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1. Introduction
Classicists and Bayesians are sharply divided on the question of
hypothesis testing. Consider a random variable y. with pdf f(ylS)

and the testing of a sharp null hypothesis HO: O = 0 against a nonsharp,

composite alternative Hl: O #0 . A traditional classical test procedure
may be based on the sampling distribution of the sufficient statistic

~

8 , g(ele) - A critical value c¢ is chosen and the test procedure is to

Reject Hy if |8] > ¢
(1-1)

Accept HO otherwise
In acting according to the rule (1-1) two types of error may be committed:
the hypothesis may be rejected even though it is true (Type I) or it may be
accepted even though it is false (Type II). Characteristically, ¢ 1is chosen

s0 as to make the probability of Type I error, « , of fixed size:

c
af{c) = 1 - Jg(elo)de (1-2)
c
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Kenneth Small for helpful comments and to the National Science Foundatlon
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Bayesian analysis requires a prior distribution over 6 which may be
stated in the present problem as

A if 8 =0
p(8) = (1-3)

(1-A)h(8) otherwise
where A 1is simply the prior probability that 6 = 0 . Employing Bayes'’
Theorem one may then compute the posterior pdf and more specifically the

posterior odds ratio

P(Hlle) (1—k)e;0g(e|e)h(e)de
R = ~ = ~ : (1_4)
P (H,]9) Ag(8]0)

HO is then rejected if R > 1 and accepted otherwise. If the losses

Ql and 20 incurred from taking the wrong action (acting as if Hl were

false when in fact it is true, and conversely) are unegual, the decision

is based on the ratio

4P [8)

R! (1-5)

%, (Ho|e)

1

and H is rejected if R' > 1 .

0
The Classical approach neglects prior beliefs about the parameter in
question and the arbitrary choice of ¢ (or da(c)) in (1-2) has the unfortunate
consequence that the probability.of Type I error reméins constant, although tHe
probability of Type II error diminishes with sample size. This implies a
peculiar utility function over the probabilities of the two types of errors

and bases the decision between the hypotheses purely on the size of the estimated

6 . By contrast, in the Bayesian approach the size of the sample also matters

1. A lucid and much more detailed exposition of these ideas is in Leamer (1978),
Ch. 4. See also Zellner (1979).
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and in large samples we require a larger departure of 6 from HO in order to
constitute adequate evidence against it.2 On the other hand, one may
reasonably ask over what domain the econometrician's utility function can
most -reasonably be defined. In the Bayesian approach we are reguired to state
the losses (disutilities) associated with making the wrong decision. Since
this has to be done individually for every single hypothesis one may ever
test, it may strain one's ability to produce the appropriate loss estimates.
It may place less of a burden on the individual to require him to define his
utility function over the domain of Type I and Type II probabilities. It must
be emphasized that, except in the case of testing a point hypothesis against
a point alternative, this represents a departure from the framework of a
Bayesian for whom loss depends only on the true state of affairs and on the
action taken.

In the remainder of this paper we outline a procedure by which such
utility functions can be defined in practice. This will be done in a framework
in which prior beliefs about parameter values may be, but need not be, utilized.
In Section 2 we introduce the simple example of testing a hypothesis concerning
the mean of a normal distribution and discuss the measures over which the utility
function will be defined. In Section 3 we introduce the utility function and solve

the appropriate constrained utility maximization problem. Section 4 compares the

classical and Bayesian approaches with the present one.

2. An Example and Domain of the Utility Function

We assume that the random variable y has pdf ©N(u,l) and that we wish

to test HO: U =0 against Hl: B # 0. A sample of n observations is
A n
taken and U is estimated by U = 2 yi/n . We write the significance level,
i=1

2. As Leamer (1978) argues in discussing this Lindley paradox (P. 105), the
Bayesians are clearly right in this.



the probability of Type I error, a(n) , as a function of the sample size.

