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I. INTRODUCTION

"What constitutes rational behaviour in a non-cooperative strategic situation?”
This paper explores the issue in the context of a wide class of finite non-cooperative
games in extensive form. The traditional answer relies heavily upon the idea of Nash
equilibrium (Nash, 1951). The position developed here, however, is that as a criterion
for‘judging a profile of strategies to be "reasonable" choices for players in a game,
the Nash equilibrium property is neitﬁer necessary nor sufficient. Some Nash equilibria
are intuitively unreasonable, and not all reasonable strategy profiles are Nash
equilibria.

The fact that a Nash equilibrium can be intuitively unattractive is well-known:
the equilibrium may be "imperfect." Introduced into the literature by Selten (1965),
the idea of imperfect equilibria has prompted game theorists to search for a narrower
definition of equilibrium. While this research, some of which will be discussed
here, has been extremely instructive, it remains inconclusive. Theorists often
agree about what should happen in particular games, but to capture this intuition in
a general solution concept has proved to be very difficult. if this paper is success-
ful it should make some progfess in that direction.

The other side of the coin has received less scrutiny. Can all non-Nash profiles
really be excluded on logical grounds? I believe not. The standard justifications
for considering only Nash profiles are circular in nature, or make gratuitous
assumptions about players' decision criteria or beliefs. This will be discussed
in Section II.

Most of the paper is devoted to the development and evaluation of an alternative
solution concept, which I call "ex ante equilibrium." It is offered as an answer
to my opening question: "What constitutes rational behaviour in a non-cooperative
strategic situation?" No attempt is made to single out a unique strategy profile
for each'game; instead, a profile is considered to be in ex ante equilibrium if
each player has selected any strategy that is "reasonable" in a sense to be made

precise. A single player might have many such strategies.



While allowing for more flexibility than the Nash solution concept permits, the
alternative proposal attempts to eliminate the problem of imperfection. This is
complicated by the fact that there are actually two types of behaviour that have been
labelled "imperfect" in the literature. The first involves "implausible behaviour
at unreached information sets," and arises only in games having some sequential
nature. . The second is intimately related to the first, but can occur even in
perfectly simultaneous games. It concerns the.taking of risks that seem "likely"
to be costly, when there are no offsetting advantages for a player to consider.

- The first type of imperfection can be ruled out on the basis of rather innocuous
rationality postulates. Elimination of the second type, however, requires an
additional assumption, amounting to the assertion that players will exercise prudence
when it is costless to do so. Accordingly, I define two solution concepts. The
first, ex ante equilibrium, relies upon little more than logical deduction, and
ignores the second type of imperfect behaviour. A narrower solution concept,

which I call perfect ex ante equilibrium, makes the additional assumption needed to
eliminate imperfections of the second type.

For expositional purposes the early sections of the paper deal only with normal

form representations of games. Because I believe that the additional structure

provided by the extensive form is often important in determining how players will

act, I interpret a normal form game as a convenient representation of a perfectly

simultaneous game, in which no one can observe any move of any other piayer before

moving himself. (See Note 1.) Such games can be analyzed without the encumbrance

of the extensive form structure. The analysis of Sections III and IV should be

understood as an investigation of a special class of extensive form games. Indeed,

the general solution concepts ultimately proposed in Sections VI and VII reduce to

those of Sections III and IV for games in which everyone.moves simultaneously.

Many of the central themes of the paper come across more clearly in these special games.
The strong influence that a number of papers on imperfect equilibria have had

on the work reported here will be evident to the reader. Emphasis is given to those



ideas in the literature that I consider crucial, as well as those with which I must
take issue. A less obvious, but major intellectual debt should be recorded here,

one that I owe to my colleague Dilip Abreu. Our countless discussions on game theory
have played a central role in shaping my ideas about strategic behaviour. Of

course only I can be held responsible for the statements made in this paper.

II. A BRIEF CRITIQUE OF NASH EQUILIBRIUM

In the literature one can find many alternative Justifications for concentrating
upon Nash equilibria, and conceivably others could be concocted. To attempt to
prove that all such justifications must be inadequate might be overly ambitious.
Instead, this section examines a few of the best-known arguments in favour of the
Nash solution concept, and concludes that they are less than compelling.

The discussion here concerns finite N-person non—cooperative normal form games
of complete information. Such a game

¢ = (st...,s% ob .. 0N
is completely characterized by the finite nonempty sets Si of pure strategies, and
real-valued utility functions Ui having domain g Si . For each 1i , there are
. . i=

k(i) pure strategies si,...,si(i) . A mixed stratigy for 1 1is a probability
distribution over Si represented by a vector pi = (pi,...,pi(i)) in k(i)-
dimensional Euclidean space. The components of pi satisfy 0 < p§ <1 and sum

to unity. Denote the ith player's set of mixed strategies by Mt . The utility

functions are extended to mixed strategy profiles by a straightforward expected

utility calculation: for any profile pl,...,pN
i N, K k(N) N i1 N
U (P yesesp ) = Z cee L pj cen pl [s) (sj,...,sz) .
j=1 2=1

. 1 . fa ey . ,
A strategy profile (g ,...,gN) is a Nash equilibrium of G if for every 1

and all El € Ml

i 1 N i, 1 i-1 =i i+l N
U (g7 reeesd) >2U (0 4..es0 r O ,0 reeer0 ) o

Thus no player can improve his position by deviating unilaterally from a Nash

equilibrium.



On what grounds does a theory of non-cooperative strategic behaviour single out
Nash equilibrium profiles? In the context of two-person zero-sum games, Luce and
Raiffa (1957) specify ". . . a demand to be met by any theory of strictly
competitive games . . . the mere knowledge of the theory should not cause either bf
the players to change his choice . . ." (page 63). Similarly, in the case of N-person
games, Kreps and Wilson (forthcoming) remark that although there have been many
motivations of Nash equilibrium, ". . . a thread common to all of them is that if
players are to arrive at some 'agreed-upon' mode of behavior, then it is necessary
that this behavior constitutes a Nash equilibrium. Otherwise, some player would in
his own self-interest defect from the agreement." (Section 3). Since communication
amongst players is forbidden, the mode of behaviour cannot be agreed upon explicitly,
but rather must be obvious to all players because of some compelling features of
the game.

A tacit assumption underlying Luce and Raiffa's requirement is that a theory of
games must associate with each game, a single strategy profile ¢ that is supposed
to describe how players behave. Such a theory enables the game theorist to
predict the outcome, and each player can presumably do the same. Naturally the
prediction is then sensible only if each player is responding optimally to the
predicted strategies of others. This is also the thrust of Kreps and Wilson's
remarks. But why should we require a theory of games to predict unique strategic
choices for all players, with certainty? To assume a priori that all strategy
profiles but one are exd¢ludable, rather than deriving this by some logical process,
makes the argument circular and inconclusive.

Defenders of the Nash solution concept will insist that it must be possible for
pPlayers to predict the strategic choices of others. After all, each player knows
"all there is to know" about his opponents; everyone knows the rules of the game.

To predict player j's choice of strategy, player i simply puts himself in j's
position, and imagines what i himself would do in that situation. Whatever i

would do (if he were given j's strategy space and utility function) i assumes 3
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will actually do. I claim that this argument too is circular. It assumes that
there is a unique strategy that i would prefef if he were put in j's position.
Suppose instead that there are possibly many choices that each player could
reasonably make. 1In an attempt to resolve his own uncertainty, i imagines himself
in j's position. To his dismay, he realizes that if he were Jj , he would be torn
in several directions, having a number of reasonable-looking strategies from which
to choose. This mental exercise simply pushes the problem back one step, where it
is encountered afresh. None of this depends upon whether or not the game in
question has a unique Nash equilibrium; for those who wish to make single-valued
predictions regarding strategy profiles, the occurrence of multiple Nash
equilibria is just an added embarrassment.

Sometimes one hears the following opinion expressed: although Nash equilibrium
may not be achieved in a single play of a game, behaviour will converge eventually
to a Nash profile. Using various "rules of thumb" for dynamic adjustments by
players, Bernheim (1981) shows that convergence occurs only under very restrictive
conditions. (See Note 2.) 1In any case, convergence arguments cannot justify the
use of the Nash equilibrium concept in “one-shot" games. On the other hand, if a
game repeated fifty times, for example, is really the object of interest, this
defines one overall game that can be decomposed into its fifty natural component
games. When this large game is analyzed, typically it will still be necessary to
make arbitrary assumptions about behaviour in order to ensure Nash behaviour in each
component game. This cannot be a satisfactory defense of Nash equilibrium.

In the case of two-person zero-sum games, it is supposed that the maximization
of each player's "security level" (the least expected utility a player can receive
when he plays a certain strategy, regardless of what his opponent does) provides
an independent reason for Nash equilibrium to arise. I believe that it is only
because "maximin" behaviour turns out to have the "best response"” property, that
it receives any attention at all. 1In N-person games maximin behaviour does not

have this property, and no one mentions maximizing security levels in such games.



