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The Optimal Weighting of Indicators for a Crawling Peg

I.Introduction

The problem of choosing indicators for exchange-rate adjust-
ment will be relevant for some time to come. Most countries do not
permit their exchange rates to float freely, and therefore must choose
some rule, implicit or explicit, for adjusting the rate. In any pro-
gram of exchange-rate surveillance, the IMF staff will have to take
a view on the appropriate indicators. Indeed, in the early seventies,
some work was done at the Fund along these lines, namely by Underwood
(1973) and Williamson (1973), and the problem was discussed by the
Committee of Twenty (1974).

To our knowledge, the definitive study of the problem to date
is Kenen's (1975). He did an extensive simulation study of numerous
alternative schemes and found that a reserve change or basic balance
indicator would not stabilize reserves, whilst a reserve indicator
resulted in large fluctuations in the current account. He also noted
that this reflected the problem of simple proportional or integral
stabilization rules analyzed by Phillips (1954), but did not pursue
a Phillips' analysis. Even though the importance of Phillipg!
early contribution has been more widely noted in the macro litera-
ture, perhaps because the title of his paper refers to a "closed
economy', he also_notes that "The general principles of stabilization
(...) could equally well be used, for example, in investigating the
stability of adjustment in international trade or the problems in-

. . ‘s . 1
volved in commodity price stabilization schemes."



In this paper we generalize Kenen's results and relate them
to an optimal control approach to the problem. Kenen studied
arbitrarily specified adjustment mechanisms; we wish to derive ap
optimal specification explicitly. 1In section II we generalize
Kenen's results analytically, and derive weights for the current
account and reserve target that yield monotonically stable adjust-
ment. We see that a current account (or, in general, flow) indicator
is stable but randomizes reserves, while a reserve indicator yields
a limit cycle. Conditions for a Kenen-Phillips formula weighting
the two to give stable results are presented and illustrated.

In section IIT we derive an optimal control solution for
adjustment to a given current account disturbance. Since this
formula is a linear control rule, it can be derived as the solution
of the minimization of a quadratic minimum energy loss function
subject to a linear equation of motion. Thus optimal weights for
the current account and reserve target are derived for various
values of the derivative of the current account with respect to the
exchange rate (Be), and the weights of the output and control vari-
ables in the social loss function.

Finally in section IV we derive the adjustment equation in a
stochastic framework with continuous current account and exchange
rate multiplier shocks. The separation theorem of stochastic
control, known in economics as the principle of certainty equiva-

lence, implies that the linear control rule remains applicable,



given the expectation on the state variables conditional on the
path of the output variables. If the two are uncorrelated, we
therefore have an expression in the Kenen-Phillips form of section
II.

The values of the optimal weights for various values of the
parameters of this pfoblem are compared with those obtained for the
deterministic case. It is found that the weight of the current
account in the optimal control rule is generally higher than the
welfare weight, and also higher than the lower bound of Section IT1.
When the variance of the effect of the exchange rate on the current
account increases, however, the optimal weight approaches the lower
bound and becomes smaller than the welfare weight, as was to be
expected from the static analysis in Brainafd (1967). The results
are summarized and conclusions are drawn in Section V, which includes

the summary Tables 5 and 6.

IT Flow vs. Stock Indicators

The purpose of this section of the paper is to expose the analytical
problem of the choice of indicators as clearly as possible, setting
the stage for the optimizing approaches of the following sections. There-
fore we begin with the simplest model that illustrates the problem.
Assume that the monetary authority in a given small open economy has
already decided not to permit its exchange rate to float freely. This is
necessary for the question of choice of indicators to arise. Further,

assume zero capital mobility so that the current account balance B in



foreign currency is the rate of accumulation of reserves,
(1) R = B.

These two assumptions are consistent; with no stabilizing speculation
on capital account, a foreign exchange market based on trade flows
. 2
alone might well be unstable.
The average current account balance over a period long enough
to ignore J-curve effects of changes in relative prices will be an

increasing function of the real exchange rate, defined as
D = eP%/P,

Here e is measured in units of home currency per units of foreign
exchange and P*/P is an appropriate relative price index of domestic
and foreign goods.