~

Since 1 is distributed under HO as N(0,1/n) , this determines boundaries

of the critical region (-%,-c(n)) and (c(n),») for the standardized

variable u/(l/nl/z) by
; c(n) . _22/2
Pri-c(n) < 5 <cmi = —e dz =1 - a(n) (2-1)
1/n or

-c(n)

~

The hypothesis is accepted if the observed U is in the interval

1/2 1/2 . . A
(-c(n)/n , ¢(n)/n } and if the mean is U # 0 , the probability of Type
1T error is

c(_n)—]_lnl/2

. 2.
-2 /2
B, = | e az = ®(c-un’?) - ®(-c-unt’?) (2-2)
2T

-c(n)-unl/2

where ®( ) 4is the cumulative standard normal integral. The power of the

test is defined as

w(ll,n) =1 - B(U,n) (2_3)

It is obvious that 1imB(u,n) = 0 for U # 0 and 1imB(0,n) =1 - o(n)
n>x n->co

Small o and B are desirable but even if o 1is fixed, B depends on the
unknown value of U . It seems reasonable to aim for a low value of expected

3
R and we define

T(n) = JB(u,n)p(u)du (2-4)

3. T{(n) exists even if p(u] is the Improper prior p(u) = 1 since
B(,n) goes to zero faster as | > * ® +than any polynomial.



where p( ) is a prior density of 1 . Then low values of qa(n) and
T(n) are desirable. Of course, arbitrarily small values of a(n) and
T(n) are not simultaneously attainable since d(n) and T(n) are inversely

related. Let ¢(x) = exp{—x2/2}//2w . Then

a8 (u,n) _ C1/2.dem) L ., . 1/2 dc(n) )
am ¢ (c(n)-un )dOL(n) + ¢ (-c(n)-un )doc(n) (2-5)
and
de(n) _ _ 1 S (2-6)
do. (n) dlcn)) + ¢(~cn)) 26 (c(n))

Hence dec(n)/da(n) < 0 , dB(u,n)/da(n) < 0 and d4T(n)/do(n) < 0

The locus of a(n) , T(n) points generated by (2-1), (2-2) and (2-4)
is the feasibility locus, i.e. the set of pairs that are attainable. A
different locus is generated for each possible value of n . It is also
straightforward to verify that the feasible locus gives T(n) as a convex
function of q{{n) . It is sufficient to establish that dzB(u,n)/da(nF >0 .

For simplicity we write c(n) as ¢ and aofn) as o .

2 2
d 6(11,121) _ E)(C_Unl/z) + d>(—c-unl/2z\ _c_'i__g_ .
dol del

[% (c-un - ¢ (~c- unl/z:] ( (2-7)

3
Substituting for dc/do from (2-6) and for d c/da its value - ¢'{(c)/¢(c)” ,



we obtain

2 .
Ll L b (c-m )~ 6t o) - (8™ + ¢<—c—unl/2>>9@‘%]
do. ag () L .

(2-8)

This is positive if and only 1if

172 l1/2,2
inl/2 (exp{ - foZH__ wzl U R g N S
2 2
1/2 ;
This is clearly the case, for when U > 0 , (c—unl/z) < (=c-un / ) and when
2 2 .
u<o, (c—Unl/Z) > (—c—unl/z) .

3. The Utility Function and Constrained Optimization
The utility function of the investigator is assumed to have & and T

as arguments:
U= U(u,T) (3-1)

where we omit the dependence of & and T on n for sake of notational
simplicity. One could, in principle, stop at this point by simply requiring
the investigator to specify his own utility function and maximize it subject
to the constraint given by the feasibility locus. But it is interesting to
examine the consequences of assuming a general class of utility functions,

particularly because a specific member of that class has been recommended

before.4 For this purpose we select the CES function

4. Leamer (1978) argues, following Savage, that indifference curves between
o and B are straight lines.



4. Results and Comparisons
In the present section we present the appropriate significance
levels (a's) for two procedures: (1) the Bayesian posterior-odds
computation on the assumption that h(8) in (1-3) is normal with mean
zero and variance wz , and (2) the method outlined in Section 3.
Assuming that the prior probability A in (1-3) is 1/2 , it is

easy to show that the posterior-odds ratio in favor of H is (Leamer (1978))

1

~1/2 2, 2\-1
R = (1+ 2n2) exp{zz (1+9—/—w—) /2> (4-1)
o /w o

2 . . .
where G , the variance of vy , has been previously assumed to be unity,

and where z2 = §2n/02 . It follows that HO is rejected whenever

o2\ -1/2 ' 1/2
7] > { (1 + 14 tnfl1+ 2
n n 2
1/w

from which one easily obtains the implied significance level of the test.

