AUTOREGRESSIVE MODELLING AND CAUSAL
ORDERING OF ECONOMIC VARIABLES*

Cheng Hsiao

Econometric Research Program
Research Memorandum No. 274

December 1980

Econcmetric Research Program
Princeton Unilversity
207 Dickinson Hall
Princeton, New Jersey



AUTOREGRESSIVE MODELLING AND CAUSAL ORDERING

OF ECONOMIC VARIABLES *

by

Cheng Hsiao
Department of Economics
Princeton University
Princeton, N.J. 08544

and
Institute for Policy Analysis

University of Toronto .
Toronto, Canada M5S 1Al

FIRST DRAFT ~ May, 1979
REVISED - November, 1980

Abstract

The use of auforegressive modelling of economic variables is
explored. A multivariate generalization of Wiener-Granger notion of
causality is suggested. Propositions about population properties of
various causal events are derived. These propositions may be used to
interpret the results as well as to check the empirical implications
of various variants of models and in ruling out a number of variants as
being inconsistent with prior theorems. Canadian money, income, and

interest rate are used as an example to illustrate the methodology.
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1. Introduction

Recently, Sims (1980) has persuasively argued the advantages of
constructing economic models without restrictions based on supposed
a priori knowledge. He suggests that in a first stage model construction
we treat all variables as jointly dependent and fit an unconstrained vec-
tor autoregression to avoid an infection of the model with spurious or

false restrictions.

It is ome thing to fit a vector AR model; it is another thing to
interpret the empirical results. One of the central concepts in the dis-
cussion of econmomic laws or econometric models is that of "causality".
Unfortunately, as Granger (1980) has remarked, "the definition of
causality as a concept has more people knowing what they do not like than
knowing what they do like". Zellner (1978) has suggested a definition of
causality in terms of "predictability according to well thought out econo-
mic laws'". While we agree with this definition, there is a practical
difficulty in applying it to model construction with time series techniques.

The definition essentially assumes that in order to establish a causal



ordering we must have a priori knowledge. But an empirical model build-

ing strategy such as that suggested by Sims (1980) is recommended when
economists disagree about the set of laws governing economic ;elation—
ships. If a model is specified according to a set of incorrect laws, the
estimation is biased, and the model may thereby become useless as a frame-
work within which to do formal statistical tests. In this sense, a defini-
tion of causality not relying on economic theory may provide useful insights
to many problems.

Granger (1969) has suggested a definition of causality that makes no
mention of economic laws. It is based on the stochastic nature of the
variables and its central feature is the direction of the flow of timet
It is a purely statistical criterion relying entirely on the assumption
that the future cannot cause the past. This definition is at variance
with the philosophical definition in certain important aspects (Zellner
(1978)). 1In certain cases it may even obscure conventional causal order-
ing (Sims (1977)). However, Sims has also demonstrated that these possibili-
ties exist only under special, rather restrictive assumptions. Geweke
(1978) has shown that in the complete dynamic simultaneous equation model
exogenous variables cause endogenous variables in the sense of Granger.

It does seem that there will be a large class of applications where the
causal ordering arising from the most plausible behavioural structure will
be consistent with a Granger ordering. Therefore we shall adopt the basic
Granger formulation in this paper despite the disagreement about its appro-
Priateness. We must caution readers that the range of applicability of
Granger's concept may be limited. But we also feel that in the circum-
Stances when theorists disagree about the underlying structural relation-

ships an empirical investigation of statistical regularities among economic



variables without relying on supposed a priori restrictions may help
shed light on the problem.

In this paper we intend to provide a basic framework to explain
the causal relationship of a multivariate time series model based on the
Wiener-Granger notion of causality. Skoog (1976) has also worked on this
problem before. But his focus is mainly on the incompatibility of charac-
terizing a causal variable in terms of predictability in a multivariate
set up. Our focus here is on providing a Granger causal ordering of the
events and on the reconciliation of the disparity between the results obtained
from bivariate and multivariate analysis. 1In Section 2 we generalize
Granger's notion of causality to make some provision for spurious and
indirect causality which may arise in multivariate analysis. Section 3
characterizes mathematical (or population) properties of causal events.
Section 4 proves the statements made in Section 3. Section 5 uses post-
war Canadian money, income and interest rate data to illustrate the dis~
parity which might arise between the bivariate and trivariate analysis and
the reconciliation one might attempt based on the generalized Granger

notion of causality. Conclusions are stated in Section 6.

2. Patterns of Causality

To provide a basic framework for interpreting a multivariate AR
model, we shall generalize Granger%sno;ion of causality in this section.
Our aim is to identify whether a variable causes another variable directly,
indirectly, or spuriously. Of course, theoretically, the notions to be
discussed below can be further generalized into (n-1) different levels

of causal ordering in an n variable system in a manner similar to that of



McElroy (1978) in a different context. We shall not attempt this here
in the interest of simplicity of expositionm.

Let {y, x, 2z} be full rank, zero mean, joint covariance stationary,
purely linearly indeterministic processes.l The analysis will remain
unchanged if we let x be an r component, y be an s component
and z be a q component stationary processes. However, for simplicity
of exposition we shall assume that x, ¥, and 2z are univariate.

It has been shown by Wold (e.g. see Rosanov (1961)) that a regular

full rank stationary process {y, x, z} possess a unique one-sided moving

average (MA) representation of the form

t
(1) X, = Et +l"lé‘-;t_l + Pzgt-Z + o0,
z
t
where Et is a three component zero mean orthogonal process (i.e., Egt =0
' = 1 = =
Egtas 6t’SQ, Gt,s 1, t = s, St,s 0, t #s).

Under fairly general conditions (Masani (1966)), (1) also admits

an autoregressive representation

(2) (T - ¥.L - WZLZ - ..) x = £

where



- by, (L) = by, (W) - v,
I-¥L-... = = Uy (1) 1 -9,,(L) = by4(L)
= by (L) = ¥y, (@) 1= P,,(L)
-1

2
(I + FlL +_P2L + ...)

and L 1is the lag operator, Ly Typical elements of wij(L)

- t - Yg-1 "
2
are given b Lol
given by zzl Viig

We note that if we multiply £ by the lower triangular matrix P

(such that PQP' = I), (1) can be transformed as
Tt Yt Ye-1
(3) X = @0 V. + @l Vo1 S
Z¢ Ve Vi1
A [ )
(0@ b, M) u,
B 2 A SPY O ¢ Ve
Ye
= o) | V&



where

and @0 is an invertible, lower triangular matrix with positive elements
on the diagonal. Either (1) or (3) is an identified process (Hannan (1969)).
For ease of exposition, we shall take (2) and (3) as the AR and MA repre-

sentation of {y, x, z} in this paper.

]

Let it {xS: 5 <t} , §t = {xsz x <t} , and similarly define

e Et . Let At be the relevant information set accumulated

since time t-1 . Thus, At can be considered as a stochastic process,

including {yt, X ., zt} . We define At - xt as the set of elements in

t

At without the element X, The set At’ At’ At - Xt’ At - Xt are

defined analogously to it and it . Denote by Gz(ylZ) the mean square

error of the minimum mean square linear prediction error of yt given
information set Kt
We follow Wiener-Granger in defining various patterns of causality

in terms of predictability of a variable. We first strengthen Granger's

(1969) definition of causality as:

Definition 1 (Direct Causality): If oz(ylz) < cz(y]Z:E) s and
Oz(ylf, Z) < Gz(ylf) » then we say 2z causes vy directly, denoted by
z =y,

This definition says that z causes y directly only when present
y can be better predicted, in the mean Ssquare prediction error sense, by

using past values of z , no matter which information set is used. We



emphasize this aspect because, as the following discussion will show,
there are cases where past 2z may help in predicting present y when
one information set is used, but may not help in predicting present y

when another information set is used.

