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ABSTRACT

This paper examines the Sequential, Full Information Maximum
Likelihood (FIML), and Linearized Maximum Likelihood (LME) estimators
for Nested Logit models of time-of~day choice for work trips. All
three are consistent, but the first is not efficient. The efficiency
gain from using FIML or IME is substantial, and the LME has modest
computational costs. The ®quential estimator is useful for pre-
liminary specification checks and for getting consistent starting
values for computing efficient estimators. However, the uncorrected
sequential —estimator standard-error estimates from standard multi-
nomial logit packages can be gross underesimates. We implemented
a correction, but it is as difficult to program and nearly as costly
to compute as the more efficiént IME estimator which gives standard
error estimates as a byproduct. Thus, we do not recommend the
sequential procedure for final estimation. Although these results
are based on a single data set, they are consistent with the few
pertinent results.reported by others.

We found that the nested logit model fits these data significantly
better than multinomial logit, although the qualitative properties

of the estimated indirect utility functions are no different.




1. INTRODUCTION

The practical application of qualitative choice models has
presented econometricians with many difficult problems. The
Multinomial Logit (MNL) model is easy to estimate and work
with, but its adoption requires that the researcher accept the
Independence from Irrelevant Alfernatives (ITA) axiom. 1In many
applications this assumption is clearly erroneous and its use
causes serious biases. Unti] recently the only alternative was
Multinomial Probit [see Hausman and Wise (1978)] which, though
Qseful in cases with up to three discrete alternatives, is computation-
ally intractible for larger chdice sets.

Recently McFadden (1981) has proposed a new class of qualitative
choice models, called Generalized Extreme Value (GEV) models,
which do not require the IIA assumption and are relatively easy to
estimate. GEV models are consistent with random utility maximization
in a consumer choice framework, and contain the MNL model
dS a special case. With the €xception of Small (1982),
the only practical applications of GEV models have been with
a subclass called Nested Logit (NL). NL models have been used

in transportation mode choice [Cosslett (1978)1, consumer




durable choice [Brownstone (1980)], and household energy demand
[Goett (1980)]. There are a number of practical problems
including choice of estimation technique and computation of
standard error estimates which have not been carefully addressed
in this literature. This paper attempts to investigate these
problems while using NL to model the choice of time-of-day

for work trips.

The general NL model requires complex notation, for
which the reader is referred to McFadden (1981) or Cosslett
(1978). We use here a simplified notation suitable for
the most general model considered in this paper. To describe
an NL model, we first consider a hierarchy of groupings of

alternatives called a tree structure and represented by a

diagram such as Figure 1. At each level of the tree, the
alternatives pr groups of alternatives) defined at the next
lower level are grouped, indicated diagrammatically by
connecting them to a node. Level 1 consists of all the
alternatives, denoted j=1, .;., 12 in the figure. Level 2
consists of nodes indicating groups of alternatives; in the
figure, the level-=2 nodes are denoted-r=a,b,c and correspond
to groups Ba = {1,...,8} , Bb = {9} , and Bc = {10,11,12}
Level 3 consists of groups of level-2 nodes; the level-3
ﬁodes L=A,C correspond to groups BA = {a,b} and BC = {c}.
The choice probability for alternativé k attached to level-2

node s which in turn connects to level-3 node M is
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Figure 1

Nested Logit Tree Structure
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whenever node r 1is attached to higher-level node L .

The strict utility Vj is specified to be a function of

observable characteristies zs describing both the alternative
J and the individual in question, a function linear in unknown
parameter vector 8 . In this paper, the additional unknown
parameters {or} and {pL} are referred to generally as "the

p's", and specifically using the notation just introduced.

The quantity Ir or IL is called the inclusive value of
node r or L . A branch of the tree corresponding to a giveﬁ
node consists of that node, the lower-level nodes attached
to it, all nodes or alternatives attached to those, etc.; for
example, {C,c,10,11,12} constitute one main branch of the
tree in Figure 1. Nodes such as b and C which are attached
to only one lower-level node are called degenerate. It is
easily seen from the above equations that the conditional
probability for the node just below a degenerate node is unity,
and the p parameter for the degenerate node drops out of the
choice probability formula. In Figure 1, for example,
oply = Vg and I, = Pele

The log-likelihood function is formed adding the natural

logarithms of equation (1) for the chosen alternative of all

members of the sample. The full information maximum likelihood

(FIML) estimator of the unknown parameters is that which

maximizes this likelihood function. The sequential estimator




takes advantage of the additive separability of the logarithm
of (1) by performing a sequence of simpler maximizations.
Denote a member of the sample by superscript i ; denote the
alternative chosen by that member and the nodes above it by

ki si,and M. The log-likelihood function is then

logPii

-
1]
[ag]

= I logPlﬂgﬂsi)+ z logPl(s%Mi)+ z logPl(Mi)
i i

Ll + L2 + L3 .