Only a pathologically pessimistic person would care about nothing except his
security level; our players, expected utility maximizers who accept risk willingly,
do not fit this description. One of our players would maximize his security level
only if he were convinced that his opponent could guess his move, and then inflict
maximal damage on him. In a two-person zero-sum game, the opponent at least has

an incentive to do so. But one still needs the assumption that each player can

| predict with certainty the strategy employed by the other. There is no independent:
argument here after all. For an early protest against the orthodox theory of
two-person zero-sum games, the‘reader should consult the provocative paper by
Ellsberg (1956).

Perhaps the central position that Nash equilibrium occupies in the theory of
games is partly explained by the notion that in "equilibrium," everyone must be
satisfied with his own choice. It is an error to draw from this reguirement the
conclusion that the outcomes of games should have a "no regret" property, that is,
no one wishes, after the game is played, that he had chosen differently. The error
creeps in because in the statement "everyone must be satisfied with his own choice,"”
no time is specified. As long as no one wants to change his strategy at the time
when he is required to commit himself, the relevant requirement is met. The
possibility that someone may later be disappointed upon discovering the strategies
actually chosen by others, does not make his choice less reasonable-— he must act
with limited information. Ex ante, before knowing the strategies of other players,
a player makes a decision; ex post, he may regret it. No game theorist requires
that a player have no regrets about the action he chose, given the actions
(particular realizations of mixed strategies) of others—such an equilibrium need
not even exist. The actions are not known to the player in question when he must
make his decision. Similarly, if other players' strategies are not known when
decisions are made, the possibility of ex post regret must be considered natural.

The discussion above deals exclusively with the notion that the attainment

of Nash equilibrium must not be considered a necessary condition for judging
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Players' behaviour "reasonable." Less controversial is the reciprocal contention
that some Nash equilibria can themselves represent unreasonable behaviour, because
they are imperfect. There is no need to belabour the latter point; many

illustrative examples will arise in subsequent sections dealing specifically with

perfection.

III. EX ANTE EQUILIBRIUM IN THE NORMAL FORM

The doubts expressed above regarding the Nash equilibrium concept suggest an
alternative approach to the analyéis of & game. Rather than require that a theory
predict a unique strategic choice for each player, this approach isolates a set of
strategies for each player that cannot be excluded on the basis of a few underlying
assumptions, interpreted as basic rationality postulates. Such an exercise is carried
out in this section for simultaneous games represented by their normal forms. 1In
Section IV a slightly more restrictive theory is proposed to deal with imperfect
behaviour in simultaneous settings. The anaiysis of these two sections is extended
to extensive form games in Sections VI and VII.

In this view, a theory of N-person non-cooperative games associates with each
such game

1

G = (S ,...,SN; Ul

N
rese, U )
1 N i i . , . .
a vector of sets (E”,...,E ), where E C M ¥V i, in the notation of the previous
. N . . R
section. The vector (El,...,E ) 1is the solution of the game G , and each profile
1 N . i i .. S , . .
(e7,...,e) with e ¢ E ¥ i 1is an equilibrium of G . The interpretation given
to E' is that it contains all those strategies (pure or mixed) available to player
i that do not contradict the underlying assumptions upon which the theory is based.
There is no presumption that these sets will always be singletons; they may not
even be proper subsets of the original sets Mt . Isolation of a particular strategy
for each individual may occur for certain games, but in those cases it is an
implication of the analysis, not a restriction imposed arbitrarily. The
formulation of the problem does, however, automatically force the solution concept

to exhibit the property of interchangeability: if (el,...,eN) and




1 N . o i i 1 .
(fl,...,fN) are equilibria of G , and (g r--+¢9 ) satisfies g e {e7,f }vi,

then (gl,...,gN) is also an equilibrium of G . Given that players have no way of
communicating with one another, it does not seem reasonable to allow a theory to
violate this property.

The particular solution concept I wish to propose retains an implicit assumption
present in the traditional theory of games: each player's goals and strategic
possibilities are "common knowledge" (see Note 3). Essentially this means that for
- any piece of information o involving the struéture of the game, any statement of
the form "i knows that J knows that . . . k knows &" is true, for all
pPlayers i, j,...,k .

Another feature of standard non-cooperative theory is the assumption that each
Player maximizes expected utility subject to some "point expectation" regarding all
other players' strategies. While preserving the expected utility-maximizing behaviour
of the participants, the theory forwarded here does not, of course, assume that
players are certain about the strategies of others. Instead, they form subjective
pProbability distributions over their opponents' strategies, and maximize expected
utility given those distributions. This manner of dealing with uncertainty is also
taken to be common knowledge.

Before using the basic notions outlined above to motivate the particular require-
ments to be imposed upon the solution sets, I need to introduce some notation and
terminology. For any set C which is a subsetlof a finite-dimensional Euclidean
space Rn, define the convex hull of C by

r r
c ={c € R" : ¢ = L a,c, , I ai=l, c, €C and a; >0 v i} .

i=1 Yt oo

In a game G = (Sl,...,SN; Ul,...,UN) a strategy r e m* is strongly dominated

if Tt e M* such that for every strategy profile (ml,...,mN) ; it is the case

that



i-1 i+l i-1 i+l

1 i N i, 1 N
yeee,m ,t,m yee-/m ) >U (M ,...,m ,r,m reee,m ) .

Ul(m

If the above inequality is replaced by a weak inequality, with strict inequality

holding for at least one profile El,...,mN + then r is weakly dominated by t .

i \ . 1 N, | i
A strategy b e m* is a best response for i to a profile (m™,...,m) if vde M

i i-1 i+l N i 1 i-1 i+l N
vl ettt LY SUMmM,...,m C,dmt T, m).
. . i i i i, . i
Similarly, given any subset B CM, b eB is a best response in B to

mY,...,mY) if v qe Bl

i i— i+ N i 1 i-1 i+l N
Ul(ml,...,ml l,b,ml l,...,m ) > Ul(m PRPRRI 1} ,d,m yese,m )

One wishes to exclude from the sets El,...,EN precisely those strategies that
"rational" players could never choose, given that the structure of the game, and the
way uncertainty is dealt with, are common knowledge amongst all players. Consider
player 1l's problem. While he may be unsure about exactly which mixed strategies his
opponents will choose, those that can be ruled out on logical grounds are not in
E2,...,EN, and can be ignored. For example, some strategies of player 2 might be
strongly dominated, so that 1 could eliminate them from consideration. According
to the behaviouraliassumptions explained above, player 1 will form some subjective
probability distribution over each set Ei, i=2,...,N, and then maximize expected
utility subject to this "conjecture" about other players' strategies. Formally, a
conjecture on a set of strategies Lig; Mi is a probability measure U on the
Borel sets of Li . But since each element of Li is a (mixed) strategy, Y induces
a probability distribution over pure strategies. Thus for the purposes of expected
utility maximization, | can be identified with a mixed strategy which is a "weighted
average" of points in Li + the weights being determined by the measure chosen. This
will not necessarily lie in Li unless Li is convex; but the "weighted average"

will be some element of L .
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Thus, a strategy ml can reasonably be chosen by 1 , and hence be included
N .
. . =i
in El » only if it is a best response to some point in I E° . The same
i=1
arqgument applies to each of the other players, so it is appropriate to impose the

L. , 1 N
following condition upon the solution sets E reeesB

. i i i,
if e" € E° , then e is a best response to some

1 N N—r
profile (™ ,...,m) e I B ,vi.

r=1
Call this property the best response property of the solution sets.
Player 1's choice of some ml € El‘ is "justified" by the existence of a profile
N
in I Ei to which m1 is a best response. A natural suggestion at this point might
i=1

be that a higher order "best tesponse property" is also appropriate: if 1's conjecture
assigns positive probability to some mixed strategy m2 for 2, say, then m2
should in turn be justifiable for 2 v Or else 1l's conjecture would not be sensible.
But 1's coﬁjecture is over strategies in E2, all elements of which can be
Justified, because of the requirement that El,...,EN have the best response property.
'Similarly, those strategy profiles that justify the strategies that 1 thinks 2
might choose, are in g Ei » and can be justified themselves. This process of
i=1

i

. : o , . . .. , i
Successive justifications can continue indefinitely; in fact, for any m” ¢ E '

one can find an infinite succession of conjectures "supporting® m' ,
For a given game G , there will typically exist many sets Xl,...,XN satisfying
the best response property. For example, suppose that G has three Nash equilibria:
N N .
r = (rl,...,r )., s = (sl,...,s ) and t = (tl,...,tN). Then the singleton sets
{rl},...,{rN} have the best response property, by the definition of a, Nash
cmay . 1 N 1 N
eéquilibrium. So do the sets {s }reeos{s"} and the sets {7}, ..., {7} .
, . 1
I wish to argue that the solution sets E ,...,EN should be "at least as large"
as any sets Xl,...,XN having the best Yesponse property, that is
1 1 N N . L i
X"C E7,...,X C E . If not, the theory is asserting that for one of the X ’

i, . . . . . . . .
some X € X 1s an lrrational choice for i . But i can insist that there is

an infinite succession of conjectures (of the type outlined in the previous
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paragraph) supporting the choice x . At each stage, these conjectures are in
accordance with what player i knows about the game: they involve players'
forming probability distributions over other players' strategies, and maximizing
expected utility on the basis of those distributions.

