BERTRAND AND WALRAS EQUILIBRIUM

Leo K. Simon

Econometric Research Program
Research Memorandum No. 282

May 1981

Econometric Research Program
'~ Princeton University
207 Dickinson Hall
Princeton, New Jersey



May 1981

" BERTRAND AND WALRAS EQUILIBRIUM

Leo K. Simon*

Abstract:  Extending to a general equilibrium context Bertrand's
critique of Cournot, we present a game—-theoretic model of a

pure exchange,'monetary'economy, in which buyers as well as
seliers announce both prices and quantities. Our main result
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I. INTRODUCTION

Modern Walrasian analysis (see, for example, Debreu (6)) focuses on the
correspondence between economies, defined by agents' characteristics and
technological possibilities, and their competitive allocations. In recent
years a consliderable research effort has been directed %towards both
enriching and also constructing game-theorétic foundations for this analysis.
We shall refer to this effort generically as the "Noncooperative Approach
to Economichquilibrium" (NAEE), | _

Contributionsito the NAEE enrich the Walrasian model by imposing upon it
some additional structure, specifically a "mechanism,” to be viewed as a
stylized representation of the economic institutions of trade. Unlike the
Walrasian model, which leaves open the question of how competitive
allocations come to be realized, the NAEE does in fact take a position on
this issue, specifying an economic process through which trades are actually
effectéd.

The other focﬁs of the NAEE is foundational: it investigates the
conditions on the primitives of economic analysis under which the Walrasian
model may be considered to be an appropriate idealization of some less
abstract economic structure. Since Walrasian theory is founded upon some
rather strong assumptions, a natural prerequisite that the Walrasian model
must satisfy is that these assumptions should be relatively "innocuous,"” in
- some well-defined sense. The particular assumption which has received
most attention is that agents act as if they have no effect on price; that
is, they maximize their utility (or profit) functions subject to the

constraint that prices are exogenously given. The NAEE relaxes this



éharacterization; then, the size of individual agents relative to
the market is immaterial; in short, "two is enough for competition."*
Most game-theoretic contributions to competitive theory invoke
a notion of strategic behavior originating with Cournot's classic’
study of duopoly (Cournot (5))}‘ We gather togethef the features
which characterizeAthis notion to form a rather loosely defined |
‘construct, which we call the Coufnot paradigh.  Models based on this
paradigm are of the following tYpei_ agehts announce decisions about
the quantities that they wish to trade, while the.rates atvwhich
commodities are ultimately exchanged in the economy are determined
by the "impersonal forces of the market."** The essential
difference between the Cournot paradigm and the Walrasian model is
that at least some of the agents are assumed to recognize, and to
exploit any relationship which may exist between the quantities which
they announce and the prices which subsequently prevail.
An alternative characterization of strategic behavior, which
we develop in this paper, can be viewed as a generalization of the
classic critique of Cournot by Bertrand (3). Under this character-
ization, the prices at which agents trade are determined not by the

"impersonal forces of the market" but by the agents themselves, who

*This result is also obtained by Dubey, in a recent paper
(Dubey (8)) Grossman, also, has results which are very similar
to mine in spirit, but which obtain for rather different reasons
(see Grossman (11)). The relationships between Dubey's paper and
mine ‘is. discussed in detail in Section IV and VI.

**The phrase is Scitovsky's (24). 1In an Historical Note
(Simon (P)), we emphasize that while this specification is
- formally equivalent to-Cournot's original model, the story which
Cournot himself tells about his model differs in some important
"respects from this characterlzatlon, which is the contemporary
interpretation, of his model. :



simply announce these prices. While Bertrand discussed Cournot's
model of a (proto-) production economy, in which proprietors
announced prices and consumers acted as price-takers, we model a
pure exchange economy in which both sellers and buyers specify the
prices at which they will trade. 1In our model transactions are
effected via a process of intermediation.

We constfuct a game-theoretic model of a pure exchange, monetary
economy in which agents‘function simultaneously as both buyers and
sellers. Strategies are quadruples: an offer to sell, specifying
both quantities and prices, anda collection of alternative bids to
buy, also specifying quantities and, for each quantity, a "price."
More specifically, an agent, acting as a seller, announces a vector
representing the quantities of each commodity which he is willing
to supply, together with a vector of ask-prices, the rates at which
he is prepared to sell these commodities in exchange for money.

As a buyer, the agent announces an "acceptance set" of vectors,

each element in the set representing a commodity bundle, together
with a set of associated "bid-prices."” A buyer thus indicates his
willingness to buy any one of a number of alternatives. Each

vector in the "acceptance set," paired with the assbciated "price,"
can be interpreted as a bid to purchase some quantity of a well-
defined composite commodity or "package deal," as well as a "bid-
price," specifying the per-unit rate at which he is prepared to
pay, in money, for this composite commodity}

The formal specification of our model is completed by the

addition of a strategic outcome function, a map from strategies to



assumption. Agents are modelled as acting strategically in the

following sense: they acknowledge, and explqit to their best advantage, .
whatever capacity they have toAaffect the érices which constrain

their trading opportunities. The following question can then be
addressed: uhder what conditiohs on the parameters which define an
economy will the allocations which résult, when agents act strategically,
be "close" to the competitive allocations for the underlying

Walrasian economy?

This paper contributes ﬁo-our understanding of the relationship
between these two facets of the NAEE. One aim of our study is to
indicate how sensitive the foundational question is to the particular
specification of the economic institutions of trade. Specifically,
the main theorem which we present suggests that a fundamental theme
of the NAEE ié less robust than is commonly supposed. The theme is
that "the size of the market relative to the individual agént will
be a key explanatory variable for the tendency of noncooperatiVe
behavior to approximate perfect competition." (Mas-Colell ( 16 ),

P. 122). Our claim is that the robustness of this theme can be
attributed to the ubiquity, in the Noncooperative Approach, of what
we shall refer to as the "Cournot paradigm" of strategic behavior.

- We suggest an alternative, and, arguably, no less plausible,
characterization of strategic behavior, together with a stylized
notion of an "economic process." It will be shown that, if

this alternative specification is adopted( then the Nash and
Walrasian allocations will coincide if all markets are "thick,"
where a market is said to be thick if there are at least two

buyers and two sellers active in that market. Under this



outcomes. To motivate this function we introduce the fiction
of a competitive arbitrage sector. The outcome of our game
would arise if there existed a profit—maximizing, competitive
arbitrage industry consistiﬁg of "firms" which bought commodities
from sellers, paying in money, at the rates specified by each
‘seller, and sold back to buyers_"package deals," in exchange for
monéy, at the rates speéified byfﬁhe buyérs. 'Speéifiéally, the
outéome is abrandom vector, the support of whose distribution
is theFQOlume—maximal subset of the arbitrage-profit-maximal
subset of the set of individually and collectively feasible
allocations.*

The remainder of this paper is organized as follows.
Section II begins with a discussion of the foundational aspect
of the NAEE. We then place our model in its historical context,
discdssing Cournot, Bertrand and Edgeworth. The section concludes
with a discussion of the differing implications of the Cournot
paradigm and our model for the foundations of competitive analysis.
Section III is a critical evaluation of the Cournot paradigm.
In section IV we relate our work to Dubey's. Section V contains
the formal presentation of_the model and_statement of the
results. Section VI is devoted to a rather important aspect of
our model; we model buyers as announcing "écceptance sets" and
sets of associated prices rathér than simply prices and gquantities.

Proofs are gathered together in‘thé final section.

*A detailed explanation and'echomic motivation of the
strategic outcome function is deferred until the formal
presentation of the model in Section V.



II. THE PRICE-TAKING HYPOTHESIS

The hypothesis that agents take prices as given is viewed by the | .
Noncooperative Approach to Economic Equilibrium as the most questionable
of the assumptions underlying Walrasian analysis. The other assumptidns,
such as perfect information, perfect trust, and the absence of any kind
of transactions costs, all relate to thé nafure of the economic eﬁvironment.
It can be argued that, for certain economic problems, to abstract from the
complexities of the enviromment in which'agents act is a sound research
strategy. The price-taking hypothesis, on the other hand, is an assumption
of a-qualitatively different type, being a restriction on the behavior of
the fundamental units of economic analysis, the agents themselves. Further-
more, 1t would appear that the requirement that agents behave naively
with respect to price constitutes a violation of the classical dictum that
Economic Man is a selfish, rational and sophisticated operator. (See
Arrow (2) for an early discussion on this topic.)
The Noncooperative Approach to this issue is to construct models in
which agents act strategically . A question of particular interest is: when do
the Nash allocations for these models approximate the Walrasian allocations for
the associated economies? Our paper demonstrates that the question at
issue here 1s not simply: to what extent can agents affect the prices at which they
trade? There is a second question which must also be addressed: even if agents
can affect prices a great deal, under what circumstances does it make a difference *
that they have this capacity? Our model stands as an extreme illustration
of the relevance of this second question. Since agents in our model

actually determine the prices at which they trade, simply by announcing



those prices, the first question is resolved by construction. It turns
out, however, that so long as all markets are "thick," a property of the
Nash equilibrium is that all agents choose to announce precisely those
prices which,'as price-taking agents in the associated Walrasian economy,
they would have taken as given in the Walrasian equilibrium. (This
"thickness condition” is, of course, endogenocus, in the sense that it
relates ﬁo_the strategies announced by agents and cannot be derived fromv
the. primitives ﬁhich define the model. We do, however, state conditions
on these primitives uﬁder which the Nash equilibria will always exhibit a
property which is essentiélly equivalent to the property mentioned
above.)

In order to motivate our model and, incidentally, to place it in a
classical context, we now proceed to trace the progression from Cournot,
through Bertrand and Edgeworth, to the present paper, with the aid of a
simple, classical example. The following economy is similar to the one
considered by Edgeworth (I0) in his extension of Bertrand's critique of
Cournot. Two proprietors, 1 and - So s can.costlessly produce up to 1k
ﬁhits,and no more, of mineral wéter‘of identical quality. There are two
identical consumers, bl and b, , who act as price~takers and are each
' parameterized by the demand schedule dd', so that the aggregate demand
schedule is DD’ (see Figure II.l). The Walrasian price for this economy
is zero. | .

We now associaté with thiS‘économ&'a'géme which_is equivalent to Cournot's

original model of duopoly. Each proprietor, independently of the other,
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decides on é level of production; the price which is generated ié such

that the collective demands of the two consumers exactly equals the aggregate
production decision of the two proprietors. A Cournot-Nash equilibrium

for this game is a pair of quantities, one for each proprietor, such that,
given the gction of the other, neither proprietor can increase his profits

- by changing his quantity action.

The equilibrium for this game is the protqtypical illustration of the
central theme‘of the Nohcooperative Approach, discussed above.. Both
proprietors command nonnégligible market shares and, in accordance with the
theme, the price associated ﬁith the equilibrium exceeds the competitive
price of zero. DBertrand's criticism of thié result (the text of which
appears in our Historical Note (Simon 29)) waé, in effect, that a nonzero price was
sustainable only because Cournot imposed, axiomatically, the Law of
One Price, that is, the requirement that identical commodities must trade
at the same price.* Bertrand asserted that this presumption was unreasonable
and pointed out the_consequencesvof relaxing it. We paraphrase his argument
in the éontext of our'example.‘ Suppose that the Cournot-Nash equilibrium
pair 'is (1,1) and that the equilibrium price is ¢ > 0 . Once the Law
of One Price is relaxad, this cannot be an equilibrium, since, for example,

1 could offer to sell 1% units at a price infinitesimally below " E.