Definition 2 (Direct Feedback): If z = y, and y=>z , then

we say that direct feedback occurs between y and z , denoted by z <=y .

Definition 3 (No Causality): 2z does not cause v when either
(1) (D = P GEED or (11) o (y|D) = oi(y[ED and 0% (x|R)
= o2 (x|EZ) .

Condition (i) implies that the best linear predictor of y makes
use of past values of y only. Condition (ii) implies that past x and
y are jointly sufficient for predicting present y and x .2 However,
Definition 3 does not exhaust all the cases where one would normally con-
sider as an indication of no causality. There are cases where we may find
Gz(ylZ} < Oz(ylz;Eb but y and z may have no relationship at all. For

example, consider the following model

t t
(4) x | = 0 1 5L v,
zt 0 0 1 Wt

In this system, the white noise innovations (ut, v, Wt) are mutually

t
orthogonal, so z does not cause y by virtue of their independence,
hence Oz(yl§, Z) = 62(y|§)~. Yet when past =x 1is used to predict v,

it is advantageous to also use past z . This can be seen by taking the

inverse of (4),



1 -.5L .25L Ve ( u
(5) 0 1 -.5L x, = v, .
0] 0 1 zt wt
. S O L)

That is, Oz(ylz) < cz(y[K:E) . 4&n analogous case in regression analysis
is where y depends on x* , but not on z , yet x* is unobservable with
X serving as its proxy. If z is correlated with the noise in the proxy
variable x , then we can use 2z to eliminate or reduce the noise in x

so that a more accurate prediction for y may be achieved. However, =z
appears in the y equation not because 2z somehow causes ¥y , but rather

because it serves as a purifying variable for x . We call this situation

spurious causality.

Definition 4 (Type I Spurious Causality): If Oz(yIY, Z) = Uz(y[?)

2 =
and o0°(y|a) < Oz(le-Z) » then we say Type I spurious causality from =z

to y occurs.

Definition 4 says that relying on Gz(yll) < oz(ylz;ib as an indica-
tion of causality may lead to spurious conclusions. On the other hand, to
indicate that Gz(ylz) = 02<y[X:E) as an indication of ho causality from
z to y may also lead to wrong inferences. There are cases that even
though 2z does not help predict y when other variables are used as pre-
dictor, it is indeed the primary driving force for y . We call this

situation indirect causality.

- _— 2 —
Definition 5 (Indirect Causality): If Uz(y[A) = UZ(yIA—Z) < o7 (y|a-X)
—_ - — - = 2 =
< Gz(y[A—X—Z) and Oz(xlA) < 02(x|A—Z) s GZ(X[X;Z) < 0“°(x|X), then we say

that z causes y indirectly, denoted by z >y .



There are also cases where 2z may be found to cause y 1in a bivariate
analysis, while in fact there is a third series x which causes both y and z
(e.g. Granger (1969)). Past z 1is used as a predictor for present vy in
the bivariate analysis only because some other statistical variable of impor-
tance has not been included. We call this case another type of spurious

causality.

Definition 6 (Type II Spurious Causality): When condition (ii) of
no causality holds, but Gz(y[K) = Gz(y!A-Z) < 02(y|A—X) < Gz(y!A—X-Z)
and 02(z|K) < Gz(zlA—X) s Oz(z{z, X) < GZ(ZIZ) , we say Type II spurious

causality from z to y occurs.

Both definitions 5 and 6 say that past z will not help predict
present y when past x are used but will help predict present y when
past x are not used. However, in Definition 5 2z drives x which in
turn causes y . On the other hand, Definition 6 assumes that x is the
primary driving force for both y and z . Past z only serves as a
proxy for the missing x .

Granger (1969) also suggests a definition of instantaneous causality.
Here  we prefer to ignore this case as it seems more natural to treat it as

contemporaneous correlation (e.g. see Caines (1976) and Hsiao (1979b)).

3. Characterization of Causal Events

In this section we state some basic relationships among variables

for various causal events. The proofs are in the next section.

Theorem 1: 2z does not cause y if and only if the following
equivalent conditions hold:
(1) The moving average operator &(L) is lower block triangular.

(ii) The autoregressive operator VY(L) is lower block triangular.
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This theorem is a straightforward application of theorems proved
by Caines and Chan (1975), Geweke (1978), Granger (1969), Pierce and

Haugh (1977), and Sims (1972), etc.

Corollary 1: If =z does not cause y , then either z does not

cause X , or neither z nor =x causes y .

This corollary follows straightforwardly from the lower block

triangularity of Y¥(L) and &(L)

Corollary 2: If Uz(y[K) = Gz(y[A—Z) and Oz(y]§, Z) = 02(y|§) .

then z does not cause vy .

Note that Corollary 2 is a sufficient condition for =z not causing
y . It is not a necessary condition.. It is possible that z does not
cause y yet Gz(ylz) < Gz(ylA—Z) . This is referred to as Type I spur-

ious causality.

Theorem 2: Type I spurious causality from z to y occurs if

and only if the following equivalent conditions hold:

2

(1) 1in the MA representation (3) there exists a -C(L)==co-+c L-+c2L +...

1
such that

©) - [o5) (W) 65,1 = cwlo @ o,

and ¢,5, =0 for all £, ¢, #0, $yqy # 0 for some L.

(ii) 1in the AR representation (2), = 0 for all £

LYY » Vyqq # 0 for

some £, and there exists a nonzero C(L) such that

(M D,@ v = c@ly,, @ v,,@] .
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Corollary 3: A sufficient condition for the existence of Type I
spurious causality from 2z to y is that ¢3l£ = ¢322 = ¢l32 = 0 for

all 2 and ¢122 #0, ¢23£ # 0 for some £ .

The situations where z is merely a proxy variable for the impor-
tant left-out variables and where 2z is a primary driving force may be

distinguished according to the following theorem:

Theorem 3: A necessary condition for the existence of Type II spur-

ious causality from z to y is that:

(1) in the moving average representation (3), 0, 0

9135 = 0 9p3y =
for all & , ¢12£ # 0 for some £ , and there does not exist
a C(L) such that (6) holds.

(i1) in the AR representation (2), wle =0, w232 =0 for all

% , and w122 #0 , W322 # 0 for some & .

Theorem 4: z does not cause y directly, but causes vy indirectly
if and only if the following equivalent conditions hold:

(1) there exists a nonzero C(L) such that

(8) (6,0 01, = c@6,,0) 5] ;

and ¢23£ # 0 for some & in (3).

(ii) ¢132 =0 for all 2 and lez #0, W232 # 0 for some
2 in (2).

Corollary 4: If z=>x, x=>y, but z does not cause vy
directly, then either 2z causes y 4indirectly or =z causes vy spuriously

(in a Type 1 sense).'



