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1. INTRODUCTION

It is well recognized that, under the assumption of rational expectations,
there are-multiple solutions to a system of dynamic linear simultaneous equations
if expectations of future endogenous variables appear. The existence of multiple
solutions for such a model has been bothersome to econometricians wishing to
study economic behavior under rational expectations. This paper provides a solu-—
tion to the problem of multiple solutions by completing the model with additional
parameters which can be estimated statistically. Thus the multiple-solutions
problem is resolved by appealing to empirical evidence.

Once the proposed solution is employed, estimation and identification of the
structural parameters in the original model will become simpler tasks than what
are being suggested in the current literature, e.g. Wallis [1980]. 1In particular,
it will not be necessary to formulate and estimate dynamic models for the exoge-
nous variables. A desirable consequence of introducing exogenous variables in the
simultaneous-equation Todel of the Cowles Commission is to allow division of la-
bor in econometric model building. For the purpose of studying the behavior of a
subset of economic variables, it is possible to treat some other variables as
exogenous. Our proposed solution will simplify the problems of estimation and
identification, bringing their treatment closer to the standard treatment of gi-~
multaneous equations without rational expectations, and preserve the desirable

feature of modelling the endogenous and exogenous variables separately.



Section 2 gives the proposed solution to linear simultaneous equations with
expectations of future endogenous variables formed by rational expectations.
Section 3 discusses the rationale for the solution, and compares it with the solu-
tion suggested by Taylor [1977]. Section 4 comments on the solution proposed by
Blanchard and Kahn [1980]. It should be ackﬁowledged that I was led to working on
the proposed solution of Section 2 after reading the papers of Taylor [1977] and
Blanchard and Kahn [1980]. Section 5 treats the problems of estimation and iden-
tification of linear models employing the proposed solution. Section 6 provides
an approximate treatment for estimating nonlinear simultaneous equations under

rational expectations.

2. SOLUTION TO LINEAR EXPECTATIONS MODELS

Let a system of linear simultaneous equations be written as

(1) Byt + Alyt—l + ...+ Apyt—p + Boyt -1 + Blyt+l -1 + ...

+Tz, =4

* Bqyt+q t-1 t t

where yt is a vector of G endogenous variables; zt is a vector of K exogenous
variables; u, is a vector of normal and serially uncorrelated random distur—

; i 3 ati . nditi informatio to the
bances; Yers £-1 1S the expectations of Vi conditional on information up
end of period t-1l, such information including Yt-l' yt—2’ . ut—l’ ut—2' caes

and z,, =

& Eal’ tctc Note that z, is treated as given when the model is solved to

explain Yo This treatment of Z, appears to be in accord with econometric prac-
tice, and is accepted, for example, by Shiller [1978, p. 27] while reviewing the

rational expectations literature. It also accords with the convention adopted




in dynamic models in areas other than economics where z, 1 instead of z, is used

in a model explaining Y-

may be absent from the model, the matrix B

Since some elements of
yt+q t-1 o

will often have columns of zeros corresponding to these elements. TLet yi+q]t 1

be a subvector consisting of q elements actually appearing in the model, and

write

82
a

a a
B = )
g1 01 ¢ 1q]e-1 B¥trg|e-1

Consider the reduced-form equations for yi, which we obtain by premultiplying (1)

by the first g, rows of B—l, denoted by B;l

-1 a a
2 B B + + ... + ...
(2 a BY + Ay TAYL ot BV e T B ¥iug|t-1
-1 — a
+ = =
th] Ba u, Ve

-1 a . . .
where Ba Byt = yt. The proposed solution for yz under the assumption of rational

expectations is

‘-1 a a
B + + ... F + e
(3) By By, * Ay A¥e p T Bo¥e ¥ * B¥aq T 2]
= (B_lBa)va + C v2 + ... +C v .
a q t+g =1 t+g-1 0t

In other words, the solution for the reduced-form (2) for y: is obtained by

replacing all expectations variables by their actual values (dropping "|t-1" in

the subscripts) and replacing the residual v® by a linear combination of
a a . . . . L
vt+q poees 0 Y as indicated, with the coefficients Cq—l' ey CO unspecified

and to be determined empirically.
To show that (3) is a solution to model (2) for explaining yi, take expec-
tations of both sides of (3) conditioned on information up to the end of t-1,

yielding
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+ oL F + B + ... +B%Y
(4) _ By BYele-1 Yoy BYye b -

+ th] = 0 .