The sequential estimator first estimates B/pr' by maximizing

L 1 (first stage);1 uses these estimates to compute Ir’

then estimatesvpr/pL by maximizing L2 (second stage); and so
forth. When the p's at a given level are constrained equal,
that stage involves maximizing a log-likelihood function exactly
like that for the MNL model, permitting use of fast existing

MNL algorithms.

lOne or more components of B8 may not be identified at
the first stage because the corresponding variables do not vary
over alternatives within groups B_. An example is a dummy
variable equal to 1 for jeB_ and 0 otherwise. Such variables
can simply be omitted in’cafculating inclusive value, and
entered separately as additional variables at higher stages.
To see this, partition g8 = (81,62) and Zj = (Z}, Z?), where12§ =Z i for
all j € Br so that 82 is not identified at the first stage. Then from (1 e),

I = log [éxp (62 Zz) * I exp (81 Z})] = BZZ 2 + Il,
r r j€8 ] r T
T

where Ii is the inclusive value computed from (1 e) omitting variables 22.




The sequential estimator, however, has a number of
disadvantages. As is well known, it is not efficient, since
information about higher-level choices is not used in estimating
the lower-level parameters. Furthermore, the amount of
information lost goes up\dramatically with the number of distinct
parameters describing the tree structure, making it difficult
to obtain powerful tests of restrictions. . Since the estimates
at each level depend on parameters estimated at lower levels,

€rrors may accumulate up the tree. Finally, the standard

errors of the p's are incorrectly estimated by the MNL
algorithm, and the correction factor required is quite
complicated (see Appendix A).

This paper attempts to assess the practical significance of
these difficulties by comparing the sequentlal estimator to FIML.
One goal is to determine how much improvement can be obtalned
through efficient estimation. Previous experience is not very
illuminating. Of the two estimates by Cosslett reported in
McFadden (1981), the only one which noticeably raised the likelihood
had an estimated o greater than one and hence was not a valid
NL model. Brownstone (13980) found some models where FIML
produced reasonable estimates, but he was unable to compute the

sequential estimator due to his complicated tree structures and

small sample size.

Sections 3 and u compare alternative estimators of an NL
model for a particular empirical example described in the next
section. Our results would be more general if

we based comparisons on a number of different data sets




in a Monete Carlo framework, but this would involve much greater
computer expense. Instead, we chose an example which has
already been investigated thoroughly using MNL models, and for
which NL is a plausible generalization. Our results support the
desirability of efficient estimation of the NL model, and we hope
they will provide guidance and encouragement to researchers using

other data sets for which nested logit seems appropriate.



2. DATA: TIME-OF-DAY CHOICE

The empirical example is the choice of time-of-day for wofk trips, pre-
viously modelled by McFadden et. al. (1977), Small (1982), and Abkowitz (1980).
Because of analytical difficulties with treating the choice as continuous,
plus a tendency of respondents to round off repliés to the nearest five
minutes, all of these authors estimated an MNL model of choice among 12
discreté alternatives,each representing arrival at wbrk within a particular
S-minute interval. The choice set consists of intervals centered from
40 minutes before to 15 minutes after the official work start time for the
individual. Data were collected on the actual arrival times, the official

‘work start times, and other characteristics of 527 individuals who commuted
by auto to a major city in thg San Francisco Bay area in 1972 (see McFadden
et. al., 1977). These were supplemented with engineering calculations of
the travel times each would have faced at each of the 12 alternative arrival
times.»

The most well-behaved MNL specification found in sSmall's work is shown

in the first column of Table 1, with variables defined as follows:l

3D = Schedule Delay: actual arrival time minus official work stert time,
in minutes, for a given alternative. Thus its value for alternative 3j
is SDj =5(j-9), 3 =2,...,12.

R15

{l if sp = -30, -15, 0, 15

0 otherwise.