This observation suggests that the solution sets El,...,EN be defined, for a

given G , as follows: El = {x ¢ Ml s dq Xl,...,XN with the best response property,

and X € Xl} ¥ i . That is, El should be the union of all sets Xl which are

part of a vector of sets having the best response property. It is necessary to show

that if defined in this manner, the sets El,...,EN themselves have the best response

property. X € El => (HXl,...,XN with the best response property, and x e x*

Then X 1is a best response to some element of (§l,...,§N), so x 1is a best
. . =1 =N —=i =i . . .
response to something in (E,...,E ), because X C E ¥ i . This establishes the
. . . . N
result. Consequently it is meaningful to describe the sets El,...,E as the
"largest" sets having the best response property. With the E' defined in this

N , .
way, the vector (El,...,E ) is the ex ante solution of G , and each (el,...,eN)

. i i L S s
with e” e E* ¥ i 1is an ex ante equilibrium.

Before remarking upon some of the properties of the ex ante solution, including
the nonemptiness of the sets Ei + I shall present an example, in the hope of clarify-
ing the reasoning upon which the solution is based. Below is the payoff matrix of
a two-person game Gl . Each entry in the matrix is a pair, with the first and

second coordinates giving the payoffs (utilities) to players 1 and 2 respectively.

2
Bl B2
a | (0,5 | (-1,3)
1l Gl
0.2 (0,0) (-1,3)

1 has pure strategies 0y and Qy and 2 has pure strategies Bl and 82 .

Let (Pl,pz) denote a mixed strategy chosen by 1, and (ql,qz) a mixed strategy
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for 2. As is customary, I identify a pure strategy such as ¢ with the mixed

1
strategy (1,0) in Ml. It is easily verified that there are three types of Nash
. . 1 2
equilibrium strategy profiles of G1 - First, any profile (m™,m ) of the form
ml = (pl,l—pl) with p; 2 %_, and m2 = (1,0) is a Nash equilibrium. Player II

is content to choose Bl as long as 1 plays ¢ with fairly high probability.

1
In the second type of equilibrium, 1 chooses py = % + leaving 2 indifferent between
. 32 . "~ =3 .
his pure strategies: (ml,mz) =-((§’§)’ (ql,l—ql)) with q, ¢ 0,1 ] . Finally,
when 1 sets Py < % ¢+ 2 prefers 82 » resulting in Nash equilibria of the third
t O 1 m2) = (( 1-p,) (0,1)) with < 3
ype' m 4 - pli pl r ’ pl 5 ]

Which of these equilibria are "reasonable"? It is unclear that there is any one
equilibrium that should be singled out as "the" solution of the game. Noting that
((1,0),(1,0)) Pareto dominates all other equilibria (gives each player at least as
much utility as any other equilibrium, and for each alternative equilibrium, gives
some player strictly greater utility than the alternative), some game theorists might

wish to single out ((1,0),(1,0)) as the solution to G Opposition is bound to come

1 -
from others who will insist that in the face of pPlayer 1's indifference between
oy and a, (regardless of 2's strategic choice), 2 should consider it equally likely
that a, or a, will be played. 2 would then choose 82 ¢ which is not his
strategy in the Pareto efficient equilibrium.

There seems to be no compelling reason for 1 not to choose (1,0) or (0,1) or any
mixture whatsoever. Similarly, 2 could sensibly choose any strategy. vThink of each
pPlayer handing to a "gamesman® an instruction, which is a choice of a pure strategy,

Oor an instruction to randomize in a certain way. Given that is reasonable

1
for 1, and 62 is among the sensible choices for 2, should we be astonished to

observe, in some actual play of the game, that 1 and 2 have given the gamesman the
instructions (1,0) and (0,1) respectively? This is not a Nash equilibrium, but not

in the least an unlikely occurrence.

The ex ante solution of Gl is simply the pair (Ml,MZ) of the original mixed

1 1
strategy sets, since these have the best response property. Every m ¢ M is a
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best response to anything in M2 , and (ql,l—ql) € Mz is a best response to
(%,g) € Ml, for any probability q; - This reflects the fact that each player can
give a sensible justification for any of the choices open to him.

The preceding example shows how large the ex ante solution sets can be, and
illustrates that seemingly attractive guidelines such as favouring Pareto efficient
profiles or assigning equal probability to two strategies for i that always give
i the same utility, may be in conflict with one another. A limitation of the example,
however, is that every pure strategy that was given poéitive weight in the ex ante
solution sets, occurs with positive probability in some Nash equilibrium. The next
example demonstrates that this need not be true.

Let G be defined by the following matrix of payoff pairs:

2
2
By B, B3
cxl (ll_l) (-1,1) (01!5)
1 oy | (LD -1 | (o ,
OL3 (;510) (;510) % —1)

Let (pl,pz,p3) and (ql,q2,q3) represent mixed strategies of 1 and 2 respectiéely.
Since the payoff to 1 is pl(ql—qz) + pz(qz—ql) + %pg it is never the case

1 and o, i this would require

that 9,-9, > 5 , and 9,79 > % , a contradiction. Hence in a Nash equilibrium,

that positive weight is given simultaneously to o

1's ztrategies must be of the form (pl, o, l—pl) or (0, p2, l—p2)

Without loss of generality, suppose p, = 6 . If Py > 0, 2's best response would
be (0, 1,0) but this is not a Nash equilibrium; p, = 1l would be 1's best response.
Thus player 1's Nash eqdilibrium strategy is the pure strategy a3 - 2's best

response to this is anything of the form (ql, l—ql, 0). Conversely, 0y is a
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3 . .
best response to (ql,l—ql, 0) whenever % < ql < 2 This establishes that the

Nash equilibria of G2 are all pairs of the form (¢(0,0,1), (ql,l—ql,O)), with

3
<9 <7 -

By contrast, it is easy to show that o and az, for example, are in 1's ex

1
ante solution set. Consider the sets 'I'l = {al, az} , and % = {Bl, 82} . Tl, T2
have the best response property because ai is a best response to Bi , i=1,2,
and 82 and Bl are best responses to oy and a, respectively. By definition,
the ex ante solution sets El and E2 contain Tl and T2 . This demonstrates
that a strategy such as 0y that is never given positive weight in any Nash
equilibrium can nonetheless be an element of an ex ante solution set. Further
calculations show that for Gz, Mi = Ei, i=1,2. This does not mean that considerations
of a more speculative nature could not narrow down the set of likely outcomes; it
just says that no configuration of mixed strategies, if chosen by the players, would
contradict their rationality, or throw into question their knowledge of the
structure of the game.

Nash (1951) proved that any finite N-person non-cooperative game (of complete
information) has at least one equilibrium, say (el,...,eN). Since the sets
{el},..., {eN} have the best response property, ei € Ei ¥ i . This establishes
‘nonemptiness of thege sets, and the existence of an ex ante equilibrium in every finite
game. An alternative elementary proof of existence will be given later.

For any game, the solution sets El,...,EN have a particularly simple structure.
If some pure strategies Sl""’sg are all given positive weight by some mixed
strategy mi € Ei » then every strategy that is a mixture (including degenerate
mixtures such as sj and so on) over strategies sl,...,s£ élso appears in Ei .
Since mi € Ei is a best response to some profile vy e % E  each pure
strategy given positive weight by mi must also be a be;zlresponse to vy and

any convex combination of these strategies is a best response to <y . (These

statements are immediate consequences of the fact that for any fixed profile of
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opponents’' strategies, vt is linear in the probabilities with which 1i's strategies
are employed).

A set A of mixed strategies has the pure strategy property if ¢ € A implies

that all pure strategies given positive weighf by o are in A . Each of the
solution sets Ei satisfies this property and is nonempty, and hence an ex ante
equilibrium in pure strategies always exists. The need for players to randomize in
many Nash equilibria has long been considered somewhat puzzling (see for example the
discussion in Luce and Raiffa (1957), pages 74-76). The incentive for randomization
seems to be the need to "evade" one's opponents. But in the present context, the
opponents are not always able to figure out a player's strategic choice; he can hide
without randomizing, camouflaged by the uncertainty of the other players.