Subtraction of (4) from (2) gives

-1 . .a_ . a - o2
(3) B By, =By, g} T Yp T Ye|ea Ve

Hence, the proposed solution (3) is correct if it implies (5); for then, we can
simply add (5) to (4) to obtain the original model (2). Subtracting g from the
time subscripts of (3), we get

-1

(3") B, IBY, ot MYy g

aa
ces * *
+ qut th_q]

. +A +B +
ot-p-q = 07 t-q

-lBa a a a

= B v A4 vee + C .V .
a g9+t * g-1 t-1 + 0 t-q

. - . . L. . . a
(3') in effect is an equation explaining yz, as an explicit solution for Y. can

be obtained by premultiplying by [B;lB;]-l

, which is assumed to exist. By taking
expectations of (3') conditioned on information up to t-1, and subtracting the
result from (3'), we cbtain (5) and complete:the proof.

The solution (3) will be u;ed tc express yi+i|t—l (0 £ i <g) as functions
of actual variables. To demonstrate the algebra involved, we let p = 1l and g = 2

in the following derivations. Denoting by yi the vector of all other variables

whose expectations appear in (1), we solve equation (3) for y:+2, yielding
a _ a,b b a a a a a
(6) Yoo = § Weapr¥er¥e 1¥eapr¥er®d © Ve ¥ GV © S

where ga stands for the linear function obtained by solving (3) for yi+2. Equa-~

+ion (6) can be used to evaluate Yy

a a a .
‘t[t—l’ yt+l|t—l and yt+2itql successively:

7 a - a b b a a z y + c2 a + 3y
Yele-1 = 9 Wear¥Pea¥e-3 Y1 Ye-2 %2 17e-1 7 0



(8) 2 = P o vz ) e
Yeql|e-1 T VeV ee1 Y2 Ve | g-17 Y17 %01 0" e-1
= f£2

( o z z v v )
1Vl e-1 Y1 Y -2 Y37 P17 %2 V-1 V-2

where the function f= is obtained by substituting (7) for y:

1 in the preceding

t-1

line; and

(9) a - a( b b a a z )
Yego|t-1 T Ve e-1Ye | e-1Ye-1 Vet | e-1" Ve | e-17 B

fa( b b z .,z z ve v
271 | e-1 Ve -1 Y1 Y2 V-3 Pe Pem1 B2 V-1 Ve

1]

)

where the function f; is obtained by substituting (8) and (7) respectively for

a

and yt!t-l

a . . . b . . ‘
yt+l|t—l in the preceding line. If v, is null, our problem is solved,

since (7), (8) and (9) will have converted all expectations variables into obser-

vables.

b . . . . .
Let all elements of Yt appear in yt+q—l]t—l’ i.e., in the first argument of

ga. We need to find a model to convert all y2+i into observables. To do so,

lt-1

we substitute (7), (8) and (9) for yi in model (1) and

a and y°
t-1" Ye41|e-1 Ye42]t-1

obtain a model

b b

a a b =
(10) FBY Yo Ve 0 Y3 %01 %02 Voo Ve Ve o1 P11 o1 = Ut

which involves only the expectations y2+i (0 £ i< g-1). The reduced form for

yi is derived from premultiplying (10) by B;l, with B;lByt = yi. Applying the

|£-1

method of solution (3}, we can write the solution to this reduced-form by replacing
the expectations by the actual variables and adding a moving-average residual of

order g-1,

a b b b

. N a
(11) By FBY 1Yy yr¥e pr¥e 3r8prBe 17800V 1 Ve Yer BV

)

