admitted by the skeleton only in that it
fails in being everywhere differentisble.

It fails to be differentiable only at the boundaries of a finite
polyhedral dissection .of the x-space. “In a neighborhood of these boun-
daries which excludes the points X, s it can be smoothed, in an_infinity
-of possible ways, into a differentiable function, preserving the convexity
and without disturbing the value and the gradient in the neighborhood of
these points. Then an everywhere differentisble convex function will be
obtained which is admitted by the skeleton. It is possible, moreover,
to construct convex functions on the skeleton which bossess any number of
derivatives.

A smoothing process which achieves this result is in accordance

with an averaging method due to H. E. Bray. For information of this
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general method, I am indebted to J. M. Danskin. Let the e-average of the
continuous function ¢ , for € >0 » be defined as the function EL
whose value at x is the average of the function ¢ in the sphere centre
X at radius € . Then ¢ is convex and differentiable. With ¢ iess
than the Euclidean distance of every point X, from the nearest singu-
larity of ¢ , the functiong ¢ and Ee coincide in the neighbourhood of
each point X, - Hence E% 1s a convex differentiable function admitted
by the skeleton. By taking the e-average repeatedly, with any suffi-
ciently small € , convex functions with any number of derivatives can be
obtained, which coincide with ¢ 1in the neighbourhood of each point X,
and are therefore admitted by the skeleton. It is noted that the derivative
of the e-average EL of @ is the everywhere defined €-average é;

of the almost everywhere defined and continuous derivative g of P .

COROLLARY. A necessary and sufficient condition for the existence of a

differentiable function ¢ with gradient g such that

ox) =9, 8x) =g,

and which is convex and increasing in a convex neighborhood containing

the points Xpe 2 is that
. - v - -
g, )0 snd (x-x)'g, >¢q Py
For, by the theorem, there exists such a function which is convex.

Now the corollary follows from Theorem 2.T.

Iet ng denote all those skeletons Zg(A,®) such that

JW&(A,@) - These will be called the normal skeletons for F . Iet ﬁ}

denote the convex functions defined on the convex closure i of X which

are admitted by a X e ng . Iet I} denote the convex increasing func-

tions defined on C which are admitted by a = ¢ K; - Then the functions
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in F} are the convex increasing continuations over C of the functions

~

in Pg - These functions P; » considered restricted to CO s provide
the functions Ig ; already described, and which are the object.of the

analysis.

THEOREM II. The consistency of an expenditure configuration F is equiva-

lent to its normality, and to the existence of multiplier and level sets

A, © satisfying the condition jﬂgA,Q) » and therefore also to the existence

of a non-empty class K_ of skeletons ZJ(A,Q) such that ,N;JA,@) . These

F
skeletons are such as to admit a non=-empty class :; of convex . increasing
functions defined on any compact domain CO containing X . The functions

in q; are the convex gauges existing in 'Co for all normal preference

scales /53_ which are admissible hypotheses for o

Thus, given F and a compact domain C containing X 5 for
every S e,ég_, such as must exist provided F is consistent, there will
exist a A,® such that uACﬁA,@) s and a convex increasing function ¢ on
ZJKA,Q) which is a gauge for S in Co -

Also, given any A, ® such that ﬁ( (A,0) » such as exists provided

F is consistent, and for every convex increasing function ® on X% (A ®) s
such as exists provided the condition /W (A,0) holds, there corresponds
a scale S ¢ .2 for which it is a gauge.

Thus the problem of investigating the scales § ¢ ’53 in the
region CO is reduced to an investigation of all the convex increasing
functions on the skeletons ZgﬁAgé) such that A@#A,@) . To this end,
there will first be considered the class of such functions on any one such

skeleton.
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7. Convex skeleton envelopes

let ¥ = zg(Aycp) , where Ng_(A,@) . Then
Z o= (qu)yG) = {Xrﬂq)rﬁgr}
is a skeleton such that

- ¥ -
g, )0, (xe-x)'e >o - g .

In (x,p)-space, consider the half-spaces I, defined by

o - 4 -
Lot x-x)e, >0~ 09,

at the points V} defined by
v, = (xr,@r) .

Every Vf lies on the frontier of H? » and in the interior of
every HS (s £ r) .

Also consider all the half-spaces I defined by

I:ow +8'x >0
where
£20, w finite ,
and
W + g'xr‘z P, (r =1,...,k) .

Every Hr isa I ; and every II contains every V} o

Iet Wi,Wb be the intersections of the Hr > and all the I,
respectively, and let @iﬂ®0 be their boundaries.

Then @i is a convex polyhedron with the Hr for its faces,
representing a convex increasing function ¢& 5 and ®o is a convex
polyhedron with vertices V& » representing a convex, non-decreasing
function ¢b .