The current account balance can be written as

B(p) = X(p)/p - M(p),

where X denotes exports in domestic currency and M denotes imports in
foreign currency. The effect of a real devaluation around equilibrium
is given by

dB = Mx @ +4 - 1) ,
X m

P
ey (In,) .
where d, = ——— ) i=x,m,
i n.+e,
i i

is a combination of supply (n) and demand (e) elasticities of exports
and imports. By appropriate choice of units, equilibrium imports and
the equilibrium exchange rate are set to one, so that %g— = dx+ dm— 1,

where dx and dm are the absolute values of the export and import



elasticities,

Furthermore, we neglect income effects on the current account,
as well as the effects of monetary policy and income on domestic
prices, by assuming that domestic absorption is manipulated by
aggregate demand policy to keep internal balance. We therefore set
P = P* = 1 and focus on the dependence of the current account on
changes in the nominal exchange rate.3 We also define the policy
horizon so that the "Marshall-Lerner condition" holds.

Under these conditions, we can express the current account

balance as an increasing function of e :
(2) B = B(e) ; Be > 0.

Note that the model could be amended to include capital flows as a
function of uncovered interest rate differentials. 1In that case,
given interest rates, exchange rate expectations would have to de-
pend on the current level of the exchange rate, and be such that
Be> 0, including capital flows in B. This is consistent with a
variety of expectations formation mechanisms. Adding capital move-
ments in this "o0ld" way would reduce analytical clarity without
adding anything to the results.

A position of external balance is defined by the attainment of a
given target level of reserves R*, with a zero balance on current
account.4 The latter condition defines a target value for the ex-
change rate:

(3) B(e*) =0,

and R = R*, e = e*defines external balance. The problem of choice of

objective indicators is to choose a rule for adjusting e, following



observations on B or R, that converges to external balance.
One candidate suggested by Cooper (1970) would be to key
adjustment of e to reserve changes, which, given (1), amount to

the current account balance: -
(4) e = - B(e).

This is a proportional stabilizer, in Phillips' terms. As Kenen

5 .
says, "It matches a flow control to a flow target." Given our
assumption that Be > 0, it is stable around e*. Linearizing, we have

e =~ 2B (e - e¥%),
e

and dé/de = - Be < 0. But there is no mechanism to move R to R¥
with this rule. The time path of R will resemble a random walk. A
current account disturbance moving e* will be eliminated gradually
as the adjustment rule (4) moves e to the new e%*. During the adjust-
ment period R will change. When e reaches e* and B is again zero,
there will be no further change in R.

Another candidate, proposed in 1972 by the U.S. Secretary of the
Treasury,would be to key adjustment of e to deviations of reserves

from the target:
(5) e = - A(R - R%),

This is an integral stabilizer in Phillips' terms. As he says, "A
country which attempts to regulate its current balance of payments,
whether by means of internal credit policy or quantitative import
restrictions, and in doing so responds mainly to the size of its

foreign reserves (i.e., to the time integral of its current balance



of payments), is applying an integral correction policy which is
likely to cause cyclical fluctuations similar to those illustrated
fin his paper]. The short cycles that have occurred in the balance
of payments of a number of countries since the war may be in part
the result of such action". 1In Kenen's words, "the rule marries

a flow control to a stock target, a union that is always apt to be

unstable.”7

Indeed, it leads to a imit cyele in e(t). To see'this, differentiate

the rule in (5) with respect to time, and linearize around e%.
& = AR = - AB(e) = - ABe(e - e%*),

The roots of this second-order differential equation are purely
imaginary and equal to + i /Xuﬁg* . If the system were to-begin
at R = R*, e = eX, a current account disturbance would set off
an infinite cycle in e, B, and R.

Phillips' prescription was to combine the two rules in (4) and
(5). The essential idea is to add a bit of the integral stabilizer
as in (5) to the proportional rule of (4) in order to keep a stable
adjustment system moving toward the reserve target. We can express
this by weighting the two rules:

(6) e =- 8[yB(e) + (1-y) (RR*)]; 0 <y < 1.

Here 6 gives the sensitivity or speed of adjustment of e with respect

to the weighted average of off-target values of B and R. By appropriate



choice of units, we can scale 6 to unity.

We can find a range of values for which will yield mono-
tonically stable adjustment of e as follows. Differentiate (6)
with respect to time and linearize B around e* to obtain the second-
order differential equation.

é" + vy Bee + (1-y) Bee = Q.

The roots are given by

1 2.2

For monotonic stability,y should be chosen such that both roots are
real and negative, which requires that the square root term be

positive, or that

2
Y o 1=y
&7 B_

This, in turn, gives us a quadratic equation in vy with roots given by

r

=i

(-1+ V148 )

e

1 T2
Since y is positive, we discard the negative root and obtain the

expression for the permissible range of Y, depending on Be.