The sample used here is larger than that in Small (1982) because of
reconstruction of some Previously missing carpool data. The coefficient estimatesg
are nearly identical.




RIO "= (1 if SD = -40, -30, -20, -10, 0, 10
<'0 otherwise.
TIM = Travel Time in minutes
EDE = Max. {-sD, 0}.
SDL = Max. {sp, o}. =
FLEX = BAnswer to question: "How many minutes late can you arrive at“work

without it mattering very much?".

SDLX = Max. {SD-FLEX, 0}.

DL - = 1 if sD z FLEX
< 0 otherwise.
CP = Cumny £for car ocol.
This model captures the trade-off between the desire to avoid

congestion on the one hand, and the desire to avoid arriving too early or late
on the other. The estimated marginal rates of substitution imply that the
average non-carpooler woula incur .53 minute of travel time to avoid arriving
an extra minute eariy; 1.24 minute to avoid arriving an extra minute late; and
an additional 1.53 minute to avoid arriving an extra minute beyond the reported
employer's flexibility range. The implication for transportation analysis is
that significant shifts in the timing and duration.of the peak period will
occur in response to any factor substantially affecting congestion, and that
accurate predictions of traffic conditions must take this scheduling responsive=-
ness into account. The results of the pPresent paper further support this
conclusion.

It is clear that the IIA assumption is not strictly appropriate here.

At least two correlation patterns other than independence might plausibly be

postulated for the unobserved preferences for these 12 alternatives. One,
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explored by Small (1981), is induced by the ordering of the alternatives and
involves a closer correlation among “nearby" alternatives. The other, explored
here, assumes . that commuters have unmeasured preferences for
arriving early, on-time, or late, thereby inducing correlation within the correspond-
ing groups of alternatives, Three ‘ groupings are considered: (1) alternatives
1-8 (early arrival) vs 9-12 (on-time or late); (2) alternatives 1-8 (early)

vs. 9 (on-time) vs. 10-12 (late) as three distinct groups; énd (3) 1-9 vs 10-12.
These are indicated by the correspbnding tree diagrams on the tables. In each
case, the two nondegenerate level~1 nodes have parameters denoted by p and p
when constrained equal they are denoted by p . Note that tree structures (2)
and (3) are special cases of the three-level tree of figure 1, corresponding

to pA = 1 and Pa = P, r respectively,

3. SEQUENTIAL ESTIMATES
Sequential estimates wererbtained using QUAIL, a versatile qualitative-
choice computer program with a fast MNL algorithm and matrix manipulation
capabilities. Because we wished to constrain certain barameters (e.g. the
coefficient of travel time) to be identical on all branches of the tree, the

first MNL stage was carried out by "stacking” the cases included in each of

the two conditional choice problems. For example, in tree (1), the 318

individuals choosing an early alternative were included with possible choices

1-8, and the 209 individuals choosing an on-time or late élternative were given
possible choices 9-12, By combining these into a single first-stage MNL estimation
ofy#he conditional lower-level choices, we estimated _B/p with

less loss of efficiency than if we had estimated some coefficients separately.

To our knowledge, this Procedure has not been mentioned in the‘general des-
criptions of the NL sequential estimator such as McFadden's (1981), though it

has been used in practice [e.g. Train (1980)]. of course, this limited us to

assuming Py = P Zp .
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0f the two-level trees shown in Table 1, structuré (1) does not fit the
data as well as the other two structures: It achieves a much lower log likelihood,
and it greatly underpredicts the fraction choosing alternatives 1-6. Evidently
the first-stage coefficient estimates, especially of the lateness dummy D2L, are
not sufficiently accurate for the inclusive value to have any explanatory power
at the second stage. This suggests that on-time arrival (alternative 9) is viewed

~ -

as distinctly different from late arrival, so that grouping them together &ives
a poor fit.l

Tree structure (2) involves substantial jogg of efficienty in sequential
estimation,which is manifested in large standard errors. This is because the
187 individuals choosing alternative 9 are dropped from the first-stage
estimation, node b beiﬁg degenerate. Tree structure (3) achieves the high-
est log-likelihood and a precdision in 673 nearly as gdod as the MNL model.
However, the hypothesis that the true model is MNL cannot quite be rejected
at a 15% significance level, using a one-tailed asymptotic t-test of the null
hypothesis p=1 against p<l. .