These functions determine a pair of polyhedral dissections
A&’Ab of the x-plane, by projection of these surfaces parallel to the

P-axis. FEach point X lies in the interior of one and only one cell of
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the dissection Ai » which may be denoted by Nr s throughout which the
gradient of q& is constant, and equal to g. - Any vertex of @i is
the intersection of certain hyperplanes H},HS, «.. and may be denoted by

s - It projects into a point in the x-space which may be denoted
385000

by x . which is a vertex of each of the cells N 3N , «o. 1in the
r,s,ooo, ) : r S

dissection Ab . It lies in the interior of one and only one cell of the

o000

dissection Ai which is determined as the polyhedron with vertices XX

and may be denoted by N « Throughout each cell N of A
TySyeao rySy00. o

the gradient of ¢b is constant, and given by some vector, which may be
denoted by 8. 4 whose direction is bounded in the convex closure of
35500

the directions of .65 ++- SO that g, )0, since B, 98gs oo Jo.

,s,bau

It Hr S is the hyperplane joining the points V%,Vé, oae 4, then it is
955000

given by
. - ¥ = -
TyB85000 (x Xr,s,.uo) gr,s,o.° ¢ cPr,s,...
for some @ determined togather with g by the condition
TySy00- TySy000
that nys,ooc pagses through V},Vé, ces o

LIet @* be any convex increasing function, with gradient g¥* ,

which is on the skeleton £ , so that

it

P*(x,) =@

¥* —_
.5 8 (xr) =8,

Since it is increasing,
g* D 0,
and since it is convex
- 1% % - ¥ .
(x=x ) 'g¥(x,) > 0%(x) - 0*(x)) (x4 x)
The points
* %
VXO (XOsCP (Xo))

describe a convex surface 0% in (x,@)aspace representing the function
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9* . The half-spaces II* of the form

H;O olxex ) te¥(x) > o(x) - olx,)

intersect in a convex region W* 5 Whose boundary is ©* , which has the
I* for its supports.

Since @* is on X , it follows that every Hr is a II* and
every II* isa I . Hence, for the regions of intersection of these
half-spaces, |

KE Cxk*C Ki 3
and then, for the functions represented by the boundaries of these regions,

P, (x) < 9*(x) < e, (x) ,
with the equalities attained Just for x = X, (r = 1,...,k) .

The polyhedral functions ¢5,¢& are differentiable almost
everywhere, failing in differentiability only at the boundaries of the
dissections Ab’éi with vertices x )6y ean and X, respectively. Though
they are not themselves admitted as being on the skeleton 3 » Since they
are not everywhere differentiable, they are limits of convex increasing
function on £ , since there exist such functions ¢@* arbitrarily close
to them.

Evidently

@, (x) = min {o + (x-x)'g ).
+ r=ly..0,k r ror

A set of numbers o = {a%} such that
o =1
T

will be called a distribution, and a positive distribution if a)o,

that is O%_E 0 « Now for every positive distribution @, let

= o = a .
Xa ZI‘Xr r ’ ¢a Z¢r T

Then X, describes the convex closure X of X = {xr} as -Q ranges
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through all possible distributions. TFor every X € i there will be a
variety of distributions « such that Xo = X% « Evidently

@o(x) = max ¢, (xe 3 .

Iet CX denote the positive orthant space C translated to a
point x € C , so that
y € CX =y2DX .

Iet C, be the union of the CX for all x in the convex closure 'ﬁ of

X
X , so that
y € CX = \/z € g,« y2z .
Z
Then
fgxec ¢ (¥) (x e )
2Vely
o (x) = _
- o (x € CX)

where Ei is the complement in ¢ .of CX .

The functions ¢b,¢& thus defined are to be called the outer

and inner envelopes of the convex increasing differentiable functions on

the skeleton X .

THEOREM. Let o¥* be any convex increasing differentiable.function, with

gradient g* , such that

¢*(Xr) = Q. g*(xr) =g, (r =1,...,k) .

Iet
¢, (x) = min {p.+ (x—xr)‘gr}
r=l,se0,k
and
@O(x) £ max {@a y = o}
xgxa
where

= o =
*a ZXr r 2 Py Zmr@r
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and

Then

¢ (x) < o*(x) < @, (x)

with the equalities attained Just if =x = X, » for same r . _For.evegz

€ > 0 there exist such functions ©* with either of the properties

P¥(x) < CPO(X) +e, o¥x)> cPi(,X) - €

80 the functions P and ? > though not differentiable, are limits of

such differentiable functions o* .

8. Polyhedral preference maps

by the hyperplane ¢ = @

Cutting the convex surfaces ®0,® .

i
in (x,@)-space, and projecting into the x-space parallel to the @-axis,
there is obtained s pair of convex polyhedra through, X, which may be

called the enveloping preference levels of X, associated with multiplier

and level sets A,d for which )&éA,@) - They may be denoted by

ng =@§(A)®) s .C/ji =@i(/\,®) .