12

. . . 3
4. Proof of Various Characterizations of Causal Events

Let the notation Hy(t) stand for the completion with respect to
the mean-square norm of the linear space of random variables spanned by

ys for s <t . Let u, be the difference between yt and the projec-

tion of y. on H (t-1) . Let v_ be the difference between x  and
t X,z t t

Y

the projection of x_ on Hy,x,z(t—l) . Let v, be that part of v

t
which is orthogonal to u - Siﬁilarly, let v, be that part of the diff-
erence between z, and the prdjection of zt on Hy < z(t—l) which is

b ?

orthogonal to u, and Vt . By definition, u vt , and wt are contem-—

poraneously uncorrelated and are uncorrelated with past values of each

other. Also H v w(t) is identical to H
3

b

z(t) , and {yt, X, s zt} has

’X9

a moving average representation of the form (3) (Rozanov (1967)).
We similarly define ug as the difference between Y and the pro-

Jection of v, on Hy x(t-l) and vt as that part of the difference be-
2

tween X, and the projection of xt on Hy x(t-l) which is orthogonal to
b

x . ' 1 3 + *¥% 4 +
u¥ ; hence Hu*,v*(t) is identical to Hy,x(t) . We elso let u¥* denote

the difference between Ve and the projection of y, om Hy Z(t—l) and

b

wi* denote that part of the difference between z, and the projection of

z, on Hy,z(t-l) which is orthogonal to ui* . Thus, Hy,z(t) is identi-

cal to Hu*,;e,v**(t) .

Lemma 1: If ¢122 # 0 and ¢132 # 0 for some £ in (3), then the

{y, x} process hasan MA represenation of the form

Ve o3, (L) o3, (L) u¥
(9) = . . .
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. * .
with ¢122 # 0 for some &

Proof: We denote by D(t) the orthogonal complement of Hy X(t)

2

in the subspace Hy (t):

(10) D(t) = Hy Z(t) 6 Hy x(t)

>y

Then, by comnstruction,

(1) ui € D(t-1) & u,

where & denotes the direct sum. By construction we know that Hu V(t)

< Hu*,v*(t) and D(t) = Hu,v,w(t) ] Hu*,v*(t) . Hence D(t) ¢ Hu,v,w(t)

_ 4
8 Hu,v<t) = Hw(t) . Therefore

(12) Hi(t) < Hu(t) & Hw(t—l)

By Wold's decomposition theorem (Rozanov (1967)), {y, x} are chtained from

moving averages of uncorrelated processes as follows:

(13) v, = ¢11(L)ut + ¢>12(L)vt + ¢13(L)wt
= o1 Mg+ of, vy
(14) x, = ¢21(L)ut + ¢22(L)vt + ¢23(L)wt

3 % * %
9%, (Lyuf + oF, (L) vk

Given that Hv(t) i_ Hu W(t) and (12 ), we know that {y, x} may not

be represented as
(15) y_ = @ll(L)uE + cplZ(L)vt

(16) x

¢ = Gy Wuk + 990 LIV,
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Thus
(17) Hv(t) C Hi(t)

However, ¢121 # 0 for some % means that the projection of vy, on

Hv(t-l) is non-zero. Consequently, the projection of y, on Hé(t—l) is
nofi-zero.as well. Hence le # 0 for some & .

~

Proof of Corollary 2: Expressing {yt, xt} in terms of the u%*

I

vg , we have (9). Since Oz(ylz) = oz(y]K:E) » we know that the projec-

tion of yt on H

v.x z(t—l) lies in Hy x(t—l) » and therefore u* =y
b ?

» t t
Furthermore u, l_ Hv,w(t) and u, l_HV*(t); hence, ¢il(L) = ¢ll(L)

and ¢§l(L) = ¢21(L) If ¢f22 =0 for all 4 , then 419, = 0 and

¢132 = 0 for all- & and it is trivial that z does not cause y. If ¢%  # 0

122 7
forAsoﬁé 2, by (3) and (9) we have (Ansley, Spivey and Wrobhleski (1977)).
: # Yerk =
(18) ¢12(L,vt ¢12(L)vt + ¢l3(L) v,
* % =
(19) ¢22(L)vt ¢22(L)Vt + ¢23IL)W£
¢f2(L)

Letting C(L) = 55;737 , we have

(20) [o(L) 05001 = cL)lo (L) 4 5(L)]

Theorem 1 says that o2(y|¥, Z) = 02(y|¥) if and only if there exists
a moving average representation for {yt, zt} of the form

r ] (e o) [
(21) 1

.
5 ) lemm e

. | J \\

wE¥
t
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By lemma 1, a neceésary condition to construct (21) from (3) is that
¢l32 = 0 for all 2 . However, (20) says that ¢13£ =0 for all ¢, so
are ¢932 = 0 . From theorem 1 we know that ¢131 =0 and-'¢232 =0 for

all & if and only if 2z does not cause v .

Proof of Theorem 2: We note that Gz(ylﬁ, Z) Oz(yl?) implies that

the moving average representation for {yt, zh} has the form (21)
[

3 %%k = = \ = -
with ¢l32 0 for all ¢ . If both ¢122 0 and ¢13£ 0 for all 2 ,
the projection of y, on H (t-1) lies in H_(t-1) alone. That is,

t YsXs2, ¥

c?(y|R) = cz(y{A-X-Z); and neither z nor x causes y . On the other hand,

if both $10g # 0 and ¢l32 # 0O for some £ , then by Lemma i f%l # 0 for

' 5
some &£ . Therefore we assume ¢122 # 0 for some ¢ and ¢1?Q =0 for all 2.

With 114 #0, 9100 # 0 for some £ , the only way for (21) to hold is

that
(22)1 o, ¢I§(L)u§* = ¢11(L)ut + ¢12(L)vt
(23) ¢§§(L)u§* = <b3l<L)ut + ¢32(L)vt .

Such a representation exists if and only if there exists a C(L) such that

(24) [og) (L) 055(T)] = C(LI[e; (1) ¢, ,(L)]

12

If ¢232 also equal zero for all & , then &(L) is lower block triangular,
and hence Oz(y[Z) = Oz(ylA-Z) . This is a contradiction and therefore ¢23Q #0

for some £ . Together with ¢12£ # 0 for some & , this implies that #0

132
for some 2 , i.e., Gz(ylg) < Gz(y,A—Z)

Condition (ii) can be derived by taking the inverse of the &(L) matrix.