*The reader will have noted that this is not the usual characterization
of the issue between Cournot and Bertrand. We claim, however, that ocurs
is the more historically accurate representation of this issue and
document our claim in Simon (29).
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Assuming now that 52'5 offer to sell at E still stands, both consumers
would choose to purchase from the cheaper supplier, so that 1 could
increase his profits virtually by 50%. Bertrand thus contended that, once pricg-
cutting competition of this kind ceased to be proscribed by the imposition
of the Law of One Prige, no price above the competitive price could be
sustained as a noncooperative equilibrium.

Bertrand's criticism shows that the divervenge between the
outcomes resulting from strategic and from price-taking behavior can be
attributed not to some intrinsic property of strategic behavior, but to
strategic behavior in a particular, and an apparently rather arbitrarily
imposed, institutional context.

Edgeworth's contribution to this exchange was to draw attention to a
problem associatgd with Bertrand's model under an alternative specification
of the production technology. Bertrand, following Cournot, had assumed
that unlimited quantities of mineral water could be costlessly produced.
Edgeworth considered the case, illustrated by our example, in which
production was subject to a capacity constraint.* He demonstrated that
under this specificatioh_gg price, including the competitive price, could
be sustained as a noncooperative equilibrium, Following Edgeworth, we
consider the following pair of offers: sq and s, each offer to sell 1%

unitsof mineral water at a price of zero. For concreteness we will assume

The reader will observe that we have been faithful in our representation
of Cournot and Bertrand, even though our specification of the technology
is Edgeworth's, since up to this point we have not had any occasion to
refer to the capacity constraint.
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that consumer b1 purchases from propfietor ¢ and that b2 purchases
from Sy This cannot be an equilibrium since, for example , s can
attain a higher level of profits by offering to sell one unit at price 0.
'Consumer bl would, of course, prefer to purchase from S at a price of
zero, but b2 is already purchasing all that S, has to offer. Sipce :
b, actsas a price-téker he will in fact purchase the quantity which S,
offers at the price specified. 1In short, when Edgeworth's modification of
Bertrand's model is formalized into # game, no Nash equilibrium in pure
strategies exists. | |

Wé now demonstrate‘thét one way to resolve this noh—existence problem is to
model the- two sides of the market more symmetrically. We work in the
context of a pure exchange economy and model both seilers and buyers as
strategic actors, specifying an appropriéﬁe mechanism through which trades
are effected.* For the game outlined in Section I there exists a Nash
equilibrium such that the agents trade at the Walrasian price and receive
their Walrasian allocation. The equilibrium list bf strategies is: sellers

.5 and S5 each offer to sell, and buyers bl and b2 eéch offer to

buy, 1% units of water at a price of zero.** To verify that this is indeed

E
- We are able to make the transition from a production to a pure
exchange context and still maintain the same example for the purposes of
exposition, because production in our example is costless. In particular,
a proprietor who produces some commodity at zero cost but is subject to a
capacity constraint is formally equivalent to an agent in a pure exchange
economy who is endowed with a given quantity of that commedity.

sk ' o
- Recall that agents acting as buyers, in fact announce "acceptance sets"
and sets of "prices." In this instance they would annouhce singleton sets.
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an equilibrium, we need only consider once again the alternative strategy
which established nonexistence in the Edgeworth model: 1 offers to sell
one unit at a price of $ . It is no longer the case that sy can obtain
higher "profits” by announcing this alternative offer. If he does so, then
he will have a zero probability of realizing any sales, since, if water
were to be purchaéed from S (by some firm in the fictional competitive
arbitrage sector) and sold back to either of the two buyers, then arbitrage
losses at a rate of E dollars per unit would be incurred. Hence, no
allocation such that Sy realizes any sales can be arbitrage-profit-maximal.
To summarize the essential difference between our model and Edgeworth's,

in Edgeworth's medel a proprietor was able to take advantage of the naivety
of consumers and increase his profits by announcing a price exceeding zero;

in our model, on the other hand, the strategic outcome function is constructed
in such a way that buyers, by acting strategically, are able to ensure

that sellers are "locked into" the competitive price.

The remainder of this section will be devoted to an heuristic eiplanation
of the divergence between our results and those associated with the Cournot
paradigm of strategic béhavior.* The skeleton of the argument developed
below is as follows. We define a construct which we call the "perfect
elasticity property" (PEP); we argue that a sufficient condition for the
coincidence of the Nash allocations of a market game with the Walrasian

allocations of the associated economy is that the Nash equilibrium has the

*

This section was motivated by, and is rather closely related to, Ostroy's
discussion of two constucts, which are introduced in Ostroy Qg): the no
surplus condition and the perfectly determinate price equilibrium.
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PEP; we then show'that, in models based on the Courﬁot paradigm.this
property obtaihs generically if and only if agents are negligible in size,
but that, in our model, the Nash equilibria have the PEP under conditions
which have nothing to.do with the size of agents relative to the market.
The "perfect elasticity property” is a natural extension to a game-

theoretic context of the familiar partial equilibrium notion of perfect
élasticity."For concreteness, we will explain it in the context of our
example and we will ignore the fact that the outcoms of our game is a random
vector rather than a point; .Consider a seller S5 1 who,given a Nash
,equilibrium list of strategies for an arbitrary market game, realizes a.
sale of a quantity g* at a price of p* , and for whom the following two
- conditions obtain: firstly, there exists no alternative strategy which

S; can announce §uch that, given the actions of the other players, S5
would realize positive sales at a price exceeding p*; secondly, there
exists q' strictly greater than q* such that, by announcing an appropriate
strategy, s, could realize sales of q' at a price less than,
'butvarbitrarily close to p* . If, given a Nash

equilibrium for some market game, both these conditions are satisfied for
all sellers and the analogous conditions (defined by reversing the
inequalities relating to prices) are satisfied for all buyers, then we say
that this equilibrium has the "perfect elasticity property.” It will be
immediately evident that, at a Nash equilibrium exhibifing the PEP, the
bprédiéément.of, for example, a seller in this game is analogous to that
- of a monopolist ﬁho is faced with a perfectly elastic demand curve. The
firstvcondition is analogous to "perfect elasticity to the left" (dgq
négative),'whilé the secord is analogoﬁs'to "perfectAelasticity to the

right" (dq positive).
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Clearly, a sufficient condition for the coincidence of the Nash and
Walrasian allocations is that the Nash equilibria of the given game have
the PEP, since in this case no pl#yer can induce a perceptible change in
the prices at which he trades by deviating locally from his equilibrium
strategy. Thus if the PEP obtains it will be impossible to distinguish
between strategic behavior, which takes into consideration the (nonexistent)
impact that the agent's actions have on his trading constraints, and
"price-taking" behavior, which is premised on the assumption that these
constraints are parametric.

We now turn to consider the conditions under which the Nash equilibria
of games based on the Cournot paradigm will .exhibit the PEP. Games of
this kind satisfy what has been called the "aggregation axiom" (the term

was coined in Dubey, Mas Colell and Shubik (9)). Paraphrasing, this axiom

is satisfied if the means of each of the possible lists of strategies which
agents can play constitute the domain of the

strategic outcome function. Specifically, strategic behavior in the context
of the Cournot paradigm amounts to choosing quantitieé with a view to
manipulating aggregate quantities. Thus in games based on the Cournot
paradigm, unless an aggnt's market share is negligible any finite deviation
by that agent from his equilibrium strategy would induce a finite percentage
change in some quantity aggregate, which would result, in the generic case
when the price mapping is locally injective, in a finite percentage change
in market-clearing prices. Clearly, then, a necessary (and in fact
sufficient) condition for the Nash equilibria of such games to have,

geherically, the PEP, is that the market share of each player is negligible.
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In our model, on the other hand, the notion of strategic behavior is
quite different and so, accordingly, are the conditions under which the
Nash equilibria have the PEP. These conditions are that all markets are
thick ahd that all trade on every market is at the same price. Consider
the situation of an active seller under thess conditions. If the seller
were to raise his ask-price by an arbitrarily small amount his sales would
fall to zéro, since any transaction.in which ﬁhat_seller participated would
generate negative arbitrage profits. If, on the other hand, hé were to
lower his ask-price by an arbitrarily smail amount he would be able to
capture the market shares of all his rival sellers, at least one of whom
is guaranteed, by the thickness condition, to exist. While the market share
available for him to capture might be small, it must be bounded away from
zero. Thus both facets defining the PEP would be satisfied. In short,

"two is enough for competition."
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III. THE COURNOT PARADIGM

One of the aims of the Noncooperative Approach to Econoﬁic
Equilibrium is to enrich the Walrasian model by superimposing
upon it a stylized representation of the economic institutions
of trade. The formal counterparts of these institutions, in
game-theoretic models, are the properties of the strategic
outcome function énd the restrictions defining agents' strategy
sets. Two strands within the literature may be distinguished:
one is prescriptive in spirit, the other descriptive. The pre-
scriptive strand takes as its starting point certain properties
of allocations, typically "desirable" properties such as Pareto
efficiency, and investigates the conditions which models must
satisfy if their equilibrium allocations are to exhibit these
properties. (For an extensive discussion and bibliography of
this strand of the literature see Postlewaite-Schmeidler (21)
and Schmeidler (25).)

Our concern is not with this, but with the descriptive strand
of the literature. Descriptive models endeavor to characterize,
in @ highly stylized way; some facet of actual economic activity.
A valid criterion by which to evaluate a descrptive (but not,
of course, a prescriptive) study is the extent to which it
succeeds in describing, explaining or predicting some aspect
of economic reality. This section is a selective critique of
the Cournot paradigm, based on this cfiterion alone. We have

chosen to focus on those particular areas in which our model
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has the distinct comparative advantage; we do not claim to be
comprehensive.

The first issue we address is the most immediate. The
essence of the Cournot paradigm is that agents announce guantities,
while prices are determined by "the impersonal forces of the
market." While it is possible to find examples of markets
which function essentially in this way (agricultural examples
are frequently cited), mostveéohomists' intuitive impfession
is that, like qguantities, the prices at which trade takes piace
are set, not by impersonal forces, but by some of the economic
agents who actually participate in the market in question.
Clearly, our model accords more closely with this intuition
than does the Cournot paradigm.

The second issue to be addressed relates to a dissonance
which exists between the role which prices play in the Cournot
paradigm and our intuitive conception of the actual function
‘of prices. In models based on the Cournot paradigm, the function
of prices is to clear markets. In Cournot's original model,
for example, price is defined by the condition that demand
equals the aggregate quéntity supplied. The role of prices,
then, is to render consistent the decentralized actions of each
of the economic agents in the model. In short, prices can be
‘thought of as fulfilling a "system function."

This conéeption of prices is inconsistent with our intuitive
‘understanding of the rolevwhiCh prices play in actual economic

systems. The natural view of prices is that they are the
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vehicles by which individual agents compete with each other for
market-shares. This is certainly the view which predominates
in the less abstract literatures of economic tﬁeory, such as
Industrial Organization, and which is formalized in the model
which we present below. These two conceptions of the function
of prices cannot easily be reconciled; it is difficult to
conceive of a model in which prices both serve the "system," by
clearing markets, and serve the individual, as the vehicle of
competition for market-share.