A particularly useful characterization of the ex ante solution sets is available.
Consider arbitrary nonempty closed sets Hiqglwi, i=1l,...,N, each satisfying the
pure strategy property. Let Hi(O) = Hi ¥ i , and for each positive integer t
define Hi(t) recursively by Hi(t) = the set of all strategies in Hi(t—l) that

. N
are best responses among strategies in Hl(t—l) to some element of I Hr(t—l).
r=1

If at stage t-1 the sets Hl(t—l) are nonempty, closed, and have the pure strategy

property, those properties are satisfied by the sets Hl(t) also. To establish
N

nonemptiness, choose any element § of I Hr(t—l); a best response to § can
r=1

be found because the continuocus function Ul attains a maximum on the

nonempty compact set Hl(t—l). Next, notice that if az € Hl(t), 2=1,2,...
and aZ converges to o , then there exists an integer V such that W > V implies
that aw gives positive weight to (at least) all those pure strategies given

positive weight by o . Then since av is a best response to some
N . .

ye I Hr(t-l), so is o . Furthermore q € Hl(t—l), because Hl(t—l) is closed
r=1 . .

by hypothesis. Therefore ¢ ¢ Hl(t) and Hl(t) is closed. Finally, suppose

B e Hl(t) gives positive weight to pure strategies Bl,...,Be. Then B 1is a best
N

response to some pe I Hr(t-l), and Bl,...,Be are best responses also.
r=1
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Bdt B e Hi(t—l) implies Bl,...,Be are elements of Hi(t—l), and as they are
best responses to g, Bl,...,Be are in Hi(t). This establishes the pure
strategy property. Thus the fact that the original sets Hl,...,HN are nonempty,
closed and have the pure strategy property ensures that at every stage t ,
Hl(t),...,HN(t) have these three properties.

Bl (£+1) can differ from H'(t) only if for some 5, B (t) # B (t-1). But since
Hj(t) and Hj(t—l) both satisfy the pure strategy property, their convex hulls

differ only if some pure strategy in HJ(t-l) is absent from Hj(t). In other

words, the iterative procedure "stops" unless some pure strategies are eliminated

N
at each stage. Since there are only Z k(r) pure strategies in total, of which
N r=1 . . N
at most Z k(r) - N can be removed in this manner, Hl(t) = Hl(k) ¥t>k= % k(r) - N.
r=1 r=1

Let H = (Hl,...,HN)' and define Dl(H) = Hl(k) ¥Yi. In particular, oconsider the
1 N 1 N . .
sets D" (M),...,D (M), where M = (M te-+M ). These are of special interest because
they coincide with the ex ante solution sets El,...,EN.
By construction the sets Dl(M),...,DN(M) have the best response property (see Note4).

Therefore Dl(bu c El i, Conversely, if ¢ € El, then ¢ 1is a best response to

N N
some element of I EX and hence is a best response to an element of I Mr(l),
r=1 r=1

Therefore q e Mi(2) , and Eicg'Mikz) ¥ i . k-fold repetition of this argument.
establishes that

EigMi(k) = bt .

In the special case of two-person games, this iterative procedure is identical
to the iterative removal of strongly dominated strategies. Iterative dominance
procedures have long been a part of the game theoretic literature (see Gale (1953),
Fafquharson (1957/1969), and Luce and Raiffa (1957), as well as the more recent
work of Moulin (1979)). In two-person games, a strategy is strongly dominated if
and only if it fails to be a best response to any strategy of the opponent (see

Appendix). This equivalence does not hold for N > 3.
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In games with more than two players, the ex ante solution sets may be smaller
than (and are always contained by) those resulting from the iterative removal of
strongly dominated strategies. This is due to the fact that even in the first round,
strategies may be undominated and yet fail to be best responses to any praor over
opponents' strategies, as the game G3 shows. There are three players, the first of
whom has pure strategies Qs az, and o0.,. 2 and 3 each play H or T . Only the

3

payoffs to 1 matter here; those are shown below:

HH HT TH TT
°‘1 6 6 | 6 6
a2 10 10 10 : 0 G3
a3 0 10 10 10

In this game there is no conjecture over 2's and 3's strategies, for which 0y would

be a best response. But ag is neither strongly nor weakly dominated (the numerical
calculations are omitted in the interests of brevity). It is the inability of 2
and 3 to coordinate their random choices that makes this example work.

The principal drawback of the ex ante solution is clear: it typically does not
allow a specific prediction to be made about strategic choice. But this indeterminacy
is an accurate reflection of the difficult situation faced by players in a game.

The rules of a game and its numerical data are seldom sufficient for logical
deduction alone to single out a unique choice of strategy for each player. To do
SO one requires either richer information (such as institutional detail or perhaps
historical precedent for a certain type of behaviour) or bolder assumptions about
how players choose strategies. Putting further restrictions on strategic choice is
a complex and treacherous task. But one's intuition frequently points to patterns
of behaviour that cannot be isolated on the grounds of consistency alone.

Formalizing this intuition in specific solution concepts would seem to be a matter

of high priority; I interpret papers such as Harsanyi (1976) to be in this spirit.
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IV. PERFECT EX ANTE EQUILIBRIUM IN THE NORMAL FORM

The notion of an imperfect equilibrium was originally conceived (see Selten
(1965)), and is still most commonly perceived, as a problem arising because of
"implausible beha&iour at unreached information sets." This is obviously applicable
only to extensive form games, which are treated in later sections. But a related
phenomenon appears in normal form games, and has received some attention. 1In
pParticular the paper by Myerson (1978) on perfect and proper equilibria concerns
exactly this issue.

Myerson's opening example is perhaps the simplest illustration of the problem

at hand.
2
By B
o (1,1) (0,0)
1 G
a, (0,0) (0,0) !

G4 has two Nash equilibria. In_the first, I and II select thg pure strategies 0y
and Bl respectively. In the second, they choose a, and 82 respectively. The
latter equilibrium is, as Myerson indicates, counterintuitive: "it would be
unreasonable to predict (az,ez) as the outcome of the game. If Player 1 thought
that there was any chance of player 2 using Bl’ then 1 would certainly prefer
al.“ (Myerson (1978), page 74). It is clear that 1 is taking an unnecessary risk
by choosing Q. He has nothing to gain by doing so, and possibly something to
lose. The same applies to player 2, who would be foolish to choose 82 .

Explanations of why a certain equilibrium is to be considered "imper fect"
usually involve stories abéut Players making mistakes with small positive probabilities.
This is a departure from tradition in the theory of games, and one senses a certain
reluctance in Selten's remarks: "There cannot be any mistakes if the players are

absolutely rational. Nevertheless, a satisfactory interpretation of equilibrium

points in extensive games seems to require that the possibility of mistakes is not
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completely excluded. This can be achieved by a point of view which looks at complete
rationality as a limiting case of incomplete rationality." (Selten, (1975), Section 7).
The same reasoning is employed in normal form games, and Myerson concludes his
commentary on the game G4 by saying that ". . . there is always a small chance
that any strategy might be chosen, if only by mistake. So in our example, 0y
and Bl must always get at least an infinitesimal probability weight, which will
eliminate (az, 82) from the class of perfect (and proper) equilibria.™ (Myerson
(1978) , page 74).

I do not believe that the "slight mistakes" story does justice to our intuition

about how players make their decisions. 1In game G4 , if 1 prefers ¢ to «

1 2!
it is not because he believes that 2 might "make a mistake" and play Bl' On
the contrary, Bl would be an eminently reasonable choice for 2 (regardless of 1's
choice). 1's reluctance to choose o, reflects 1's belief that 2 is likely to
choose Bl deliberately, not as a result of incomplete rationality. Similarly, 2
is likely to use Bl because he expects that 1 will probably select Qg7 no
errors enter the picture.

If one really believed that players entertain the notion that their opponents

may commit errors with some actual positive probability, then for large enough x ,

one would predict that the first player in G would choose ¢

5 2 ¢
2
B, B,
4 (10,10) (0,0)
1 G
a, (0,10) (x,0) &

If there is a positive probability (at least in 1's mind) that 82 will be played,
1 will choose Oy if x is sufficiently large. But 62 is strongly dominated
by Bl » and the latter is obviously going to be 2's choice; neither the solution

céncept of Selten nor that of Myerson predicts that 1 would ever choose Qy -
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I will argue that there is no need to base an analysis of imperfect behaviour on
incomplete rationality; an alternative is available which conforms more closely to
intuition. First, an extremely brief sketch of the solution concepts proposed by
Selten and Myerson is given. This is not meant to be a substitute for reading the
original definitions.

In a game G = (Sl,...,SN; Ul,...,UN), a totally mixed strategy for player i

. s . . i '
is a mixed strategy giving positive welght to each pure strategy in S~ ., For any

small positive number ¢ , an g~equilibrium of G 1is a profile of totally mixed

strategies (tl,...,tN) such that for each i , player i gives weight greater than

. i _ , N
€ to a given element s of Sl only if s 1is a best response to (tl,...,t ).

If (zl,...,zN) is the limit of €-equilibria as ¢ + 0, (zl,...,zN) is said to

be a perfect equilibrium of G . (Each component of (tl,...,tN) is an element of

Euclidean space; convergence is with respect to the ushal Euclidean metric). This
is Myerson's formulation (Myerson (1978)), of what is often called "trembling hand
perfect equilibrium," originally defined by Selten (1975) on the extensive form.

Roughly speaking, an g-proper equilibrium is a "combination of totally mixed

strategies in which every player is glv1ng his better responses much more probability
weight than his worse responses (by a factor —), whether or not those 'better’

responses are 'best' . . . We now define a Proper equilibrium to be any limit of

e-proper equilibria." (Myerson (1978), page 78).