(7) 1> vy > %~ (-1+vV1+ B, ) > 0.

e

To obtain an intuitive understanding of the result, recall that
Be = dx + dm - 1. If both demand elasticities are unity (in absolute
value) so that Be = 1, we have y > 0.83. As Begoes to zero, the bound
for y approaches unity; as Be goes to infinity, it approaches zero.

Some values for Be and y are given in Table 1.



Table 1: Lower Bound for vy, Depending on Be

.1 1.0 10.0

.98 .83 .46

100.0

.18
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As Be increases, less weight must be given to the current account
balance to get a given adjustment of the current account. With Be
around ten, a "reasonable" weighting of the two targets would be 0.5
for the current account and 0.5 for the reserve deviation. A lower
weight on the current account would cause instability.

III. Optimal Adjustment in a Deterministic Framework

Equation (7) and Table 1 give the permissible range of weights
for the stock and flow targets that yields monotonically stable
adjustment to a current account disturbance in the Kenen-Phillips
framework. Still considering adjustment to a one-shot current account
disturbance, we now turn to optimal control analysis from the view-
point of external balance. In this context, the problem involves
minimizing the square of the difference between actual and desired
current account and level of reserves, with minimum exchange rate
changes. The desired level of the current account and the deviation
of reserveslfrom some given level R* is taken to be zero. The

quadratic minimum-energy loss function is then
L= 2 (1-)B(e)? + a®r0)? + c(2)?].

Here 1-o is the welfare weight for current account imbalance, and o
weights the distance from the reserve target, both being measured
relative to the cost of exchange rate variability, c.

As in section II the model of the economy is given by equation
(1):

é = B(e) = Be(e—e*),

where B(e*) = 0 defines e*, In this simple case the output

vector is just
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and we write

1l

(8) w = Cz,

where C =

151

and z= [2

Z Ei] is the state vector.

The state vector is also expressed as a difference of actual
and given desired values, so that we can treat the problem as a
simple time~invariant output regulator problem. Strictly speaking,
when the desired values are not zero we cannot assume that the
minimum loss of the time-—invariant problem is finite, or that a
control exists. By writing the state variables in deviation form,
however, we are able to ignore the forcing'function and therefore
work with infinite horizon.-g/ We write our objective function as

1
J=3

fw(w'DW + cu'u)dt ,
0
]

where u = [g is the control vector,

Ea 0 J .
0 1-o
Given (8), we have a convenient state space representation of

9/

and D

our problem.
9) Min %—fo(z'Qz + cu'u) dt

subject to z = Az + Bu and z(0) = zq,
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G

= t —3 a .

where Q C'DC [E (1-0) BeZ:],
A= 4] Be :
0 0
_ .0
71
Defining the vector of costate variables y = (y2) we have the Hamiltonian

H =-% (z'Qz + cu'u) + y' (Az + Bu),

which is minimized at each instant of time. The marginal conditions

then are
in
(%) 'gg =cu' +y'B =0,
. 32n . - . - -
since —5 = cl is positive definite. By the minimum principle,we have
Ju
g?, = Z = Ax + Bu;
oH .
- g =¥ =-Qz - A'y.

Using (10) transposed we write the canonical equations

. l ' .
z Az ~ - B'y;

y = -Qz - A'y.
For time invariant A,B,Q and an infinite horizon problem, the costate

variable is given by

(11) y = Kz,
where K =(F11 Kpp| = 1im K(t)
k k >0
12 22

is a positive matrix given by the Riccati equation:
(1) KA -A'K + 2K BB'K - Q = 0.

By substitution we derive from (12) equations for the elements of K:
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2
Lk, =
c
k,.k.., =k__B H
(13) '% 12 22 11l e
2 2
_% k22 = 2Bek12 + (1-a) Be'

Given the positive definiteness of K’Hkll’k12’k22> 0,s0 :that the solution is

k12 = Yca ;
kyy = Be/éc Vac/B +(1-a)c ;
ki = /&(2/&E/Be+(1-a) .

The optimal control @ is linear in the state vector z, and from'(iO) and

10/

(11), satisfies the equation—
a~ l ]
(14) i=-= B'Kz,

so that it can be written as a function of k12 and k22:

L~ ‘ T i
n, =/alc(R, ~R¥) - /ﬁ/a/c/3e+-c (1-0) B (e - e%) .

Defining 6 = Va/c*V&Va/c/Be+ (1-~a)/c |

and 1 - vy =~% alc

this yields a familiar expression for the optimal rate of crawl

e
n

- 0[yB(e) + (1 - y) (R -R¥)].

Some values of 6 and y for values of Be,cland ¢ are shown in Table 2.