The remainder of this section is devoted to a discussion of
two features which are embedded into the institutional structure
of the Cournot paradigm: the "Law of One Price" and the "law"
that supply must equal demand. In our model, by contrast, while
neither is imposed a priori, Qoth features are exhibited by
the equilibria of our game. Rather than assuming them from the
start, we derive both as results of the analysis, as consequences
of more fundamental, behavioral assumptions, which are imposed
on the primitives of the analysis.

The Law of One P:iée stipulates that commodities which are
identical must always trade at the same price. In game-theoreretic
models based on the Cournot paradigm, this Law has the status of
an axiom: it is a property, not just of the outcomes which are
generated by equilibrium strategies, but of every conceivable
outcome. In these models, the Law of One Price has "a life of
its own," as it were; independent of the’beha&ioral assumptions

which define the strategiciactors.
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Our éuarfel with this aspect of the Cournot paradigm is
based on the following reasoning. There are compelling gconomic
arguments which suggest that the Law of One Price should be a
property of equilibriuﬁ allocations. It is difficuit to conceive,
however, of any jﬁstification, based either on empirical grounds
or on the demandsvof logical consistency, for the a priori
‘imposition of this law as a part of the institutional environment.
Furthermore,.by insisting‘that idéntical goods must always
trade at the same prices,'the Cournot paradigm suppresses, by
fiat, a potent "cqmpetitive" force, which is virtually ubiquitous
iin actual economic situations: the capacity of agents to
"compete by price." (Clearly, this and our earlier discussion
about whether prices serve the system or the individual are
closely related.) In our model, on the other hand, this competitive
force is unleashed and the ILaw of One Price is derived as a
result rather than imposed from the start.

Expreésed more abstractly, our criticism is a rather basic
game-theoretic point. Formélly; the difference between the
Cournot and Bertrand "games" is that, while Cournot restricts
the set of possible strategy profiles to those such that all
trade takes place at the same price, Bertrand does not. Cournot,
it would appear, excludes all other strategy profiles (i.e.,

. yielding trade ét.more than one price), on the grounds that no
conceivablé‘configurations of agents' preferences exist for
which such‘profiles could.be equilibria. Our observation ‘is,

simply, that this is not a valid criterion upon which to reduce
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a8 game: profiles are not inessential to the structure of a
game merely because they can never be equilibria. A strategy
profile (51’52""’sn) will not be an equilibrium if, say,
the first agent can obtain a higher payoff by announcing

s{ rather than S;- The alternative profile (si,se,...,sn)

need not itself be an eguilibrium. Thus profiles which can

never be equilibria may nevertheless be essential to the
structure of a game, because they constitute the alternatives
which establish that other profiles are not equilibria.

We raise a parallel objection to the second institutional
feature of the Cournot paradigm: the axiomatic equality of
supply with demand, that is, markets clear, whether or not
outcomes are generated by equilibrium strategies. Such phenomena
8s queues, rationing and inventory accumulation are precluded,
again by fiat. These phenomena are not merely of considerable
empirical significance as manifestations of disequilibrium. It
could be argued that it is precisely these manifestations
that constitute the signals which induce agents to modify their
behavior, so that the Cournot paradigm in fact suppresses the
very phenomena which are central to the operation of actual,
decentralized equilibrating processes. In our model, rationing
vis associated with "disequilibrium" in a very natural, if stylized,
way: . strategies which generate outcomeu such that ratiuning
occurs cannot be equilibrium strategies, because an agent on
the long side of the markét will, in general, have an incentive
to deviate from his original action, in ofder to secure for

himself, at the expense of his rivals, a larger ration.
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IV. RELATED WORK

For an extensive survey of the related contemporary
literature, the reader is referred to Simon (27). That
survey is divided intq twé parts. We first mention several
exémples of models based on the Cournot paradigm: Dubey (7).,
Dubey-Mas-Colell and Shubik (9), Hart (12), Novshek (17),
Novshek—Sonnenschein (18), Ostroy (19), Roberts—~Postlewaite
(23), Péstlewéite (20), Postléwaite—Schmeidle: (22) and Shapley-
Shubik (26). The survey concludes with a discussion of five
papers whose results bear some resemblance to ours:
Schmeidler (25), Hurwicz (14), Grossman (11), Dubey (8)
and Wilson (31).

We réport here only on the study most closely related
to ours, by Dubey (8). Like us, Dubey presents a model in
which both buyers and sellers act strategically, announcing
both>prices and quantities. While his main result is
equivalent to ours, there are two important respects in which
our models are substantially different. The first relates
to the desighs of our respective strategic outcome functions.
If quantity announcements are such that a market fails to clear,}
~then, in Dubey's model, agents are rationed proportionately.
A rationed agent can‘always secure for himself a larger share
of the commodities in short supply, simply by appropriately

magnifying his quantity announcements. He has no need to
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"compete-by-price." .Our game, on the other hand, is stochastic:
in particdlar, when there are several agents on the long side

of some market, all announcing the "marginal" price, the market
share of each of them is a random variable. An agent who
‘announces more than he wishes to trade risks actually realizing
his announced, rather than his desired trade. To guarantee
himself a given increase 'in market share, a seller (buyer)

must shave (increase) ﬁis ask-price (bid-price). We feel

that, in this respect our model can be reconciled more readily
with intuitive conceptions of the way in which economic agents
actually do "compete-by-price." Certainly our approach is more
faithful to the spirit of Bertrand. The second distinction
relates to our respective treatments of buyers: Dubey's

buyers announce quantity- and price-vectors, while our buyers
announce "acceptance sets" of guantities and sets of associated
bid-prices. We argue elsewherellthat the former approach, while
more natural at first sight, fails to extend adequately the
spirit of "price competition a la Bertrand" to a general
equilibrium context, because it precludes the possibility of
"price competition across markets." We mention only two of the
remaining distinctions between our models. 1In Dubey's, trades
are made at the prices specified by the buyers, so that the
"surplus" arising from the difference between bid- and ask-prices
is received by the sellers; in our model, this surplus is earned
by the fictional arbitrageurs. Dubey's traders have access to
unlimited funds, at zero interest rates, from which to finance
trades; in our model, trades must be financed out of initial

money holdings.
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V. THE FORMAL PRESENTATION

This section 'is organized into six parts. The first three
subsections develop the model and correspond to the three main
componehts of a Strategic Market Game: a pure exchange econony,
which is the primitive of our analysis; the strategy sets; and
thévstrategic outcome function. In the fourth subsection we
discuss equilibrium notions. The main result is presented in
the fifth subsection. The last is devotedvto a corollary of the
méin result. Before presenting the model, however, We-draw
attention to a difference between the pure exchange economy of
our Market Game and the cgnventional Walrasian model of pure
exchange.

Our objective is to compare the outcomes which result from
strategic behavior (the Nash allocations of our Market Game)
to those which result from "price-taking," or "competitive
behavior" (the equilibrium allocations for the underlying pure
exchange economy). The specification of this exchange economy,
however, involves a modification of the usual notion of "price-
taking behavior." Specifically, agents in this economy are
subject to a "liquidity constraint," in addition to the con-
ventional Walrasian constraints. We add this additional
constraint because a corresponding liguidity éonstraint is built
into the structure of the Game itself; if we are to compare
outcoméé, tﬁen the constraints which agents face in the Game

must be matched by constraints which they face as "price-takers."
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The liquidity constraint which binds agents in the Game is that
they can offer no more than their initial endowments of money

in exchange for purchases. We invoke this restriction in order

to sidestep the following difficulty: in our model, an agent
could be rationed a8s a seller yet realize his original purchase
plans; had he'planned, in the Walrasian spirit, to finance his
purchases with the revenue from his sales, he could find himself
required to purchase a commodity bundle for which, ex post, he
could not afford to pay. The matching constraint for the exchange
economy is known in monetary theory as the "Clower expenditure
constraint" (see Clower ( 4 )): given a price vector, the value
of an agent's purchases cannot exceed the value of his endowment
of money. We define a corresponding equilibrium notion: a
constrained Walrasian equilibrium is a price-allocation pair .
such that all agents maximize utility over their expenditure

constrained budget sets and net trades sum to zero.

V.1l The Primitive: A Pure Exchange Economy.

An exchange economy, E , is an ordered pair, ((ua)aeA’<waO’wa>deA)'
A 1is a finite, nonempty set of agents. There is a finite set,

L =(1,...,2}, of non-monetary commodities. The O-th good is
commodity money, which is universally desired, and which is

both a medium of exchahge'and unit of éccount, its price being

fixed at unity.v Agents are characterized by utility functions,

representing preferences over lotteries. We first assume that

these are "von Neumann-Morgenstern utility functions": the



25.

utility of a lottery is just the expected utility of its prizes
(see Varian ( 30 ), pp. 105-7). Having made this assumption,
we can, in the usual way, completely characterize agents'
preferences over lotteries by characterizing their utilities
over the prizes themselves: 1in our model, these prizes are

net-trade vectors. Formally, for each agent o ¢ A, u,: R x R~ R

o
satisfies the following assumptions .*
Al: u, is continuous : | (5.1)
A2: u, is quasi-concave’** (5.2)
A3: u, is monotonic .*** _ A (5.3)

[We emphasize, again, that all agents derive utility from the
commodity money.] The vector <wa0’wa> € R+ X R& is the
endowment of the a-th agent. We assume»that each agent is
endowed with a positive guantity of money and that the aggregate
endowment of each nonmonetary commodity is positive, that is:
Ab: w > 0

a0 ’

A5: T w, >> 0 ‘ (5.5)

for each o ¢ A (5.4)

R, R, and R_ denote, respectively, the real line, the

non-negative real line and the non-positive real lines. Rp,

n n : : . . .
R+, R are defined analogously, for n-dimensional Euclidean
space.

¥*
A function £:X - R 1is guasi-concave if, for every r ¢ R,

{x e X: £(x) > r} 1is a convex set.

__ = am=tl b4

x > k', X £ x' => £(x) > f(x').



Figure V.1
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[We maintain the following convention for vector orderings:
for any vectors x,y ¢ Rn, we define the symbols >, >, >> by:
X 2>y <=> Xy > Yo for k =1,...,n; x >y <=>x >y and
X Fy; x>y <=> X >V, for k = 1,...,n.]

'The difference between the expenditure constrained and the
Walrasian budget sets is illustrated in Figure V.1l. The solid
lines delineate the former, indicating that the effect of the

expenditure constraint is to truncate the Walrasian budget set.

The agént whose budgét set is illustrated in the figure is
endowed with positive quantitiés of money and the fifst commodity.
The point "a" represents thié agent's expenditure of his‘entire‘
money endowment on the second commodity. Net trades such as

"b," involving the financing of additional purchases of the
second commodity by sales of the first, are attainable for a
Walrasian agent, but not for an agent in our "constrained

economy. "

1 1

correspondence, Byt R+ - R7, by

w, +x >0} (5.6)

= L. neet < .
Ba(p) = {x € R*: p'x < Yool Wy

[Recall that the price of the zero-th good is fixed at unity.
The symbols x* and x-‘ refer, respectively, to the nonnegative

and the nonpositive components of the vector X: given x ¢ Rn,

x" = (x{,...,x;), where x; = max(xk,o), k =1,...,n;

similarly x = (ki,...,x;), where x£ = min(xk,O) k =1,...,n;
n

"." denotes the inner product, x'y = I X Yy .] We define
k=1 ’

constrained demand for o by

e .
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ga(p) « {x € Ba(P): x' € 5a(p) =>
ua(<-p'X,X>) 2 ua(<p'x’,x'>)]

Finally, a price-allocation pair (p,x), where bp e R& and

~

x_ e RY |, is said to be a constrained Walrasian

pair for E if

5 >> 0 (5.82)
§<a e £,(p) for all a e A (5.8b)
é ia =0 (5.8¢c)

Propositicn: Given Al-A5, a constrained Walrasian pair

for E exists.