Requiring, as proper equilibrium does, that when contemplating an opponent's
"trembles," a player should give much higher weight to relatively innocuous
mistakes than to those which would cause the opponent serious damage, suggests
that one is interested in "sensible trembles." In other words, the idea behind
proper equilibrium seems to be that a Player should be open-minded about various
reasonable alternative strategies his opponents might use; the random component
attributed to an opéonent's action must not be arbitrary. While it is important
to insist that doubts entertained by a player regarding his opponents' strategies

should be concentrated upon reasonable possibilities} proper equilibrium attempts
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to enforce this without reference to any theory specifying what possibilities are
realistic. This explains the failure of proper equilibrium to rule out unreasonable
choices in many games. One well-known example is presented later in this section.

I believe that the ex ante equilibrium concept provides the kind of theory that
is required to determine what "reasonable doubts" players can rationally entertain
regarding the choices of their opponents. For each game, the ex ante theory
distinguishes those strategies that players could employ without violating the
implications of the common knowledge they possess, from those that are patently
unreasonable. If the condition that players do not take unnecessary risks is to be
imposed by requiring that their conjectures give positive weight to all "likely"
alternatives, those strategies not in the ex ante solution sets should still be
given zero weight.

Ideally one would like to proceed in the same way as in the previous section:
call the vector of sets (Fl,...,FN) the perfect ex ante solution of

1 N N . N . . . .
G=(5,...,8 Ul,...,U ) if Fl,...,F are the "largest' sets satisfying a suitable

modification of the best response property. Xl,...,XN have the cautious response
i 1 N N5
property if for each ¢ € X~ , @ is a best response to some (0 ,...,0 ) e I xJ ’
. » . J=1
where for each j , a gives positive weight to every pure strategy in x7. (Call

. N .
Q. a cautious response to xl,....,x ). The requirement that the perfect ex ante

~

solution sets have this property ensures that each player takes into account all

of the alternative strategies admitted by the solution concept.

Unfortunately, this procedure is not well-defined, because in general there

N . . . .
are no "largest" sets Fl,...,F with the desired property. Consider the following

example:
2
By B,
oy (1,1) (1,1)
1 G
a, (1,1) (0,00 6
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i . . i, .
Let Ml be the mixed strategy set of playver i , i=1,2. If A is the singleton

' 1 2 .
containing o only, and ‘A2 contains Bl only, then A", M have the cautious

1
response property, and so do Ml, A2 . ﬁutthe;uoperty is not preserved under
unions: AlLJMl, A2L)M2 do not have the cautious response property. Underlying
this fact is a paradox that presents a dilemma in the modelling of games with
"cautious" players. 1If it is clear to the theorist that 1 and 2 will restrict
themselves to 0y and Bl respectively, then this should be equally clear to 1,

who then has no strict incentive not to choose o On the other hand, if there is

9 -
the slightest doubt about what the players might choose, they have a strict incentive
to stick religiously to their first strategies; but this removes all doubt about
what might happen. In summary, there is a limit to the logical consistency of any
solution concept for cautious strategic behaviour.

When faced with games where at least one bPlayer should "play it safe" and players
are in essentially symmetric situations, as in G6 r I am definitelywwilling to
assume that careful players will all select their safe strategies. However, there

are less symmetric situations requiring separate consideration. In G7, rationality

implies that 2's choice of Bl is a certainty. 1 should be indifferent, then,

2
By B,
°‘1' (10,10) (10,0)
1 G7
a, (10,10) (0,0)

between oq and Qy - Notice that for 1, any strategy is a best response to Bl’

the sole element of 2's ex ante solution Set, and hence a cautious response to that
set.

Since the most direct approach to formulating a solution concept for games with
cautious players is unavailable, consider the following iterative method. Given

_ N . .
the ex ante solution sets El,...,E of a game G , let Cl(l) = {a € E':
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1 N . . i

a 1is a cautious response to E,...,E } , ¥ i . For t > 1, define Cl(t)
recursively for each i by Cl(t) = {q € Dl(C(t—l)): 0 1is a cautious response to

1 N 1 N .
D (C(t-1),...,D (C(t-1))}, where C(t-1) = (C" (t-1),...,C (t-1)), and D is the
operation defined in the previous section (page 16). At each "round", strategies
that are not best response strategies are eliminated first, and then those that are
not cautious responses are removed.

Arguments analogous to those used for the previous section's iterative technique

establish that the nonemptiness, closedness, and pure strategy property of the sets

1 N . . 1 N
E,...,E are inherited at each stage t by the sets C (t),...,C (t). Hence
the "finite-stopping" proof given in Section III is easily adapted to the present

N . .

procedure. For k = I k(r) - N, C'(t) = Cc'(k) for all t > k .

r=1

Let Ql = Cl(k) ¥ i . The vector (Ql,...,QN) is the perfect ex ante solution

of G , and each (ql,...,qN) with q1 € Ql ¥ i 1is a perfect ex ante equilibrium

of G . Since Ql equals the nonempty set Cl(k), there is an @ in Ql that is
a cautious response to the sets Cl(k),...,CN(k). Every pure strategy given positive
weight by o is also in Ql + SO pure strategy perfect ex ante equilibria always exist.

The solution concept performs as desired on Myerson's example G, , and the

4
reader can easily verify that the perfect ex ante solution concept is equally

appropriate when applied to another example (not given here) constructed in Myerson
(1978), for which proper equilibrium also does well. But consider G8 , the normal

form of a well-known extensive form game (to be called Tz) that is discussed in

the next section.

2
Bl‘ 62
oy (1,1) (1,1)
1 G8
CY.2 (2,-1) (-10,-2)
oy | -2 | (0,-1)
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Notice that (al,Bz) is one of the Nash equilibrium profiles of this game; in fact,
one can show (al,Bz) is both a trembling hand perfect, and a proper equilibrium.
Why would 2 ever select 52? 82 is preferable to Bl only if 1 gives

considerable weight to ¢, . But 2 knows that o is strongly dominated for 1

3 3
by Oy » and will never be played. Thus, there is no risk to playing Bl, and a

superior return for playing Bl rather than 82 if «., is played. 1If 2 were a

2

"cautious" player, it would be ridiculous for him to play 82; knowing this,

3 . .
1 plays az . In the notation developed above, C (1) contains all strategies
' ite c’(1) = hen D(C(1)) = {a,}, and
giving zero weight to Oy # while C7(1) = {Bl}. Then o}

Dz(c(l)) = {Bl}. No further reduction can take place; the unique perfect ex ante

equilibrium isolates the only reasonable Nash equilibrium of G8 , hamely (az,Bl).

On the other hand, the perfect ex anté solution concept was also designed with
games such as G7 in mind, where it singles ocut Bl for 2, but respects 1's
legitimate indifference between 0y and Q, - Critics may object that a "nongeneric"
phenomenon such as the weak dominance of azlby 0y in G7 should not be a

consideration in the formulation of a solution concept. This position is contested

in the next section.

V. A NOTE ON NONGENERIC PROPERTIES

Results involving the "generic equivalence" of solution concepts or the
"nongeneric nature" of some event are encountered with increasing frequency in the
study of game theory. While these results are often enlightening, there is some
‘danger of their being nisinterpreted. Specifically, occurrences that arise only on
a set of measure zero (according to a particular measure on some relevant space)
may be ignored, and the poor performance of a solution concept on that set excused,

because such occurrences are "infinitely unlikely." The purpose of this section
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is to question the appropriateness of the measure most commonly applied, and to
explain thereby the concern expressed in the last section about a solution concept's
performance characteristics even in "nongeneric" examples.

Consider a vector S = (Sl,...,SN) where each Si is comprised of a finite
number k(i) of pure strategies. Let W be the set of all N-vectors of utility
functions having domain S . There are s = k(1)x...xk(N) profiles of the form
(sl,...,sN), si € Si ¥ i . Label these profiles ql,...,qs, the order chosen being
immaterial. Then for a given U = (U%,...,0") € W, V(U) = (Ul(ql),...,Ul(qs);...;
UN(ql),...,UN(qs)) is an element of Ns-dimensional Euclidean space. A property
P on the elements of W is said to be nongeneric if the closure of the set
{V(U): U satisfies P} has Lebesgue measure zero. Intuitively, this suggests
that if a vector of payoff functions, represented by an Ns-element vector, were
choseﬁ "at random" from a subset of Euclidean space having positive Lebesgue measure,
it is "infinitely unlikely" that the chosen vector would satisfy the nongeneric property
P . 1In particular, the property that "ties" occur in the payoffs (i.e. d pure
Strategy profiles p and q , p # g, such that for some i ’ Ui(p) = Ui(q)) is
nongeneric.

Whatever theory of strategic behaviour one develops should be suitable for analyz-
ing a wide variety of real-world situations that are iikely to be of interest.