Proof of Corollary 3: Condition (i) of theorem 2 is automatically satisfied

with C(L) =0 .
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Proof of Theorem 3: We first prove condition (i). Theorem 1

2 - -
says that o“(y|Y, Z) < Gz(y[Y) if and only if

__ e ey (. u;*\.
(25)

$3F(L) o3(L) | upe

with ¢i§£ # 0 for some £ . However, condition (ii) of no causality

from 2z to y implies ¢132 = 0 and ¢23£ =0 for all & im (3). There-

fore, {yt, zt} has the. following representation

(26) Ve = ¢ll(L)ut + ¢12(L)Vt
27 2y = b5 (Luy + 05, (L)F dg5(L)w, -
2, 2, = 2, = = 2, =
From 0 (z|A) < 0“(z|A-X) and 0°(z|X, 2Z) < 0°(z|Z) we know that $a50 # 0
for some & . Given (26) and (27), as the proof of corollary 2 shows that

a necessary condition for the existence of (25) is # 0 for some & ,

910

and no existence of C(L) such that

(28) [¢31(L) ¢32(L)] = C(L){o,4 (L) ¢ ,(L)]

12

Condition (i) implies conditiom (ii) follows straightforwardly from
taking the inverse of ¢&(L) . To show that condition (ii) implies condi-
tion (i), we note that =0 = 0 for all £ and 0

Vi3 =0 Va3 Y25 7
for some 2 jointly imply Uz(ylg) = Oz(ylz:z) < Gz(ylzzi) and
2 - _ 2 ] . _ _ c
o} (xIA) = 0" (x|A-Z) . That is ¢132 =0, ¢232 =0 for all % and
¢122 # 0 for some £ . w322 # 0 for some £ implies that there does

not exist a C(L) such that (28). holds.
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Proof of theorem 4: We first prove condition (i). We note that
02(y|&) = o2(y|A~Z) if and only if (20) holds. If (L) = 0, then this im~
plies that ¢122 = 0, ¢132 =0 for all 2 . That is, y can be viewed as
generated by an innovation process that is uncorrelated with the inncvatioms
in the x and 2z processes. Therefore C(L) must be nonzero for

o2(y|¥, Z) < 02(y|¥) to hold. On the other hand if 4,9y = 0 for all 2,

3
by (20) ¢;5, =0 for all 2 . Then by thearem 1, 02<x|Zb = Gz(x[A-Z).
(Neither can ¢12£ =0 for all & , since this will imply ¢222 =0 for
all 2.) When ¢122 #0, ¢13£ # 0 for some £ , by Lemma 1 the

{yt, zt} process will have ¢¥%, =0 for some £ in (25) , that is

2 _— — —
71T, D < 2y [T) -

Condition (ii) can be proved by taking the inverse of &(L)

Proof of Corvrollary 4: Definition 1 says that i£ =z does not cause

y directly either cz(y[Z) Gz(y[Z:Z) or Gz(y[§, ) Gz(yff) or both.

We first show that cz(y[E)

2 j— 2, 1z = =
0°(y|a=z) and o vl¥, 2) = Uz(y[Y) cannot
hold simultaneously under the assumption that z => x and x => 7 . We

note that UZ(YIZ) = gz(y]K:Z) implies (20) holds. Therefore, ¢12£ #0

for some £ wunless C(L) is identically equal to zero which is ruled
out by the assumption that x =>y . Thus by Lemma 1, cz(ylf, Z) = Gz(y[§)

implies that ¢ =0 for all & . By (20) 0 for all ¢ .

13% > 8ygp =

This contradicts the assumption that z => x . Therefore, either Gz(yfﬁ)

czcy[K:Z) and cz(y[§, Z) < cz(y1§) or czcylz) < czcy[K:E) and czcylf, Z)

Gz(y[?) . The former is indicated as indirect causality, the latter

spurious causality of type I .
We can also prove these assertions directly. Suppose Gz(ylz) = gz(y[K:Z)
and x =>y , then there exists a non-zero C(L) such that (20) holds.,

9pqq 7 0 for some 2 are implied by =z => x; therefore & 40 for

132
some & . ¢122 # 0 for some & follows from ¢222 # 0 for some 2
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2,05 = 2.
Thus, by Lemma 1, o¢“(y|¥, Z) < ¢ (v]¥); that is, 2z causes y indirectly.
F-- 2—
Suppose 0“(y|Y¥, Z) = o (v]¥) . A necessary condition for this to

hold is that ¢l32 =0 for all £ and (24) hold. x => Yy and z => x

imply that ¢122 F0, ¢232 # 0 for some £ . Thus condition (i) of

Theorem 2 is satisfied. Therefore spurious causation of type I operates

over z to y .

25 B

5. Autoregressive Modelling of Canadian Money, Income, and Interest Rate

Although time series approach to model construction is appealing in
the sense that it gives an impartial view to competing theorems, many pro-
blems remain. For instance, the determination of appropriate time series
model from finite observations; reliability of large sample estimation
and testing procedures when sample information is limited; transforming
variables to induce stationarity and the role of seasonality are all com-
plex issues which the profession has not reached a concensus yet (e.g. see
Zellner (1977)). A study of any one of these problems would be a challenging
research program. Doing all of these things in one paper would be so
challenging as to be impossible. In this section we use the quarterly Cana-
dian money stock (M2), nominal GNP, and bank rate (BR) from 1955 I to 1977 IV
as an example to check the reliability of the inferences one may draw from
an autoregressive model.6

The relationship between money and income has been much debated in
the economic literature (e.g. Friedman (1970), Brunner and Meltzer (1966),
Tobin (1970)). On one side are the monetarists, who view money as an inde-
pendent source of economic disturbance. On the other side are critics of

this view, who say that money is a passive adapter to business conditions
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with little independent influence. Previous tests of causality on this
problem (Barth ‘and Bennett (1974), Hsiao (1979a), Sims (1972)) have concen-
trated on the money and income variables. We now extend the analysis to.
include the interest rate. However, it does not mean that in the money-
income causality analysis these three variables offer a complete informa-
tion set, nor do we intend to give an answer to this debate. The purpose

of this exercise is meant to show how the conditional information set affects
Granger causal ordering and to see whether the problems of collinearity,
shortages of degrees of freedom, eﬁc. will affect the qualitative conclusions
drawn from an autcregressive model when different methods are used to iden-
tify a model.

The basic model we have in mind relates rates of change of money and
income to the level of the interest rate (e.g. see Cagan (1966)). 1In a hypo-
thetical long~run moving equilibrium it is theoretically appealing to regard
"normal" as constant percentage rates of change in the money and income
variables, which are related to a constant nominal interest rate. We then
take the first difference of each of these variables (i.e. the second differ-
ences of the logarithm of the money and income variables and the first
difference of the logarithm of the bank rate variable) to remove any trend.
Such prefiltering regards changes in the percentage rate of change in money
and percentage change in the interest rate as the main features of monetary
behavior contributing to the generation of cycles (changes in the percentage
change in income) (Friedman (1961)).7

We use two procedures to identify a vector AR model. One is the con-
ventional. We first determine the order of the unrestricted AR model, then

formulate and test hypotheses with economic content in the second stage.
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The other is a procedure suggested by Hsiao (1979a,b) using the concept
of final prediction error (Akaike (1969a, b)). This procedure combines
the determination of the order of an autoregressive form with some second
stage hypotheses testing. We first report results based on the standard
procedure.