V.2 _Strategy Sets

Agents in our Game act simultaneously as sellers and as

buyers. As a seller, an agent announces a strictly positive
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. * ° %
vector of ask-prices, p ¢ R% ,  and a vector of sale-offers of
nonmonetary commodities, 2z € R%‘. As a buyer, an agent specifies
a set of alternative purchase offers for nonmonetary "commodity

t

bundles," together with a set of "per-unit prices,” one for each
of the alternative commodity bundles. A commodity bundle is a
non-negative, {-dimensional vector. Commodity bundles which

lie in the (2-1) dimensional unit simplex, Ag-l , are called

package deals (where, for n e N,

A" = (x € R : ¥ ox, =11}) - (5.9)

Any commodity bundle can be uniquely represented as a scalar
multiple of some package deal. Thus the package deals may
serve as the units of measurement for commodity bundles. Each

buyer specifies two functions, ¢ and p , both mapping

2-1 .
A to R, . { defines an "acceptance set" of alternative

commodity bundles, that is, a set of alternative scalars, one

* This assumption is pdrely for convenience, obviating the
need to deal with messy, but uninteresting, special cases.
Since we have assumed monotonicity, constrained Walrasian
equilibrium prices are always strictly positive, and we could
easily show that Nash equilibrium prices must,_also; always be
‘strictly positive.

*% 0 4. . .
*Rf = interior of Rf
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for each possible package deal. p specifies a set of
alternative per-unit bid prices, one for each possible package

deal. A strategy for a , Sy = (pa,za,pa,ga) has the follow-

ing interpretation: o offers to sell the vector, at

-za s
prices, Py » in exchange for money. He.simultaneously bids
to buy any one of the commodity bundles in the set

{Qa(ﬂ)ﬂ : Ne A£fl} » Paying money in exchange for the package

deal, M, at the per unit rate of pa(ﬂ) (that is, paying a total

of paca(ﬂ) = pa(ﬂ)ca(ﬂ) to receive the commodity bundle

ga(ﬂ)ﬂ). Under certain restrictions on p and C, each strategy

s = (p,z,p,.) defines (a subset of) @ "nice" "indifference

surface" in R x R{,* that is
( <=(pz + pC(M), z + ¢(Mn>: 1 at (5.10)

will be a subset of the boundary of some convex, monotone set

£

in R x R". The restrictions we impose are that ¢ be a convex

function and that the product function, pf , be a constant
function. Denote by _S> the set of all possible strategies:
° L 2

2 = ((p,2,0,8): p e RY ; z ¢ R (5.11a)
€ = 'A{Fl - R_; p:A{-%»R+ (5.11b)
{ is convex (5.11c)

pC(M=pl( '), for all n n'eaﬁ'l}

A strategy is said to be allowable for a given agent

if it is an element of /2 and satisfies certain additional

*I.e., a level set of a member of the class of utility
functions satisfying (A1)-(a3),

(5.114d)
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requirementsﬁ no offer to sell a commodity can exceed the
agent's endowment of that commodity (this restriction applies
also to the monetary Commodity in a sense made precise below
(5.l§b)); also an agent cannot offer to sell and bid to buy on
the same market [this requirement greatly simplifies the
exposition but is not essential to the argument]. The strategy

set for a 1is the set df'allowable strategies for a:

S ={(plzl Or C)€$:

a
z + wd > 0 (5.13a)
oz(n) < w g, for all n e AL (5.13b)
nez < 0 => ¢(n) = 0} . (5.13c)

(5.13b) is the condition that a buyer cannot offer to pay more
than his total endowment of money for any commodity bundle.
{5.13c) formalizes the proscription on buying and selling in
the same market. A selection is a #A-dimensional list of
allowable strategies. Let S denote the set of all selections,
that is

s = X s (5.1L)

An example will help to clarify the preceding exposition.
Suppose that ¢ = 2 , the commodities being "gin" and "tonic."
The package deal (%,%) is a "gin—and?tonic,“ mixed by adding

a %-unit of gin to a %-unit of tonic. Suppose that a buyer

a's action 1is (pd,;a); defined by, for n ¢ [0,1] , ga(n,l—n) =
v 4/n(1-n) and py(ns 1-n) = 8/z (n, 1-n) (see Figure V.2).

[The reciprocal of zero is taken to equal infinity.] We interpret

a's action to include, among other alternatives, a bid to buy
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Me [0, 1]}

(4,1)

gin

Figure V.2
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either 4 units of (%,%) at a per-unit rate of $2, or 5 units
of (4/5)1/5) at a rate of $1.6 per gnit. We could construct
utility functions‘for a (defined over net'tradeéf, for example
u, ='(lO—xO)xlx2) such that the action (pa,;a) would accurately
reflect a's preferences over different mixes of gin and tonic.
The set ‘ _ |

{0z, znsl-ning(n,1=n) (1-n)): ne [0,1] }

is a subset of_the level set of ua: {(xo,xl,xz)e R x R2:

ua(xo,xl,xz) =81}.

We will argue below, in Section VI, that there is a
compelling reason for modelling buyers' actions in this way.
The following discussion is intended merely to motivate our
approach. In a monetafy, as distinct from a barter economy,
a significant asymmetry arises between the activities of
buying and of selling. In general, agents can offer to sell
only those commodities;which they themselves own in the first
place. Buyers, on the other hand, can bid to buy any commodity.
The following examples illustrate this difference. Ignoring
short sales, an investor on the stock<market can sell only those
stocks which are included in his initial portfolio; he can, however,
buy any stock which is listed on the exchange. Similarly, a
participant in the housing (used car) market can sell only the
one house (car) he owns; he can, however, choose between any of
the hoﬁses:(cars) which are on the market. At leasﬁ in these
situations, théboppdrtunities available to a buyer are ‘much
richer than those available to a seller. This difference is well

captured by the asymmetry we introduce into our strategy sets.
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V.3 The Strategic Qutcome Function

We begin this subsection with the formal presentation and
then offer an interpretation. A stfategic outcome function (SOF)
maps selections intb outcomes. Before defining this mapping,
we need scome preliminary definitions. [(We will be defining some
auxiliary mappings, whose domains, for technical reasons, will
be larger than the domain of our SOF.] An allocation
A

8=(9) + 6 € R

is a #A-dimensional list of nonmonetary
a'a ¢ A o

net-trade vectors. Given a list of strategies, s ¢ _%#A '

we define an allocation to be s-allowable if (a) no agent sells

more a commodity than he. offers to sell, and (b) the total
purchases of any commodity do not exceed the total sales of that
commodity.

Formally, we define the allocation correspondence,
Q = %#A—» (RQ‘)#A » which associates to each #A-dimensional list

of strategies, s, the set of s-allowable allocations. Thus,

for each s ¢ #A:
o(s) = {8 ¢ &M
8, 2 z, (5.15a)
L8, < o 1} (5.15b)
a

It will have been observed that an allocation may be
s-allowable e&en though agents receive more of some package deal
thah they bid to buy. We include such allocations for technical
conveﬁience (it is convenient to work with a convex-valued
allocation correspondence) but, as will become clear below,

we specify that agents actually pay for no more of a package deal
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than they bid to buy. We are, in this way, equipping our SOF
with a special kind of "free disposal capability": the system
can "throw away" resources by giving them away, gratis, to agents.
Since agents' utilities are monotonic (A3), this assumption is
quite innocuoué.

Given s ¢ ;ﬁA r We associate to each s—allqwable alloca-
tion, 8 € ©(s), a scalar n(8,s), which we call the arbitrage
profit generated.from 6 by s . n(e,sf can.be interpreted as
the'aggregate value of the commodity bundles which agents
purchase (evaluated at the per unit rates which the agents
specify) less the aggregate cost of the resources which make up
these commodity bundles (evaluated at the prices which the sellers
of these resources specify).

The rule by which the value of a commodity bundle is
calculated is somewhat~involved. The first step is to define a
"normalization function," which assigns to each commodity bundle

the package deal of which it is a scalar multiple. Formally,

define n: Ri > AL by, for x ¢ Ri ,
n(x) = { (1/%se..,1/2) x=0 (5.16)
x/]]x]l x>0
n n
[l "Il { is the g -norm: given y ¢ R", Hyll = kzl[ vl

. + - .
Agent a's purchase of the commodity bundle, ea can be inter-

+

. L+
preted as a purchase of llea |l units of the package deal ne,)-
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) + . .

If the gquantity, lb;[ll, of n(8,) which o is
allocated does not exceed the quantity, ca(n(ez)), of n(%)
which o bid to buy, then the value of e; is just the quantity

C . : . + +
multiplied by the per-unit rate, i.e., pa(n(ea))llealll

+ + » -+
If ||eaHl exceeds o (n(8 ), then the value of 8, equals

+ , . +
Poly (n(ea))’ that is, o receives the excess of n(ea) over

z (n(e;)) at no charge.

o
It is convenient to condense this rule into a "valuation
function," v(*,*), which, given a strategy, assigns a value to

each commodity bundle. Thus for sy e j% and e 0O(s),
_ + L= o
v(ea,_sa) = pa(n(ea))mlné ll% Hl,ca(n(ea)L/ . (5.17)

To illustrate, we refer again to the gin-tonic example above.

The value of the commodity bundle (1lk,1%) = oa(%,%)ll(l%,l%)lll =
2 x 3 = §$6; the value of (3,3), on the other hand, is $8, since
Qa (%l%) H (313)H 1 =12 > Qa(%,%)Ca(l/zll/z) = 8.

If the a-th agent announces Sa and is allocated the

nonmonetary net trade vector, ea + then he earns -pa-_ea and

+ .
must pay v(ea, Sa)' We can express an agent's net receipt of
money as a real valued function from strategies and nonmonetary

net trades. Thus, for S, € % and 8 ¢0(s),

Yos) +p -8 7. (5.18)

o a

We are now in a position to define the arbitrage profit

function, T (Rl x‘b)#A + R by, for all s ¢ ‘2fA and

v

o] € @(S)l

m(g,s) = - ¢ Go(Ga/ Sa) (5.19)
a
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. #
We next define the correspondence 1 : }5A‘++(R*)#A , which

assoclates to each list of stratégies the arbitrage profit-

. " aff

maximal set of allocations. For each s ¢ %>A ,
P
m(s) ={ 0 ¢ o(s): 0 is n-maximal on O(s)} .° (5.20)

Finally, we.define the correspondence F: #A—» (R{”)#A by,

’ #
for all s ¢ EDA ,

F(s) = {0 ¢ n(s) : @ is ”-Hl-maximal on In(s)} . (5.21)

We can now define the strategic outcome correspondence for
our game. Given 3 selection s ¢ S, the outcome of our game

is a random vector, £(s) = (fa(s)) the support of whose

e’
distribution is F(s): that is, f(s) 1is a measurable function
.from some measure space into ©(s); let the probability measure
u(s) be the distribution of f£(s); then F(s) € T, for all
closed sets T < ©(s) such that u(s)(T) = 1. Thus our SOF
assigns to each selection, s e S, a random vector whose
range is the volume-maximal subset of the profit-maximal subset
of the set of s-allowable allocations.