Since the payoff functions in actual examples are not drawn at random, and often are
partly determined by man;made institutions, can we confidently assert that phenomena
such as ties will never arise? A few exampies suffice to provide the answer.

The theory of voting is one field in which the application of game theory has
proved fruitful. Consider the simplest case in which each of the N players must
vote for one of two candidates. While there are 2N strategy profiles, there are
only two possible outcomes; ties must occur for N > 2, for any nonstochastic rule
that selects a victor as a function of the voting. With more candidates, say M of

them, ties are even more ubiquitous: MN is usually vastly larger than M . The
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problem is aggravated further if more complicated strategies are alléwed, such as
rank-ordering of alternatives.

Another major application of game theory is to the study of auctions. Consider
a sealed bid auction at which N persons priyately and independently submit bids
to the auctioneer. 1In order to retain the finite character of the game, suppose
that the bids must be integer dollar values between $0 and $D, where D is some
number huge enough to be unrestrictive. The object to be auctioned, let us say a
Painting, goes to the highest bidder for the pPrice he bids. 1If the high bid is made
by several people, some rule known to all players dictates which player gets the
painting. The standard assumption is that each player cares only about whether or
not he gets the painting, and at what price. 1If so, a player can realize at most
D+2 different payoffs. But there are (D+l)N strategy profiles; ties will occur in
each person's utility function whenever N > 2 and D > 1. If players actually care
about who gets the painting, other than themselves, there are many more utility
levels possible. But given that 1 has the high bid of $10, say, person 2 does not
care whether 3 bids $4 or $5; this means that a tie occurs in 2's utility function.

Whether or not actual games are ever precisely zero-sum in practice, it is often
convenient to model certain situations (such as dividing a cake between two persons)
as zero-sum games. But the zero-sum property is nongeneric, so two solution concepts
could differ drastically on eévery zero-sum game, and still be regarded as generically
equivalent to one another.

These examples leave little doubt that the measure typically used in declaring
an event or example nongeneric is unsuitable if game theory is to be a general tool
for studying what will happen in varied strategic settings. Therefore efforts to
ensure that irrational behaviour is ruled out by a theory should not be dismissed

merely because the problem is nongenéric according to the traditional measure.

VI. EX ANTE EQUILIBRIUM IN THE EXTENSIVE FORM
This section generalizes the analysis of Section III to games having some

sequential nature. In this context it is possible to study the best-known type of
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imperfect behaviour, namely unreasonable behaviour at unreached information sets.
The problem is attacked using the idea of consistent conjectures, without the
additional assumptions needed to ensure cautious behaviour. Those assumptions are
invoked in Section VII, because what I have called imperfections of the second type
may still arise in the extensive form.

A complete formal description of an extensive form game would be too lengthy
to be appropriate here. Some knowledge of extensive form games and their normal
forms is taken for granted, but many initial definitions are unavoidable. My
presentation follows the more detailed treatment to be found in Selten (1975), with
some changes in notation.

A finite extensive form game has the structure T = (K, P, I, S, p, h) and is
interpreted as follows. K is a topological tree defined by a set of vertices or

nodesX and a set of edges or alternatives A connecting certain pairs of vertices.

1

Z denotes the set of non-terminal vertices. P = (PO, P ,...,PN) partitions the

non-terminal vertices of K into player sets. Without loss of generality suppose
that only the origin of K is in the player set PO . The 0th player is "nature,"
who makes a random move at the beginning of the game. Pl,...,PN are associated

with personal players. Let I partition the non-terminal nodes into information

sets 1% C Pt , where I'J s the jth information set of the ith player. atd C A

Iij

is the set of all alternatives at vertices x e Ilj . A choice at is a subset

i4 ' ' v (s .
of a'J that contains exactly one alternative for every X € Ilj; each a e A%J
Ilj. std is the set of all choices at 17

A positive probability p(a) is assigned to each a ¢ S01 = AOl, the random

is part of exactly one choice at

player's set of alternatives.. The payoff vector h assigns payoffs hl(x),...,hN(x)
to each terminal node x .

A vertex x 1is said to come before Yy if x # y, and the path (set of edges)
from the origin to y contains the pPath from the origin to x . An information

k®

ij . . . ij
J 1s a predecessor of I if there are vertices x ¢ I J and

set I
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k®

K ' -
yel such that x comes before vy; I . is called a successor of 1I*J

A vertex x comes after a choice ¢ if one of the edges in c is on the path to

X . I restrict myself to games of perfect recall (Kuhn (1953)): for each i=1,2,...,N ,

iy . ik ij
and any j , if y e ] comes after a choice ¢ at I + then every x e I J
comes after ¢ . This condition would be violated only if some player were
"forgetting" information as the game proceeded.

A pure strategy f for player i is a function associating with each information

set 17 of i one of the choices in Slj; denote this choice by £(i,j). If f

and g are pure strategies for i + 9 1is an ij-replacement for f if for all
2 #3 such that 1% is not a successor to ‘Ilj,
g(i,Q) = £(i,).

This says that f and d agree everywhere except on 1] and its successors.

A mixed strategy for i is a probability distribution over Player i's pure

sﬁrategies. If n(i) is the number of information sets of i , and the ijth
n(i)

information set has k(i,j) choices, then i has I k(i,j) pure strategies.
j=1

Hegce, a mixed strategy is represented as a point m in Euclidean space of dimension
nl'([l)k(i,j). The components of m lie between zero and one and sum to unity. As
=1
asual the mixed strategy assigning probability one to some pure strategy ¢ is
considered identical to that pure strategy; these two representations of ¢ are
used interchangeably, Mi denotes the set of mixed strategies of player i .

A profile (ml,...,mN) of mixed strategies together with the probability assignment
function p (for the random player) induces a bProbability distribution on the set
of terminal nodes of the game. Number these nodes xl,...,xT and let
Gr(ml,...,mN) be the probability of reachingthe terminal node X, when players
select (ml,...,mN). Then wutility functions are defined over the set of profiles
of mixed strategies by the expected payoff calculation:

T .

vtml, .6 = 55 (' ntx ), is1,... 08 .
r=1 r . X

The mixed strategy profile (cl,...,oN) is a Nash equilibrium of T if for each 1 and
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for all El € Ml,

i 1 N i 1 i-1 =i i+l N
U (0 4ee.00) >2U (0" ,...,0 y O ,0 reeesT ).

Consider a particular information set IlJ and a profile m = (ml,...,mN) of

(mixed) strategies. 1If for each terminal node X, reached with positive brobability

when m is played, and each v € Ilj, Yy does not lie on the path from the origin to

ij . L . . ij
Xr’ then I J 1s not reached by m. If the condition is violated, Il:l 1s reached

by m .
Consider the game Fl having perfect information (all information sets are
singletons) and no randomness. (When representing games where the random move is

restricted to one choice, I simply omit the random player's information set.)

(0,0)

(-1 I—l)

Although the outcome yielding (0,0) is absurd, it is among the Nash equilibrium
outcomes of Fl . If 1 specifies the choice al (with probability 1) and 2 chooses
82 ¢ neither has an incentive to deviate. But everyone must agree that if 1 were to
play a, 2 would, upon being reached, respond by playing Bl - Knowing this, 1 should
play Oy - The imperfect behaviour arises because in the dubious equilibrium, 2's
information set is not reached with positive probability. Consequently 2 can specify
any choice with impunity.

Subgame perfect equilibrium (Selten (1965), (1975)) deals nicely with examples

of this variety. A Nash equilibrium is subgame perfect if the strategies it induces

on any proper subgame of [ (see Selten (1975)) constitute a Nash equilibrium

of that subgame. 1In Fl r 2's choice of g is not Nash on the subgame starting

2

at 2's information set.
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Unfortunately there are often too few proper subgames to allow subgame
perfection to enforce intuitively reasonable behaviour in a game. This prompted

Selten (1975) to introduce a further notion, perfect equilibrium, or trembling hand

perfect equilibrium. The set of perfect equilibria is a subset of the sdt of subgame
perfect equilibria. Loosely speaking, a perfect equilibrium is a limit of a sequence
of e~equilibria, each of which assigns at least some small probability to each choice
at every information set. As a result, all information sets are reached in an

g-equilibrium, and strategies such as g in T

2 are not played.

1
As was noted in Section IV, the indiscriminate nature of the "trembles" allowed
causes problems for the perfect equilibrium concept. The attempt by Myerson (1978)
to correct this by limiting the classlof admissible trembles was only partially
successful; proper equilibrium remains too deeply rooted in the stochastic "small
mistakes" framework to escape all the difficulties created by that approach. A major

alternative has been suggested by Kreps and Wilson (forthcoming). Their solution

concept, sequential equilibrium, is based upon an examination of rational beliefs

rather than the possibilities for error. As it is not practiqal to present the
complicated definitions here, the reader should consult the original paper for a full
account. He will find there an excellent discussion of many of the issues involved
in the perfection debate, as well as a rich supély of examples.