-1:b. b b b
= (B BV, * Cgvt
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b -1 b . .
= i 1
where Ve Bb u, . Equation (11) can be solved for Yeiq’ yielding
’ b b, a b a a b b b
= +
(12) Vil g (yt’yt'yt—l’yt-Z'yt—B’zt’Zt—l’zt—z’vt—l'vt-Z) Vi CoVe

. . . b
where gb stands for the linear function obtained by solving (11) for Yool (12)

b b .
can be used to evaluate Yileo and Verlleo1 successively:

b b, a b a a b
= -+ H
(13)  Ye|g1 =9 (Vo1 7¥eo1rYeoar Vo3 ¥eoarZea1rZem2 %03 Vo2 Vg3 cg"t—l
(14) yb = g’b(ya yb v y v Z,,2 ,Z v ,Va )
t+l|t-1 tle-1Ye]e-1 Ye-1 Y27 63" % Te-1" T2 el T2

- f?.(Yt-l’yt-z’yt—B’yt-4’zt’zt—l'zt—Z’Zt—B’vi-l'Vi-Z’Vi—yv}fJ:-l)
where the function f? is obtained by substituting (7) for Yilt—l and (13) for
Y leo1 in the preceding line.

If only a subset of the elements of yi appears in yt+q—l{t—1' or in the first
argument of ga, while the remaining elements appear in yt+q—2]t—l' or in the sec-
ond argument of ga, the solution (11) would apply only to the former variables
which form the last arqument of the function F in (10) and (11). The second to
the last argument of F in (10) and (11) would include both sets of variables, now
redesignated YZ and yi respectively, yi being those variables appearing in
Yt+q—2lt 1 but not in Yt+q llt 1 °F yt+q|t 1 Beginning with model (10}, with
its last two arguments so reinterpreted, we would provide a solution for yt having
a moving-average residual of order g-l1 as in (11). This solution would be used
in the same way that equation (6) was used, to replace the variables yi+i|t— in
(10) and to yield a solution for yz'having a moving-average residual of order g-2.
In the exposition hereafter, we will assume that the introduction of yz is not
'necessary for our model.

b . .
To recapitulate, we have constructed a model (12) foxr Ve involving only

actual variables, the lagged variables Vi—k having been derived from the model



a
(3) for Y- The model (12) in an ARMA model having other lagged dependent vari-
ables and exogenous variables present, the order of the MA process being g-1l.

. b .
By this model, we can compute Ytlt-l and yi*l eop Using (13) and (14). The re=-

and v using (8) and (9).

a
1]e-1 Te+2) -1
a
t

sults can be used to compute yi+

In the special case with g = 0, y_ will be a subvector consisting of all

endogenous variables appearing in ytlt-l’ having a reduced form

-1 aa -1 a
Ba [Byt + Alyt—l + ... * Apyt-p + BOYtlt-l + th] = Ba u, = v,

The solution to this reduced-form equation is

-l_a, a -1 -l.a, _a
(13) (I + Ba Bo)yt + Ba [Alyt_l+...+Apyt_P+th] = (I + B, Bo)vt

which can be used to compute Yf‘t 1 in terms of the actual variables.
-

3. RATIONALE FOR THE SOLUTION

To appreciate the rationale of the solution (3), consider a simple model

for a scalar Yo:

(16) Vigple-1 byt +d + z  tu .

Let the solution take the form:

= see + + + ...
' c 4+ au +0u + Sozt Blzt—l

(17 0t 17 e=-1

Z

where the sums are infinite. (17) implies, with Ztlt-l =z,

+ B z, + B

= + ol z
(18) Yeq1|e-1 A e L g *B0%er1]e-1 T R 2%e-1

+ ..