Before suggesting an interpretation of the SOF, we digress
with a methodological comment about Strategic Market Games.
By appropriately specifying agents' strategy sets, it is
possible to analyze, explicitly, one or two aspects of some
economic process. There will be many other detaiis which will

require attention, if the Market Game is to be a logically

complete representation of the particular market process.

*¥Given a function f:X - R, x ¢ X is f-maximal on X if

x' € X => £f(x) > £(x').
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An important role of the SOF in the analysis is to take care of
these complications, hopefully in an intuitively reasonable -
way. The SOF, in short, is a "black box" which "ties up the
loose ends" of the.analysis, it is a mechanism by which selections
are transformed, via some unmodelled economic process, into
outcomes. We may take Cournot's classic study ( 4 ) as an
illustration. Cournot's concern was ﬁo model."cdmpetition
between prdducers." In his model producers announced qguantities
and received profits. The problem of which quantity announcement -
to make was carefully modelled; the process by which guantity
announcements were transformed into profits was not explicitly
analyzed. Cournot, in fact, blackboxed the entire consumption
sector of the economy, as well, of course, as the process of
price formation.

Our model, on the other hand, is quite explicit about both
the behavior of consumers and the process of price formatibn.
What we "black-box" is the process of intermediation, by which
sale-offers are coalesced into package deals, which are then
transmitted to buyers. We can, however, associate with our
black-box an institutional story which, while not completely
rigorous,’does provide some economic rationale for.the specifica-
tion of our SOF. The institution which we invent is a hypothetical
arbitrage sector, whose business is to buy commodities from
séllers (paying the sellers, in money, at the prices they

specify) and sell back commodity bundles to buyers (receiving
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money from thevbuyers at the per unit rates which they implicitly
specify). |

| A selection, s ¢ EfA , defines for the arbitrage sector
an "industry production possibility set," which is just the set

of s-allowable allocatiohs,‘togethér with an array of "factor"

and "product" prices. The "factor prices" are the ask-prices
vannounced by sellers; the "product prices" are the per unit

rates for the alternative package deals, which buyers implicitly
specify; 'The.arbitrage profit correspondence, I , associates

to each selection those allocations‘which maximize industry
profits over the industry production possibility set.

It will be.recalled that our arbitrage sector selects from
only a subset of the profit-maximal allocations, that is, those
allOCationé which are volume-maximal on the profit-maximal set.

We need thisiadditional, and rather counter-intuitive, requirement
because there ére many selections, in particular, the Nash
selections, for which arbitrage profits are at most zero, so

that allocations such that minimal trading occurs will be profit
maximal along with, say, the constrained Walrasian allocations.

By restricting the range of the outcome, £(s), to F(s),
rather than 1(s), we ensure that allocations which are
dominated by the criterion of Qolume of trade.are never realized.
[It is not easy to provide a fully convincing rationale for "
volume-maximizing pehavior. We could, however, have finessed

the problem in the following way:' consider the following sequence
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of games, (I'(e)), where ¢ > 0O tendsbto zero. The game I'(€)
is identical to ours except that the arbitrage firms act as
"e-satisficers": they will arbitrage a transaction if and only
if marginal arbitrage profits accrue at a rate of at least e per
unit. For TI(€), € > 0, the second stage of the arbitrageurs’
maximization program can bé shown to be redundant: any element
of the arbitrage-profit meximal set of allocations is & volume-
maximal element of that set. The equilibria of our game can be
thought of as the limit; as € approaches zero, of the equilibrium
of the sequence of games, (I'(e¢)). In the Nash equilibria for
I(e), the per unit rates, which buyers implicitly specify for
the commodity bundles they receive, will exceed the per unit
costs of these bundles by € . It can be shown that, under the
conditions of the Theorem (part (ii) below, the Nash allocations
for TI'(e) converge, as ¢ tends to zero, to constrained
Walrasian allocations. ]

To conclude our institutional stofy, the hypothetical arbitragé
firms are owned by ;he agents, to whom arbitrage profits are
distributed as dividend checks. Profits are thus ultimately
"consumed" by the traders themselves. We assume, informally,
that agents act myopically in the sense that they do not perceive
the relationship between their actions and their dividend earnings:
‘agents do not take into consideration what arbitrage profits

~they will receive when they choose which strategles to announce.
blnce arbitrage profits from Nash selectlons are zero, this

assumption is rather harmless. ]



41.

V.4  The Payoff Function and Equilibrium Notions

The payoff function, P : S - R#'A associates to each
selection a vector of numerical payoffs, one for each agent.
The a-th agent's payoff, given a selection, s, is simply a's
expected utility from the lottery, fa(s), which is the outcome
of the game:

P (s) = Bu (<04(£,(s),5,),£,(s)>). (5.22)

Let N{ E ) denote the set of Nash selections for E , that is:
N(E) = (s ¢ S: for all a € A and s' ¢ Sa’Pa(s) > Pa(s/s&)} (5.23

[The following notation will be utilized extensively: given

X = (xl,...,xn) define x/y, = (Xl""’xk—l’yk’xk+l""’Xn)’

Further, suppose that x = (xkl,... then define x/ykh

» Xy )
x/y, where vy, = <xkl’"”Xk,h-l’ykh’xk,h+l’""ka) .

X and x/( ) are defined analogously. ]
/Yklhlfykzh2 / quhq qeQ

We now define precisely our benchmark notion of "competitive
behavior.”" Given a selection, s, a trader is said to be s-active
on a market if he has a positive probability of trading on

that market. Formally, given s € S, & 1is said to be an

e e e e e e e e e e S e vy

g ¢ F(s) such that 85y > O (o < 8) . [Since F(s) is the
support of £(s), ~ the existence of just_one such allocation
ié sufficient to ensure that d has a positive probability of
trading.] A selection, s, 1s said to be constrained Walrasian

(i.e., competitive) if all s-active traders announce constrained

Walrasian prices and if these prices, together with any possible
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realization of the outcome, £(s), constitute a constrained

Walrasian pair for E . Formally, we define the set of constrained

Walrssian selections for E , W(E ), by

W(E ) = {seS: there exists E € Rf, p >> O, s.t., for all

9 € F(s)

ban < O => Py, =P, for all A e L, @ ¢ A | (5.2ka)
6" >0 => (vn(e")) = p-(6") for all @ ¢ A | (5.24b)
o =7 Pgt ROg /) = PTGy :
(p,8) 1is a constrained Walrasian pair for E} . (5.24hc)

Condition (5.24b) states that the per unit price which « bids,
pa(ﬂ(G;)L _ for the commodity bundle he receives, 6; , equals
the cost, evaluated at prices p , of the package deal, H(G;).
Note that from the Proposition above, we know that W( E)
is nonempty, if E satisfies Al-As5,

Our main result is the Theorem below, which states that,
firstly, constrained Walrasian selections are also Nash selections,
and, secondly, a Nash selection, s, "such that all markets are

s-thick" is a constrained Walrasian selection. Given s ¢ S,

a market A is said to be s-thick if there are at least two

s-active sellers of X and at least two s-active buyers of A .

Theorem: Let E satisfy Al-A5, then

——

(i) ¢ #W(E) ¢ N (E )

(ii1) s ¢ N(E) and all markets s-thick => s ¢ W(E )
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V.6 Corollary to the Main Result

Part (ii) of this theorem is not completely satisfactory.
We cannot impose conditions on the primitives of the analysis
which will ensure that a Nash selection will always be constrained
Walrasian. [This problem is, in fact, generic to the NAEE.
Postlewaite-Schmeidler ( 21 ) prove that, under very weak
conditions, there exists no Strategic Market Game such that the
Nash and Wairasian allocations coincide.] We can, however,
prove a weaker result without invoking the reguirement
that all markets be thick. The Corollary states that, under
somewhat stronger assumptions, avNash selection will be semi-
which are "constrained Walrasian with respect to the set of
open markets." [The term "semi-Walrasian" was, we believe,
coined by Mas-Colell ( 15 ).]

To make this statement precise, we need some more definitions.
Given a selection s ¢ S, a market A 1is said to be gs-open
if there is a positive probability that trade will occur on
the A-th market, that is, if there exists 6 e F(s) and o ¢ A

' : existence

such that ¢,, £ O . [Since F(s) is the support of f(s), the / of
one such allocation is sufficient, once again, to ensure that
trade occurs with positive probability.] Given s e S, let L(s)
denote the set of s—opeﬁ markets. The concept of a "constrained

Walrasian pair with respect to the set of s-open markets" is
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analogous to the concept of a constrained Walrasian pair, except
that condition (5.8b) is replaced by the condition that agent

a's net trade vector is'ua-maximal on the subset of a's budget

markets are zero. Formally, given K<L and p ¢ Rf , define

BolPsK) = (x e B (p): N e L™K => x, = 0] (5.6")
and | | '
8a(p,K) = {x € py(p,K): x" e By(p,K) => u (<-p-x,x>)
2 uy(<-p-x',x'>)} (5.77)
A price allocation pair (p,%), where p ¢ Rf and x = (ia)aeA )

ia € R7, is said to be a constrained Walrasian pair with respect

to K for E if

p > 0 (5.8a)
X € &a(E,K), for all @ ¢ A (5.8%)
§Xa =0 (5.8¢c)

Finally, given s ¢ S, we define a gemi-Walrasian selection
analoéously to 2 constrained Walrasian selection; the only
difference is that pricg allocation pairs are, not constrained
Walrasian, but constrained Walrasian Qith respect to the set of
s-open markets, L(s). Formally, we define the set of
semi-Walrasian selections for E , W(E,L(s)), by

W(E,L(s)) = (s € S s.t. there exists

b e R£, p >> 0, s.t. for all § ¢ F(s):

eaxv<o=>9a>\=5>\ for all @ ¢ A, A e L . (5.2Lka)

07 > 0 =>p( e )) =p - n6), for all a ¢ A (5.2L4b)
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(p,06) is a constrained Walrasian pair w.r.t, L(s) for E (s5.2L4c')

Our corollary applies to what we call "twin economies."
Informally, 2 twin economy is an economy in which each agent

has at least one "identical twin." More precisely, let

A = (Al)1 eI be a partition by type of A; defined by the

condition, for 2all | ¢ I

for all a,a' ¢ A ,u, = Uy and <wao,wa% = W0 WS (5.25)

A twin economy satisfies the condition:

.'(A6) #Av> 2, for all 1 ¢ I ‘ (5.26)

We will also need to strehgthen one of our initial assumptions
on utility fuﬁctions:

(az2') u, is strictly quasi-concave, for a ¢ - (5.27)
We can now state the Corollary:

Corollary: If E satisfies Al, A2', A3%-A6, then

s e N(E) =>s ¢ W(E ,L(s)) .

- . _ . -
A function f£:X - R is strictly guasi-concave if for all

x, x' € X s.t. £(x) > £(x'), then f(ax+(1-a)x') > £(x') for

all a ¢ (0,1].
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VI. WHY SHOULD BUYERS ANNOUNCE ACCEPTANCE SETS?"