The choice of the appropriate order of an unconstrained vector AR
model is a multiple decision problem. Suppose that the maximum order of

dependence is Q . We want to decide which of the following exclusive

sets the parameter point (?l,...,TQ) belongs:
H b4 0
Q Q ? ’
: ¥ o= b4
HQ"l Q O L Q_l # O ’
(29) )
Hl‘ WQ = WQ—l = ... = WZ =0 , Wl #0 ,
: ¥ o=V = ...=Y = .
Bot %q = Y1 1=0
The set Hq implies that the dependence is of order g . As shown by
Anderson (1971, ch. 6.3), an optimum procedure is to test WQ =0 |, wQ—l =0

in turn until either one rejects such a hypothesis, say rejects Wq =0
and hence decides Hq .
Because the maximum allowable order for using FIML option in TSP 78

in Toronto is a ninth order one we let Q =9 . The likelihood ratio statis-

tic for H9 is 12.112, H8 is 7.176, H7 is 4.696, H6 is 23.79. Each

Hq has 9 degrees of freedom. Based on these observations we choose q==6
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as the order of the unconstrained vector autoregressive process,

To proceed to test the causal ordering of money, income and interest
rate, we note that except for the Type I spurious causality (ThHeorem 2).
other patterns of causality can be expressed in terms of zero constraints
on Y¥(L) matrix in an AR specification. Since the general linear con-
straints of the form (7) is difficult to formulate, we proceed to separate
the test of causal ordering into two stages. In the first stage we check
the zero constraints of a vecto¥ AR model. If the first stage hypotheses testing
leads to thé acceptance of zero constraints which may imply the existence
of Type I spurious causality, we then check whether other linear constraints
exist in the second stage by comparing the best models under various informa-
tion sets according to the definitions and corollaries stated in Sections 2

and 3 (e.g. the best model of y given Y, X , and the best model of y

given Y, X, ).
According to various patterns of causality, we know that in order to

identify whether 2z causes y directly, indirectly or spuriously we have

to test (i) wlB(L) =0 3 (ii) b, @) = wl3(L) =0 ; (iii) wl3(L)
T Va3 =0 AV UM = @) = 9y 0 5 @) Y ) =y,
= w32(L) =0 in turn. Treating an unconstrained sixth order AR model

as the maintained hypothesis, we may either test each of these hypotheses

against the maintained hypothesis or we may perform the following sequential

test

Hi: Y,(L) # 0,
pi Vs =0, by, # 0

Hy: ¥y,(@) =0 , Uys(L) # 0
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(30) Hyt Up4(L) = $,5(L) = 0 : b, 0,
Hyt Ug,(L) = ¥,,(1) = 0 ; Uy (L) 0,
Hot Wp3(L) = ¥p,(L) =y (L) =0 , (ML £0
Hyt §pq(L) = 9pu(L) =y, (L) =0, 9, (L) #0

Hyt Upp(L) = dpu(L) = gy, (W) =0,y @ £0

The advantage of testing each of these hypotheses against the main-
tained hypothesis is that the size of the test for each of these hypotheses
is the same. The disadvantage is that an otherwise significant coefficients
might be contaminated by other insignificant coefficients, hence making it
difficult to reject the null hypothesis. The advantage of testing each
hypothesis sequentially by treating the previously accepted null hypo-
thesis as the maintained hypothesis is that the test is more sharply focused.
The disadvantage is that a test of wij may either be accepted or rejected
depending on the order it is tested. Using a fixed significance level ¢
in a sequential test, we increase the Type I error from Py =& to p2==a-+(l-a)a R
to P; = @ + 2(l-a)a4-(l—a)2a > -+ when we change the order of testing
wij = 0 from the first to the second and so on. To balance the desirability
of the sensitivity to nonzero constraints with not favoring a particular
wij # 0 , we let y=(1-L) log BR, x = (l--L)2 log GNP , z = (l-L)2 log M2
and use full information maximum likelihood method to estimate models with
different zero constraints. The results are reported in Table 1.

As we can see from Table 1, for the test of one or two wi.'s =0,

J
some have likelihood values very close to the unconstrained model (model 1).
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Table 1

The Log-likelihood Value of Various
6th Order Autoregressive Models

Model Log-likelihood Value

1. all by # 0 556.146

2. Y4 =0 555.08

3. Y,y =0 554,15

be Yy, =0 551.28%

5. Yy, =0 548,754 *%%*

6. Yy =0 550.39%%

7. Yy, =0 554,01

8. Wiy =Py =0 553.025

9. Uy =¥y, =0 548.09

10. y,, = Uy =0 542 ,928%%%%*
1., = Y13 =0 550.269
12. Uyy = Ypq =0 546 ,34%%
13 gy = 9, = 0 547.43%
Lae 9y, =¥, = Yy =0 548.22

15. Yoy = Yy = Py =0 540,51%%%
16. ¥, = Y3y = U, = 0 539,97%%%*
170 Wy = ¥yy =y, = 0 541.51%*
18. ¥, =y, = U3 =0 547.08
19. Y4 = Vpg = Wy = 0 545.22
20, Y4 =y, = Y3y = 0 550.84
21, Y, = Upg = Uy = 0 547 .47
22, le = U, = Yi4=0 542,11%%
23 Uy =y, = Uy, =0 538.,14%%%%
240 yp =Yg, = Uy, = 0 540, 78%%%
25. Yy, = U3y = Wy3 =0 546.10
26. Y, = Vi3 = Uy = Uy, = 545.028
27, Y, = Vpg = Uy = U3, 544.383
28. Yy, = Vi3 = Upy = U3y = Vg, =0 538.546
9. Wpp =i =y = Uy, Y33 =3y =0 530.772 **
* significant at 15% level
** significant at 10% level

**% significant at 5% level against Model 1
*%%% significant at 1% level
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Among those with three wij's = 0 and are insignificant at 15% level,

the model with wl3 = = 0 (model 10) have the largest log-

Y23 = V3
likelihood value, 550.84. The likelihood ratio test of this model against
the unconstrained 6th order AR model has a chi square value of 10.612 with
18 degrees of freedom. Nor is the test of each of these wij's = 0 against
the unconstrained model significant. So we in turn take the model with

wl3 = w23 = w32 = 0 as the maintained hypothesis.

The further tests of wlZ =y = 0 (model 26),

V13 = Vo3
= 0 (model 28)

13 T Y23 = V3
T V3 T3 =0 (model 270, i,y = wig =y = Uy = vy,
against the new maintained hypothesis (model 20) have chi square values of
11.12, 11.91 with six degrees of freedom, and 24.6 with twelve degrees of
freedom; indicating the rejection of these hypotheses at 10% level. On the
other hand, if we test these hypotheses against unconstrained 6th order AR
model (model 1), the likelihood ratio statistics are 22.236, 23.71 with 24
degrees of freedom, and 35.2 with 30 degrees of freedom, which are not
significant at 15% level. Finally, the test of wlZ = wl3 = le = w23 =y 31" w32=0
(model 29) against the unconstrained model has chi square value of 50.75
with 36 degrees of freedom and against model 20 has value 40.17 with 18 degrees
of freedom, which are significant at 157 and 1% level respectively.
Thus depending on whether model 20 or model 1 is chosen as the maintained

hypothesis, we may either choose

, [ 6 6 'K \ S ry
[ (1-L)10g BR v v 0 (1-L)log BR [ 3
61 | 1-L)%log awp | = v9, (L) ¥o, (L) 0 (1-L)%10g ave| + | b |+ £,
. 2 6 6
anles n® 0 Pl anies e | ) 15

or
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( Vo[ 6 \( P
(1-L)log BR wll(L) 0 0 (1-L)log BR a
2 6 6 2
(32) | (1-L)"log GNP| = w21(L) wzz(L) 0 (1-L)"log GNP| + | b
(1-L)%10g M2 0 0 wg3(L) (1-L)%1og M2 <
\ \ J \ J

as an identified time series model for interest rate, income and money where
the superscript indicates the order of wij(L) . Their full information
maximum likelihood estimates are reported in Tables 2 and 3.