If the model (16) is to be valid, (18) must equal

9 + ..
{19) bc bOLOut + bOLlut_l + . + bBOZt + bBlzt_l + ... +4d + z, + u, -

To find the coefficients Bi in (17) one could formulate a model for z, and express

z as an infinit . .
t+l|t—l nfinite sum of Z s Z _qv Zt—2’ +++. Then the term BOZt+l,t—l in

(18) can be replaced, and the coefficients of z (1 > 0) in (18) can be equated

t-1i
with the corresponding coefficients in (19) , but this solution is complicated. We
choose not to formulate a model for Z, and obtain a solution by setting BO = 0.

Then equating coefficients of (18) and (19) giveé

(20) ¢c=1(l-b) "d; o =-b ", o, =Dbo, (1>1) ;

B, =1, Bi+l = bBi (i >1) .

Using these coefficients for (17), we subtract byt—l from y, to give

-1
(21) Yy = byt_l +4d + z - b u + (al+l)u

t t-1 t t-1

We observe that the solution (21), with its.time subscripts advanced by one,
amounts to repiacing the expectation variable in_(l6)by its actual value and

forming a new residual by a linear combination of u, and u as we have done

£+1’
in writing (3).

There are three advantages in adopting the solution (3) for the simultaneous-
equations model (1). First, it avoids the need to postulate and estimate a model
for the exogenous variables as required by currently suggested approaches such as
in Wallis [1980]. Second, the estimation and identification problems for the

model can be handled by standard methods in econometrics. Third, the multiple-

solutions problem arising in rational expectations models is solved by appealing



to empirical data, rather than by imposing arbigrary conditions. As Taylor [1977]
has pointed out, the model (16) has multiple solutions as represented by the free

parameter ¢ in (21), which corresponds to the free parameters Cq—l' ..., C_in

1 0

(3). We propose to let the data tell us what the values of these parameters are.

There is another way to resolve the multiple-solutions problem in rational
expectations models. One may argue that, when multiple solutions exist, the econ-
ometrician has not completed his or her job in specifying a complete model. Take
model (16) for example. Just to say that Y, depends on what people expect its
value will be in t+l, and on other factors, is not a complete theory until one
specifies how the expectation yt+l|t—l is formed. From this point of view, Jjust
to postulate rational expectations is not sufficient to complete the theory. The
econometrician using model (16) should go back to the drawing board and specify
something more about the expectation variable until a unique solution is obtained.
If the econometrician does not wish to specify the model furthér, our proposal is
to complete the model by introducing additional parameters CO""’Cq—l as indi-
cated by (3). Following the suggestion of Taylor [1977] one would choose those
parameter values which minimize the stationary covariance matrix of the system,
according to some metric. On the other hand, we propose to estimate the values
of these parameters empirically. Our method will also work when the system is

explosive, for which a stationary covariance matrix does not exist.

4, THE SOLUTION OF BLANCHARD AND KAHN

A main assumption underlying the solution given by Blanchard and Kahn [1980]
is that all explosive expectations should be ruled out. See [1980, p. 1310, egua-

tion (A4)]. For example, if they were confronted with model (6) with b > 1, and
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z, = z,, their solution would be
-1 -1
Yo = -b (d+zo+ut) + b Yt+l[t—l
= v Matz +u) - b2 (dtz_4u ) - b > (d+z +u )
0t 0 e | t-1 0 e+2|t-1’ T e
-1 . -1.-1 -1
= ~b (d+zo)(l-b ) b u,

which is obtained by repeated substitutions for yt+i-1|t-l using

= i >
Verife-l T Pepgafen YA Z U, G202

whereas our solution is (21), with its parameters to be estimated. We believe
that it is arbitrary to impose the stationarity condition on otherwise explosive
expectations variables in the system.