While all of the solution concepts mentioned above have features that are
extremely attractive, examples abound in which none of the equilibrium notions is
satisfactory (one well-known example is presented later in this section). Equally
important is the fact that they all admit Nash profiles only; this paper attempts
to escape that restriétion. Let us try to apply the idea of consistent conjectures
to examples such as Pl .

The possibility of collapsing series of choices into timeless contingent
strategies must not obscure the fact that the phenomenon actually being modelled

is some sequential game, in which conjectures may actually be contradicted in the

course of play. 1In Ti » it is ludicrous to maintain that if 2 is called upon to
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move, having been reached, he might choose 82 ; thinking that q, was played by 1.

1
By the time he must commit himself to a course of action, 2 knows that it is a fact

that 1 played ¢ The observation that a conjecture must not be maintained in the

5 -
face of evidence that refutes it is a central element of the sequential equilibrium
concept; it is combined here with a further principle and the iterative techniques

of previous sections to conspruct a new solution concept for extensive form games.

Since a player's beliefs about others' strategies may be refuted as a play of the
game progresses, he might need to formulate new conjectures as the old ones are
disproven. Consequently I.associate a conjecture cij with each information set in
T ; cij represents what an "agent" ij for player i believes about what everyone's
mixed strategies are, once Iij is reached. Such a conjecture involves a probability
measure on each set M . But since M' is a set of prdbability distributions
over the pure strategies of r , a measure on M induces é probability distribution
over pure strategies, and can be regarded for all strategic purposes as a point in M.
More generally, for subsets Arg;bf?, r=1,...,N , a conjecture cij over the sets

1 N i3 i Noer ij
AY,...,A 1s an element (¢ - (1),...,c (N)) of I A", i.e. each component ¢ 7 (r)
is a "weighted average" of points in a’ . Where tE;lweights depend on the measure
that "agent ij" has in mind. The AY were not assumed convex; the weighted averages
cij(r) need only be in the convex hulls X(r) .

I have noted that an agent ij , upon being reached, should not entertain a
conjecture that does not reach Iij - A further restriction, not invoked in other
solution concepts, is appropriate: if the information set can be reached without
violating the rationality of any player, then the agent's conjecture must not attribute
an irrational strategy to any player. 1In other words, he should seek a reasonable
explanation for what he has observed. This principle is applied within an
iterative procedure similar to that of Section III, suitably elaborated to exploit
the additional information in the extensive form.

For later reference, the iterative procedure is defined for arbitrary closed,

1

nonempty sets H ,...,HN having the pure strategy property; our immediate interest
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. 1 N 1l N
is in the technique applied to M re-«/M . Let H= (H,...,H) and let

i i . 1 N
Hl(O) = Hl, i=1l,...,N. PFor any t > 1 , define the sets H (t),...,H (t)

i i
recursively as followst For each pure strategy B e Hl(t—l), let J7(B,H,t)

contain all those 3j such that 1] can be reached by some profile of the form

1 i-1 il
(m ,...,m1 B,m

N .
ye-«,m ), where mr € Hr(t—l), r=1,...,N. (The eventual inter-

pPretation will be that at stage t of the logical deduction process, i knows that

if he plays B , no information set I1J will be reached unless j e Jl(B,H,t).)

A strategy o € Hl(t—l) giving positive weight to pure strategies Oprese sy is
an element of Hl(t) if there exist conjectures C;J r 2=1,...,h such that for
all z , and all j e Jl(aZ,H,t),

. ij, .. _
(1) c, (i) = o,

(i) e = oMy, w4

. i . i . i
(iii) for r, s e J (az,H,t), if I r 1s a predecessor of IlS and

i . . ,
czr reaches Ils, then C:S = c;r .
(iv) 'C;J reaches IlJ
L. N
(v) c;J € I B (t-1)
r=]1

and (vi) a, is a best response to cij among all ij-replacements for a, in
Hi(t-l).

At each stage, additional restrictions are placed on conjectures and actions only
at information sets that can be reached by profiles of strategies not previously
eliminated. 1In a particular pPlay of the game, player i uses some pure strategy
a, which is a realization of the mixed strategy a . Condition (i) says that i's
"conjecture" about his own strategy is correct. The next requirement stipulates
that conjectures about others' strategies do not depend upon which of the
al,...,ah player i ends up using. According to (iii), a conjecture should not be
discarded unless it is contradicted (by arrival at an information set unreachable
by the conjecture in question). Condition (iv) ensures that a conjecture at Iij
explains how that information set could have been reached. The principle that the

explanation should be "reasonable" is embodied in (v), which restricts conjectures to



33.

strategies that have not been eliminated at a previous stage. Finally, the

strategy chosen by i should at all times be an optimal response to the conjectures
he holds. The most convenient way to express this condition is to consider ij-
replacements for o, i these represent the options still open to i at Iij .
Among these, o, must constitute an optimal contingent plan, given that beliefs
about others' mixed strategies are described by cij .

The sets Hi(t), i=l,...,N inherit the pure strategy property, nonemptiness, and
closedness from the original sets Hi . This is easy to see in the case of the pure
strategy property, because if the pure strategies of which a mixed strategy o is
comprised can collectively satisfy (i) to (vi), each of the pure strategies satisfies
the conditions individually. To show nonemptiness, assume Hl(t—l),...,HN(t-l)

~

are nonempty and closed, and choose any conjecture c¢ = (E(l),...,E(N)) such that

c(r) e Er(t—l) gives positive weight to every pure strategy in HY(t-1). Since Uu"
is continuous and Hl(t-l) is nonempty and compact, there exists an o that is a
best response in Hl(t—l) to ¢. g may be chosen to be a pure strategy, because

Hi(t—l) has the pure strategy property. For every j e Ji(a,H,t), define

cij = (c(1),...,S(i-1),0,3(i*1),...,E(N)).
o and cij satisfy (i) to (vi). (i) holds by definition. (ii) is trivially
satisfied because there is only one pure strategy involved. (iii) is equally clear

. iy | . . . .
since clJ 1s not a function of j as defined. 1In all components except i ,

cij gives positive weight to all pure strategies not eliminated in previous rounds;
ij ij . i . . .o
hence cl reaches 1I for all j € J (qa,H,t), and (iv) is satisfied. (v) holds

by the definition of ¢ , Since o is a best response to cij in Hl(t-l),

o is certainly a best response to cij in the set of all ij-replacements for g
in Hl(t—l), therefore ¢ € Hl(t). To establish that Hl(t) is closed, consider a
seguence 81,82,... in Hl(t) converging to a strategy B . Hl(t-l) is closed by

hypothesis, so B € Hl(t—l). For some integer V , it must be the case that for
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all w>v , BW gives positive weight to (at least) all the pure strategies given
positive weight by B . But there exists a set of conjectures C;J (where 2z
indexes the pure strategies comprising BV) such that BV and the c:J satisfy (i)
to (vi). Then R and the c:J (omitting any conjectures corresponding to pure
strategies not given positive weight by B) satisfy (i) to (vi). Thus B e Hl(t),
and the set is closed.

As in the normal form, the fact that the sets Hl(t) have the pure strategy
property means that the sets differ at successive stages only if pure strategies have
been eliminated in the preceding stage. As pure strategies are in finite supply,

N n(r)
the process stops after at most k =( X I k(r,j)-Ngsteps: for all t > k and
r=1 j=1
i=1,...,N,
B (t) = 5 (k).
Let D'(H) = H'(k) ¥ i , where H = at, ... EY .
In particular, the objects of interest in this section are the sets Dl(M),...,DN(M),

where M = (Ml,...,MN) and the M are the full sets of mixed strategies for players

i=1,...,N. Let Dl(M) = gt ¥V i . The vector of sets (El,...,EN) is defined to

be the ex ante solution of T , and any (el,...,eN) with e1 € El ¥ i 1is an ex ante

equilibrium. The nonemptiness of the sets Hl(t) for all i and t guarantees the

existence of an ex ante equilibrium for every finite extensive form game I . The
bure strategy property ensures that there is an equilibrium in pure strategies,

To get some feeling for how this solution concept operates, consider two examples,
starting with the familiar Fl - In that game, 1 is unable to eliminate any strategy
in the first round. Since strategies of 1 that reach 2's information set must give
positive weight to Oy s 2 must remove all strategies that are not best responses
to some such strategy. This eliminates all sStrategies of 2 except Bl' so in the
next round, 1 retains the only strategy that is a best response to Bl’ namely o, -
A more challening test for the theory is an example that Kreps and Wilson

(forthcoming) attribute to E. Rohlberg. (The example is "generic": small

perturbations in the payoffs will not alter any of the statements made below.)
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In the game P2 + Player 2 has only one information set, which is indicated in the

game tree by enclosing the two nodes in that information set by an oblong figure.
(0,-1)
(0,-2)

(-10,-2)

(21"1)

(1.1)

Notice that 0y strongly dominates Ogi the latter will never be played with positive

probability by a rational player. If reached, 2 should conclude that ¢ was played

2
and respond optimally by playing Bl - Knowing that this would be 2's response, 1

should play Oy - Despite this simple argument, another Nash equilibrium (which can
actually be shown to be a trembling hand perfect, proper, and sequential equilibrium)

has 1 playing ¢ with certainty and 2 playing o This is not an ex ante equilibrium.

