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ABSTRACT

A generalization of the multinomial logit (MNL) model is developed for
cases in which discrete alternatives are ordered so as to induce stochastic
correlation between alternatives in close proximity. The model belongs to
the Generalized Extreme value class introduced by McFadden, and is therefore
consistent with random utility maximization. Iterative estimation on ordinary
MNL computer packages is possible if the true model is "nearly" MNL, and the
Ffirst such iteration serves as a test for the hypothesized failure of the MNL's
"j ndependence from jrrelevant alternatives” assumption. A straightforward
extension can handle cases where observations have been selected on the basis
of a truncated choice set. The model's propertiés are investigated through a

numerical example, and through estimation of a model explaining commuters'

work-trip scheduling choices.
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I. INTRODUCTION

One of the most popular econometric models for choice among dicrete alter-
natives is the multinomial logit (MNL). Its theoretical basis as a random
utility model is well established (McFadden, 1973). It is convenient both be-
cause maximum likelihood estimates can be computed quickly and because in many
instances a choice among many alternatives can be broken computationally into a
sequence of simpler choices (Ben-Akiva, 1973; Daly and Zachary, 1978; Williams,
1977; McFadden, 1978).

A widely discussed limitation of the MNL model is its property of "indepen-
dence from irrelevant alternatives" (IIA), which unfortunately holds whether ox
not the altermatives in question are "relevant." This property follows from
the assumption that the unobserved preferences for the various alternatives are
stochastically independent; it implies that the ratio of choice probabilities
for any two alternatives is independent of the properties of all other alter-
natives.

This paper investigates a generalization of the MNL model which allows
a particular kind of departure from the IIA assumption. An
example is the number of automobiles owned by a household.l The house-
hold is assumed to choose among discrete alternatives representing different
numbers of automobiles. The stochastic utility component for alternative j
represents unobserved traits that alter the desirability of owning j automo-

biles. Common sense suggests that a household with an idiosyncratic

1See Train (1977) for a critique of many such models.
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preference for owning, say, 4 automohiles is also likely to have a similar pre-
ference for owning 3 or 5, since it probably has some unobserved trait (such as

se&eral teenage children) leading it to want a lot of cars. The empirical
implication is that if the option of owning 4 or more cars were for some reason
- foreclosed, this household would be more likely to chooée 3 than would some
other household with identical observed characteristics. Yet the IIA property
prohibits this.

Another example is provided by the choice of time-of-day for work trips as
modelled by McFadden et al. (1977) , small (1982), and Abkowitz (1980).
Because of practical difficulties with treating the choice as a continuous one
(especially the tendency of respondents to round off replies to the nearest five
minutes), all of these authors estimated an MNL model of choice among 12 dis-
crete alternatives each representing arrival at work within a particular 5-
minute interval. The choice set consisted of intervals covering the range
from 42 1/2 minutes before to 17 1/2 minutes after the "official™ work start
time. Given.the natural ordering of these alternatives, it is likely that cer-
tain unobserved traits (such as employee independence or existence of a comfor-
table place to wait until starting time) are correlated among nearby alternatives.

These examples share the property that the alternatives can be arrayed
along some cbvious dimension, hence have a natural ordering which can be deter-
mined a priori. Variébles reflecting this ordering may be included in the
model--for éxample, Train's auto ownership model includes a cost variable which

is simply proportional to the number of autos owned. If such variables completely
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captured the determinants of indiQidual behavior, there would he no remaining
stochastic téxm related to this ordering and no need for the model proposed here.
It is precisely because cbservable traits are usually'égE_sufficient to describe
these preferences that the problems addressed in this paper arise.

The problem is analogous to, but really quite different from, autocorrela-
tion in time series (or its generalization in cross-sectional data from two-
dimensional space: see Fisher, 1971). In the latter cases the problem is that

successive observations are arrayed along one or more dimensions, so that error

correlation depends inversely on some measure of distance between observations.
With the advent of panel data with discrete dependent variables, this phenomenon
has received some attention in the discrete choice literature as well (Cardell,

; Heckman, 198l1). In contrast, the type of error discussed in this
paper involves only correlation among the unobserved properties of the choices
themselves, and has nothing do do with resemblance amon§ different members
of the sample. In this sense it is more akin to the existence, rather than
correlation pattern, of an error term in a continuous model. The postulate is
simply that the dependent variable itself is only a discrete representation of
an underlying continuous variable with an unobserved stochastic component. This
view of discrete choice models in appropriate circumstances has been made
explicit by Ben-akiva and Watanatada (1981), who provide a formal derivation of
a logit model from an underlying continuous process. Although they spell out
carefully the content of the IIA assumption in such a context, they do not
discuss its validity. This paper questions its validity and proposes a way both
to test and +to correct for violation.

McFadden (1978; 198l1) has provided é framework for defining
generalizations of the MNL model which are consistent with stochastic utility

maximization, but which need not have the IIA property. The most thoroughly



1.4

explored is the nested logit (NL) model, also known as structured logit (Ben-
Akiva, 1973; Amemiya, 1978; Train, 1980; Brownstone, 1980). This model permits
the alternatives to be divided iﬁto groups within which the stochastic terms
are correlated. Parameters pr (one for each group) determine the within-group
relative to the between-group correlations. Special cases include the MNL

(pr = 1) and the maximal NL (pr = 0). In the latter, originally devised to
solve the "red bus - blue bus" paradok (McFadden, 1973), the within-group
sﬁochastic utilities are perfectly correlated, indicating that any unobserved
traits distinguishing members of this group from each other are completely
ignored in choices'ggggg groups.

.For example, the time-of-day model could be dividing into two groups of
alternatives--"not late" and "late"--on the assumption that some uncbserved
traits would similarly affect all the alternatives within a group. Somewhat
more arbitrarily, the auto ownership possibilities could be divided into
several groups, such as "0" and "l or more." Sheffi (1979) has proposed a
model for cases such as auto ownership where it might plausibly be asserted
that anyone choosing n would always prefer n-1 to n-2, n-2 to n-3, etc. I
show in the Appendix that Sheffi's model, while not itself a random utility
model, is the limit of a multi-~level NI. model (with as many levels as alter-
natives) as the p's at each level approach 0 in a special way.

All these models require some a priori division of the choice set into
subsets. It is apparent from the above examples, however, that a more sym-
metric treatment of the choice set ig appropriate in some cases. Unobserved
traits may affect a group of two or more adjacent alternatives simultaneously,

but this group cannot be specified in advance and, in fact, varies within the

sample. I call this situation one of proximate covariance among the stochas-

tic component of utility. When the alternatives are arrayed along some
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dimension which provides a natural ordering, the stochastic terms for alterna-
tives lying close to each other are more closely correlated than those lying at
a greater distance.

The random utility model proposed in this paper, which I call "ordered
logit" (OL),l allows for proximate covariance among the stochastic utility com-
ponents. Like the nested logit model, it belongs to the class characterized by
MdFadden (1978) as "generalized extreme value"” (GEV) models. Like the nested
logit model, it contains parameters pr determining the pattern of covariances,
it reduces to MNL when pr = 1 for all r, and it has a special "maximal" struc-

" ture when pr = 0. In fact, one special case has the same mathematical form as
the nested logit except that the subsets of alternatives are not mutually ex-
clusive.

Unlike NL, the ordered logit model cannot in general be estimated as a
sequence of MNL steps. A more general technique such as maximum likelihood
is required.2 However, in the special case where the deviations from MNL are
small (pr's all near 1), the model can be estimated using iterations of an ordi-
nary MNL computational routine. The first step is an MNL estimation. The
second step is an example of a diagnostic test for IIA departures using the

"universal logit method" of McFadden, Train and Tye (1977), in which an MNL

lThis model should not be confused with models in the biostatistics lite-
rature in which alternatives are ordered, and a normal or logistic function is
fitted to the cumulative probability distribution. Such models are termed
"ordered response" by Amemivya (1975), with "ordered normal” and "ordered logis-
tic” special cases; they are more akin to the model for "nested alternatives"
proposed by Sheffi (1979) than to that proposed here.

2This may not be such a serious drawback as it first appears, since current
research by the author with David Brownstone suggests that sequential estimation
of the NI model is often greatly inferior to maximum likelihood estimation.