However, if Blanchard and Kahn were confronted with the model (16)with b < 1,
they would not be able to offer a unique solution. Essentially, when dealing with
a multivariate linear system, Blanchard and Kahn transform the system into one
explaining the canonical variables. Let the system, written in first-order form,

' consist of n variables, not counting the expectations variables, and let the
entire system consist of n + m variables. If exactly n of the n+m character-
istic roots of the System are stable and m are explosive, Blanchard and Kahn would
provide a unique solution since all canonical variables associated with the ex—
plosive roots are determined by the stationarity assumption, using their equation
(A4). TIf there are more than n stable roots, multiple solutions exist.

While disagreeing with Blanchard and Kahn's stationarity assumption which is
used to obtain a unique solution in the special case of exactly n stable roots,
we wish to point out that their approach, if properly interpreted, can be adopted

to solve the general linear model (1) and not just some special cases as they
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claim, and, second, that the proof of their main result as applied to the general
case can be made much simpler. To conform to their notation, let the model ex-

plaining Vel be written as

(22) + A + B +T .z

Yepr T Bo¥e TRV g

2Ye-2 T P1Yea e T Po¥eaa|e T Bs¥eaa)e Flo%

which can be rewritten as

— - r—- - - -~ [- -
(23) [y, , 0 I 0 0 0 0 v, . 0 7z,

v, _ 0 0 I 0 0 0 Ve || O

Yerl 0 0 0 I 0 0 Y. 0

Yera|t 0 0 0 0 0 I Y 0

Yerz|t 0 0 0 0 0 I Yeel |t

-1 -1 -1 -1 -1 -1
- - -B -
Yee3]t] (B3 By B3 Ay B3Ry By BBy -ByByl| Yigoe] | T

. -1 . . . .
The assumption that B3 exists is used only for expositional convenience, and

can easily be dropped.

Defining

Veos Yeel
e T | Ye1 and Pe T | Tene
Ve Tee2]t
we can rewrite (23) as
24 X X
(24) t+l = A T + th .
Peyile Pe
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This model does not fit into the Blanchard-Kahn framework because X does

not satisfy their definition of predetermined variables, i.e., Xt+l £ = xt+l'

In the above model Yt+l|t To satisfy the Blanchard-Kahn requirement,

# Yeyp-

we need to drop Vi1 in (22), and deal with a linear model involving only Yor

ey , ces, Wi i 1f.
Y17 Yoo’ Yesrle’ Yesz|t’ Yess|e’ without y, ., itself
To solve model (22), we redefine a vector of predetermined variables to be

X X , i.e., x_ is given information at time t. (Blanchard and Kahn defined

tlt - e t

xt+l to be given information at time t.) Introduce canonical variables Yt and

Qt which satisfy

(25) x = B [vY a = gt - ¢ J 0 c

where the diagonal matrix Jl consists of all stable roots of A and J2 consists

of all roots larger than one in absolute value. Assume the number of predeter-
mined variables to equal the number of stable roots of A. Qt is found by
Blanchard-Kahn's €quation (A4), obtained by repeated substitutions for future

Q (i > 1).

t+i|t

Given Qt the solution for X, and P, is very simple, using the definition

(26) Cop%y + CogPr = Q4

and the first part of the model (24)

(27) Teqr T Pr®Fe T RPL F Y E -

Solving (26) for P r we have

-1
Ca1%e * Cap

(28) P o)

-1
£ = 7 Cy £ -
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Substituting (28) into (27), we have

-1 -1
2 = b
(29 Keql (R117R1pC0a001 ) % + ApC050, *+ ¥ 2,

-1
= BllJlBll‘t *ApC00 T Y Z,

which is identical with the Blanchard-Kahn solution, noting

- -1 _ -1
By " A)5C00C = ByJiBi)
Ao = Byp9iCp +ByyT00,

by the definitions of A, B, C, Jl and J2.

We observe that Blanchard and Kahn have introduced a condition xt+l £ = xt+]

which is unnecessary and restrictive. Furthermore, they use this condition in

their equation

(A6) 0 (¥ (O

Rertle T Ferr T BriWenYeae) - Qpe1 %41 [

to obtain their solution. This step is unnecessary.