If we choose (31) as the time series model, then according to theorems
stated in section 3, there is a direct feedback between interest rate and
income, a direct causality from interest rate to money and an indirect
causality from income to money; but money neither causes income nor causes
interest rate. If we choose (32) as the time series model, then income
does not cause interest rate and neither interest rate, nor income cause
money.

To check the validity of the above assertion and whether Type I spur-
ious causality exists, we perform bivariate analysis on the income-interest
rate, money-interest rate and money-income pairs. A priori we may expect
that the order of lags would be increased when we move from a three dimen-
sional analysis to a two dimensional analysis. Computationally, it is also
possible to increase the value of Q . We therefore let Q = 13 and test
Wé =0, Ws_l = 0,... in turn. Each of these hypotheses has four degrees
of freedom.

For the income~interest rate pailr, the likelihood ratio statistic for

Q=13 1is 7.77, q =12 is 1.91, g =11 is 3.19, q =10 is 7.88, q =9

is 7.18, q =8 1is 3.67, q =7 is 1.33, q =6 1is 15.95. For the money-
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Table 2

Maximum Likelihood Estimates of (31)

(1-L)log BR (l—L)ZloggGNP (l—L)zlqg,MZ
(1-L)log BR (-1) .1986 -.0008 -.013
(1.942) (-.071) (-1.385)
(=2) -.051 .0014 -.014
(=.509) (.133) (=1.427)
(-3) -,2080 -.0096 .212
(-2.216) (=.959) (2.247)
(=4) ~.069 ~.023 ~-.168
(-.751) (~2.358) (-1.750)
(=5) =.0177 .012 -.131
(-.192) (1.226) (-1.368)
(=6) -.076 ~.0326 .0045
(-.857) (=3.433) (.476)
(1-1)%1log GNP (-1) 1.518 - 746
(1.638) (=7.176)
(=2) 1.914 -.657
(1.652) (=5.053)
-3 2.814 -.363
(2.283) (~2.625)
(=4) 2.404 ~. 464
(1.917) (=3.291)
(-5) 2,266 ~-.205
(1.942) (=1.562)
(-6) ~-.703 -.197
(-.735) (=1.834)
t-1)%10g M2 (-1) -.425
(-3.842)
(=2 -.272
(~2.241)
-3 ' -.005
(~.048)
(-4) -.491
(=4.487)
(=5) -.248
(-2,115)
(-6) ~-.206
(~1.79)
Standard error
of the regression 101 .011 .010

* The number in parenthesis is t-statistic.
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Table 3

*
Full Information Maximum Likelihood Estimates of Model (32)

(-L)log BR  (1-1)%10g cup (1-1)%10¢ w2
(1-L)log BR (-1) .1650 -.00003
(1.692) (-.0029)
(~2) -.0516 .0021
(-.5167) (-.2009)
(=3) -.1464 -.0109
(-1.58) (~1.084)
(-4) -.1568 -.0221
(-1.683) (~2.250)
(=3) -.0479 .0128
(~.5205) (1.2955)
(-6) -.0707 -.0329
(.7984) (-3.468)
2
(1-L) log GNP) (~1) -7.413
(-7.131)
(-2) -.6497
(-5.003)
-3 -.3530
(=2.553)
(=4) -.4551
(=3.233)
(=3) -.1964
(-1.5005%)
(-6) -.1986
(-1.8517)
(l—L)Zlog M2 (-1) ~.3984
(~3.6566)
(-2) ~.2748
(-2.3625)
(-3) ~.0068
(-.0653)
(-4) ~-.4370
(=4.467)
(=) -.2040
(~1.843)
(-6) -.1763
(~1.594)
Standard error
of the regression .108 .0108 .0107

The numbers in parenthesis are t-statistics.
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interest rate, the likelihood ratio statistic for q = 13 is 7.29,
q =12 is 11.88. For the income-money pair, the likelihood ratio statis—
tic for q = 13 1is 12.58. From these statistics, it appears that a 6-th
order model for the interest rate-income, a 12th order model for the inter-—
est rate-money, and a 13th order model for the income-money pair are
reasonable choices of unconstrained bivariate AR models.

Given the maintained hypotheses, the bivariate tests for Gz(ylg; X)
< 02(y1§) and 02(x|§; i) < Oz(xli) have chi square values 9.612 and 15.62
with 6 degrees of freedom respectively. The former is significant at 15%
level, but not at 10% level and the latter at 1% level. The bivariate
tests for Gz(y|§; z) < Oz(y]§) and 02(z|§; z) < Oz(zlz) have chi square
values 8.92 and 15.10, which are not significant at 15% level with 12 degrees
of freedom. The bivariate tests for Oz(xlf, 7) < Gz(x]_}f) and 02(2’-}?, 7)
< OZ(ZIE) have values 11.66 and 18.17 respectively. With 13 degrees of free-
dom the former is not significant at 15% and the latter is not significant
at 107 level.

If we choose 10% significance level, the bivariate results confirm
(32) as the appropriate time series model. If we choose 15% significance
level, the bivariate results directly contradict (31) and (32). Because
according to (32), income should not cause money and according to (31),
interest rate should cause money in the bivariate analysis. But the test
for Uz(z[i, 7) < Gz(zlE) is significant and the test for Gz(z[§; z)
< GZ(ZIED is insignificant.

One reason this may happen is that theorems derived in sections 3 and
4 refer to population properties. With finite observations there is no

guarantee that the results would be consistent with what one would expect
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from the population properties of various patterns of causality. Another
reason is probably due to the inherent unreliability of the procedure of
restricting the maximum lag order of each variable to be identical. There
is no particular reason that every variable should enter into the equation
witﬁ identical lag length. If we do not restrict the lag length to be
identical, the above disparity may.be reconciled. For instance, a close
scrutiny of the interest rate-money pair estimates revealed that the
coefficients of the lagged interest rate in the money equation are highly

insignificant for orders higher than 5. Testing the model

(1-L)log BR x 120y e 220y | (1-L)10g BR a% £*

11 13 1

(33) 2 = 5 12 2 * o
(1-L)"log M2 w%l (L) w§3 (L) (1-L) log M2 c* £3

against the unconstrained 12th order model, we have chi square value of 3.48
with seven degrees of freedom, indicating the acceptance of (33) as the main-
tained hypothesis. Taking (33) as the maintained hypothesis, we test
Gz(zlzy Y) < Gz(z[E) » which has chi square value of 11.61 with five degrees
of freedom, indicating the rejection of y #> z . The test of 62(y|§; Z)

< Oz(yl§) has chi square value of 5.42 with 12 degrees of freedom, indicat-
ing the acceptance of z ¥ y . The conclusion now is consistent with what
one would expect from various patterns of causality.

As we can see from the above analysis, whether the conclusions are con-
sistent with the popﬁlation properties of various patterns of causality depend
critically upon the order of lags chosen and the size of the test. To par-
tially alleviate the problems associated with arbitrary choice of the signi-
ficance level and the shortage of degrees of freedom when unconstrained vec-

tor autoregressive process is used as the maintained hypothesis, we use
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Akaike's (1969a, b) final prediction error (FPE) criterion to respecify

the model.