Table 2

Alternate values of @ and ¥y

Values of 1-a

c=1 0
Value of Be 0 ¥ 0
.1 4.54 .84 5.47 .82
1.0 2.09 .66 2.41 .59
10.0 1.51 .53 1.45 .31
100.0 1.43 .50 1.14 .12
c = .,5 0
Value of Be o y 0
0.1 .14 5.58 .82 6.73 .79
1.0 .14 2.73 .63 3.10 .54
10.0 .14 2.10 .52 1.95 .27
100.0 .14 2.01 .50 1.58 .11
c=.1
Value of Be 0] Y C)
0.1 .16 9.29 .76 11.11 .72
1.0 .16 5.31 .58 5.67 .44
10.0 .16 4.57 .51 3.66 .20
100.0 .16 4.48 .50 3.41 .07
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As long as there is a reserve target, so that o # 0, the table is
consistent with the result of the previous section that the weight
on the current account increases as Be decreases. In the case of
Be= 1, weighting equally the two targets and the control implies that
the optimal current account weight is .63 rather than.83 from Table
1. Note, however, that 6 is 2.73, compared with the implicit value
of unity in Table 1. Thus the implicit lower found for this value
of Be is 0.30 (=0.83/2.73). This confirms the need to supplement
the instability analysis of section II by an optimizing approach.

The table shows also that the effect of the weight attached
to exchange rate variability is to increase Y , particularly for
low values of Be' When Be= 0.1 and o = .5, the weight on the current
account increases from .76 to .84 as c rises from 0.1 to 1. However,
when Be = 100, v is unchanged at.5. This effect is weaker when there
is a pure reserve target, so that a = 1. Note also that values of c
larger than one Would tend to lower 6 so that we could obtain an im-—
plied lower bound for 9 larger than unity.

In the case of a pure current account target, o = 0, it ig clear
from Table 2 that the weight on the current account does not change
with Be, but that the implied lower bound declines with the decline
in ¢ from the values in Table 1 where c = 1. Since the effect of

changes in ¢ is quite clear » we will set it




16.

at unity for the remainder of the paper, so that we will in fact
be measuring o in terms of a unit cost of exchange rate variability.
Let us now consider the case in which future utility is dis-

counted at a rate p, so that the minimand in (9) becomes
1l ' 1 - pt
(15) E—f (z'Qz + u'u)e dt.
0
Then the Riccati equation in (12) becomes
(16) ~KA -A'K + pK + KBB'K - Q = 0,

and equations (13) for its elements become

2
K, = 40k =0
kigkgp = kpgB, + 0k, =0

2 2

< =
Ky, = 2k;B, = (1= o) B2 + ok, = 0.

Solving out for kll’ which does not enter the optimal control
solution in (14), we obtain two second-order equations which can be

represented in k space. This is done in Figure 1. It is

.
<

127 22

clear that the intersection of the two curves at Ep is to

the soutwest of R, where the rate of discount is zero and the co-

efficient on reserves is independent of the coefficient on the current

account. Note that-given c- larger values of Be bring Ep closer to R,

as shown in the 6 column of Table 3, which is comparable to the 8

column of Table 2 above. The weights y are however closer to those of

Table 2 for lower values of Be. As expected, discounting reduces the

sensitivity of the rate of crawl to the indicators but this reduction is

more than offset by a large value of the "Marshall-Lerner condition" so

that when Be= 100(anda = .5),y = .47 rather than .50 as in Table 2.
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Figure 1

The coefficients of the Riccati matrix

E,
p
N
/ / B Vc(l-a + 2Yoc g
o c(l-a uc/Be) k22



Table 3

Alternate values of

6 and vy
forp = .2
1-a 1
P Y 6 Y 6 Y
.1 .41 1 2.51 .84 3.34 .81
1 .91 1 1.78 .67 2.07 .58
10 .99 1 1.35 .47 1.38 .31
100 .99 -1 1.35 47 1.13 .12
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IV Optimal Adjustment in a Stochastic Framework

To analyze the problem within a stochastic framework, we will
modify the model given by equations (1) and (2) above. While we
still assume that the exchange rate can be controlled exactly, we
introduce an additive current account disturbance W, We also
introudce uncertainty regarding the effect of the exchange rate on

the current account. This '"state-dependent noise'" is modelled as an

additive disturbance Wy to Be’ possibly correlated with Wye If we

' R . . 2
assume further that wl and wz are Brownian motion with o, dt and

1
2 . . \ . .
9y dt as variances of their respective increments, the change in

reserves can be approximated around equilibrium by a linear stochastic

differential equation of the form
= ¥ [ - * .
(Bedt + dml) (e - e*) + dwz
The state representation of our system becomes

(18) dz = (Az + Bu)dt + Slzdt + Szl dt,

i
we
e
1
H
N
v

where S.
i

l'

~

|
—
=
et
—

We now wish to minimize

E, 6 L (" 8z + u'u)dt,

where the expectatlon E, is taken conditional on the steady state of

0
the system, z = 0, subject to (18) and to z(0) =



20«

Define 1
Tl
J(z,t) = min E_ S =(z'Qztu'u) ds,
u t t 2
and
(19) t(u,z,0) =3 (' Quru'w) + XD,

whereéﬂ is the Dynkin operator.