One of the bizarre features of the NI sequential estimator is that it
is possible to obtain a lower log-likelihood than the MNIL model which is a
special case of NL. This occurs in tree structures (1) and (2). structure (1)
is espécially misleading because a one~-tailed t-test would reject the MNL
model at a 5% significance level. A suitably modified version of one of the
tests discussed in Hausman and McFadden (1981) might give better results, but
this was not attempted here. :

Table 1 shows both the correct standard errors on § , computed as
described in Appendix A, - and the uncorrected standard errors on the coefficient
of inclusive value as computed by the MNL algorithm in the second stage. Our
results corroborate Cosslett's (1978) finding-that the uncorrected s‘candard
errors are serious underestimates. This is especially true in the better-

fitting models.

lThis’view is strengthened by the FIML estimate 5.= %.?5 f?r this tree
structure (Table 3) which indicates strong within-group dissimilarity.
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Several more general models were estimated with poor results. We tried
computing separate g;rst-stage estimates on the two nondegenerate branches, in
order to allow for distinct Pa and Poi this led to very large standard
errors at the second stage. Using a separate Program written in the APL
language, we computed sequential estimatgs with B/pa and B/pc constrained
at the first stage to be equal up to a proportionality factor; this turned out
to be as expensive as FIML but much less precise, Finally, two
three-~level trees were tried, the more promising of which is shown in
Figure 1 and Table 2; once again, the sequential estimator managed to achieve
a lower log-likelihood than was obtained for a special case:s tree strucﬁuré (3)
of Table 1; and the estimated p's were not all in the unit interval. an h
attempt to improve the specification by adding explicit occupational variables
(in addition to those implicit in D2L) deserves mention, since it illustrates
in extreme form how. imprecision in first-stage estimates leads to poor results
at higher stages. For tree structure (2), as already noted, more than a third
of the sample is lost from the first stage estimation. The variable D2L is
always Zero on alternatives 1-8; furthermore, there.is only one individual
for whom D2L varies within group Bc = {10, 11, 12} and who chooses an
alternative with the higher value of D2L. This individual happens to be one
of the five with missing occupational data, so with those five dropped from
lthe sample the dummy variable D2L becomes a perfect discriminator at the first
stage: Ii is maximized with coefficient of D2L equal to -®, This means
that inclusive value is -« for any .node connected to an alternative for which
D2L = 1, ‘However, at the second stage many individuals choose such a node

despite the availability of node a for which D2Lz0; this forces the coeffi-

cient p on lnclu51ve value to be zero. Thus, the loss of information at

the flrst stage leads to absurd results.
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4. EFFICIENT ESTIMATES

Efficient estimates for two- and three-level trees were obtained using
a modified Newton-Raphson algorithm written in the APL computer language.
Two efficient estimates are reported here: Full Information Maximum
Likelihhod (FIML), and the "Linearized Maximum- likelihood Estimatopr' (LME)
resulting from one Newton-Raphson step.l The program was not designed
primarily for speed, and was run on a slower operating system. As a result
the estimates were quite expensive: The typical two-level tree required 6
iterations and 150 seconds of central processing time on an IBM 3033 computer,

standard error calculations,.to

at about 6 times the cost of the sequential estimator's / converge. A single
iteration, in contrast, cost about as much as the sequential estimator's standard errors

The FIML results2 in Tables 2 and 3 are quite encouraging. Of the two-
level trees, structure (3) has the highest likelihood, corroborating the
sequential estimator. However, the precision is much better than with the
sequential estimator, and it is now possible to reject fairly confidently the
MNL model. The chi-squared statistic for testing constrained model (3)
against the MNL is 3.49 with one degree of freedom, significant at the 10%
level. Even this is overly conservative since we require the p's to be
in the unit interval, and in fact reject better-fitting models such as the
unconstrained version of (3) on this ground. A more appropriate test is a
one—tailéd test of p=1 against p<l based on the asymptotic t-ratio
(1-5)/SE(;) = 1.87, which rejects the MNL hypothesis at a 3.1% level of

s sos 3
significance.

lAs shown by Rothenberg (1973), one such step starting from consistent
estimates is asymptotically efficient.

2The convergence criterion was that no coefficient changed by more than
one percent in the last iteration. For case (1) of Table 1 we also checked the
weighted gradient recommended by Belsley (1980), which was -056, indicating a
quadratic approximation to logl would have a maximum .0l4 above the value
achieved by the last iteration. Spot checks were made to insure against
saddle points and multiple maxima. Additional details about the program are
given in Appendix B.