5
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algorithm is used including variables which are not allowed in a true MNL model
because they mix characteristics of different alternatives.

The paper is organized as follows. In Section II, a fairly intuitive spe-
cial case of the model is presented and shown to have the desired properties.
Section III derives a first-order approximation when the departure from ITA is
small, and shows that it can be eséimated iteratively using an ordinary MNL
estimation routine. It proposes this procedure both as a diagnostic test for
the seriousness of the IIA violation, and as a practical tool for assessing the
biases in the MNL coefficient estimates. Section IV then constructs an example
in which the nature of the IIA violation is obvious, and compares predictions
of the ordered logit model with those of the MNL and NL models (including
Sheffi's special NL). Section V presents the general ordered logit model, and
Section VI generalizes it still further for cases where the true choice set is
truncated prior to observation. Section VII then describes an empirical imple-
mentation to the time-of-day choice, building on the models presented in Small

(1982) . Some concluding comments follow.



IT. A GEV MODEL WITH CORRELATION AMONG ADJACENT ALTERNATIVES

McFadden (1978) has proposed a class of random utility models known as
generalized extreme value (GEV) which have some of the computational properties
of the MNL. Both MNL and NL are special cases. Letting j = 1,...,J index the
set of alternatives, a GEV model is derived from a function G(yl,...,yJ) defined
on the orthant yj > 0 which is nomnegative, homogenous of degree one, tending
toward +° when any of its arquments tends toward +°, and whose n-th partial
derivatives (with respect to distinct arguments) are nonnegative for odd n and
nonpositive for even n. Any such function defines a cumulative distribution

funcﬁion (cdf)
(2.1) F( = : ! &g
. sl,...,aJ) = exp{-Gle 1,...,e J)}

whose marginal distribution with respect to each €y is the univariate extreme

value distribution:

(2.2) F(e,) = linr({e.}) = expl-c ek}
3 k
g ,7%,
J
j#k
where S = G(Skl,...,SkJ) and where aij =1 if i=j and O otherwise. For a

decision-maker maximizing utility

(2.3) g, = V, +¢€,
the probability (given Vj) of choosing a particular alternative k is
Vs

(2.4) P, = erGk(eVl,...,evj)/G(evi,...,e )

where qk denotes the partial derivative of G with respect to its k-th argument.
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The MNL model is derived from the function

J
Ly, .
j=1’

(2.5) G

Its cdf is a product of univariate extreme value distribution functions each of

the form

. _E-
(2.6) HMNL(Ej) = exp{-e J}

and it has the familiar form for choice probabilities:

Vi
= & -
(2.7) Pk = 3 - .
L el
j=1

The two-level nested logit model results from the function

: R
(2.8) 6= ( L y/PrPr
r=1 jeB
r
where Br Cc {1,...,3} is one of an exhaustive and mutually exclusive collection
of R subsets of alternatives. Its cdf is a product of R multivariate extreme

value cdf's each of the form

(2.9) BYE({e,|3eB 1) = exp{-( I e %3/Pr)Pr
NL J r .
JEB
r
The NL choice probabilities can be written as products of the probability of
choosing a group and the conditional probability of choosing an alternative

from within that group:

Vk/Ps ePslIs
(2.10) P = ——m
k vi/p R
‘ Lel"™s 5 eprIr
jEBs r=1



where Bs is the subset containing k and where

_ V./0
(2.11) I = log Ie J
jeB,.

r

defines the inclusive value of subset Br. Note that each factor in (2.10) has
the MNL form.

Alternatiyes within a group Br in the NL model have stochastic terms which
are correlated, with a correlation coefficient inversely related to pr. We wish
to exploit this property for the case where any two alternatives are correlated
only if they are adjacent along a natural ordering. To accomplish this using
the simplest possible model, let the alternative labels j increase along this
natural ordering, and define a GEV model as follows:

DEFINITION 2.1: The Simple Ordered Logit (SOL) model of discrete choice is

the GEV model resulting from the function

J+1
_ 1 1/p0 /1 1/p,p
(2.12) G(yl,...,yJ) = ril(z y, oo+ 5 yr—l)

where p is a constant satisfying 0 < p < 1, and where by convention ¥q = 0.

= Y1n
It is easy to verify:

PROPOSITION 2.1: The function defined in (2.12) satisfies the conditions in
Theorem 1 of McFadden (1978) for a GEV model.

PROOF': These conditions, stated at the beginning of this section, can be
checked directly. The oscillating sign of the partial derivatives follows from
the fact that the n-th partial derivative is a positive number multiplied by
o(p-1)...(p-n). QED

The distribution function for the model is easily found from (2.1). It
has, from (2.2), a univariate marginal distribution Fk(ek) which is extreme value

1-0

with parameter ¢ = 2 .



2.4

PROPOSITION 2.2: Given the SOL model defined on choice set {1,...,J}, any

two distinct stochastic utility elements €j and Ek are independent unless

Ij—kl = 1, in which case they have a bivariate marginal cdf which is a product
of two univariate cdf's of the MNL form (2.6) and one bivariate cdf of the NL
form (2.9) all to the power 2P, |

PROOF: Both statements follow by letting ail but two arguments in F tend

to +o, For k = j+l, the result is

vy, l_p 1 o~
(2.13) SOL(€3'€3+1) HMNL(aj) HMNL(€j+l) HNL(sj'Ej+l)

-0
)12

By, €5) Ho, (€ )Hp(e,s

MNL j+l j+1

where €i = ei + p-log(2). QED

The choice probabilities for the SOL model can be written from (2.4) as

/P Vk-l/p WP o1 WP kn/P o1
(2.14) p = & [(e e ) + (e + e ) ]
k J+1 vi/p _l/p
Iz (e e T )
r=1
v, /p
with the convention that e =0 forr <1l orr > J. 'These may also be writ—

ten in the suggestive form

(2.15) Pk = q(k;Bk)Q(Bk) +q(k;Bk+l)Q(Bk+l)
where
v, /p I

(2.16) kB = (e )e

pI  J+1 PL.
(2.17) B) = (e 5/ T e

s r=1
Vi/p Vr—l/p

(2.18) Ir = log(e + e )



This form looks like an expansion of P

X into conditional probabilities of the

MNL form, but it is not because the sets Bk = {k,k-1} are not mutually exclu-
sive. We cannot perform the analogue of the sequential estimation of the NL
model since‘we cannot observe which Bk was "chosen" by a given individual.
(More formally, it is because the log~likelihood fﬁnction does not separate
into two terms each of the MNL form). We can, however, use ﬁaximum likelihood
or any other general technique to obtain estimates of P and of the unknown para-
meters in the Vj.

Intuitively, the SOL model causes the choice probability of a given alter-
native to be diminished (as compared to the MNL model) if it is adjacent to a
very attractive alternative, for then one or both of the g's in (2.15) will be
small. One way to see this more clearly is to consider two extremes. At the
extreme 0 = 1 it is easy to see that the model is just the MNL model. At the

. C VP Veo1/P o
opposite extreme, as p + 0,each of the quantities (e + e

)~ tends to

exp(Max{Vr,vr_l}); PI_ tends to Max{vr,V£_1}; and
Vk J Vj
(2.19) Pk > n e / Z nse
p>0 j=1

where nj is the number of pairs of adjacent alternatives within which alterna-

tive j has the largest strict utility Vj' A tie between v& and V5+1 contributes

1/2 to both nj and nj+1; while the pairs (0,1) and (J,J+l) contribute 1 to nland

n, respectively. 1In this limit the probability of choosing any alternative

dominated by both its neighbors is 0. This limit is in fact a valid random util-
ity model whose cdf is continuous but whose density function is discontinuous at

points Ej = €j+l; its bivariate marginal for two adjacent alternatives is

BlEsey) = Hyg(85) By (65400 “Hy(EyE54)



where HM is the bivariate cdf for two variates grouped together in the maximal

model, obtained from (2.9) by letting P, tend to O:

~Min{es,cs.1}
= - jrei+l
HM(ej'sj+l) exp(-e )
The limiting case (2.19) is more useful for understanding the behavior of
the model than for actual estimation, because it is rare that a data set could
fit a model which predicts a zero probability for one or more alternatives. More

likely, the estimated coefficients would imply (Vi-VE_ ) >0 as pr <+ 0 in such a

1
way that (Vr--V'r_l)/pr remains finite. The example in the next section has this
property. In this way an estimated SOL may approach a limit as pr + 0 quite dif-
ferent from (2.19). The process is analogous to the manner demonstrated in the

Appendix in which a particular (J-1)-level nested logit model approaches the

model proposed by Sheffi.