5. ESTIMATION OF LINEAR MODELS

We first consider maximum likelihood estimation of the parameters of (1).
The solution méfhod of Section 2 is used to convert model (1) into three sub-
models involving no expectations variables, namely (3) for yi, (12) for yi
(assuming only two sets of expectations variables in model (1)), and a third
submodel for the remaining variables, say yz, obtained by using (7), (8), (9),

(13) and (14) to replace the expectations variables in the reduced-form equations
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for yz. A likelihood function for{these submodels can be constructed, under the

assumptions that the residuals Va, vb and v- are jointly normal. Since the coef-

t t t
ficients of these submodels are known functions of the structural parameters in
(1), the likelihood function can be evaluated numerically given the parameters
of (1). A gradient or conjugate gradient algorithm can be applied to maximize
the likelihood function numerically with respect to the parameters of (1) and of
the moving;average processes for the residuals of (3) and (12). If the total
number of parameters is not too large, say below 100, the above method of maximum-
likelihood estimation using brute force can be recommended. The practitioner
may reduce the number of parameters by the assumption that the coefficient ma-
trices of the vector moving-average processes in (3) and (12) are diagonal.

For simultaneous-equations models under rational expectations, the solution
submodels for yi, yi and yz correspond to the reduced-form equations of the
traditional models. The parameters of these submodels, like the parameters of
the reduced-form equations, are functions of the structural barameters. To ob-
tain maximum-likelihood estimates of the structural parameters, one can set up
the likelihood function for the reduced form, or the solution submodels, and
maximize it with respect to the parameters of the structure using a numerical
method.

When the number of structural parameters is very large, it may be computa-
tionally more convenient to set up the likelihood function for the structural equa-
tions (1) and maximize it iteratively in two steps as follows. The likelihood
function of (1) is as given in standard texts, except that the expectations vari-
ables themselves should be interpreted as functions of the structural parameters
as well as the parameters of the MA residuals of (3) and (12), via equations (7),
(8), (9), (13) and (14). 1In principle, one can substitute the right-hand side of
(7), (8), (9), etc. for these expectational variables in the likelihood function

and maximize it accordingly. However, since efficient algorithms have already been
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devised for the maximum-likelihood estimation of (1) with the expectations vari-
ables treated as given, for example by Chow and Fair [1973], it may be desirable
to divide our task into two steps. First, treating the values of the functions
a b . . . , .
Yerile-1 and Vigile—1 38 fixed tentatively, gse an existing algorithm for tradi-
tional simultaneous-equations models to estimate the parameters of (1). Second,

. a , . .
recompute the values of the functions yt+i using revised esti-

and b
t-1 Vg [e-1
mates of the parameters of (1) and of the MA residuals in (3) and (12).
The second step is executed in the following manner. Form the coefficients
of the autoregressive processes in (3) and (12) using the revised structural
parameters and maximize the likelihood function for (3) and (12) with respect

only to the moving-average parameters. Given the parameters of (3) and (12),

using (7), (8), (9), (13) and (14). This

v luat & and b
we evatmate  Yiiile-1 Yeri|t-1

two-step procedure can be iterated. If it converges, the result is a set of
maximum-likelihood estimates at least in the sense of satisfying the first-order
conditions for maximizing the likelihood function which are imposed in each of
the two steps.

To economize on computations and still obtain consistent estimates of the
structural parameters of (1), one may revise step two by finding consistent
estimates of the parameters of (3) and (12), by maximum likelihood for example,
without imposing the nonlinear restrictions on their AR parameters as derived
from the structure. These estimates are used to evaluate yi+i]t—l and yi+i[t—l'
Given the values of the expectations variables, the method of two-stage least
squares, for example, can be applied to estimate the parameters of (1). To show
that the method of 2SLS provides consistent estimates of the étructural para-
meters in the present case, we only need to show that the reduced-form parameters
in the first stage of 2SLS are consistently estimated. If the "composite" pre-