The FPE is defined as the (asymptotic) mean square prediction error,

- 242
(34) FPE of y = E(y_ -7y,) >

where §t is the predicator of Ve s
~ A1 AT l\r ~
= ! i) +
(35) Ve vll(L)yt + \,)lz(L)xt gl3(L)zt + a

The superscripts m , n , and r denote the order of lags in wll(L)

m n T ~
wlz(L) , and wlB(L) . wll(L) , wlz(L) s wl3(L) , and a are least
squares estimates obtained when we treat the observations from -Q +1
to 0 as fixed {t: t=-Q+1, ..., 0,1, ..., T}, m, n, < Q. Akaike
(1969a) defines the estimate of FPE 1in this case as
T
I (v.-5)°
- t -t

THmintr+l | t=1
T-m-n-r-1

(36) FPEy(m,n,r) =

The ﬁse of fPE criterion fits in nicely with the idea of evaluating
the predictability in terms of mean square prediction error. The criterion
tries to balance the risk due to the bias when a lower order (than the true
order) is selected and the risk due to the increase in variance when a
higher order is selected by choosing the specification which gives the
smallest FPE. Shibata (1976) has derived the asymptotic distribution'and
risks of Akaike's statistic. Monte Carlo studies by Geweke and Messe (1979),
Quandt and Trussell (1979) have demonstrated its good properties in finite
samples. (For additional discussion on the propérties of the FPE criterion,

see Hsiao (1979b).)
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We note that in a multiple AR model, least squares applied to each
equation is consistent and asymptotically normally distributed. Therefore,
we may ignore the correlations in the innovations for the moment and apply
Akaike's (1969) FPE criterion to each equation to determine the order of
lags in wij

If Q is the maximum order of wij(L) , then one way to select the

order of wij(L) is to let the order of each wi (L) wvary between O and

J
Q . For a system of p variables, this means there will be (Q+l)p com-
binations of wij(L) for the i-th equation. In the case where p =3
and Q = 13, we will have to compute 2746 FPE's for each of these three
equations. To reduce the computation burden to less than (usually sub-
stantially than) [p + (p-1)](Q+l) (in this case 70) we use a squential
procedure suggested by Hsiao (1979a) to identify the system.

The smallest FPE's for one, two, and three dimensional analysis with
Q = 13 are reported in Table 4. After checking the omitted variables'

effects as described in Hsiao (1979a)9, we tentatively choose the follow-

ing specifications:

e f r ) W .
(l—L)zlog GNPW wil(L) 0 wiB(L)W (l—L)zlog GNP
G | awegm | = | o V@ W | a0 ’leg x|+ b
5 3
\ (1-L)log BR , L ¢31(L) 0 | w33(L)J L(l—L)log BR | e

To further check the adequacy of specification (37) a sequence of
likelihood ratio tests were carried out by deliberately over-fitting and
under-fitting (37). The results are reported in Tables 5 and 6.lO They

do not seem to indicate any serious problem with our specification. Hence,
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Table 4

The Optimal Lag Order and the FPE's

*
of the Controlled Variable

Controlled First Manipulated Second Manipulated -4
Variable Variable Variable FPE x 10

BR (3) - - 131.4

GNP (6) - - 1.701
M2 (12) - - 1.333
BR (3) M2 (L) - 133.5

BR (3) GNP (5) - 131.353
GNP (6) M2 (1) - 1.716
GNP (6) BR (6) - 1.633
M2 (12) GNP (2) - 1.332
M2 (12) BR (4) - 1.284
BR (3) GNP (5) M2 (1) 132.7

GNP (6) BR (6) M2 (2) 1.662

M2 (12) BR (4) GNP (2) 1.299

*
The number in parenthesis indicates the order of lags of each variable.
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Teble 5: Likelihood Ratio Tes®s of (37) Azainst Higher Order Autoregressive

Processes
Maximum Order Model 1 Model 2 Model 3 Model L4
Fitted for
¥yq 6 6 6 6
w12 0 6 0] 0
¢13 6 6 6 6
Yoy 2 2 0 L
w22 12 12 12 12
¥ps u n I h
¢31 5 5 5 5
V35 0 0 L L
¢33 3 3 3 3
Degrees of Freedom 2 8 L 8

Likelihood Ratio
Statistic 3.09 7.23 1.496 8.hks2
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Table 6: Likelihood Ratio Tests of (37) Against Lower Order Autoregressive

Processes
Maximum Order Model 1 Model 2 Model 3
Fitted for
wll 6 6 0
w12 0 v 0 0]
w13 0 6 6
"’21 0 0] 0
w22 12 12 12
Uog b 0 Ll
Lp32 0] 0 0
¢33 ) 3 3 3
Degrees of Freedom 6 N 5
Likelihoed Ratio 15,926% 12.182% 11.91%
Statistic

¥Significant at 5% level
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we choose (37) as the time series model and report the full information
estimates in Table 7.

Specification (37) indicates that GNP <=> BR , and BR => M2 .
According to Theorem 1, we also conclude that equation (37) indicates
that M2 neither causes GNP, nor causes BR, and according to Theorem 4,
GNP causes M2 indirectly. We then check the validity of these assertions
by comparing the FPE's of the bivariate and trivariate analysis. Table 4
indicates that for the bivariate analysis, GNP => M2, GNP => BR, and
BR => M2, Yet in the trivariate analysis, GNP no longer appears in the
M2 equation. However, the direct causality from GNP to BR, and BR to M2
still hold. This is precisely our definition of indirect causality. On
the other hand, the bivariate and trivariate analysis treating either income
or the interest rate as the output variable show that using money as an
input variable increases the FPE. According to Corollary 2 they indicate
that money neither causes income nor causes the interest rate. As one can
see these results do confirm our assertion.

Although different procedures may lead to different specifications,
at least in this particular case they tend to point out the qualitative
conclusion that the bank rate was the primary driving force for income and
money, and to a lesser degree responded to income changes. The results
are consistent with the Bank of Canada's primary policy concern of trying
to maintain "appropriate exchange rates" and "appropriate credit conditions".
To the extent to which the Bank primarily aims to regulate the structure of
interest rates and not the money supply (e.g. see Courchene (1977) and
Rasminsky (1967)), and Canadian interest rates cannot‘be independent of world

(essentially U.S.) rates, movements in the money stock and interest rates



Maximum Likelihood Estimates of (37)%*

(l-L)Zlog GNP (-1)

(l—L)Zlog M2

(-2)

(=3)

(-4)

(-5)

(-6)

-1

(~2)

(=5)

(-6)

-7

(-8)

(-10)

(-11)

(-12)
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Table 7

(l—L)Zlog GNP

(l-L)Zlog M2 (1-L)log r
~-.751 1.748
(~7.232) (1.896)
-.663 2.433
(=5.105) (2.173)
-.368 3.351
(=2.660) (2.756)
-.471 3.020
(=3.651) (2.673)
-.211 2.890
(~1.612) (3.149)
-.201
(-1.871)

-.440

(=4.216)

-.401

(~3.489)

-.116

(~.967)

-.717

(-5.982)

-.353

(-2.826)

~-.432

(-3.305)

-.210

(-1.581)

-.463

(=3.693)

-.173

(-1.578)

~-.208

(-1.885)

~.162

(~1.483)

-.243

(-2.382)

continued ...
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Table 7 continued

(I-L)log BR (~1) -.0007 -.009 .207
(-.068) (~.962) (2.205)
(-2) .001 -.008 -.016
(.130) (~.855) (-.162)
(-3) -.010 .024 -.221
(-.948) (2.847) (-2.638)
(-4) ~.024 -.022
(-2.415) (~2.581)
(-5) .012
(1.257)
(-6) ~-.033
(-3.493)

Standard Error
of the regression 011 .009 .102

* The number in parenthesis is (large sample) t-statistics.
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can be expected to respond more to movements in nominal income.