One feature of the. SOL is that each of the end-point alternatives, 1 and
J, are treated as though they are adjacent to an alternative with utility —o.
This makes sense if the choice set truly represents all available choices, for
then it could be argued that any unobserwed preferences pushing an individual
toward the low or high end of the scale would be likely to land him at the end
point. In pr;ctice, however, there may be no logical end to the ordering and
the end points may be chosen as a matter of convenience to include all or most
of the observations. In such a situation, the SOL model would introduce a
selectivity bias due'to truncation of the dependent variable, a bias absent in
the MNL model due to its IIA property.l The proper estimation of the SOL (or the

more general OL) model in such a case is explained in Section VI.

lIn general, MNL estimates on choice-based samples are not consistent:
see Manski and Lerman (1977); Manski and McFadden (198l). However, when cer-
tain alternatives are sampled with probability zero and are removed from the
hypothesized choice set, the resulting MNL estimates are consistent as proved
in McFadden (1978), pp. 87-91l.



III. APPROXIMATION WHEN THE MODEL IS ALMOST MULTINOMIAL LOGIT

As already noted, the SOL model of the previous section cannot in general
be estimated using computer software designed for MNL. However, it can when the
departure from MNL is small in the sense that p is near one. As shown below,
this can be done by first estimating the MNL model; then reestimating with the
addition of a variable whose value for alternative j involves the
utilities (estimated in the first step) of alternatives j-1 and
j+1; and reiterating. A variable which mixes traits of different alternatives
would not be allowed in a true MNL model based on random utility maximization,
and in fact can serve as a diagnostic test for departures from MNL (McFadden,
Train, and Tye, 1977). Thus the particular variable described below can be added
as a test for the particular type of departure from MNL embodied in the SOL model,
a test which requires only one iteration; its coefficient after further itera-

tions provides an estimate of the SOL parameter 1l-p.

The intuition behind the procedure is not hard to grasp. The SOL model
with 0 slightly less than one differs from the MNI, model in that individuals
have unobserved preferences for groups of adjacent alternatives as well as for
specific alternatives. Compared to MNL, the SOL choice probability for a given
alternative will be slightly diminished if it is adjacent to an alternative with
a high utility, since the latter is likely to absorb a disproportionate share of
an unobserved preference common to both alternatives. Thus a pseudo~variable whose
value varies inversely with the estimated utilities of adjacent utilities should
receive a positive coefficient, which is larger the more p differs from one. By
using a first-order Taylor approximation to the SOL choice probabilities, valid

1-p, we can choose this variable so that its coefficient is an

for small o
estimate of 0 itself.
It is desired to approximate the choice probability (2.14) by a form which

looks like the MNL choice probability (2.7) with an additional term ON, where
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N = (Nl,...,NJ) is the new pseudo-variable:

evk*'GNk
(3.1) B = Tvon -

T el

j=1

This can be accomplished by approximating both (2.14) and (3.1) by the first

two terms in a Taylor Series expansion about the point 0 = 0:

~ O (o]
(3.2) Pk = Pk[l + U(along/BG) 1

where the superscript o indicates evaluation at ¢ = 0. Since (2.14) and (3.1)
both reduce to the same thing when ¢ = 0, their approximations will be identical
if N is chosen to make the tems(Blong/BU)o identical. Computing this deriv-
ative from (3.1) and (2.14) respectively and equating, we thus require that

J

o =0 (s} -0
N, - 2PN, = v, - - . ~I,
k 2 535 ( " Ik) .Ele(v] IJ)
J J=
where
=0 . 1 o0 o0
(3.3) Ij =3 (Ij+Ij+l)

and Iz is obtained from (2.18) by setting p = 1 (recall the convention

Vo VIr+l . .
e = e = Q). Thus, the desired pseudo~-variable N has values

(3.4) N, = v, -I°

j 3 3

V. _-v, vV, .-V,
- +
(3.5) = —% [log(%) + log(l+e I71 3y 4 log(l+e J*1 J);
(3.6) = - % 10g® + 10g142° /B9 + 1o (1+2° /9]
. = T g tegly EARRRE W TF RS [

with the convention Eb = PJ+l = 0. The form (3.5) shows that N has the



interpretation described above.
The variable N is not observed, but depends on the unknown parameters in

the "strict utilities” v&. Let
(3.7) ) v, = B'zj

where 8 is the vector of these unknown parameters, B' is its transpose, and zj
is a vector of observable traits of alternative j (possibly depending on obser-
vable traits of the sample member as well). The log-likelihood function for

(3.1) is a sum of terms, one for each member of the sample, of the form

7 .
(3.8) L(B,0 = B'z +aN(B) - logl exp[B'zj+ch(B)]
j=1

where k indexes the alternative chosen by that sample member. We can maximize
this likelihood function on an ordinary MNL computer package in a stepwise
fashion. First, use MNL to obtain an initial estimate of 8. Second, use this
estimate to construct an estimate of N, and use the MNL algorithm with this
pseudo-variable N to obtain an estimate of 0 and a new estimate of 8. Continue
iterating the second step until the estimates are stable. This should converge
to the maximum-likelihood estimate of (3.1) if the model is reasonably well
behaved and O is small, though as far as I know such convergence

is not guaranteed. As shown in the Appendix, the standard error computed by the
MNL package for ¢ is correct, but those for B should be corrected as shown.

To test for the validity of the MNL model against the more general SOL ,
only the first iteration need be carried out. Given the null
hypothesis ¢ = 0, the initial estimate for B is consistent, thus so are the
subsequent estimates of N and g. The‘asymptotic-t-statistic for ¢ thén provides
a test of the null hypothesis; this test is an example of the "universal logit™

technique for detecting departures from the MNL model (McFadden, Train, and Tye, 1977).



IV. NUMERICAL EXAMPLE

In this section a numerical example is constructed to illustrate the kind
of situation for which the ordered logit model is designed. Properties of
several models are compared both for degree of fit and for ability to predict
results of exogenous changes.

Suppose a household can own zero, one, or two autos; denote these discrete
alternatives by j = 1, 2, and 3, respectively. There are three types of house-
holds: "small" ones which prefer smaller numbers of cars, "large" ones which
prefer larger numbers, and "medium-sized" households which are indifferent among
numbers of autos. Most households (90%) are medium sized, and this group is split
evenly among the three ownership alternatives; 5% of households are small and
choose j=1, while 5% are large and choose j=3. Table 4.1 shows the observed
choice frequencies in a sample of N households, along with a set of utilities for
each group compatible with the above description.

The problem is to fit a choice model to these observed frequencies when

household size is not observed. Whatever "strict utilities" Vj are fit by the

model, there will be an unobserved utility component ej Uj--Vj which varies with-
in the sample with a substantial correlation (.688) between El and €2 and between
€, and 83; but only a small correlation (-.053) between El and 83. This is just
the kind of error structure for which the simple ordered logit model is appro-
priate (though not exact). Note that the choice frequencies “"pile up" at the’
extreme alternatives (j=1 and j=3) because of unobserved preferences which are
systematic in the index j. The SOL model of Section IT correctly recognizes this
and uses the extra parameter P to help account for the larger observed frequen-
cies of these two alternatives. This enables it to better predict the results

of removing or adding alternatives. The MNL model, in contrast, falsely assigns

larger utilities to alternatives 1 and 3, thereby tending to predict too small a



TABLE 4.1

Parameters for Numerical Example

Alternative (J) Total
1 2 3
Utility (Uj)
Small households 2 1 0
Medium households 0 0
Large households 0 1 2
Choice Frequency (fj)
Small households .05N O 0 .05N
Medium households .30N .30N . 30N .90N
Large households Q 0 .05N .05N
Total (observed) .35N  .30N .35N N
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share for alternative 2 when conditions are changed. The NL model falsely intro-
duces an asymmetry to the utility structure; it predicts well at one extreme but
poorly at the other.