determined variables yi+i in the reduced form are formed by the

and b
|t-1 Veri|e-1

true parameters of (3) and (12), they are uncorrelated with the residuals of the
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reduced form and the method of least squares in the first stage is consistent.
But consistent.estimates of the matrix coefficients of (3) and (12) are also un-
correlated with the residuals Vi and vi in the limit. Hence, the predetermined
variables y:+i|t—l and yi+i[t—l formed by using these estimated coefficients are
also uncorrelated with the reduced-form residuals in the limit, which implies
consistency of the least-squares estimates of the reduced-form coefficients.
Therefore, when one applies an existing method such as 2SLS to estimate the para-

meters of (1) under rational expectations, the additional complication lies in

'having to estimate (3) and (12) consistently in order to form the predetermined

. a b
variables Yt+i]t-l and yt+i|t—l'
‘Identification conditions for the structural parameters in (1) are identical

with those given in standard texts when we treat all Yiy as predetermined

it-1
variables. By the use of models (3) and (12), all expectations variables are

converted into predetermined variables and the standard treatment on identifica-

tion applies.

6. ESTIMATING NONLINEAR MODELS

Following the two-step iterative procedure suggested for linear models, one
can estimate the parameters of nonlinear simultaneous equations using any exist-
ing method once the expectations variables can be estimated. To estimate the
expectations variables, we propose to divide them into yi and yi as in Section 2
and follow the nine steps taken for linear models: (a) construct a set of
reduced-form equations for yz involving expectations variables; (b) form a solu-
tion to these reduced-form equations by replacing the appropriate expectations
by\the actual variables and using a moving-average residual of order gq; (c) esti-

mate the moving-average parameters in the above solution; (d) using the estimated
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a

model in step (c), evaluate Yt+ilt—l

by (7), (8) and (9); (e) transform model (1)

into model (10) by substituting for yi+i (f) construct a reduced form for

| -1
b
Yo from (10); (g) form a solution (12) of this reduced form by replacing all

expectations and using a moving-average residual of order g-1; (h) estimate the
moving-average parameters in the above solution; and (i) using the estimated

model in step (h), evaluate y2+i -1 and yi+i -1

To follow these steps for a nonlinear system, let the reduced form for y:

be the solution for y: from the model

(30) @(ytlyt_l ,Zt) = u -

a
v e p Y a1 Yeag |-l t

There is no need to write down the solution in explicit form. In step (b), we
form a model by replacing all expectations variables in (30) by the actual values,

. a . a
conceive yt+q as a function g of y reerY

; a
e+q-1 by solving the model for Yt+q

ignoring the residual u, (an approximation), and propose the following solution

t-p

to the reduced form for y::

a
'Zt) + va + C a

t+g q—lvt+q—l v

(31) yi =

a
+q g (Ytﬂ_ll---ryt_P + ... +C

(@3]
o

Since, given ¢, the value of ga can be computed numerically, we can estimate the
MA parameters in (31) as required in step (c).

To evaluate yi+i in step (d), using (31), we construct functions (7),

|£-1
(8) and (9) as in the linear case. When we write the function ga(-) in (31), we
only mean a computer program which generates a numerical value for this function
using the values of its arguments as inputs. Similarly, the functions ga, fi
and f; in (7), (8) and (9) for the nonlinear case refer to computer programs

which generate values for these functions given their arguments. In the computa-

tions of these conditional expectations, we employ the approximate, though in-

. . . a , .
correct, rule that the expectation of a nonlinear function g is the nonlinear
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function of the expectations. That is, (8) and (9) are equivalent to (31) after
a .
conditional expectations are taken of the arguments of g . Similarly, the func-

tion F in (10) as required in step (e) is derived from the function & in (30)

a

where all the expectations Yt+i|t—l

are evaluated by the above functions (pro-
grams) specified in (7), (8) and (9).
In steps (f) and (g), it is required to construct a function corresponding

to ¢ in (12):