By Ito's Lemma we find

2 12 2
dJ = Jt + I J dz, + 2 5% 3z Jz.,z, dz, dz.
i=1%; * i=1j=1 *+J 1 ]

By definition

LW =+ B (d))

so that

(20) = 1 _:_L_ 1qt tqQr
X(J) I+ I (AztBu) + 3 (2 81 F 1'85) J (5,z45,1) .

By Bellman's theorem we know that there exists a control rule @

such that, from (19),
(21) d(u,z,t) = 0.

Given (21), Ve minimize (i%9) with fespect te 11 and sbtain the control

rule

-~ = - 1 .
(22) {1 B Jz

Substituting (22) into. (20) we can write the optimal value of % as

[s l \i l ] 1] 1] l 1 L 1 \i
= -z + J'Az + = + 1
(23) 52 Qz 5 Jz BB Jz Jz z 5 2 SlJzlez 1 Sszlez
+ 317817 s 143 =0 .
2~ 2 zz 2~ t
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To evaluate the partial derivatives of J consider terminal loss

. a 12 .
from time zero to time zero + A.——/ This can be written as

min

JT(zo,te) = J3,(z .t +4) +E u

S ‘%(Z'OZ + u'u)dt .
T-A

Make T very large so that the expected value of the integral

approaches the steady state value L. Then, dropping T subscripts,

we obtain

J(z,t) = J(z,t + A) + AL

s

so that

Lonsider now J as a polynominal in z such as

J =12z + kz + ¢,

where
k =
so that
J, =Kz + k', and

(24) 3 =K.
zz

Shbsfituting into (%3) and collecting terms we have

-% z' [KA + A'K - KBB'K + siKsl + Q] z
+ [k'A - k"BB'k + %'S'Ksl] z
L -% KBB'kK+E 1'S'KS.1 =g .
2 2~ "9 2%
K dk d .
- The terms in brackets are equations for-é— - and-—g, which for

dt’ dt dt
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sufficiently large T have approximate solutions

(25) KA + A'K - KBB'K + S1KS, + Q = 0 ;

(26) k'A - K'BB'k + 1'S)S. = 0 ;

(27) 1 1'S'KS.1 - £ kBR'K' = L.
22727720 7 2

From (25) we find the equations for the elements of the Riccati

matrix as

kig = kpyoy =a;
kig Kyg = kyq B3

2 2
k22— 2 klZBe = (l—a)Be .

Eliminating kll’ we find that the first and third equations define
a hyperbola and parabola respectively in klz, k22 space, just as in
equations (17) above%é/ Now the parabola is the same as the third
equation in (13) above whereas the hyperbola is upward sloping;’their
intersection E0 is to the north east of point R, as shown in Figure

1 abo&e. The larger 01> the further away will E0 be from R, in the

same way that a larger p brought Ep closer to the origin and away from
14/

R
Given the elements of K, we solve for k in (26) to find

k49

k., =—5— o, ;

1 B 2 12
e
(28) k22
k., = o}

2 B 12 ¢
e
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Even though we minimized loss conditional on a = 0, the
variance terms make it non-zero in the steady-state, as can be seen

by solving for the value of the loss function in (27):

2
(29) L =_l g2 k12k22 1 k22 c2
2 2 B 2 2 12
e Be

Note that if the two distufbances are uncorrelated the optimal
control cannot reduce the loss and that the zero loss optimal weights
are independent of 02.
Now using (22) and the first equation in (24) we find the optimal

control rule to be
(30) i=-B"(Kz + k') .