3The strictly correct test for this hypothesis would require estimating
the model subiect tn the constraint 0 < o <1 and generalizing
Gourieroux and Monfort's (1979) method of testing on parameter-set boundaries.
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Furthermore, the FIML estimator allows reasonably powerful tests of con-
straints on the p parameters. For model (2), we can clearly accept the con-
straint pa = pc « For model (3), the same constraint might be rejected based on
a chi-squared test, but this would be dubious because the unconstrained model
yields unreasonable values of the‘ p's (it is possible, however, that maximizing
the likelihood while constraining the p's to be in the unit interval would yvield
an acceptable model and stiil reject the equality constraint). Both models (2)
and (3) can be tested against the more general tree structure of Figure 1 and
Table 2 based on the local maximum found for that tree structure involving p's
which are pésitive (though still not in the unit interval). Chi-squared tests at a
5% significance level reject model (2) (unconstrained version) but accept' model
(3) (constrained version). This is additional support for the validity of model
(3).

The FIML procedure gives estimates of B/p qualitatively similar to those
from the MNL and from the sequentially estimated NL. In only one case did a
coefficient change by more than one standard deviation from the cruder estimates.
Furthermore, the Sequential estimator correctly selected the best tree structure.
Nevertheless, as shown in the last four rows of Tables 1 and 3, some key marginal
rates of substitution differ by up to 33% from the MNL and 39% from the sequen-
tially estimated NIL. These results lead us to recommend a preliminary screening
of models using the relatively cheap sequential estimator, then applying
FIML (or the cheaper variant discussed below) to the more promising models

for more precise estimation and hypothesis testing.
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If the (consistent) sequential estimator is used as starting values, then
each iteration towards the FIML estimate is asymptotically efficient.
The first iteration may be a useful estimator in its own right due to
its low computation costs. This estimator, called Linearized Maximum Likelihood
(LME), is compafed with the others in Table 4. Only the two parametefs which
were most volatile, along with their standard errors and the log likelihood,
are shown.l The LME correctly chose the best tree structure, and for the
most part produced coefficient estimates considerably closer to the'PIML_
estimates than did the sequential procedure. In all three cases the log
likelihood was raised in the first iteration by at least 58 percent of the
difference between the FIML and the sequential values. For all but one
coefficient the LME produced standard error estimates smaller than the
sequential procedure and close to those of FIML. Finally, for the two poorer-
fitting tree structures for which the LME estimates differed by'more than
a few percent from FIML, the fact that the log likelihood was still lower
than that achieved by MNL would serve as a warning that more iterations
might substantially change things. In short, performing one iteration using
the : sequential estimates as starting values provides much of

the benefit of FIML at considerably less cost.

5. CONCLUSIONS
The lessons learned from this study are primarily based on the empirical
example discussed in this paper. However, since most of our conclusions are
corroborated by the work of Brownstone (1980) and Cameron (1982) they are

probably valid in other situations as well.

lThe results shown in Table 4 are from a full Newton-Raphson step, without
the cubic polynomial interpolation employed in the FIML algorithm (see Appendix B).
Thus the programming needed to obtain them would be relatively easy. The
use of interpolation probably would have reduced the tendency toward oscillation
in parameter estimates'characterizing Table 4.
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The sequential estimator appears to be useful for identifying Promising
models, since it is easy to compute. In this study it successfully screened
tree structures for the most Promising one,‘ana gave coefficient estimates
qualitatively similar to FIML for that tree structure. More importantly, the
sequential estimator provides unique consistent starting values for computing
efficient estimators.

Unfortunately, sequential estimators also have a number of serious
disadvantages. The efficiency losses relative to FIML were quite large in
this study. In some examples the sequential estimator could not distinguish
the NL structure from a simple MNL model, but the FIML estimator clearly
rejected the MNL model. Furthermore it is clear that these efficiency
losses will get worse as more levels are added to the NL tree structure.