The fact that nominal income does not respond to changes in M2 might
be due to instability in M2 rather than representing a contradiction of
the monetarists' position that nominal income is closely related to broad
aggregates of financial assets. The term structure of deposit rates has
been less stable in Canada than in the U.S. With the existence of a great
number of close substitutes issued by near-banks as well as by other finan-
cial institutions, structural shifts in intermediation can occur, the effect
of which might be to merely alter the charter banks' share but not the
total value of these interest-bearing liabilities. A concrete example of
this occurred in early 1972. 1In this sense, M2 might not be a good proxy
for the broad aggregates of financial assets in Canada. In fact, the Bank
has also maintained that M2 is an unsatisfactory definition of money in

Canada (Bank of Canada annual report 1974).

6. Conclusion

In modelling economic time series data there is usually difficulty
in discriminating finely among several forms which appear consistent with
the information in the data. In fact, in finite sample it often happens
that if we do not restrict the parametric specifications, the problem of
collinearity, shortage of degrees of freedom, etc. would so confound the
interpretation of the model that we do not know what to make of it (Ando
(1977), Klein (1977)). Engle (1978), Hendry (1974), Granger and Newbold
(1977), Wallis (1974), Zellner and Palm (1974) and many others have suggested
approaches to blend traditional econometric and time series analysis to
construct better econometric models. In this paper we examine the possibility

of extracting information using a pure time series approach. We use
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Granger's (1969) notion of causality to derive various propositiéns about
' population properties of various causal events. These propositions can
be used to provide an interpretation for multivariate time series models
as well as a means in developing and checking the empirical implications
of various variants of models and in ruling out a number of variants as
being inconsistept with the prior theorems. We have applied these concepts
to the time series analysis of Canadian money, income, and interest rate
data. We have shown that if we are able to use the degrees of freedom more
efficiently a pure statistical analysis of economic time series data is
capable of yielding useful information.

As Granger (1980) has remarked that the concept of causality and pro-
cedures to fit time series model are topics in which individual tastes
predominate. It would be improper to try to force research workers to
accept definitions and procedures with which they feel uneasy. There is
clearly a need for more discussion of this and other definitions of causality
and for more explorations of various multiple time series modeling procedures.
This paper represents a preliminary attempt to analyze multivariate time
series data. The empirical result may or may not stand for further scrutiny.
However the topic in my view is of sufficient importance and interest to
justify further work in this area rather than brushing aside as ad hoc or not

serious.
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1. Note that the theorems in Section 3 may hold under weaker conditions
than this (e.g. Hosoya (1977)). We use the covariance stationarity
condition for simplicity of exposition because the weaker conditions
would be unfamiliar to many readers, and because the FPE formula used
below depends on the stationarity condition.

2. 1In fact, a more natural definition of no causality would be to follow
Caines and Chan (1975) by specifying ®(L) and ¥(L) as lower block
triangular. However, we have been defining causality as a reduction
in forecasting variance with respect to a given information set. To
switch the definitions in terms of the forms of AR or MA operator
would seem to be inconsistent. In any case, these two ways of defining
no causality are equivalent, as stated in Theorem 1, Section 3.

3. Hosoya (1977) has proved the Granger non-causality in nonstationary
cases. The result does not seem easily generalizable to the proof here

because in non-stationary case the process is no longer a Cauchy sequence
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in Hilbert space, thus making it very difficult to operate between
different dimensions.
3 = £

We note thattlf ¢l32 0 for all & and ¢232 # 0 for some 2 ,
then we may switch the roles of Hw(t—l) and Hv(t—l) and construct
an MA representation with ¢f22 =0 for all £ wunder certain con-
ditions.

. = : 2
Equivalently, we can assume ¢122 0 for all £ and b13p 7 o,
¢322 # 0 for some £ ; then condition (6) should be replaced by the

equivalent condition of

.

L0537 (L) ¢35 = c@o);(L) ¢, ,(1)]

We arevcompelled to use seasonally adjusted M2 and income data together
with seasonally unadjusted bank rate. For one thing the seasonally
unadjusted M2 data are not available. For another there is no seasonal
pattern in interest rate. We realize that use of seasonlly adjusted
data with seasonally unadjusted data may pose problems (e.g. see Sims
(1974), Wallis (1974)). We take comfort in that the empirical analysis

performed here is meant to test the feasibility of the methodology, not

in providing an answer to the money-income causality debate. (Presumably

this is also the reason Sims (1980) analyzed his model using series
which were seasonally adjusted together with others which were not.)
We may also argue that most macroeconomic aggregates are appraised by
economic agents in their adjusted forms regardless of whether or not
the seasonal adjustment procedure actually‘eliminates the seasonal
components without distorting the remainder. If this conjecture is

correct, the use of seasonally unadjusted data will create bias. Even
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if this conjecture is incorrect, there are reasons to believe that

the bias due to the use of adjusted data may be minimgl. Sims (1974)
has demonstrated that if other—than~seasonal components are used and

if the model involves unconstrained, long lag distribution which is

the case in this paper, then the bias due to the use of adjusted data
may be minor. Furthermore, we are using an AR form to test causality
rather than using Sims' (1972) method; in this case the bias in our
results may be negligible. This can be seen by considering the follow-
ing simple example. Suppose the true relation of the variable x is
of the form

(A.1) B(L)x: + C(L)yi = u_ ,

. a a . .
where x , y  are the seasonally unadjusted data, and u, are white

noises. Suppose the data are adjusted by different filters such that

s a
(A.?.) Xt = Tl(L)ht 3
s _ a
Ve YWy,

(The special case of either Y(L) =1 or n(L) =1 means there is no

adjustment in the corresponding variable.) Then (A.1l) becomes

s s _
(A.3) D(L)xt + F(L)yt = u o,
where
D(L) = E@. s F(L) = _C_(Ll

As one can, if C(L) 1is identically zero (i.e., y does nat cause X),
so is F(L) . On the other hand, if C(L) is not identically zero,

neither is F(L) (i.e., y causes x).
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One should note that by taking differences the final estimats of a
model cannot provide a long run equilibrium analysis since presumably
in equilibrium the rate of change is a constant, hence the second
difference is zero (also see Sims (1980)).

In choosing the appropriate order, we have followed Anderson's (1971)
Suggestion by selecting a small significance level for high values of

q and relatively large significance level for low values of q .

We modify the procedure described in step 5' of Hsiao (1979a) by
letting wij vary between O and Q rather than between 0 and

the order previously chosen because depending on the sign of the
coefficients and the condition among the variables the omitted effects
may operate in either directions.

We do not drop those variables which are insignificant (e.g. see McClave
(1975, 78)). We take the position that if a higher order coefficient
is nonzero, then all the lower order omes will be nonzero too, Other-
wise, our model selection procedure would favor the causality relation-
ship. Since the sample variability is such that there is a high pro-
bability that a variable will be significant even if it does not cause
another variable, Furthermore, dropping one variable would affect all-
the t-statistics of other coefficients due to the correlation among

them.
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