Each of the models will be considered in two forms. In the’honégeneric
(alternative-specific) form, two free parameters Vl and V3 are allowed, with V2

normalized to 0. 1In the generic form, the V& are constrained by the one-para-

meter function
(4.1) V. = a(j=2)

which postulates that strict utility varies linearly with number of cars owned
(again, normalized so that V2=0). Since.household characteristics are not ob-
sexrved, the log-likelihood function given the observed frequencies fj is simply
3
(4.2) ' L = NZ £ ,log(P.)
j=1 J J
where Pj are thé predicted choice probabilities given values for the free para-
meters. Since there are only two independent observations, fl/f2 and f3/f2;
there can be at most two free parameters; when there are two, L is maximized by
setting at ﬁj = fj- Thus in the non~generic NL and SOL models the additional
parameter P is treated as exogenous, whereas in the generic forms it is estimated
along with a.

To compare predictive ability; two scenarios are used throughout: (a) re-
moval of alternative 3 from the choice set, for example by prohibiting on-street
parking in a neighborhood of two-car garages; and (B) removal of alternati;e 1
from the choice set, for example by making all non-automotive forms of travel
infeasible. I shall use the predicted share of alternative 2, denoted Pg and

B . . . .
P2 respectively, as the basis for comparison. The true result of either of

these situations is Pg = Pg = .5, since alternative 2 will be chosen by half the
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medium~-sized households and all the large (scenario A) or small (scenario B)
households. Thus either scenario results in an increase of .20 in the number of
households choosing alternative 2. For the generic models, a third scenario

is also used: (C) addition of a new alternative 4 (representing three cars)

to the choice set, for example b? removing a prohibitive tax on owning three
cargs. Extending the pattern of Table 4.1, small households are assumed to
regard owning three cars as even worse than owning two; large households regard
it as better; and medium-sized ones are indifferent. Thus the true prediction
of the share garnered by this new alternative is P: = .275 (.225 from the
medium-sized and .050 from the large households).

The results of these experiments are summarized in Table 4.2 and discussed

in the rest of this section.

Non-generic Models

The MNL likelihood function is maximized at Vl = V3 = .154. As is well

known, when an alternative is removed from the choice set the model predicts
that all other choice probabilities change proportionally. Thus when either of
the extreme alternatives is removed, the remaining probabilities are both pre-
dicted to rise by a factor of 1/(1~.35). This understates the true rise in P2
by nearly .04 or 20 percent.

To fit an SOL model to the observed choice frequencies, note that the sym-
metry of the problem requires Vl = V3. This leads to a single equation in Vl

which, given any value of p between O and 1, can be solved numerically. Given

the resulting estimate of V, = V3, prediction of scenario A or B is made by

1
letting Vl or V3, respectively, go to = ©, The resulting predictions for P?
and Pg range from the MNL value of .46 (at p=1) to .53 (as p>0). The true value

of .50 is predicted when p = .5850; this is the value at which all three strict



TABLE 4.2

NUMERICAL EXAMPLE

4.5

>0

Estimated Fitted Predicted
Parameters Shares Shares
v, 2 PP B Yo%
TRUE VALUES .35 .30 .50 .50 .275
NON-GENERIC MODELS:
MNL .154 .154 .35 .30 .46 .46
SOL
p=.7 .034 .034 .49 .49
p = .5850 .000 .000 .50 .50
p = .3 -.046 -.046 .52 .52
o+0 .000  .000% .53 .53
NL grouping (2,3)
P = .8006 .000 .123 .50 .46
p = .5 -.232 .077 .56 .46
p > 0 (Sheffi) -.619 .000b .65 .46
NL grouping (1,3)
p=.5 .501 .501 .38 .38
p+0 .847 .847 .30 .30
v v
GENERIC MODELS : b & ;
MNL - 0 .33 .33 .50 .50 .250
soL .5850 0 .35 .30 .50 .50  .269
SOL, first-order .5552 0
approx. .50 .50 .269
NL grouping (2,3) .6675  .103 .53 .46
Sheffi - .431 .39 .24 .61 .39 .223
*Lim(v /0) = Lim(V,/p) = -.405.
p*0 00
bLim(V3/p) = .154; this is the estimated parameter W3 in the Sheffi model.
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utilities are equal, in which case the differences among the observed frequen-
cies are correctly explained as artifacts of the error distribution.

Fitting a nested logit model is accomplished similarly, leading to the
estimates of v, and V, shown for the NL with B, = {1} and B, = {2,3}. Predic-
tions of the share Pg after deleting alternative 3 range from .46 at p=1 (the
MNL vluue) to .65 at P*0. This model also has a value of P, namely .8006, for
which the correct prediction for Pg is obtained. However, for scenario B the
model predicts the same as MNL: the odds P3/P2 remain unchanged. Conversely,
the NL model Bl = {1,2} and B2 = {3} can correctly predict scenario B but not A.
Thus it is impossible for either model to predict both scenarios correctly. As

p>0, the model shown approaches Sheffi's model with parameter W_ = lim (V3/p) =

3

.154 (see Appendix). By assuming that all households which would oiZerise have
chosen alternative 3 prefer 2 to 1, Sheffi's model considerably overpredicts the
shift to alternative 2 when alternative 3 is deleted; like the MNL model, it
underpredicts the shift when alternative 1 is deleted.

The other possible NL tree structure, which groups alternatives 1 and 3,

has little plausibility and its predictions are worse than the MNL model.

Generic Models

With non-generic models, we saw that there is some value of p for which the
SOL model is superior in predictive ability. However, nothing could be said
about whether a reasonable value of p would be obtained by fitting to the original
data. To remedy this, we now consider models with one fewer free parameter, so

that P can be estimated.
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The MNIL. and SOL models must, by symmetry, achieve a maximum likelihood at
8 = 0 (it is easy to check that this is a maximum, not a minimum). Fortuitously,
the MNL model with this estimate of o correctly predicts the new shares Pg and

B
P2'

however, since it incorrectly predicts them in the original state, it is
still not a perfect tool for stmulating these scenarios (it underpredicts the
increase in number of households owning one car by 17 percent). The SOL model,
having an additional parameter, achieves a higher log 1likelihood;

in fact it can fit the observed shares exactly. What is of more interest is
that it does so at precisely that value of p for which it correctly predicts both
Pg and Pg.

Also shown in the table is the result of estimating the SOL model by the
first-order approximation procedure of Section III. In this procedure, the MNL
is first estimated, with the result @ = 0. This value is then used to compute
the variable N from equation (3.5), resulting in

0 j=1,3
“-3 Nj ) - %-log(Z) j=2.
This variable assigns a larger value to alternatives 1 and 3, reflecting their
' positions immediately adjacent to a "neighbor" with implicit utility of negative
infinity. The likelihood function formed from (3.1) and (4.2) is maximized at
@ =0 and p = 1-8 = .5552. This is slightly less than the value of p obtained
from the unapproximated estimate. Yet when the predictions are carried out
using the same approximation, by setting Vl or V3 equal to - and recalculating
(3.5) and (3.1), the predictions are exactly the same as those of the exact
SOL model. Though it is risky to generalize from such a simple example, it

appears the first-order approximation may do very well at predicting even when

p differs substantially from one.
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The nested logit model (with alternatives 2 and 3 grouped) al so gives an
exact fit to the observed frequencies, withp=.6675 and a small positive value
for G. However, it does not predict scenarios A or B as well as the SOL. Thé
Sheffi model was also fitted, with Wj replacing Vj in equation (4.1); itspre-
dictions are worse than any of the other generic models.

A final comparison, involving scenario C, is considered to further illus-
trate the improvement of the SOL over the MNL for this example. Because it does
not recognize the "piling up" of frequency at the extreme alternatives caused by
the unobserved systematic tastes, the MNL model underpredicts the shift into a
newly-allowed alternative j=4 by about 9 percent. SOL does better, underpredict-
ing by 2 percent. Such a prediction cannot be made in general for nested logit
models, because‘there is no obvious way to assign a new tree structure. The
exception is the Sheffi model, which specifies that the new mode be grouped with
mode 3 as a new level in the tree; however, it does worse than the MNLin this
prediction test.