Thus, as expected. from the separation theorem, the rule is the
same as in the deterministic case when the two disturbances are un-
correlated, so that the forcing term k' is zero. Using (28) we can

express the rule in (30) in terms of the k and k22 coefficients, or

12
in the 6, y notation of (8) as:
&=-6 [y (B(e) +o0,,) + (I-y) (R-R¥] ,

where 6 =k, + ky,/B_ 5 1-y = k /0

Some values of 6 and vy for the usual values of B and a and three
e
values of 0., are shown in Table 4. The optimal rate of crawl depends,
in addition, on the covariance term 012. If the additive and state

dependent disturbances are negatively correlated, the optimal rate of

crawl is less than if they are uncorrelated. However, in (29), loss



Table 4: Alternate Values of 9 and v for

Different Values of ¢

24

1
1-a 1 .5 0
B
€ 0 Y 0 Y 0 Y
2:
oy .1
B, = .1 2.66 .91 | 5,35 .82 1 6,30 .79
1 1.22 | .91 | 2.23 | .65 2.50 .58
10 1.11 .91 .56 .52 1.51 .31
100 1.10 | .91 | 1.45 | .50 | 1.20 .12
2,
O'l-
B = .1 40.10 | .50 | 40.55 .51 | 40.60 .51
e
1 4.82 | _sp 4.80 | .48 | 5.02 .46 i
10 2.20 | .50 2.14 410 1,75 .29
100 2.02 | .50 1.87| .39 | 1.20 .12
2
oy = 4
B, = .1 |400.06 | .20 [400.00 | .20 i400.00 | .20
T
1 40.61 | .20 | 40.35 [ .20 | 40.07 | .20
10 7.39 | .20 | 6.23| .20 4.56 | .19 |
100 5.20 | .20 4.00 | .19 1.38 .11
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only depends on 02

1 and the square of the correlation coefficient, so

that the sign of the covariance has no effect on loss.

Aside from the effect of the covariance, which is not included
in Table 4, the interpretation is similar to Tables 2 and 3 above.
In fact, we notice that the offsetting of the overall sensitivity 6
by the size of Be’ which was pointed out in connection with Table
3, holds for the stochastic case. The strong effect of the variance
term of the state noise is also evident from the table. Indeed, when
the standard deviation of the state-dependent noise is 2, the optimum
weight on the current account is 0.2 for virtually all of the values of
o and Be that have been used. The exception is the combination of a
pure reserve target and "infinite" elasticities (a= 1 and Be = 100).
In that case the table shows a drop in the weight on the current account
from 0.2 to 0.11. 1In the case of a pure flow target (o= 0) we find

that, just as in Tables 2 and 3, the optimum current account weight

does not depend on Be' However, while in the deterministic case the
current account weight was always unity, now it ranges from 0.2 when
variance is 4 to 0.91 when variance is 0.1l. Also, in that case, the
sensitivity parameter 0 declines with increases in Be whereas it
increased with Be in the discount case of Table 3.

In the equal weight case (a= .5), low varianée yields optimal
weights that are very close to the ones obtained in the deterministic
analysis. For large Be’ in fact, these weights are close to the no
discount case of Table 2. For example, when Be = 10, vy = .53 in Table 2

and y = .47 in Table 3. When Be = 100,y remains unchanged in the
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discount case of Table 3 and it is equal to 0.5 in the cases of
Tables 2 and 4.

When variaﬁce is unity, however, the current account weight
drops substantially and the range is reduced from .82 - .50 to .51
- .39. As mentioned, the uniform value for a variance of 4 is 0.2.
As y varies less, the range of the sensitivity parameter § increases

2
substantially with the variance. Thus, when ¢, = .1, 0 has a range of

1
the same order of magnitude as in Table 2. (5.35 to 1.45 vs. 4.54 to
1.43), whilst in the high variance case the range is 400 to 4. It
should be pointed out that if the variance of state-dependent noise
is too large, an optimal control will not exist. The same would be

true, a fortiori when control-dependent noise is incorporated' in

the analysis.

V. Summary and Conclusions

The numerical findings from section II - IV are summarized in
Tables 5 and 6 where the values of the current account weight y , the
sensitivity coefficient 6, and the coefficient of the current account in
the optimal rule (=y® ) are listed for o = .5 and for B, =1 and B = 100
respectively. The implied lower bound is obtained by dividing .83 by 6
and permits comparison of the weights for a given change in the exchange
rate; this is subject to the proviso that, in the stochastic case, the
change in the exchange rate would be larger or smaller depending on
whether the state dependent noise is positively or negatively correlated

with the additive disturbance. If the variances are equal, in fact,
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this might mean a difference as high as + 4 multiplying the co-
efficient on B in the tables.

The tables bring out the results that have been emphasized
earlier. They can be summarized as four points.