This section is a summary of Section VI of Simon (27):
the reader is referred to the original for an elaboration of
the ideas outlined here. Our objective is to compare two
alternative ways of generalizing Bertrand's model. We have
adopted the first approach (whigh we call our Original
Specification),,while Dubey (8) chose the second (the Alternative
Specification).* 1In the Original Specification, buyers announce
"acceptance sets" and sets of associated prices, while in the
Alternative Specification, buyers announce "acceptance sets"

and sets of associated prices

Our argument is that Bertrand's partial equilibrium
model of "competitioh—by—price“ is ultra-competitive in spirit::
a seller can, by shaving his ask-price, increase his market share
at the expense of other suppliers. An extension of his model to
a general equilibrium context should preserve this competitive
spirit. A seller should, by sufficiently discounting his price,
Se able to induce buyers to purchase more of his commodity, and
less of the commodities sold in neighboring markets. We

endeavor to show that the obvious way to generalize Bertrand

*This is, in fact, one of two more of the radical
differences between Dubey's paper and mine.
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(the Alternative Specification) is unsatisfactory, because

it precludes the possibility of this kind of competition across
markets. Our Original Specification, on the other hand,
neither precludes the possibility of competition across

markets nor ensures that it will occur. To capture the essence
of Bertrand in a general equilibrium Game, then, we must
further restrict agents' strategy sets, so that buyers are
obliged to convey, "reasonably accurately," the extent to which
they regard the commodities sold in different markets as
éubstitutes} :Thése édditional restrictions are introduced in

the sequel to this paper (Simon (28)).
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VII. CONCLUSION

In this paper we have ‘developed a game-theoretic model of
pure exchange, in which the process of price formation is fully
decentralized: the players themselves dictate the prices at
which they wil; trade. Our work can thus be viewed as an extension
to a general equilibrium context of the spirit of Bertrand's
classic critique of Cournot.

The paper addresses two guestions which arise from modern
Walrasian analysis, in which prices are treated by agents sas
parametric. First;y, if all agents take prices as given, where
do prices come from in the first place? In models based on the
Cournot paradigm, prices are determined by the "impersonal forces
of the market." 1In ouf model, prices emerge in the most
natural way: agents choose them.

The second question which concerns us is: When is the
Walrasian model appropriate as an idealization of actual economic
situations? We focus in particular on the Walrasian hypothesis
of price-taking behavior and seek conditions under which this
hypothesis can be regarded as innocuous. We construct a
Market Game, in which agents are permitted to act strategically
with respect to érices, and compare the Nash equilibrium
allocations for this Game to the allocations which arise in
equilibrium, when agents act as price-takers. The main result

of our paper is that, when there are at least two buyers and
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at least two sellers active in every market, then the Nash
allocations coincide with the price-taking allocations for the
underlying economy.

This result leads us to an interpretation of Walrasian
analysis which contrasts sharply with the conventional wisdom.
Research based on the Cournot paradigm reinforces the wide-
spread view that a key explanatory variable determining the
extent té which strategic models yield "competitive" outcomes
is the size of.agents relative to the market. "Competitiveness,"
in this view, has come to bevequated with "powerlessness":
agents act "competitively" (that is, as "pricé-takers") if
they have no "market power." Our purpose has been to focus
attention upon the ultra-competitive aspect of the Walrasian
equilibrium concept (using "competitive" as it is conventionally
understood). - This aspect was emphasized by Bertrand (3),
but the NAEE, shackled by the Cournot paradigm, fails to
"elucidate it. Our model is an attempt to demonstrate that
Walrasian outcomes result when the logic of "competition-by-

price" is taken to its extreme conclusion.
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VIII. PROOFS

We begin by defining some additional notation. In Section
VIII.2 we state and prove some properties of the strategic
outcome function énd the auxiliary mappings, which will be used
extensively in the subsequent sections. Sections VIII.5-VIII.6
are devoted to proofs of the Proposition, the two parts of the

Theorem and the Corollary.

VIII.1 Notation

. . ; oA :
Given a list of strategies, s ¢ jﬁ , we define the vector
E(s) = (El(s),...,gﬁ(s)), where Ek(s) is the "maximum realized

sale price for A," that is, the meximum ask-price fo A
submitted by an s-active seller of A . [Note that §(S> >> 0,
since we have constrained agents to announce strictly positive
ask-price vectors (5.12).] If no s-active seller exists, then
we define Ek(s) ‘as infinity; that is, Ek(s) o == A ig
s-open. Formally, define
AP~ (10,01) ¥ by, for 211 s = (b1, -1000)s Zgr fmrla)aent S

EK(S) _ { miX{an: & 1is an s-active seller of A} A is s-open (8.1)
otherwise

let Ax(s) denote the set of s-active sellers of A whose

ask-price for A is Ex(s): for all A ¢ L

>

Ax(s) : (¢ e A: Py = px(s); there exists 6c¢F(s) s.t. Bon < 0}

| (8.2)
‘We next distinguish two special classes of strategy lists,
- the second class being a subset of the first. We say that a

strategy list has "the common ask-price property" if for all A,



51.

all s-active sellers of A announce the same ask-price for A.

Formally, s € ’%#A has the common ask-price_property if

for all 6 e F(s), for all A e L, 6,4 < O =>p, 5 = Ex(s) . (8.3)
A subset of the above defined class of strategies is the class
satisfying the "zero arbitrage profit property": loosely,

s € QiA has this property if it satisfies (8.3), and if the

per unit price announced by any buyer for any purchase he may

realize equals the unit cost of the package deal associated

with that purchase, evaluated at the common ask-price vector,

- id
p(s). Formally, s e ;bA has the zero arbitrage profit property
if |

(i) s has the common ask-price property

(1i) for all @ ¢ F(s), for all @ ¢ A, 6

T >0 => p(ey))

- + ,
= p(s) n(e,) (8.1)

[The reader will note that constrained and semi-Walrasian

selections satisfy the "zero arbitrage profit property” " (5.2ka

and 5.24b). A major part of the proof of the Theorem (part (ii))

is devoted to showing that Nash selections also have this property. ]

VIII.2 Properties of the SOF and Auxiliary Msppings

Given a f#A-dimensional list of strategies, s € ﬁgA ,
the following properties hold:

pl: ©(s) is a closed, convex set.

p2: =(-,s) is concave on o(s).

p3: 1(s) and F(s) are convex sets.
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pk: For all 6 ¢ n(s), =(8,s) > 0 .
p5: For all ¢ ¢ n(s), =& 6, = O .

. o
p6: For all 6 ¢ n(s) and for all o ¢ A,

Poa <'§x(s) < @ => Q;X = 2y - (that is, if two s-active
sellers of A\ announce different ask-prices for A, then the
cheaper seller will never be rationed.)

Properties p7 and p8-p9 hold for classes of strategy lists
saéisfying, respectively, (8.3) and (8.4).

p7: If s ¢ IQfA has the common ask-price prOperty then
for all © e n(s) and o ¢ A, u(eg,s) > p(s) - Q;

p8: If s ¢ ;E?A has the zero arbitrage profit property
then max (n(9,s): 6 ¢ (s)} = 0 (i.e. s vields at most zero
arbitrage profits!). |

p9: If s ¢ ;EfA has the zero arbitrage profit property
then for all @ ¢ A and for all x ¢ Rf s u(x,sa) < pls)x
[p9 ensures that, for such éelections; the iso-value surfaces,
{x e Rf: ga(ﬂ(x))”x”l = ¢} are supported by the hyperplanes,
H(p(s),c), i.e. the situation illustrated in Figure VIII.1l
cannot arise. (Note that this figure does not violate (8.%4)
if, say, F(s) = (g}, since ‘u(gg,sa) = C = E(s)'ag)].

Proofs of pl-pog.

pl is obvious, from the definition of o(s) (5.15).

' N . + -
p2 is obvious, since =(6,s) = Z[D(ea’sa) + p,6,1, and
a
u(',sa) is the minimum of two concave functions and hence is

itself concave.



(xeRi: pa(ﬂ(x))Hle = ¢}

Figure VIII.1.
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p3: 1is obvious, since n(+,s) and ”'”l' are concave
functions.

pk: obvious, since the zero allocation is s-allowable

p5: obvious, since‘ask-priceé are constrained to be

strictly positive and because sellers can be rationed (5.1l3a).

p6: choose § ¢ O(s) such that 9; N Zay for @ ¢ A
such that p_, < Ex(s). Since Ex(s) < o , there exists b ¢ Ak(s)'
snd © ¢ n(s) such that 5bk < 0. let g = %5 + 10
) Ch < - 1 = ) g -
0.0 > Zay 20d g, < 0. Define gle) = 0/6y,%e,0,57¢

g >0 . For ¢ small enough, 4g(e) ¢ o(s). Clearly,
n(6(e), s) >x(g,s) > «(8,s), so @ £ u(s)

p7: obvious, since any allocation such that the inequality
were violated would be arbitrage-profit dominated by the
allocation which assigned to <« the zero commodity bundle.

p8: follows immediately from the definition of the zero
arbitrage profit property (8.L).

p9: suppose that p9 were not true, i.e. there exists
a ¢ A and x ¢ Rf s.t. u(g,sa)> p(s)'x . Clearly QR > 0 => A

is s-open (otherwise p(s) = » ), so that ix > 0 => there exists

g € m(s) s.t. 0> ; O 2 g Zy, - For 8 > 0 small enough
we can find § e o(s) such that 5; = §X. n(g,s) >0,

violating o8, a contradiction, (see figure VIII.1).:



VIII.3__Proof of the Proposition

Walrasian pair exists.
Proof: In order to apply standard techniques, we first

renormalize prices to lie in the {-dimensional unit simplex,

2 L.

i.e. A =-{<qo,q> € RxR’: g5 + Z qy = 1} . Define, for

Z
. Aot 2
each  a ¢ A, the relatlion <Bn,B8>,: A —> RxR~ by, for

s
<qo:q> €L,

. £ :
'<Boy 6>a(<qqu>) = {<xo:X> € RxR": <X0:X'> Z -<WO£O’WOL>>7

- . + - .
o = "2°X/dgi I'X £ dgih0)

Define, for each @ ¢ A, the relation <§
9
by, for <9y,3> € A7,

<€,, 6> (q5,q) = (<xq,x> € <By,8>,(<qn,q>):
<X, x> 1is ua-maximal_in‘<50,5>d(<qo,q>)} .

Let <&4,8> = é <5q, 8>,

Existence follows from Lemma 1, Section 2.2 of Hildenbrand (13,
p. 150). T2 apply this Lemma, we need fo check that <§O,§>
satisfies the following conditions

(i) for all <q,,q> € Z{’ and <xg,%x> ¢ <§O,§>(<qo,q>),
d¥g * I°% = 0. A

(ii) <§O,§> is compact-valued, bounded from below and u.h.c.
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(iii) If the sequence ( <q8,qn>) of strictly positive
price vectors conVerges to <9y, 9> which is not strictly

positive, then

inf,{x0 + i xx P<XgrX>e <g 0,g> (<q3,qn>)} > 0,
for n large enough.
(i) 1is true by definitidn of <€yrE> ¢ (ii) follows from
~ standard arguments; (iii) follows by an argument thch is a
special case of that used in the proof of Lemma 3 of Anderson

(1, p. 11).

VIII.4 Proof of the Theorem (part (i))

Theorem (i): If E satisfies Al-A5, then @ # W(E) € N(E).

~

} ~ 2
Proof: Suppose s ¢ W(E), that is, there exists P ER&,

s.t. for all g4 €F(s):

0 =» = for all L, A 5.24a
8,5 < Py ﬁk / A€ o € ( )
+ + ~ +
% 7 0= 5 (nle)) =B -Mg") for all 4 ¢ A(5.24b)
a a a a
(P,e) 1is a c.w. pair for E (5.24c¢)
Clearly, EA(E) < o = %&E) = §A . Note that g ¢ F(S) =>
7(g,3) = P- 15g =.,0, since s has the zero arbitrage profit
o
property.
Pick a ¢ A, S = (P, r 25 par€y) e S; and define s = S/Sa'

We must show that Pa(§) < Pa(E) . Our approach is to show
that 0 F(8) = 5, ¢ g,(B) and 505,80 < Be,
This is sufficient to prove the theorem, since Pa(g) <

= < —~.6 6 > < ~B.At ' = ~
u (< eo(ea,sd, ©.>) 2 u (< -p a'va ) 2 uy(-Prgiigas) = P(3),
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where e; é F(;) . (the second inequality holds by monotonicity
(A3) and the third since 8! e £,(P)).