In conclusion, the SOL seems to perform better than any of the other models
considered here for this example. The reason is the existence of an omitted
variable systematically related to the alternative number, making the MNL assump-
tions invalid; and the fact that this variable is symmetric about the middle
alternative, which makes the NL models unsuitable. The appropriateness of the

SOL in a real situation depends on how closely it mirrors traits such as these.



V. A GENERAL MODEL WITH PROXIMATE COVARTANCE: ORDERED LOGIT

The model presented thus far can be generalized in four ways. First, the
stochastic term associated with an alternative may be correlated with nearby
but not immediately adjacent alternatives. This is dealt with by including M+l
terms rather than just two within each of the parentheses of equations (2.12)
and (2.14). Second, the correlation between nearby alternatives j and k may
decline slowly or rapidly with |k~j|, or even show an uneven pattern (for
example an especially high correlation between j and j+2 might result from
roundoff effects). This is dealt with by multiplying the M terms just men-
tioned by a set of weights. Third, the correlation between nearby alternatives
may not be the same at one end of the scale as at the other end. This is ac-
counted for by allowing p to depend on r in the summations. The model incorpo-~
rating these three generalizations is what I call the Ordered Logit model, and

is presented in this section. The fourth generalization is described in the

next section.

DEFINITION 5.1: The Orderet Logit (OL) model of discrete choice is the

GEV model resulting from the function

J+M M 1/pr pr
(5.1) G(yl,...,yJ) = ril(mzowmyr_m )

where M is a positive integer, pr and W, are constants satisfying

(5.2) 0<p <1, r=1,...,J

(5.3) w >0, m=0,...,M
M

(5.4) Tw = 1,
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and where by convention yj = 0 for jé{l,...,J}. I will also adopt the convention

that

(5.5) w,oo= 0, mg{0,1,...,M} .

PROPOSITION 5.1: The OL model is a model of the GEV class which reduces to
the MNL when pr = 1 for all r, and to the SOL when M = 1, pr =P for all r, and
Wo =W, = 1/2.

PROOF: G is non-negative because of the condition (5.3). Its homogeneity
of degree one can be checked directly. Since (5.3) and (5.4) ensure that at
least one of the weights is positive, G tends to infinity when any of its argu~
ments does. Its partial derivatives alternate in sign just as in the SOL model.
(5.4) guarantees that when pr =1 for all r, G reduces to (2.5); it can be checked
directly that it reduces to (2.12) when the conditions in the last statement are
met. QED

The next proposition states that the bivariate cdf of ény two stochastic
elements is a mixture of multinomial logit cdf's and components of nested logit
cdf's, with fewer of the latter as the alternatives get farther apart.

PROPOSITION 5.2: Each of the stochastic utility elements €, in the OL

k
model has a univariate marginal distribution which is extreme value according to
. M Pk +m . s . iqs
(2.2) with parameter S = z v . Any two distinct stochastic utility elements
m=0

Ej and €, are independent unless lj—kl < M. The bivariate marginal distribution
of Ej and Ek for 0 < k-j < M, provided that am > 0 for all m < M, has a cdf given

by

(5.6) Hop (65080 = HMNL(ej—ngW?k)-HMNL(ek-logﬁgk)

J+M o,
. rzkHNL(Ej—prlogwr—j'ek—prlOgWr-k)
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k-j-1 p. M 0
where W?k = I wmjfm and ng = z \ k+m:.
m=0 J m=M- (k~j-1) n

PROOF: The proof follows directly by calculating (2.1) and letting the

appropriate arguments tend to infinity. QED.

memdwpmmmnd%amouﬂmdﬁmﬁwfmmuA):

k;M Vic/pr —(l—Dr)Ir
wr_ke e .
(5.7) p = I=X : )
k J+M 0 I
TeTT
r=1
where
M V. /p
(5.8) I. = loglwe Fmeor
m=0 m

Pk is a sum of M+l terms, each resembling the choice probability
for a nested logit model. It has the limiting case (2.19) except that nj is now
the number of subsets of M+l adjacent alternatives within which j has the largest
strict utility (0 < nj <M.

It is evident that many new parameters have been introduced in generalizing
the Simple Qrdered Logit model. In practice, it is difficult to think of a
situation in which one would want more free parameters pr than alternatives, and
in most applications some strong conditions should be imposed on the v and pr.
One obvious such condition is a set of equality restrictions on pr, though per-
haps less stringent than forcing them all to be equal as in the SOL. Another
is to specify constant or geometrically declining weights W Both of these ap-
proaches are taken in the empirical work reported in Section VII.

As with the SOL model. the model proposed here has a convenient approximate
form when the deviation from MNL (as measured by 1-p) is small. The derivation

parallels that in Section III, and the result is identical to (3.1) if C and N
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are now interpreted as vectors of parameters Ur and variables Nr, the latter

taking the form (for alternative j):

5.9 N = (v, -1°
(5.9) T =y (V1D

M o 0
(5.10) = -Wr—legﬁiowm(Pr-m/Pj)'

Restrictions on {Gr} can be dealt with by replacing the complete set'{Nr} with

a smaller number of combinations. For example, the equality restriction Ur = 0 for
reB is imposed simply by including one variable NB = rgBNr instead of the
separate variables Nr. Provided the weights are specified in advance, this
approximate model can be estimated iteratively using an MNL estimation routine,

and the null hypothesis Gr = 1 for all r can be tested using the asymptotic

standard errors computed by such a routine. Section VII provides an example.



VI. DEPENDENT VARIABLE FROM A TRUNCATED CHOICE SET

As noted earlier, GEV models cannot in general be consistently estimated
from observations on only a subset of the available alternatives. The Ordered
Logit model, however, does provide a way of incorporating unobserved portions
of the choice set. The model can then be estimated provided some structure
can be specified for the strict utilities of the unobserved alternatives.

This structure might follow naturally from the form of the independent vari-
ables if they are generic; or, at the cost of some additional parameters, a

structure can be specified. It turns out that if the true model is OL, the

truncated data for J alternatives can be treated as OL with the following
extension.
DEFINITION 6.1: The Extended Ordered Logit (EOL) model of discrete choice

is the GEV model resulting from the function (5.1) with W replaced by

(6.1) w = we

where a_ are constantsand 0_ = 1-p .
r r r
Making the weights depend on r in this way maintains the assumptions
necessary for the model to be a GEV random-utility model, and ensures that
it still has MNL as a special case. Equations (5.6) and (5.7) are

replaced by straightforward generalizations, the latter taking the form



+ - s
k+M -Grar V'k/pr (1 pr)Ié
Iw .e e e
r=k Tk
6.2 =
(6.2) P T p T
T oL T
)
r=1
with
(6.3) I' = I -0.a .
r r rr

The approximation for pr near one is similar to that for OL but involves addi-

tional pseudo-variables Ar:

xr r
explv, + Z:o"rnk + Z(G_rar),Ak]
(6.4} P, = z £
k J Nt r
z V., + & . + )
j=lexp[ 5 ;Jr ; i(drar)Aj]

where N? is given by (5.10), and where

(6.5) A, = -w_ , .

It should be noted that the pseudo-variables Al and Nl are collinear, as
are AJ+M and NJ+M.

PROPOSITION 6.1: Suppose tﬁe true choice model is Ordered lLogit
with the alternative set B =’{~Ji+l,.{.,0,l,...,3+32} and with strict utilities
Vj, where J., J, are positive integers. Let B = {1,...,J}. Then for keB, the
choice probability Pk conditional on some altermative from the subset B being

chosen is given by an EOL model with strict utilities

(6.6) v, = {\7. 1<j<g

- othexwise



and with parameters

(6.7) a =

N

L. X=7
(1/p )logll + &2

V./p
Zw e 7 r

.