The optimal significance levels can also be computed for the method of
Section 3 under the assumption of a normal prior density for ﬂ (with mean O
and variance wz) as well as ignoring the prior (i.e. assuﬁing that p() =1
for~all W) . This computation was performed for several values of the CES
parameter Q. The appropriate value of 0 in each case was determined
by setting the level o for n = 10 (ao) equal to the implied a~ value
from the corresponding Bayesian casé. The Bayesian and utility maximizing
significance levels are contained in Table 1. The same values of ao were

employed when the prior is ignored as when it is not. The significance levels

of this computation are in Table 2.



Table 1. Significance Levels

i

—
S o

10.0

20
30
40
50
60
70

10
20
30
40
50
60
70

10
20
30
40
50
60
70

Bayesian a | Utility Maximizing o for
p=1.0 0 =1.5 0 =1.9
.239 .239 .239 .239
.200 .220 .230 .232
.174 .202 .224 .226
.156 .188 .216 .220
.143 .176 .210 .214
.132 .166 .206 .210
.123 .156 .200 .206
.105 .105 .105 .105
.074 .080 .088 .090
. 060 . 066 .078 .080
. 048 .058 .070 .074
. 045 .052 .066. .070
.041 .046 .062 . 066
.038 .044 .058 .064
.031 .031 .031 .031
.021 .022 .024 .024
.017 .018 .020 .020
.014 .014 .018 .019
.013 .012 .016 .018
.011 .011 .015 .016
.010 .010 .014 .015



n

Table 2

Utility Maximizing o for

10
20
30
40
50
60
70

o

0

= .239

.239
.168
.130
.114
.102
.092
.084

o

0

= .105

-105
.074
.060
.052
. 046
.042
.038

pu
a

)
0

=l,
.031

]

.031
.022
.018
.016
.014
.013
.012

10

e = 1.5
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First of all, we note that the variations in p (implying elasticities
of substitution ranging from .50 to .34) have a fairly substantial effect
on the significance levels. Where p is high, the optimal significance
level declines with sample size much more slowly than when 0 is small.

For large samples this causes a substantial difference in the Bayesian

and the corresponding utility maximizing o , with the difference being
proportionately greatest when the prior is not tight. When the prior is
ignored (Table 2) the utility maximizing a's are generally closer to the
Bayesian one's but for a fight prioxr wz = ,1) the optimal a's decline
with sample size faster than do the Bayesian Q's . This is to be expected,
for ignoring the prior tends to have the same effect as a diffuse prior.

The most important result is that in all cases the significance level
declines with sample size, whether an explicit prior is or is not employed.
The classical procedure of fixing o at, say, .05 and leaving it invariant

cannot be justified, even if the prior is ignored.

5. Concluding Comments
The standard, classical procedure fixes the significance level o and
"accepts" any value of ‘n as determined by sample size. It is difficult to
think of an optimizing framework in which such a procedure would be rational.
Alternatively one ﬁay employ the Bayesian posterior odds for selecting
among hypotheses. This procedure leads to significance levels that decline
with sample size. However, many investigators shy away from using posterior

odds because of the need to specify prior distributions.
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A third alternative is the utility maximizing framework which may be

“employed with or without explicitly specifying prior distributions. The

cost of using this procedure is that the investigator must be able to

specify his utility function, its general form and the values of its

parameters and that he must abandon the standard Bayesian and decision-theoretic
approach of letting loss be a function only of the true state and the action
taken. Yet it does not appear to be tco much to ask the investigator to

specify a utility function. Although one may reasonably argue about the

proper domain of the utility function or about its mathematical form, problems
of choice are not soluble in a satisfactory manner without a suitable optimand.
It seems natural to accept this in statistical decision making as it has been

accepted in the theory of the consumer and other portions of microeconomic theory.
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