1 3°

In the first "round," all strategies giving 0y positive weight are removed. 1In

the second round, since these strategies are absent from Ml(l), 2 eliminates every

strategy except Bl s because elements of Ml(l) reaching 2's information set are

those giving some positive weight to ¢ ‘In the third round, 1 has a unique best

9 -

response a, to the single element Bl inb42(2). The only ex ante equilibrium of P2

is what Kreps and Wilson agree is the only reasonable profile. Their general remarks
on what beliefs should be admissible are interesting:

"Some sequential equilibria are supported by beliefs that the analyst

can reject because they are supported by beliefs that are implausible.

We will not propose any formal criteria for 'plausible beliefs' here.

In certain cases, such as Myerson's concept of properness, some
formalization is possible. 1In other cases, it is not clear that any
formal criteria can be devised--it may be that arguments must be tailored
to the particular game." (Kreps and Wilson, forthcoming, Section 8)

The ex ante solution formalizes the notion that beliefs may be implausible

at an information set because
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(i) the set could not have been reached had those beliefs been true,
or (ii) they are inconsistent with the results of logical deductions based
on what players know about one another and the rules of the game.
If the ex ante solution fails to narrow down the possible outcomes significantly in
a given game, one might then consider applying criteria of a more ad hoc descripticn,

and perhaps make predictions on a game-by-game basis as Kreps and Wilson suggest.

VII. PERFECT EX ANTE EQUILIBRIUM IN THE EXTENSIVE FORM

It is straightforward to verify that in a pérfectly simultaneous game, the ex
ante solution coincides with the normal form definition given in Section III, applied
to the normal form of the game in question. But in such games, ex ante equilibrium
behaviour is not always "cautious": the solution concept does not prevent imper-
fection of the second type. a simple demonstration that this applies equally to the

extensive form is given by F3 r Wwhose normal form is G4 r Myerson's example.

1,1)

(0,0)

(0,0)

(0,0)

If both players make prudent choices, (al,Bl) will result. But (az,Bz) is also
an ex ante equilibrium. . Such behaviour can be avoided by the same technique as that
employed in Section IV. A natural generalization of the normal form analysis is
accomplished here as briefly as possible.

Consider a game T with notation as defined in the previous section. For

. i i i
arbitrary nonempty sets A cM Ai=1,...,N, a strategy ¢ e at is a cautious response

1 N . . i
to the sets a™,...,a if o is a best response among the strategies in Al, to
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N
some (ol,....,oN) € II A{(r) , and ¥ r # i , or gives positive weight to every
r=1

pure strategy in at .

. . R N .
Given the (extensive form) ex ante solution sets El,...,E , for each 1 1let

i i . . 1
Cl(l) = {qg € E': o is a cautious response to E

For t > 1, define Cl(t) recursively by Cl(t) = {q € Dl(C(t—l)): 0 1is a cautious

response to D(C(t-1))} where C(t-1) = (cl(t-1),...,c%(t-1)), ana b = (o},...,0Y

is the operation defined in the previous section (page 34 ). The sets Cl(t) are
closed, nonempty, and satisfy the pure strategy property. At each round, strategies
that are not best responses are discarded first, and then those that are not cauticus

responses are eliminated. As usual, the iterations produce no change unless pure
N n(i)

strategies are eliminated, and so for k = X I k(i,j) - N and all t >k
i=1 j=1

Ci(t) = Ci(k) v i.

Let Q1 = Cl(k) ¥ i . The vector of sets (Ql,...,QN) is the perfect ex ante
N

solution of [ , and any (ql,...,qN) e 1II Ql is a perfect ex ante equilibrium.
i=1

The nonemptiness of the Ci(t) ensure the existence of at least one perfect ex ante
equilibrium in each game.

This solution concept has the attractive feature that in the play of a game, no
one's conjectures are ever contradicted. Since each person's conﬁecture gives
positive weight to every perfect ex ante strategy of each other player, nothing
that is believed by any player to have zero probability ever occurs, so long as
others choose cautiously.

It might appear at first glance that in a game such as T4 in which 1 should
be indifferent between oy and 0, (according to subgame perfection or backward
induction), perfect ex ante equilibrium forces 1 to choose Qg by eliminating ¢

2

in the first round, before 62 has been removed.

,;..,EN}. Let C(1) = (Cl(l),...,CN(l)L
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(0,0)
In fact this does not happen. Recall that before the cautious response criterion
comes into play, the ordinary ex ante solution is calculated. For 2, this eliminates

all strategies except Bl i in "cautious response” to this, 1 plays either @, or a

5"
It is in order to preserve this sort of performance characteristic in more complicated
examples, that the iterative procedure generating perfect ex ante equilibrium removes

strategies in the particular order specified.

VIII. CONCLUSION

In response to the opening question: "What constitutes rational behaviour in a
non-cooperative strategic situation?", an extremely conservative theory of strategic
behaviour, ex ante equilibrium, has been developed. Without pPretending to predict
behaviour uniquely in all games, the solution concept rules out strategic choices on
the basis of rather fundamental principles such as maximization of expected utility,
and the common knowledge assumption. Ex ante equilibrium is well-suited to dealing
with implausible behaviour at "unreached" information sets, but an additional assump-
tion that players are in some sense cautious is néeded to deal with a second kind of
imperfection. If cautious behaviour seems Plausible, then the perfect ex ante
solution is an interesting concept.

While the discussion has been restricted to games of complete information, Harsanyi
(1967) has shown that games having various sorts of incomplete information, such as
incomplete knowledge of others' utility functions, can be handled as standard games
of complete information by an ingenious usé of the random move at the beginning of
the game. The ex ante theory should apply to these cases as well. I feel that one

of the most promising applications of this concept lies in the resolution of various
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puzzles that could not Be solved using Nash equilibrium. For example, a notorious
problem in labour economics is to rationalize the occurrence of strikes. This is
extremely hard to do using full rationality and any perfect Nash solution concept.

The phenomenon can be explained very simply, however, if one allows for mismatching

of expectations about players' future behaviour. Similarly in industrial organization,
price wars between two rivals, one of whom eventually leaves the market, are best
explained by the position that both expected to "win"; these expectations need not

be irrational, although they could not be held simultaneously in a Nash equilibrium.

I hope to elaborate on these ideas in subsequent papers.
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Notes

This interpretation of the normal form is not uncammon. Selten
(1973) notes that ". . . a simultaneity game is adequately
described by its normal form . . . every normal form is isamorphic
to the ,normal form of same simultaneity game." (page 160).

Bernheim's paper is a rarity in the current literature, in that it
contains a serious critical analysis of the Nash theory. My
conclusions are very similar to his. In fact, in the special case
of perfectly simultaneous finite games of camplete information,

ex ante equilibrium and one form of Bernheim's solution concept
reduce to the same definition, with the exception that Bernheim
requires players to employ pure strategies. Our work was done
entirely independently; the differences in mine largely reflect
the fact that among my main interests have been the problem of
imperfect equilibria, and the importance of information contained

in the extensive form.

o e Di(M) => a is a best response in Di(M) to some vy ¢ E Br(M). Let

a* be a best response in Mi to y. Since Y € g Br(M)rj |

Y € g ﬁr(t) Y t s SO o* cannot be removed at an;~;tage. Thus g* ¢ Di(M),
sor_; is in fact a best response (in Mi) to v.
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Appendix

This appendix furnishes a proof of a claim made in the body
of the paper. The result has probably been established.in various
contexts in the literature, but is included here for completeness.
Dilip Abreu suggested the method of proof followed here. Note that the
argument is not restricted to zero-sum games, but cannot be generalized

to N-person games, where the proposition is false.

Proposition. Let G = (Sl,Sz; Ul,UZ) be a finite non-cooperative

game, with associated mixed strategy sets Ml and M2 .

a € Ml is strongly dominated if and only if Zme M2 such

that @ is a best response to m .

Proof: If some R € Ml strongly dominates ¢ , then ¥ Y € M2 p

Ul(B,Y) > Ul(a,y), So a 1is never a best response.

To establish the converse, suppose ¢ is not a best response

to any element of M2 . Then there exists a function b:M2 -> Ml

with Ul(b(m),m) > Ul(a,m) ¥ m. Consider the zero-sum game
G = (Sl,Sz; 51,52) where El(x,y) = Ul(x,y) - Ul(a,Y) and
=2 =1
U (x,y) = - U (x,y).
Let (x*,y*) be a Nash squilibrum of G r and hence a pair of
maximin strategies. .
2
For any m eM™ ,
Thix*,m) 5 O (x*,y%)
ot * *
> U (b(y*),y*)
-1
> U (ouY*)
=0 .
-1 T
But U (x*,m) > 0 ¥ m
=> Ul(x*,m) > Ul(a,m) ¥m

. o 1s strongly dominated by x* . Q.E.D.
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