We first show that agent a cannot buy any commodity bundle
for less than its cost, evaluated at the éommon ask-price, 5,
because such a transaction would yield negative arbitrage profits.

Pick 0 F(g). To show 6_ e Ba(ﬁ) we need only show that

a
~ ok ) . ‘ ) ~ .
p- ea < Wigr Suppose fpr somg A€ L, Ga > »0 .. From
(5.13c) and (p7) we know that Zék = 0 . Also, for
5 => = | - '

a 4 a, Py, < Py Z5 0 (using (5.?fa)vand p6)) .

~ -_— ~ L ~ b At .
Therefore Py, < px(s) . Also v@g, sa) > g;eav(p7). Therefore
~ 2t - " At At 2
P-6, 2 P(s)-08, < V(B s ) 2 Yao-

We next show that agent a will be unable to earn more than
the value, at prices E, of the goods whch he sells, because

buyers have committed themselves to trade only at the price

~ R e A ~ A A4 A A A=
vector B , that is, -p-6_, > eo(ealsa) = - [v(ea,sa)+p-6a3-
n8,8) =z @, &) +p -8 1<z [B-8° +B-6.1 - 8,(8.,5)
! a a' Ta Py @’ T 4a P9 ‘p o 0 ea’su

< p'i ea - pfea - eo(ea,sa) <0 - p-ea - eo(ea,sa). [ The first

inequality holdé by (p9), that is,

At A At~ ~ a4
v(ea, Sa) = v(ea,sa) < p-ea, for o # aj.

. . ~A ~ At A~ ~
Finally, 51nc¢-.n(e,s) > 0, we have —p-ea_z eo(ea,sa).

This complétes the proof of the first part of the Theorem.
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VIII.5 Proof of the Theorem (part ii))

Theorem (ii): If E satisfies Al-A5, then se N(E) s.t.

all markets are s-thick => se¢ W(E).

Proof: The proof is organized into six parts.

(A): s e N(E) = s has the common ask-price property (7.3).

Proof of (A): suppose § ¢ S and there exists 3 e F(3)

such that eak < 0, for some a ¢ A s.t. pax < px(s).

3 3 1 - -~ 1 ]
We will show that there exists S, Sa/pax ’ pak> pax ; such

that p_(5/s)) > P, (S), establishing that § £ N(E).
It is suﬁficient to show that, for (péx - 5ax) small enough,

~

F(s/sé) = F(S). To establish this we first show that as we
move away from F(S), by rationing as sales of ) , arbitrage
profits fall at a rate bounded away from zero. Therefore, for

a small enough increase in a's ask-price for ) , profits will

still fall as a's sales of A are rationed. See Figure VIII.Z2.

Pick § ¢ n(S) and b e AA(E) s.t. §bx < 0 . By (p6),
we know that eak = 25,< 0 . Let E (pak-pk(s))zax >0,
and let Yy = gbk/;ak > 0 . Let s, = ga/(l+7)§ak , and

define § = §/sa . [Note that se jﬁA though, possibly,

s # S, since, possibly (l+Y)EaA < w_,]. We will show that,

ax

for 8 €©(S) such that eak f (l-d)zaxl

© are less than maximal by at least §e¢, establishing that, as

arbitrage profits for

is rationed, profits fall at a rate bounded away from zero.

a



59.

A a's ask price for A

Vi
-~

1
a s.sales of x‘ Zax

Figure VIII.2
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Define § = @/@ak , where éax = (l+Y)EaA and ebx = 0 . Note
that z§a=o, so 6ee(S)ce(s) . mw(B,s) = n(8,8) + ye. Now
a ~
pick 65' € ©(s) such that esak = (l-é)zal, where 6 ¢ (0,1] -
and define 8§ = l—-§ +-—58 . 8 ¢ ©(S), since 9, = z

ax ax’

3 > 1(8,8)

S+y S+y
so that using the concavity of m(*,8) (p2), =

-~

s L n(8%, F) 4 =5 (8,8 = L (88,5 + = [1(5.5) + yel.

= §+y 8+y 8+y | 8+y
This establishes that (5,8 > n(8%®) + se.
i v =3 /(B - ke /7. ) ' ' = 3/s!
Define S2 Sa/(pax s € /Zax) and let s s/sa
Clearly 6(s') = 6(3) pick 6% ¢ ©(s) such that
= (1-8)3 § g1y = S 3y - k(1-
eax = (1 S)Zax . Now m(e ,s") 7(6" ,S) s (1-8)e .
n(é,g) - 8¢ - %(1-6)2 < n(é,s') + e -8 - 1(1-8)E<
7(8,8') for § > 0. Therefore eaen(s') => 8= 0, so that

I(s') =qg(s) and F(s') = F(S)

Finally, 8,(f_(s'),s') = 84 (fa(g),g) + %¢ , so that
Pa(s;) > Pa(s)

(B) s € N(E) => s has the zero arbitrage profit property .

Proof of (B): Suppose there exists § ¢ S, such that 7§ has

the common ask-price property (7.3), and B¢ F(%) such that, for
some a € A, -aa(n(gz))> 5(%)'n(§;). (The reverse inequality
cannot hold, by (p7)). We will show that § cannot be a Nash
selection because either agent a can lower his bid-price for

the package deal n(@;), or some seller can_raise his ask—price.
for some good, without changing the set of arbitrage-profit-
maximal allocations. 1In either case some agent can thus

increase his payoff by defecting from his part of §.
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The proof of (B) involves the following thought experimentf
we pick an s-active seller, bx , of each commodity whose market
is s-open and consider the effect on arbitrage profits if each
bx doubles the quantity of ) he offers for salé. -There are
two possible classes of outcomes: either arbitrage profits would
" increase (Case I) or they'wQuld not‘(Case I1). v(See’Figure
"~ VIII.3.) If case I obtains then, using an argument parailel
‘to the preceding proof of (A)} we éhow that there exists )\ such

that, as we move away from F(s), by rationing b - sales of

A'S
X -, arbitrage profits fall at a rate bounded away ‘from zero.
Therefore, once again, for a small enough increase in bk 's
ask-price for )\, profits will still fall as bx's sales of
A are rationed. If case II obtains, then we show that agent
a can lower his bid price for n(@;) without risking being
rationed. ‘Our réasoning is as follows: a's action will lead
to rationing only’if the resources thus released can profitably.
be diverted to satisfy the purchase offer of some other buyer.
if such a competing offer existed, then arbitrage profits would
have risen when the thought experiment was conducted; since
case II obtained, we conclude that no such competing offer
exists.

For each ) e L such that X is s-open pick b, ¢ Ak(§)7

A
otherwise pick va arbitrarily from A. For each A‘eL define -
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Case 1 AArbitrage Profits
ey
: Case 2
' /
————— L
i i \\
< ':‘
Realized Hypothesized Original
sale by bk Offer - Offer

of good A\

Figure VIII.3
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Spy = ;b)\/gzb)f‘- and define s = s/(sb}\)keL . Note that
s e }?jA (though, possibly, s ¢ S). Either case I1: 1(s)Ne(s) = ¢,

or case II: T(s)Ne(s) ;é b , is true.

Suppose case I obtains. Pick 6 € H(;). Let x = n(é,;).
(récalla ¢ F(s)) and = = x(8,s). Let T -7 = & >0 . Define
j\(;) {N e L: 5b>\>\ = zbkk}' Clearly, from (p2) A(E) E D .

We claim that there exists k ¢ A(S) ‘such that for all 8 e (0,1]

]

K % - n(8,s) > 8e.
k

and for all 6 ¢ o(S) satisfying 9b k = (1-3£)Eb
. k ‘
Suppose, to the contrary that, for all X e A(s), there exists §™ < (o,1]

P ~ . . ' N A ~ ~
apd 6" ¢ o(s), satisfying eb)\k = (1-% {)'zbhx , such that =« -

ﬂ(ex,g) < 8 . pick 5 > 0 small enough such that, for A\ ./\(;),

~

8 <% ana, for ne LT A(S), 6, 2 (1-§aDEbkx . For A e Ns),
define O = ((8™ - 8)/8M)F + (¥/8")8" ; otherwise let 6 = 6
Note that, for all A, g > (1-%3/&)5 . Also, by (p2), for

by N by Y

€ /\,(;), n(é‘}",g) > 7 - 8¢, pefine 9 = 1/4 25)‘ . Note that
7(6,s) > - & and for all A e L, O > {(1-8)z . Define

_ byA % b A
6% = (®/(1+3))9 + (1/(1+8))8 . 6% ¢ o(s) and =n(o*,s)> =(8,s),
by (p2), a contradiction, since 6 ¢ m(s). This establishes the
existence of k. e \(s), satisfying the above condition.

Let b = by . Define s/ = sb/(pbk - e/2{zbk) and s' =
E/S}; . Note that ©(s') = ©(s) and that, for all 6 ¢ o(s'),
') = x(6,s) -6 z

(8,s') = (6 ,s) -¢ bk/gltzbk

pick 0% ¢ o(s') such that sz = (1-84)z 8 ¢ (0,1].

pk
- g ~ _ i ~ , -8 s
x - n(6 ,s) > BE ., Therefore x{6,s') > =(6 ,s") + d&/2,
establishing that T1n(s') = H(fsr) and F(s') = F(;). Hence

p(s")> pb(;),'so s ¢ N(E).
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Suppose now that case II obtains, i.e., for all

0 € H(;), n(e,g) <t . Clearly then, for all 0 ¢ H(;), for all
+ -~ + ~ -~

& ¢ A and for all x : Rf’, 13(9a,sa) - p(s)'Oa grxp(x,sq) - p(s)-x.
Pick 3 > 0 such that ,a(n(,é'_:)) - 8/¢_(n(81))> p(s)-n@ )
Define ps by, for all ne A%_, pé(’ﬂ = ;a(ﬂ) - 3/Ca(ﬂ) . Let
s} = ga/pé and s =.§/s$ . Note that ©(s') = o(s).
Also note that,. for all 6 ¢ n(s), u(eg,sé) - E(g)-92'= u(9+,§ )
- 8 -,E(E)'BZ 2‘u(x,s$) - p(s)'x, for all x « R{; . Therefore
T(s') = 1(s), F(s') = F(s) and P_(s') > Pa('é) , SO that
s £ N(E).

(C) Suppose s e N(E). Then for all 6 e n(s) and all
a e A; ua<<eo(6a}sa))6a>) < Pa(s)

Proof: Suppose that s ¢ N(E) and 0 ¢ m(s) . S has the

zero arbitrage profit property, i.e. n(g,g) =0 and, for all

i

a e A, u(eé,;a) = 5(5)-6+ . Also Z§a 0, by (p5), Suppose

o
that, for some a ¢ A, <Qd95 ),ea>) > Pa(s). We will show that

there exists a strategy for a, s such that a 1is guaranteed

a’
to reallzg a net trade arbitrarily close to g a » SO that, by
playing this alternative strategy, agent a can increase his payoff.