(32) yb = g'b(yb PR AT 4 P2, e ,Z v v )
t+g-1 tHq-2 t’ "Tt-p-q'“t’ "“e-q’ -1’ "Tt-g
b b b
* Vietg-1 * q—2vt+q-2 * Cgvt )
. b . . b .
The function g~ in (32) is a computer program to solve for yt+q—l using the func-

tion F, or the revised function &, in step (e); that is, given the arguments of

b . . .
g we evaluate all y:+i 0 £1 < g in the function & of (30) by the programs

[e-1
for (7), (8) and (9), and solve the nonlinear equations for Y:+q-l (or y2+l in
our exposition), the result being denoted by the vector gb. In step (h), the MA
parameters in (32) are estimated by maximum likelihood numerically. Finally, in
step (i), we evaluate approximately the conditional expectations y1;+i| -1 by
taking conditional expectations of the arguments of gb, and complete the evalua-
tions of yi+i|t—l (0<ix<aq) and y2+i|t—l (0 <i < g-l). These expectations
variables will be used for estimating the parameters of the nonlinear system (20)
by any existing method. The process can be iterated.

The above solution is approximate because we have repeatedly used the ap-
proximation that the expectation of a nonlinear function egquals the nonlinear
function of the expectations. To begin with, (31) is only an approximate solu-

tion to the reduced-form equation for yi. Our proof for the solution (3) for

linear models does not carry over to nonlinear models because we cannot equate
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the conditional expectations of ga( ,...,yt_p,zt) to ga(y

Verg-1 trg-L|e-1"""""

yt—p t—l'zt|t—l)' but if the model is not hghhly nonlinear, such operations may

not be in gross error. Again, to evaluate yi+i|t—l approximately using (31),
a

a
we replace theAarguments yt+q—l' etc. by yu+q—l|t-

17 etc. to form (8) and (9).
Our method for estimating nonlinear simultaneous equations under rational
expectations may be considered computationally expensive. As compared with
estimating nonlinear systems without rational expectations, we need to use a
number of programs to evaluate and solve nonlinear functions in order to compute
ga in (31), g'b in (32), and the right-hand sides of (7), (8), (9}, (13) and (14);
we also need to maximize the likelihood functions for two MA processes of orders
g and g-1 respectively (or only one MA process of first order if g = 1). Aall
these additional computations are for the purpose of constructing the required
expectations variables approximately. Given the expectations variables, the
computational burden is the same as for traditional systems without rational ex-
pectations. It will be several times as much if several iterations are required.
Unlike the linear case where only one iteration will suffice when the uncon-
strained parameters of (3) and (12) are consistently estimated to evaluate the
expectations variables, the functions ga in (31) and gb in (32) in the nonlinear
case have to be evaluated by using the structural parameters of (30). However,
computations of this nature are not considered‘the most difficult in the current

practice of econometrics.
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After thispaper was written, I have come across an unpublished paper by
Michael K. Salemi of the University of North Carolina at Chapel Hill entitled
"The Solution of Linear Rational Expectations Models." The differences between
our approaches are:

(i) My solution allows for the existence of exogenous variables in the model
for which no stochastic processes are assumed. On the other hand, Salemi does
not allow for the existence of exogenous variables and, if his solution were to
be modified to include exogencus variables, it would become extremely complicated
and stationary stochastic processes for the exogenous variables would have to be

postulated.
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(ii) The solution of this paper does not require that the endogenous vari-
ables be covariance stationary, whereas Salemi's solution dces.

(iii) The method of undetermined coefficients was used by Salemi to obtain
a solution, and this is not the case for our solution (3). The method of unde-
termined coefficients works only for covariance-stationary models, which we do
not assume.

(iv) I have expressed in Section 4 disagreement with the solution proposed
by Blanchard and Kahn to which Salemi subécribes. In contrast with an assertion
of Salemi, the method of this paper yields a solution even when more than m roots

lie outside the unit circle, as pointed out in Section 4.