. J ,
I w _.evj/pr
jeB *™J

M+l < r <

otherwise

J

6.3

PROOF: The true choice probabilities, given by the OL probabilities (5.7)

with utilities ﬁj and extended choice set ¥, are

(6.8) B =

where

(6.9)

(6.10)

k+M

V'k/pr -(1—pr)Ir

Tw _e e

r=k

r-k

J+J _+M DrIr

2

Py e
r=-J_+1

(']
It

1

log I w e FmoE
m

m=0

I+ a
r pr~r

with Ir given by (5.8) and a_ by (6.7). For keB, V. =

probability is

P =

(6.11) =

The second exponential in

B/
j

z

" r=k

k

J
LB,
=1 ]

kM vk/pr -(l-pr)Ir

w e e

r-k-

J
z

3=1

the numerator can be written as

e

+M V. -(1- I
jZ w_.e J/pre ( pr) r
r=j -

-Grare—(l—pr)Ié

¥ _ and the conditional



which makes the numerator identical to that of (6.2). Reverse the order of sum-
mation in the denominator of (6.11), then change the second summation index to
m = r-j. Terms with (r-m) outside the allowable range of j are automatically
excluded by the convention (6.6), so the denominator becomesg

J;:-M nzaw evr_m/pr e—(l—pr) I, ) J;MeIre-(l-pr) I

r=1|m=0 r=1
which is easily put in the same form as the denominator of (6.2). Thus, (6.11)
is equivalent to (6.2). QED

There are several reasons one might want to use this result rather than

estimate (6.8) directly. It may be difficult to specify the strict utilities of
unobserved alternatives. It may simply;be more convenient to use the EOL model
because of an existing computer program, or because of the approximation (6.4).
In any case, if the EOL is to be used with this interpretation, (6.7) shows that
those a not constrained to zero should be positive, and should decline toward
zero as r approaches M+l from below or J from above (recall convention (5.5)).
In many cases it may be desirable to constrain a, to be some simple function of
r with these properties, so as to reduce the number of new parameters intro-

duced; this approach is taken in the empirical work described in the next section.




VII. EMPIRICAL APPLICATION: TRIP TIMING

The. first-order approximations ta. the models developed in this paper have
been applied to the choice of time-of-day of work trips by commuters in the
San Francisco Bay area. Data were collected on the actual work arrival times,
the “official" work start times, and other characteristics of 527 individuals
who commuted by auto in 1972 (McFadden, Talvitie, & Associates, 1977). These
were supplemented with engineering calculations of the travel times each would
have faced at each of 12 alternative arrival times, spanning a range of 40 min-

utes before to 15 minutes after the official starting time for his or her job.

In a previous paper (Small, 1982) I have described the rationale
for treating these choices as discrete, the main reasons being rounding of the
observed choices and analytical difficulties with a continuous model. Tn that
paper, I estimated a series of l2-alternmative MNL models. While noting that
some departure from the MNL's assumed error structure was likely, a relatively
crude test was unable to reject the MNI, model.

The most well-behaved specification found in the earlier paper is shown in
Table 7.1.l This model demonstrates the all-important trade—off between the
desire to avoid congestion on the one hand, and the desire to avoid arriving
too early or late on the other. The estimated marginal rates of substitution
imply that the average non-carpooler would incur .53 minute of travel time to
avoid arriving an extra minute early; 1.24 minute to avoid arfiving an extra
minute late; and an additional 1.53 minute to avoid arriving an extra minute

beyond the reported flexibility range.

lEstimates in the earlier paper were based on a subsample of 453 cases
because of missing data in the variable indicating whether the person drives
in a car pool. These data were subsequently reconstructed from original sources
thus permitting the larger sample used here.
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Several QL and EOL models were estimated using this specification of
the strict utilities,:in order to detect proximate covariance in the stochastic
term and to determine its effect on the properties of the estimated model. One
might expect the SOL to inadequately capture the covariance pattern, for several
reasons. First, nearby buﬁ not immediately adjacent alternatives are likely to
be correlated: for example, individuals might avoid arriving at an& time prior
to the (unobserved) opening time of the building in which they work. This would
require an OL model with M > 1. Second, the asymmetry between early and late
arrival suggests that the Gr might not be identical. This is tested below by
allowing Or to take on one value GE for r < 8; another value OL for r > 10+M;
with a linear transition between these values for intermediate r.l Third, the
strength of the variable R15 accounting for rounding to the nearest 15 minutes
could introduce an even more complicated error structure, in which stochastic
terms for alternatives j and j+3 are closely correlated. This is tested by
specifying non-uniform weights LALE > w1=W2=7..=wM.

Finally, the choice set used here was in fact truncated. Alternatives
representing arrival more than 40 minutes early or 15 minutes late were deleted
prior to the construction of the travel-time variables, and the few individuals

choosing such alternatives were deleted from the sample. This suggests the need

for the EOL model, which is tested by postulating nonzero'{ar} in equation (6.4)

lOther patterns with even more degrees of freedom were found to lead to
severe collinearity problems.
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which are exponentially decliningl in r for 1 < r < M, and in (J+M-r) for
J+l < r < J+M, with parameters YE and YL respectively.

The results of one iteration of the two-step approximate estimator are
summarized in Table 7.2. As shown in the appendix, this is sufficient for testing
the null hypothesis 0 = O by using the asymptotic t-statistic. In contrast, the
chi-squared tésts described below are only approximate because the true maximum
likelihood has not been determined. Furthermore, successive iterations in the

few cases tried showed the parameter estimates for the first iteration to be off

by as much as 40 percent.2

lWith constant 0,, this is accomplished by using the two additional vari-
ables AE and AL defined in the footnotes to Table 7.1 in the second stage of the
linear approximation. The rationale is that the utility V5 of deleted alterna-
tives is smaller the further j is from the range included in the model. For
example, suppose Vi-Vj = ar(l-j) for j < 1; pr = p; and wy = wy. Then from (6.7),
for 1 < r <My,

o P

0 oa_/P .
I (e )7
a = —=1 1l + - .
4r p %9 r o/p .
L (e )?
- =1 _
If aE is large, this can be approximated by
~ 1 1 ~ 1 r
a_ = 5 log [ 1 + raE/p 1 = E'YE ’ l<r<mM
e
-0/ .
with YE =e < 1. Similarly, if VJ—Vj = aL(j-J) for j > J, and o is large,
ar_pYL ’ J+l_<_riJ+M
—aL/p
where Yy, = e . On the basis of the coefficients of the MNL model, I chose

aL = 4aE, hence set YL = (YE)4 and scanned over several values of YE'

2Because of a tendency of parameter estimates to oscillate, each iteration
used the average of the initial values (used to construct N) and the final values
(estimated) from the previous two-step iteration. Even so, seven iterations were
required to achieve convergence to three significant digits in all parameters.
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Several of the expectations noted above were borne out. Neither the SOL,
the OL, nor the EOL with M=1 raised the log likelihood significantly over that
achieved by the MNL. In contrast, EOL models with higher values of M worked
quite well; the one labelled "best fit" had M=5 and achieved a log likelihood
which exceeded that of the MNL model by 4.98. The corresponding chi-squared
statistic (9.96) is significant at the 2 peréent level if we count only the
three extra degrees of freedom actually appearing as estimable parameters. More
honestly, there are about 5 degrees of freedom because the model shown was the
best obtained by scanning over several values of M and YE; even so, the model is
significantly different from MNL at a 10 percent level, and the estimated 0 is
greater than zero at a 2 percent level (l-tailed test). Non-uniform weights w
were not necessary or even helpful. Neither the pattern described above nor an
exponentially declining pattern gave as high a log likelihood as uniform weighfs.
Nor is there much evidence of Gr varying with r: the two-parameter specification

described above yielded nearly identical estimates of GE and 0. and a log likeli-

L

hood only 0.13 greater than under the constraint GE = GL.