We also found situations

where the efficiency losses make it impossible o use the séquential
estimator (e.g. loss of observations at the first stage causes unbounded
coefficients). Although Sequential estimates can be computed quite easily

using standard MNT, computer packages, the standard error estimates produced

by these pPackages seriously underestimate the true standard errors for all
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parameters not identified at the first stage. Therefore, if the sequential
estimator is going to be used for hypothesis testing,the standard errors
must be corrected. Appendix A shows that these correction formulas are
complicated even for simple two-level NL models, and the need to compute
them greatly reduces the sequential estimator's computational advantages.
Of course, it is not necessary to compute the correct standard errors if
the sequential estimates are just being used as starting values for
computing efficient estimators.

Compared with the sequential estimator, FIML estimators are much more
precise and therefore pemmit more powerful hypothesis testing. Their
main disadvantage is computation cost, but this can probably bé reduced
considerably by more careful programming. Also, if consistent sequential
estimators are used as starting values for the FIML calculations, then it

is not necessary to iterate to conver sence to get asymptotically efficient

estimators. ‘In particular, the LME appears to offer a large gain in
efficiency with small computational costs. With careful programming ,
computing the LME should cost no more than computing the correct standard
errors for the sequential estimator. This study, based on one data set,
suggests that the LME is the best estimator for NL models; further
confirmation awaits a Monte Carlo study of the true sampling distributions
of the estimators considered here.

One of the difficulties with using NL models in applied work is
that the tree structure must be largely specified a priori. It appears from
this study and work by Cameron (1982) that the constraints on the p's
(i.e. that they lie in the unit interval) are very useful for sorting out
possible tree structures, since many models can be discarded if the estimates
violate these constraints. This fact increases the importance of estimating

these parameters efficiently.




Together with other work mentioned in the introduction, this study
has shown that nested logit models are attractive, practical qualitative
choice models for situations where the Independence from Irrelevant
Alternatives axiom is not justified. It is entirely feasible to construct
fast algorithms which compﬁte the sequential estimators and, using these
for starting values, the asymptotically efficient one-step linearized
maximum likelihood estimator. Poor results often indicate an
inappropriate model, but can be further explored if desired by performing
more iterations. Hypothesis tests of various special cases, including

multinomial logit, can be performed to determine a structure which is

16a.

general enough to be consistent with the data yet estimable with reasonable

precision. 1In a case such as ours in which nested logit is a priori
plausible, one can hope to obtain reasonable results with a model that
fits demonstrably better than the popular but restrictive multinomial

logit .
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Table 1

Two-Level Trees:

Sequential Estimates

MNL Nested Logit
Tree Structure: (1) (2) (3)
A\
P 1-8 9-12 1-8 9 10-12 1-9 10-12
B/p
(S.E.) :
R1S ' 1.106 1.076 1.133 1.142
(.101) (.117) (.129) (.104)
R10 .398 .368 .416 427
(.102) (.119) (.128) (.104)
TIM ' -.141 -.169 -.195 -.166
(.053) (.070) : (.072) (.056)
TIM-CP .105 .124 .163 .137
(.076) (.101) ' (.104) (.078)
SDE -.075 -.067 -.069 -.076
(.006) (.008) (.009) (.006)
SDE-CP .023 .002 .004 .024
(..009) (.013) (.013) (.009)
SDL -.175 -.191 -.192 -.189
(.029) (.034) ' (.081) (.073)
SDLX -.216 © =,216 -.310 -.312
(.081) (.083) (.209) (.208)
D2L ~1.057 -0.018 -1.015 -1.134
(.170) (.666) (1.197) _ (.174)
; «342 .882 .843
(S.E.) (.377) (.419) (.152)
[uncorr.S.Eq [.328] [.075] [.067]
Log Likelihood -994.90 -1030.95 -998;12 -994.,03
P;.glactual=.378) .385 .311 .374 .385
-( BSDE/BTIM)V
Noncarpoolers 1.88 2,52 2.83 2.18
Carpoolers 0.69 0.69 0.49 0.56
-(BSDL/BTIM)V
Noncarpoolers 0.81 0.88 1.02 0.88
Carpoolers 0.21 0.24 0.17 0.15
Notes:

Dependent variable is choice among 12 time-of-day alternatives, each a
S-minute arrival interval. Alternative 9 is on-time arrival.

No. cases = 527.
Asymptotic standard errors are in parentheses-.
Log likelihood is the sum of the log likelihoods at each of the two
stages, L = Ll + L2, as in equation (al), Appendix A.