First, the low variance (oi = .1 in the tables) and deterministic
discount cases bracket rather tightly the deterministic no-discount
case. For Be = 1 the range of vy is 0.65 to 0.67 (no discount vy = .66) and
the range of the implied lower bound is 0.37 to 0.47. For Be =.100
the range of vy is 0.65 to 0.67 (no discount vy = .50) and the range
of the implied 1ower bognd is 0.124 to 0.133. Second, the effect
of discounting in reducing the sensitivity of the rate of crawl to
the indicators is more than offset by large values of Be. For
example, in Table 5, with Be = 1, v in the deterministic discount
case is higher than both y with no discount and vy in the stochastic
low~variance case. 1In Table 6 where Be = 100 v with discount is
lower than the other two. " Third, the sensitivity parameter 0 is
reduced as Be increases. This can be seen by comparing Tables 5 and
6. The effect is more pronounced in the stochastic low-variance case
and less pronounced in the deterministic discount case. Fourth, and
perhaps most important, both. tables show again that the effect of
a large-variance -~ Gi = 4 or larger - are quite strong. When oi = 4,
the lower bound goes to .02 in Table 5 and to .05 in Table 6, while
® increases to 40 and 4 respectively. This is not surprising
since, for larger values of the variance of the state-dependent

noise, an optimal control rule will not exist.
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Values of Adjustment Parameters for o = .5; Be= 1
coefficient implied
Section Description Y 8 of B lower bound
II Lower bound .83 1
ITI Deterministic
no discount .66 2.09 1.38 .40
IIT Deterministic discount
o = .2 .67 1.78 1.19 47
Iv St;chastic
i .1 .65 2.23 1.44 .37
§2= 1 .48 4.80 2.30 .17
§2= 4 .20 40.35 8.07 .02
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Table 6
Values of Adjustment Parameters

for a = .5; Be = 100.

coefficient fmplied
Section Description Y G ‘of B lower bound
I1 Lower bound .18 1
Deterministic
111 ‘ .50 1.43 .715 126
no discount
111 Deterministic
discount
p = .2 47 1.35 .635 . .133
1V Stochastic
) .
Jop=-1 0 e 1723 1 I
',,o% =1 . .39 1.87 .729 .096
.0% = 4 .19 4.00 .760 . 045
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This paper has shown that the Kenen-Phillips formula for the
optimal weighting of indicators in a crawling peg is obtained in
the various situations of sections II - IV, given the simplest
model of the economy and the definition of the loss function in

terms of external balance only.

In all cases the optimal formula is a weighted combination
of targets with an additional parameter for the desired speed of
adjustment. With a low variance of the state dependent noise,
equal weights given to the current account and reserve targets
and a unit cost of exchange rate variability imply equal weights
of the current account and reserve indicators when import and ex-
port elasticity are high. When elasticities are low, however,

the optimal current account weight increases to about 2/3.

The optimal speed of adjustment 0 is very sensitive to the
estimated value of Be and ol. However, if we ﬁormalize the speed
of adjustment to unity, Tables 5 and 6 show the criterion of in-
stability derived in section II substantially understates the cur-

rent account weight and that the degree of understatement increases

as elasticities increase.

In sum, while we have shown that the optimal indicator is in
general a weighted combination of the flow and stock targets, the
numerical results suggest that the quantitative choice of a for-
mula will require careful econometric estimation in each particular

case.
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Appendix

The eigenvalues of the system (9), with ¢ = 1 for simplicity,

are given by

- _ Eg /E;a +
2

(A1) ]23_‘/_&_ * ‘/1'0"‘ 2_‘/_9‘_

B
e

f1°%2
The system can be seen to be stable. Using the same values of
o and Be as in Table 2, we compute alternative values of r, and r,

in Table Al. As shown there, when @=.5 the system is monotonically
stable for high values of Be and oscillatory for low values of Be'

Also, with no reserve target the system is always monotonically

stable, but with no current account target it is always oscillatory.

Table Al
Values of Values of o
Be 0 .5 - i 1.0
it Ty Ty ) Ty To

.1 -.1 =192 (1+41) {191 4) }-.223(1+1) | -.223(1-1)
1.0 -1.0 - .69 (1+i) |-.69(1-1}.707 (1+1)| -.707(1-1)
10 -10 -7 -1 12,23 (1+1)[-2.23(1-1)
100 -100 -70.7 -1 -7.07 (1+1)|-7.07 (1+1)

The solution of (9) is of the form

Z
t

where

exp(Gt)zO ,

G = A - BB'K, and,
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Be I L 1 exp(r,t) O rZ/Be -1
-T; rl/Be r2/B 0 exp(rze —rl/Be 1

exp(Gt) =

]
]

Consider the case where reserves are initially at their
target level, so that Ro= R*%¥, Then the motion of the system
is given by

(A2) _ ;_%; [exp(rlt) + exp(rzt) ] B(eg)
2 71
, 1

t rz—rl

(4
I
%
I

[—rlexp(rlt) + rzexp(rzt)](eo— ex),

The minimum value of the loss function associated with the

feedback rule in equation (14) can be written ag:

1

1
L = Z z' K = =
2 2 7 Kople,

1 2
t t 7t 7 K1 Re-R%Y™ + —e*)2+ Kk —R*) (e _-e*).