The only problem with the "best-fit" model is the unreasonably large esti-
mate of arin As a crude approximation, suppose only the deleted alternatives
immediately adjacent to the choice set have utility greater than - ®. Denoting

these by V. and ¥

0 T417 (6.7) can be solved for (VO—Vl) and (V -V_.) in terms of

J+l ' J

the estimated parameters. The results are 0.41 and 0.93, respectively. The
first of these is plausible: 3j=0 represents arriving at work 45 minutes late,

which according to the estimated MNL coefficients would have a utility (BRlS -

BRlO + S-BSDE) = 0.33 greater than that of vy (for non-carpoolers) if its travel

time were the same. The result for (§j+l—Vj), however, is totally implausible;

it should be substantially negative. For this reason, the model was reestimated

forcing a

THM 0. The result is the "Preferred EOL" model; after iterating

to convergence as shown in Table 7.1, it differs from the MNL model with a chi-
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squared statistic of 5.82, significant at a 25 percent level if we consider there
to be four degrees of freedom. This séems a conservative assessment, given that
two of these degrees of freedom were used up in scanning over only a few discrete
values of M and YE; that the resulting model has parameter estimates of the right
signs and of plausible magnitude (indeed, better fitting models were rejected on
plausibility grounds); and that a oné-tailed t-test‘of either 0 = Qor a, = 0
separately would reject the null hypothesis at a 2 percent significance level.
It should also be noted that the estimated ¢ is closer to one than to zero,
casting doubt on the accuracy of the first-order approximation for this case.
Table 7.1 shows several properties qf the parameter estimates in order to
assess the quantitative differences between the MNL and the Preferred EOL models.
The marginal rates of substitution of travel time for scheduling inconvenience
all tend to be overpredicted, by up to 12 percent, by the MNL. model; that is,

the EOL model would predict an even greater tendency for commuters to shift

“schedules in response to changes in congestion. Another way to see this is in

the last row of the table, which shows how much the fraction of commuters ar-
riving more than 10 minutes early would rise if the congestion encountered at
later arrival times were increased by one minute. This predicted response is
about 6 percent greater from the EOL than from the MNL results.

To summarize, there seems a good case that the Extended Ordered Logit model
is appropriate for these data. The signs and magnitudes of the new parameters
are plausibly estimated, and there were good reasons why the simpler
SOL and OL models were not satisfactory. .The first-order approximation to the
EOL is probably crude, though the egample in Section IV suggests that it still
may predict well. Estimated by using the two-step procedure on an ordinary
computer package, its relative e%se of use recommends it for testing departures
from the MNL model. But for obtaining accurate parameter estimates, the need

for several iterations is a drawback. For models such as this one with many
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alternatives, these iterations are expensive and cumbersome; it would probably
be more fruitful to go directly to a maximum likelihood program for the full
EOL model. For smaller applications, iterations on existing MNL routines are
an attractive option. Finally, in this example the MNL results are qualita-
tively correct and quantitatively quite satisfactory, despite the large depar-

ture from MNL indicated by the estimated parameters of the more general model.



TABLE 7.1

ESTIMATED COEFFICIENTS: TRIP-TIMING MODELSa
(asymptotic t—statisticsb in parentheses)

First-order Approximation

" VARIABLE® MNL PREFERRED EOL
- Iter, No. 1 ‘Iter. No. 7
(convergence)
Rounding error:
R15 1.106 .363 .595
(10.97) {0.96) (2.37)
R1O .398 .126 -207
(3.92) (0.72) (1.49)
Travel time:
TIM ~-.141 -.104 -.106
(-2.67) (-1.84) (-1.91)
TIM.CP .105 .076 .080
(1.39) (1.00) (1.05)
Schedule delay, early:
SDE -.075 -.049 -.051
(=12.24) {~3.75) (-4.37)
SDE.CP .023 .017 .017
(2.55) (1.79) (1.87)
Schedule delay, late:
SDL -.175 -.117 -.129
(=5.99) (-2.83) (~3.59)
SDLX -.216 -.122 -.143
(-2.67) (=1.32) (-1.65)
D2L -1.057 -.683 -.763
(-6.21) (-2.84) (-3.65)
Pseudo-variables for
first-order
approximation:
N - .674 .824
(1.96) (2.11)
AE - 5.72 6.16
(1.99) (2.10)
Log likelihood -994.90 -992.30 -991.99
Marginal rates of sub~
stitution (non-
carpoolers) :
—(BTIM/BSDE)V 0.53 0.47 0.48
—(aTIM/BSDL)V 1.24 1.12 1.22
- (3TIM/3SDLX) 1.53 1.18 1.35
Pred. share for alts 1-6:
P ¢ (actual = .3776) .3853 .3781 .3770
Af’l— 6/ATIM7_12d .0248 .0264
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aDependent variable is the choice among 12 time-of-day alternatives, each

denoting an arrival time within a 5-minute interval centered between 40 minutes

before and 15 mihutes after the time of work officially begins. Sample size = 527.

SD

R15

TIM
SDE

SDL

FLEX

SDLX

D2L

CPp

AE

bUnder null hypothesis that model is MNL; not corrected as in Appendix.

c e s . .
Definition of independent variables:

= Schedule Delay: actual arrival time minus official work start time,
in minutes,for a given alternative. Thus its value for alternative j
is SDj =5(j-9), j =1,...,12.

= 1 if sb = -30, -15, 0, 15
<0 otherwise.

= {1 if SD = =40, -30, =20, -10, 0, 10

0 otherwise.

= Travel Time in minutes

= Max. {-sp, o}.

= Max. {sp, o}.

= Answer to question: "How many minutes late can you arrive at work
without it mattering very much?".

Max. {SD-FLEX, O}.

= {1 if SD > FLEX
0 otherwise.

= Dummy for car pool.

J+M r
= IN (N* from equation 5.10)
r=1
M
= X (YE)(r-l)Ar (" from equation 6.5)
r=1
J+M
J+M-
= L Ay )( r)Ar (a" from equation 6.5)
L
r=J+1

dPredicted change in §1—6 from increasing TIM by one minute for alter-

natives 7-12.



TABLE 7.2
PREFERRED EOL AND VARIANTS: TRIP~-TIMING MODELS

First-order Approximation, One Iteration

7.9

SOL oL EOL
" Variants Preferred
Best -
. a =0
M=1 fit Y+ o0 J+M
Exogenous parametersa
M 1 5 1 5 5 5
- - . . Y0 .
Yg i 1 1l
Yy, - - - .0001 - -
Estimated coefficientsb
o} ~.252 +.240 .140 .760 +.620 +.674
(-0.63) (0.87) (0.26) (2.19) (1.88) (1.96)
Oal - - 1.11 5.91 5.91 5.72
(1.06) (2.05) (3.01) (1.99)
GaJ+M - - 12.34 - -
(1.83)
Increase in log
likelihood over
MNL value 0.20 0.37 0.79 4.98 2.54 2.60

aYL was not varied independently, but was set equal to (YE)4 as explained in
the footnote in the text; see Table 7.1, footnote a, for an explanation of how
they are used in constructing variables AE and AL (whose coefficients are Galand
GaJ+M, respectively) . YE+0 implies AE = Al. Where YL is not given, AL was omit-

ted from specification.

bAfter only one iteration of two-step estimator. Asymptotic t-statistic

under null hypothesis Gr Z 0 is given in parentheses.
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VIII. CONCLUSION

This paper has presented the Ordered Logit (OL) model, a generalization of
multinomial logit (MNL). It applies to cases in which discrete alternatives are
arrayed along some dimension on which individuals have systematic unobserved
preferences, thereby inducing stochastic correlation between alternatives in
close proximity. The model belongs to the class of Generalized Extreme Value
models defined by McFadden, and is therefore consistent with random utility
maximization. When the departure from MNL is small, it can be estimated iter-
atively using an ordinary MNL routine; the first iteration serves as a diagnos-
tic test for failure of the MNL assumptions. The model can be modified to
eliminate selectivity bias from truncation of the dependent variable. The
model's applicability has been demonstrated both with a numerical example and
with real data on scheduling choices by commuters.

Several extensions to the work here can be suggested. There is need to
further develop theoretically justified ways of specifying the many new para-
meters introduced by the OL (and its extension for truncated choice sets), as
functions of a manageable number of estimable parameters. Monte Carlo tests
comparing the OL with other discrete choice models such as MNL, multinomial
probit, and nested logit would help define the conditions under which it is
useful: for example, it may be that the OL could satisfactorily handle some
cases where the true model is multinomial probit. Finally, the OL can substi-
tute for the MNL portion of more complicated models such as nested logit; in
fact, it is simple to write dowﬁ a nested logit model in which the conditional
probabilities within each subgroup are OL instead of MNL, and there seems little

to deter one from estimating it.