Tree Structure:

Parameter
Estimate
(S.E.):

p/pA

Log Likelihood

Table 2
Three-Level Tree 2

b §c
1-8 9 10-12

Sequential FIML

1.045
(1.301)

.821.
(.263)

=997.19

2
X stat. for Pp=P, = P

(deg. freedom)

xz stat. for pA=

(deg. freedom)

1

aSee notes to Table 1
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Local Max
with p's > 0

.708
(.506)

1.449
(1.388)

.278
(.257)

=992,00

2.90
(2)

4.84
(1)

Global Max

-.87
(.69)

=991.25



idbie o
Two-level Tree:

FIML Estimates 2 19
Tree Structure - (1) (2). ' . ()

1-8 9-12 1-8 9 10-12 1-9  10-12
s8/p con- con- uncon— on- - uncon—
: (S.E.) strained strained strained itrained ‘strainec

RLS 1.067 1.13¢ 1.137 1.145 - 1.160
(.100) "(.110) : - (.104)
R10 .365 .419 .419 .429 .394
' (.099) " (.108)  (.104) .
M : -.0¥7 . -.163 -.165 -.148 -.168

(.050) (.060) (.054)

TIM-CP .050 | .129 JA31 .115 .151

(.057) {.084) (.077)

. ) "\
SDE -.089, ~.075 - -.076 .=.075 -.076

(.007) (.007) © (.006)

SDE-CP .017 .023 .029 .023 .024

(.009) (.010) (.009)

SDL -.188 -.207 -.223 -.237 1.674

(.030) (.050) (.057)

SDLX -.210 -.281 -.291 =.338 .426
, (.081) (.128) (.148)
D2L . -.529 -1.314 -1.343 1,109 -1.134
. (.356 (.362) (.174) ‘
3 1.953 | .807 .761
(1.095) : (.178) (.128)
‘ (.223) (.711)
Pe _ | .865 8.4
(.568) (6.9)
Log Likelihood -993.68 -994 .43 -994.42 -993.45 -991.,41
P, ¢ (actual=.378) .385 : .386 .386 .386 .388
~ (3SDE/ 3TIM) 2 '
noncarpoolers 1.12 2.17 2,17 1.97 2.21
carpoolers 0.52 0.65 0.72 ~ 0.63 0.33
-(asnr./a'r:cwv: . o o -
noncarpoolers 0.41 0.79 0.74 0.62 ~0.10

carpoolers 0.14 0.16 0.15 0.14 -0.01

aSee notes for Table 1

~ ~ A
bstaxgda.rd errors were computed for § but not B/pa. '
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Appendix A: Standard Error Formulas for the Sequential Nested Logit

Estimator.

The sequential estimator described in the first part of this paper is
calculated using MNL estimation programs at each level of the tree structure.
Amemiya (1978) first pointed out that the standard error estimates pro-
duced by the MNL packages are downward biased except for those parameters
identified at the loﬁest level of the tree structure. McFadden (1981)

gives formulas for the correct asymptotic standard arrors, but the nota-
tion used is difficult to translate into computational formulas. This
appendix specializes McFadden's formulas to the 2-level Nested Logit

model with a single p parameter.

Following the notation used in the paper, we have:

n
[

(A1) L =31 log P*(k'|s™) + 1 log P*(sh)
i i
.. . 1 2 1 2
Partition B and z into two groups 8 = (8 , B) and z = (27, 2°) such that

82 is not identified at the first stage (i.e. via maximization of Ll).

2
Let Z1 and Z be the guantities actually entered as variables at stages

2 X 1
1 and 2, respectively; and Yl and vy their coefficients. Thus Zl=z R

1 2

Yy = Bl/p ' Z2 = (z, Il), and y2 = (Bz, p), where I1 is the inclusive

value from the first stage. Zl takes on distinct values for

2 k,s,n
-alternative k attached to nade s for individual n ; whereas Zz, which
by construction does not vary among alternatives attached to a given node,

takeé on values Zzs

Let
3L, oL}

(a2) o, = E{——r , ——%J .
J 3Y 3YJ
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McFadden (1981) shows that the asymptotic covariance matrix

of the sequential estimator of Y is consistently estimated by

! S

a3 v M MMMy,
-1 -1 g TP NS IR | :
MaaMa1M1 M2 MyaMy My M) M5

M1i is just the Information Matrix for the MNL likelihood function at
the i:th stage, so the MNL computer packages produce standard error
estimates asymptotically equal to Mii. It is clear from formula (A3) that

these "uncorrected” estimates are correct only for yl and are downward

biased for Y2 ;