12 Ry

Substituting the eigenvalues and the elements of the Riccati matrix
for the deviations of the state variables from their given equilibrium
levels, we can express minimum loss as a function of the two parameters
o. and Be. Note that in this deterministic framework, loss is zero in
steady-state where z = 0.

Substituting from(Al)into the exchange rate equation in (A2), we

express the exchange rate path as a function of the two parameters o

and B :
e
1
- ek = (g - a%k - -
e~ e 2(e0 e )[(a2 al)/w (a2+ al)],
///B (1-a)-2va
e
where =
Be(l—a)+2/af
and a, = exp(r.,t) ;3 j = 1,2.
] P J J

3
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In the case of a pure reserve target,a = 1 and ¢ i so that

the exchange rate path oscillates. It is given by:
e.= 2(e - e%) [(ay-a;) - (a+a )il + e*i.
t 2 0 271 271

In the case of a pure current account target,y = 1 and the

path of the exchange rate is particularly simple. It is given by

= % (1-
(A3) e~ e a + e* (1 al).

By integrating (A3) over a given interval, say one or two years,
we can rationalize the neglect of J-curve effects mentioned in the
text and express the average value of the exchange rate in period
L as:

e, = eoeg + e* (1- 62), |
wheree£=_ %I exp [rl(z—l)][l-exp(rl)].

As in the analysis of Kouri (1978), the average exchange rate
for the 2'th period is a weighted average of the initial and long run
levels, where the weight of the initial value declines over time.With
Be= 1, Table Al above gives rl= -1 so that the weight on the initial

value becomes 7.8 x 10—5 in the 10th year. Values for the first five

years are given in Table A2 below.

Table A2

8 .632 .233 .086 .031 .012
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Footnotes

See Phillips (1954), p. 305 footnote 1 . The import-

ance of this work is emphasized in the first paragraph of Turnovsky
(1973) and in the preface of Aoki (1976), for example.

See Branson-Katseli (1978) for the fully developed argument.
While it would be easy to set up a simple model allowing for the
usual macroeconomic features, the complete optimization problem
is beyond the scope of this paper.

The extensive literature on optimal reserves was surveyed in
Williamson (1973a). See also Bilson-Frenkel (1979).

See Kenen (1975) p. 128. Cooper's proposal is analyzed on p. 118
and''given good marks" in the conclusion on p. 147.

The outline of the proposal presented at the Annual Fund Meeting
is in IMF (1972), p. 34-44, esp. p. 39-40. The full document

is in CEA (1973), p. 160-174. Alternative proposals are repro-
duced in C-20 (1974) and discussed in Williamson (1977). See

Underwood (1973) for a listing of similar proposals.

See Phillips (1954), p.298 footnote 1 and Kenen (1975) p. 128. The
conditions for the instability of the reserve target indicator, as
well as the changes in reserves indicator when there are capital
‘flows, were derived in a complete model of the "small open inflation-

ary economy' by Martirena-Mantel (1976), who concludes that her
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results "seem to agree" with Kenen's. Recently,still in
connection with the "Southern Cone problem'", this instability
was obtained in a variety of portfolio balance models.
The homogeneous system we work with has of course the same
eigenvalues as the inhomogeneous one. The consequences of
discounting are analyzed below.
Note that the system (8),(9) is both controllable and observable,
since the rank of (Bi{AB) and (C'|A'C) is two.
The minimum value of the loss function and the explicit solution
of the system are found in the Appendix.
See a similar derivationvin Macedo (1979), Appendix 1. Also Chow
(1979).
See Chang-Sketler (1976) for a similar derivation.

2

If we were discounting and Ul > p the intersection would be at E,

on the hyperbola to the left of R and on the parabola cutting the

k22 axis at Be(/i:gf:—gz— g.
The similarity between state depéndent noise and ‘a ''megative
discount" has been pointed out by Turnovsky (1973). Note how-
ever the difference in this model between (16) and (25) and the

difference in the magnitudes of the parameters discussed below

in the text,
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