Thus, 59; is the boundary of the region determined by the inequalities

(X"Xs),gs 2 Q. - CPS (s = 1yeea,k) o

And 5@? is the boundary of the region camposed of the points
2%, (9,>9) .
Now, for any .scale 8§ ¢ Aé} » restricted to some compact region
CO containing jg » there exists a convex gauge -@ , which has, with
respect to X , a skeleton Zb which F admits as a gradient director,
and is therefore of the form
I =% (8,0) , where N (a,8) ,

? ¥
in which case S will be classified as a (A,0)-scale in /&; .
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There is a multiple correspondence between the scales S ¢ /g 3
and the multiplier and level sets Ay, such that VN;(A,Q) » since every
scale S has g variety of gauges, © , each on a different skeleton
ZB!A,Q) s> While on every such skeleton there are gauges for a variety of
scales.

But if S is a (A,0)-scale, then it is known that the locus

~

Sr -of points x equivalent to X din 8 is the strictly convex surface
determined as the level surface @(x) =»@r of the gauge ¢ » and thérefore
is bounded between the enveloping preference levels, 5ﬁ§ ,gbi obtained from
the skeleton ZgﬁA,@) 5 the three surfaces having X,. as their only common
point. This is true for every A;® such that S is a (A,0)-scale. Also,
for every A, such that JﬁéA,@) > there exists a scale § ¢ /4; which is
a (A,0)-scale; moreover, S can be chosen so that gr » in .any case
between QDE and 9Di > is arbitrarily close to either of these surfaces.

All the‘admissible preference levels ér through X, deter-

mined relative to the scales S e /4; » are thus characterized as the

strictly convex surfaces confined between pairs of surfaces 532(A,®) 3

fPi(A,@) such that Ng_(./\,@) .

THEOREM. For an expenditure configuration F = [U;X] , where U = {ur} ,

X = {Xr] > the preference levels ér through X, determined, in any

compact region CO containing g s relative to the scales § e

y s are

the smooth, strictly convex surfaces through X, between, and touching

only at X,. 5 the pairs of surfaces SD;(A’®) ) gag(A,®) which are the

boundaries of the regions

(XQXS)“gS >9, - P, (s =1,...,k)

and
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where
& = urkf ’
and.
a T Zer} ? ¢a = ZCPro'?r
for

and where
S o wheL e

i
—
B
L—

A=(N), 0 -

satisfy the condition \f@éA,@) given by
Ar >0 "hrDrs > % P
with
=u'x - 1.

D
rs r's

Moreover, there exist such preference levels lying arbitrarily close to any

of these boundaries.

9. .Ranging the cost-of-living

To every scale S e /Ag_of the costuof-livipg_iggg§b there corres-
ponds a point-determination prs = prS(S) » this being the minimum relative

cast of maintaining,at Prices belonging to X, a standard not inferior to

Xy in the scale 8§ :

p—g i u
prs(s) min u_'x .
XSx
s
and equivalently,
— ] 1
prS(S) = min u_'x .
XESS

Now as S wvaries in /5} > p._(8) has a corresponding varia-

rs

tion throughout a certain range which is now to be determined.
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Define
i . .
prs(A,cD) = min {ur”x; (:x-=:xt)"g,G qu)s - @y (t =1,...,k))
.0 .
DrS(A,CI)) = min {ur'x; X2 X, Py > cps}
where
Z = 2(4,9) and J\F&(A,cp) .

Since w )0, it follows that

O

— 3 t °
pr's(A’@) = mn {ur *o Vg 2 -q),s}

Then it is known that, if & is & (A, 0)-scale,

i o

prS(A;CD) < prs(s) < DI.S(A;CD) .
Moreover, a (A,®)-scale S can be chosen so0 that prs(S) is arbitrarily
close to either of these limits. Since every scale S e Jg_ is a

(A,@)-scale for some A,® such that N;_(A,CD) » it follows that if

pll,s(ﬂ-)

min {p]j_;s (A, ) ;Ng_(A, 2)}

and

plcfs(ﬂ-)

then Prg (8) describes the -open interval between the limits pi‘,s (¥) and

max {p(r)s(A,CD) 5N3_(A:®)} 3

pgs () as S5 ranges through jg,

THEOREM. For an expenditure configuration F = [U;X] , where U = {ur} s

X = {xr} » there exists a scale § e A’} such that Prg (8) =p if and

rs
only if
i o
ps (F) < Prg < Ppg (F)
where
ot (#) =min min (u 'x; & (1,0,%) )
rs T s
A0 x
02 (#) = max min {u.'x ; o > o )\r(®)}
rs ‘ r T g = vg? o
AO
with

= = = v -
A= {xr} , @ {cpr} and D u,'x, - 1,
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and

Xa = Zxrar » By = Z':Pro‘r
for

ar 20 F) ZDCr =1 )
and
JV"SL(A,Q) =MN>0,AD >¢ -9 (ris;r,s=1...,k)
and
N (o) EJF(A,CD) for some A

¥ T

and

L (8,0,x) ENSL(A,CD) s lex ) 29 -9 (b= 1,...,%) .

( i o

The interval Prg? prs ) may be called the asbsolute interval for

the cost-of-living index Ppg » OR the data provided by the expenditure
configuration F . Tt is defined just if 3 is consistent, this being

the condition for the existence of A,® such that J\fg_(A,@)
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