APPENDIX

Acronyms and Symbols Frequently Used in this Paper

cdf Cumulative distribution function

EOL Extended Ordered Logit

GEV Generalized Extreme Value

ITA Independence from Irrelevant Alternatives

MNL Multinomial Logit

NL Nested Logit

OL Ordered Logit

SOL Simple Ordered lLogit

ik Alternative label (runs from 1 through J)

m Index for weights within subset of alternatives in OL model
r,s Index for a subset of alternatives in NI or OL model

w Weights

2z Vector of independent variables

at New variable used in 2nd step of approximate EOL estimator
B Subset of alternatives

F Cumulative distribution function of one or more error terms
G Function defining a GEV model

H A particular cumulative distribution function .
I Inclusive value

J Number of alternatives

L Iog-likelihood function

M Number of adjacent alternatives grouped together in OL model minusone

[}

New variable used in 2nd step of approximate OL estimator
Number of cases in sample

Choice probability

Utility (strict plus stochastie)

Strict (non-stochastic, observable) utility component

Vector of coefficients of independent variables

Stochastic utility component (error term)

Parameter of NL and OL models measuring dissimilarity within a group
(0 <p<1) '

(1-p)

TOT® Jawze

Q

Variance of the Approximate Estimator

Let Vj = B'zj be the strict utility of mode j for a member of the sample,
where zj is a vector of cobservable characteristics of alternatives and 8 a vec-

. 1 + 1 J+M, !
tor of unknown coefficients. Let 0 = (0 ,...,,0’J M) ' and Nj(B) = (Nj,...,l\lj M) ’




where N§ is defined by (5.10).. Note that

r _ T
(A.1) BNi/SB = wr_j(zj z")
where
~r (e} o)
(A.2) z = (Xz w0P )/(thpr-m) .

r-m m r-m
m

If k is the mode chosen, the log-likelihood function for the model given by

(3.1) receives a contribution from this sample member of

(A.3) L(B,0) = B'zk +0"Nk(6) - loggexp[B'sz'Nj(B)]
Then

OL(B,q) _ _sF

. T % * icfwr-k(zk z’)

~F ] ]
Z_[zj+2crrwr_j(;j-_z )]exp(B zj+0‘ Nj)

-3 L
Zexp(B'zz+c'N£)
L
(a.4) = (z-2) + (7,,~Y)
and
IN,exp(B'z.+0'N,)
LB,0) _ o _ 3 ]
%0 k Zexp(B'zg+G'N£)
L
(A.5) = N - N
where
_ T
yj = icrwr_j(zj z)
y = ZIP.y.
3 J° 3]
z = IpP.z
i J3J
N = IP.N



A.3

and where P:.| is given by (3.1). The asymptotic variance-covariance matrix of
the maximum—likelihood estimate (83,0) iS‘”El, whereMl is the exXpectation of the

cross product of first derivatives of the log-likelihood function:

(A.6) m = P | 9L/38 oL/ 38
sample k '
dL/d0 oL/ 30
(A.7) =m=» in®
where
(A.8) m® = % Ip (2 -2 z. -7 )
sample j J J
N. - N N, - N
v J J
(A.9) ms® = @ 1» "mll m:
. 12
sample j
\'m,12 0
(a.10) mll = (yj—y) (zj-z) + (zj-Z) (yj-y) + (yj-y) (yj-y)
(A.11) le = (Nj-N) (yj-y)' .

A, . . . . .

ML” is the inverse of the variance-covariance matrix of (B,0) if N were treated
as an ordinary variable in the last MNL step of the iterative procedure des-
cribed in Section V;WLA is sometimes called the moment matrix and is computed
by most MNL computer packages. Thus, the procedure is to retrieve m> at the

. . amB . A . '
last step of the estimation, computem and add it to M ;, then invert the re-
sulting matrix to obtain the estimated variance-covariance matrix of (B,0).

Two things should be noted. First, the formula still holds if some of the

. . r . .
variables N° are replaced by combinations X N in order to constrain the
rEB



corresponding Gr to be equal. Simply reduce the number of components.of Nk
accordingly.

More important, under the null hypothesis ¢ = 0, the variance-covariance
matrix reduces to @HA)_I, i.e. to that computed as though N° were exogenous.
Thus statistical tests for deviation of the model from MNL can be carried out
using the asymptotic standard errors for Gr computed by the MNL estimating

routine.

Equivalence of Sheffi and Nested Logit Models as p Approaches Zero

Sheffi (1979) proposes a choice model for cases "where the alternatives
are associated with some ranking and the choice of any alternative implies that
all lower-ranked alternatives have been chosen as well" [p. 189]. Citing auto-
mobile ownership and shopping-trip frequency as examples, he proposes two postu-~
lates:

Postulate A implies that the utilities [strict utility plus
stochastic component] are a monotonically increasing function of

their index set for all alternatives ranked lower than the chosen

one [and] that the utility of any alternatives ranked higher than

the one following the chosen alternative is lower than the utility

of the alternative following the chosen one.

Postulate B [implies] that the random variables formed from
pairwise subtraction of the utilities of the given alternatives

are independent... [p. 192]

. o 1
Sheffi then derives the following choice probabilities:

lI have adapted his formula to apply to the choice set {1,...,J} used
throughout this paper.
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k
) wP,
j=2 7

(a.12) P = (1

"4l |k l5-1

where Pj|j-l is an independent bivariate choice depending only on the utilities

of alternatives j and j-l1. In his empirical application, these bivariate choices

are modelled as logit:

‘ 1
P =
jl1i-1 -(W.,-W, )
il3 ;W

(a.13)

where I have used the symbol W instead of Sheffi's V to avoid confusion with
the strict utility as defined in this paper.

Although Sheffi describes his model as "based on the [standard] random
utility theory" [p. 195], postulates A -and B are actually
inconsistent within such a theory. ILet Uj = Vs + ej be the utility of alter-
native j, divided into its strict and stochastic components. Ppstulate A
requires that (Ej-sj_l) > (V&_l-vs) whenever some alternative k > j is chosen.
But this means that the distribution of (ej_ej-i) must depend on whether or not
(Ek-ek_l) exceeds (Vk_l—vk) for some k > j, thereby contradicting Postulate B.

Sheffi has made a subtle error because his model is actually a limiting

case of a nested logit model with (J-1) levels, as each level approaches a
maximal model.The W& which determine (A.13) are not the strict utilities them-
selves but rather can be derived as a limit of a transformation of the true
stochastic utilities, which I shall continue to denote as Vj’ In this limit,
both (Vk_l—Vk) and the variance of (Ek—ek_l) shrink to zero in such a way that
level k can effectively be isolated from lower levels as though they were truly
independent.

To see this, consider a nested lpgit model with the tree structure shown
in Fiqure A.l. A parameter pj is associated with the node from which alterna-

tive j branches off, so that the choice probabilities are given by (A.12) with



TABLE A.l

A Nested Logit Tree Structure




I./0.
. epj J/pj-l.,
P =
j{3-1 A 0.I./0,_
P il i D2 N Bk B 2
(A.14) L
* 1+ v, .-0.I.)/p. .1
exp [( 5-1773%5 /DJ_l
Iy = Vi/0;
v./p, 0s.I.../P.
I, = logled J 43" 370y 5o 51

3

and with pl = 1 by convention. For the model to be a valid NI, the condition

Q< pJ < pj-l < ... < pl = 1 must be met. Suppose the pj decrease geometrically

for some positive r. Consider the following limiting process: r - 0, and

Vj - V2 for j > 2 in such a way that

(3.15) Lim(v,-v, )22 o 4,
oo 33 3

exists. Then

lim(p_.I.) v,
o 33 T Y
and
lim P, . = -
jl3-1 -4,
=0 1 +e J
This is precisely the model (A.12) and (A.13) with Wj_wj—l = Aj‘

Sheffi's model has considerable plausibility, is easy to estimate effi-~

ciently, and seems to perform well in appropriate circumstances. However, this



demonstration poses two dilemmas for applying and interpreting it.

First, in specifying generic wvariables it is important to realize

that one is not specifying the strict utilities themselves, but rather differences
between them divided by a ratio of p's. How one shduld think about a plausible
utility specification in such a model is not obvious, and probably depgnds on the
resolution to the second dilemma: namely, no one seems to have worked out the
welfare implications of exogenous changes in such a model. To do so should be a
straightforward matter of determining the expected maximum utility in the NL

model of Figure A.l, and taking the appropriate limit.
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