Define the random variables sk - to equal 1 if indivi-
I
dual n chooses alternative k attached to mode s. Then E Sk = Pn(kls),
and if S IS ES = P(s).
’n k k,S, ’ S,n

Using this notation we have

n
(A4) L1 = i 2 i Sk,s,n log P (kis)
and
(A5) 1, =zzs__ log P'(s)
ns ’

Differentiating (A4) and (A5) yields

oL
(46) —L=7373 NN . P where Z! - Pklsz,
Y nsk 2= g ? s k 38,
aL
2 = n,_ -1
a7y —F=31:1ps_ ( - P ()zZ, )
871 ns S,n' s,n ¢ t,n
L _ _
a8) —2-:r1s (zz - Z2)  where zi =3 Pn(s)Zi
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oL
Note that ——% = 0, and therefore M12 = 0. Taking expectations of (A6-A8) we
have: oY
oL oL. "'
1 - 1
(A9) M. = E— ——=
R P o
1 =1 . n 1 =1 .,
= - -z
i 2 i (zk,s,n Zs,n)P (kls) (Zk,s,n s,n)
- 2 =2 n r—l -1 n '
(A10) M, =%z (25 2= 2Z) o P(s) Lzs,n z Zt’nPA(t)]
n g : t
= 2 _ 32, .n 2 _ 52!
(Al1) M,, rzli (zs’n Z) P7(s) (Zs,n z2)

Formulas (A9)-(All), with probabilities evaluated at the sequential estimates

of vy, were used in formula (A3) to produce the correct standard errors in

Table 1. The "uncorrected standard errors" are simply the square roots of the
1

diagonal elements of Mii'
i

Similar formulas were used for the 3-level trees used in this paper.

For these and more general formulas the reader is referred to McFadden
(1981).
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Appendix B: Estimation Programs

The sequential estimates were calculated using the QUAIL qualitative
choice analysis computer package (see Berkman and Brownstone (1979)),
and a QUAIL program for computing the estimates and the correct standard
errors is available from the authors. The QUAIL package can be obtained
from Cambfidge Systematics, Inc.

The FIML estimates were calculated using some APL Programs described
.in this appendix. These programs are also available from the authors,
but they are written specifically for the Particular tree structures
used in this study and would have to be modified for other tree structures.
APL is a high-level interactive language that is easy to use but expensive
to exécute. Therefore the costs for doing FIML would Probably drop
considerably if the brograms were translated into a language like FORTRAN,
although this translatxon would involve a lot of Programming time. More
computer savings could be found by reprogrammlng the likelihood function
evaluation routines to reduce evaluation of the exponent1al functlon by
more careful use of temporaries, but this would also involve a lot of
Programming time. Finally, APL uses double precision for all calculations
on IBM computers. Although double Precision is probably needed in some
Places, its use everywhere undoubtedly increases the computation costs.

The algorithm used to calculate the FIML estimates is a modification
of the method of scoring which converges very quickly (i.e. 5-6 iterations
for most of the models in ﬁhis study) but requires computation of analytic
derivatives of the log likelihood function, L. The iteration step is:

W




where § is the initial guess or value from the previous iteration and
d is a scalar calculated to maximize L along_the direction vector given
by the product of the last two terms. Specifically, d is chosen to
maximize a gubic po;ynomial fitted to L along the direction vector.
In addition, d is decreased if necessary to insure that the algorithm
always moves uphill. This algorithm also provides a consistent estimate
of the covariance matrix for B since the matrix inside the square
brackets is just the Information matrix for B . A version of the
Berndt, Hall, Hall and Hausman (1974) algorithm was also tried where
the analytic covariance matrix inside the brackets was replaced by its
method -of-moments sample estimator. This algorithm did not reduce
computation costs very much, and the resulting covariance estimator for
8 seemed to be more unstable.

It is quite possible that some other non-linear maximization
algorithm wili be more efficient for this prob;em. Unfortunateiy, time

and budget constraints prevented us from trying other algorithms.




Appendix C

Acronyms used in this paper:

FIML
GEV
ITa
LME

MNL

NL

Full Information Maximum Likelihood

Generalized Extreme Value
Independence from Irrelevant Alternatives

Linearized Maximum-Likelihood Estimator
Multinomial Logit

Nested Logit
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