Since, by assumption (A1), u, is continuous, there exists
€ > 0 such that <KX € B(<00(§a,§a),ea>yg) = ua@:xo,x>)

-~

~ 8 - ~ ~
> Pa(s).* Define x = 6, + (1-8)6; and pick 8 > 0 small

*Given x ¢ Rp, we define the €-ball, B(x,c ) = {y € R% .

d(x,y) > ¢}, where d(x,y) = max [lxk-ykl:k e {1,...,n}1}.
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- ~p e - ~_. §
enough that < - (U(G;,Sa) + (1'8)9(5)‘98),X > €

N

~ A 8 A
B(< 6 ( ), 6.> ,¢e). Let x =x and pick f_ toavex

satlsfylng £s (1](0;)) = (1-5)”6;” and, for ﬂ}éﬂ(f’;),

ga( Mp(s) M > ( T(G ))p(s) (6 ) . Define §a as follows:

~ -_—— ~ A - A A - ~+ A .

p, = (l'g)p(s): zZ, =X ;{ 7 Py = (s) 6_/t, - Observe that
A Ar A ) ~— . ~ — o~ ~ 4 A

s, € S, and that o (%’ ,sa) - p(8)x" = gp(S)'ea' >D<Y;Sa)

- p(s)y, for ally € R’E . let s = E/ga |

" We now show that 6 ¢ F(s) =>.6. =x . Pick 0« @(g) such

that 9 ;éx . n(8,s) =

oA -  +7 -~ + A

Qfa

1

- 2 040,85, +B(s)0] + (1-8)p(s)-0 ] + 00 [,8.) - B(5)4]
Qfa @

< ) —_— .' o~ . ) §_~ . - + A _—.~ . +

< O(/}239(5) 6, + p(s)6, - Bp(s)-6_ + v _,s_ )-p(s)0_ ,

) : . ~ - - +
[using (p9), which establishes that ‘ua(ea,sa) < p(s)-6,, a £ a]
< 0 - SE(E)’I’?-"" D(£+,§a) - p(s)'x" . To show that
0 £ 1'[(;)1, we construct 6 e o(s) such that n(g,g) =

A
-_— A

+ u(§+,§a) - p(s)'£+. Define 6 as follows:

A A + q + i
Ga =X, Goz =6a , @ £a and, for all A ¢ L and «a # a, define
( 6

8- - 8% % 5" 8
-~ I eak)eom./ £ 6, - Note that g, = (1- ) +
afa . afta a R

~ -~ ~ o+ A ' =Ty A"
5 9;_'_ éea+86a'o' ‘n(Q,VS) = aia[.<6a’sa),+ p(s) eoc]
opa - L
+ p(5)-03-p(5)-6, + v(6,5 ) + b, 0] =

e ~ —_ - ~ D o A~ AL A A+
z p(8)-0, + p(5)-9, - Op(s)-0 + ©(F,s) - p(s)-6,



66.

A

(using the fact that v (6.,5.) = E(E)-ea , for a £a) =0

a’a
- 8(s8)-x" +-‘u(§;,§a) - p(8).x7 . This establishes that
6 e n(s) = o, = % , so that Pa(g) > Pa(g), a contradiction,
since S e N(E)
(D) s e N(E), 8 ¢ F(s) = for all a ¢ A, u,, ( eo(ea’sa)’ea ) = P (s).

Proof of (D): (D) is an immediate consequence of (C). Without

loss of generality, suppose that, to the contrary, s e N(E) ,
6 ¢ F(s) and, for some a ¢ A, ua(<90(§a,§a),ea> ) < pa('é). Since
F(s) is the support of £(3) and u, is continuous (Al), there
A ~ A ~ ~ ~
exists @ ¢ F(s) such that u (<6 o(aa,sa), 6> ) > p,(s)
But this is a contradiction of (C), since 6 m(s)
(E) Suppose § ¢ N(E) and that, for some a ¢ A, there exists
9 e F(s) such that - I gt 5-§a<<‘2 6. . Thend e £ _(p(3)).
o a o a a
Qfa ata

Proof: since u is quasi-concave (assumption A2), it suffices

to establish that there exists €> O such that ua(< -E(s)-ea,6a> )

> ua(< —E(;)°x,x> ), for all x ¢ B(ga,s) N Ba(E(;)). For each N ¢ L,
let 8™ - min( = 6;)\, b3 5&)\) and let § = 1 min [sx: NeLj}.
afa ata

Pick 7e¢ (0,1) and £ ¢ (0,3) such that for all A ¢ L, if AN £ O,
~ >+ o+ ~

then |6 > € and, also, z 0 -8« T35 6” <= gt - g.
28 afa ar ata “Ma=a an

Pick =x B(Ga,g) (\Ba(g(g)). We will show that there exists a

strategy, s for a which would guarantee that agent a realized

a’

a net trade arbitrarily close to x . Since s ¢ N(E), we can

(< -5(5)'9 5a> ), since

conclude that ua( < -E(E)-;c,§ >) < u 0 s

a
otherwise, using part (D), Pa(§/§a> > ‘Pa(g)' The argument closely

parallels the argument of part (C).



We assume, to the contrary, that u, (< -p(s)x,x>)>

u (< —E(g)-ga,€;3>), and reach a contradiction. Define

x = x + (l-B)x+ , where 8 >0 is small enough that

u,(< =(p(3)-%" + (1-8)B(5)-x7),x>) >u (< -p(3)F _,B >) ana

pick EaCOnVGX satisfying Ea(n(§+)) = (1-8) | §+” and for

noA on(ERD), £ (MB(E) - > £ ((KT)IB(E) m (XY .

Define & ag follows: §a = (1-8)5(8); 2, = % 1 £, ;a _ 5(5)'§+A;a .

Observe that gabe S, (since X ¢ Ba(§(§))) and that

At A

o (x,s;) - p(8)-x" = pp(s)x™ > u(y,ga) - p(s)-y, for all y « R,

Let s = s/s_

We need to show that 0 ¢ F(§) => 93= %X . As in part (C),

At A

for 9 ¢ @(;) such that 96 £ ;, n(@,g) < O - BE(E)X- + 9 (x ,sa)

- E(s)-£+ . To show that ¢ ¢ 1(s), we need to construct g e O(S)

such that n(5,§) = -BE(E)-Q- + u(§+,§a) - E(E)-§+ . Define 6
‘as follows: §a = x; for a £ a, §; = 75;' and, for all A e L,
A= o - N A ' o+ ~-
8 =7’>‘9 , where 7Y = (x, + T £ 9 )/- Z 8 .

anN an A aﬁa A aﬁa an

z 5- = -(Q + Z §+), so that 5 = O; also note that for a £ a,

o . o aQ

afa afa a

D(eg,ga) = E(s)-G;,. By a manipulation identical to that in
part (C), n(§,§) = -gp(s)-x  + v £+,§a) - p(3).x" . It remains
to be shown that § € @(g); it suffices to show that

Y ¢ [0,11, for all X ¢ L, that is, O < %, +

K_ Qafta oA afa ar

T At - -

" There are four cases to beichecked:
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Case (i): 6, 2%, >20: 0<R, + 6 <6 + z&°

N A A cr,éa an A Of}éa anN
= L 6, (51nce 6 e n(s) and hence 26, = 0).
afa o]
.. A -~ ~ + ~ ~
Case (ii): x, >0 2 0: 0 <x, + Ty § < 6 +E+ 5 6 - €
A an A oz;éa A an a,éa N

< - aiaem‘ .

For cases (iii) and (iv), both 6,, and Qk' are nonpositive, so

that £x +7Tz é.;x STOZ 6T trivi .ll We need only check
ata afa Qon vially. n only chec
the left inequality.
sea Y. A g . T + pE s -
Case (iii): O 2%, <Y .t x, + Tg 9a>\> aa%. * L6, -5
Qfa Qfa
2045t L g+ _ 5" ; 5 .
an afta an 5 o;:éa@ax +28 > 0O (since 5 o = O and,
by construction of g§, é.(;%. +28 <« O)
Case (iv): 029, >x.: X, + TZ 6 . >4 - + zg~"
aN A A a;éa an an oz,éa an
- 5 + 9"(;,%. +2s > O (since g- ¢ > 0). This establishes
- fa - R .
that 8 e o(s), that 8 ¢ m(s) = 6 , = x, and that pa(s) > pa(s),

@ contradiction, since s ¢ N(E).

(F) Suppose that s ¢ N(E) and all markets are s-thick.
Then s e W(E).

Proof of (F): To establish (F), we need only show that for

all agents, there exists an allocation satisfying the condition of
part (E). Let s e N(E) and pick a ¢ A arbitrarily. For each A ¢ L,

there exists b,, ¢, ¢ A and 6%', ott™ ¢ F(s) such that 6;‘ x >0
) A

24N :
and 6 , > O (from the definition of thickness). Define

o\
~ AR P pe &
6 = 5( @ +0 )/24, 6 € F(s). For each A e L va>\> O and

%. . .

6., <O so that - 80 bl cb6fec - 5§
¢y aia a 3 a oha @ Therefore,
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~ 4 L =~ . ~ ~
by (E), 6, € ga(p(s)) . Since, for all. 8 ¢ F(s), ua(<f%(9a’sa)’ea>) =

ua(<9cﬂea,§a),‘§a:>), using (D), it follows that 6, « ga(§<§)),
for all 6 ¢ F(s). Since a was chosen arbitrarily, the same holds
for all o € A. By (p5), ZG(} = 0, for all 6 e F(s). Finally,

0%
by part (B), S has the zero arbitrage profit property. Therefore

s ¢ W(E) .

VIII.6_  Proof of the Corollary
Corollary: If E satisfies Al, A2', A3-A6, then
s e N(E) => s ¢ W(E,L(s)).

Proof of the Corollary: Parts (a)-(D) of VIII.5 hold independently

of the thickness assumption. We can, further, modify the state-
ments of parts (E) and (F), to (E') and (F'), stated below. The
proofs of (E') and (F') exactly parallel the proofs of (E) and (F).

(E') Suppose s e N(E) and that, for some a ¢ A, there

exists 6 ¢ F(s) such that, for all » e L(s) - =z 5;h<<6;;h <
8f «< - @ Then 6 _ e £_(p(s), L(s)) ot
. an a#aa ‘ ’ . a ap ’. )

(F') Suppose é € N(E) and all s-open markets are s-thick.
Then s ¢ W(E,L(s)).

Let s ¢ N(E). From part (D) and assumption (A2') we
conclude that F(S) is a singleton set. Iet F(S) = (6} . We

first show that "twins" realize the same net trade vector in the



Nash equilibrium. Let a, b € Ay, for some 1 ¢ I (i.e., a, b are
"twins" see (5.25)), and suppose that 53 £ 5b . Let

x = 1/2 53 + 1/2 5b . We can assume, without loss of generality,
that ua@:Oo(x,§a),x:>) > Pa(E), using (A2'). Define 5 as follows.
6, =%, 0y =0, g = 1/2 6, for @ £ a,b. In the usual way
(see the proofs of parts (C) and (E)), we can construct §a € S

a
such that the singleton set, F(E/ga) is arbitrarily close to

{5 }, so that Eg(E/Qa) > Pé(%), a contradiction, since s ¢ N(E).
The proof is completed by noting that if a market is s-open,
it is also s-thick. This is true since if there is one s-active

seller (buyer) on either side of a market, then there are at least

two (including the "twin" of the first).
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