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ABSTRACT

We investigate specification tests based on comparing multinomial logit
parameter estimates formed on a full and on a restricted choice set. Using
a likelihood ratio, as originally proposed by MéFadden, Train and Tye (MTT),
leads to a downward biased test statistic, for which we provide a very rough
correction factor. Randomly splitting the sample first leads to an upward
biased test statistic. We then show that by forming unrestricted-choice~set
estimates separately on both parts of a split sample, a linear combination of
them can be combined with the restricted-choice-set estimate into a likelihood
ratio which does lead to a known (chi square) asymptotic distribution, hence:
provides a more rigorous test.

We compare our pfoposed test with one suggested by Hausman and McFadden,
in which a quadratic form in the difference between the two estimates used by
MIT is computed. Their test statistic and ours have the same asymptotic dis-
tribution, though ours may sometimes converge more slowly. However, ours has
fewer computational problems and, based on an empiricl travel-demand application,

appears much less volatile in finite samples,



L.
MULTINOMIAL LOGIT SPECIFICATION TESTS

I. INTRODUCTION

The multinomial logit model has achieved an established place

in travel demand analysis and other areas in which the choice among
discrete alternatives is analyzed. At the same time, its limitations in
accounting for differential degrees of substitutability among the discrete
alternatives, particularly as embodied in its "independence of irrelevant

alternatives" (IIA) property, have become widely known.l This has led to an
interest in statistical tests to detect important departures from the multi-

nomial logit specification.

Unfortunately, it is not clear how one implements the conventional
likelihood ratio or Lagrangian multiplier test in this context without
specifying a well defined altermative, which requires extensive com=-
puter programming. On the other hand, since the IIA assumption implies that
the ratio of the probabilities of choosing any two altermatives is independent
of a third choice, testing procedures have been suggested based on eliminating
one or more alte;natives from the choice set to see whether the coefficient
estimates are affected. Such procedures can be carried out with existing
computer programs and, as illustrated by our empirical application, can be
designed to test against specific types of departure from logit even without
formulating a formal model. The development of such tests was pioneered by
McFadden, Train and Tye (1977), studied and modified by Horowitz (1981), and
recently extended by Hausman and McFadden (198l1), who apply the general technique
of Hausman (1978) to this éase. The tests in various forms have been used by

Lave and Train (1979), Horowitz (1980), Abkowitz (1981), and Small (1982,

among others, .

For reviews of these issues, see McFadden (1973), Domencich and McFadden
(1975), Manski (1981), Amemiya (1981), or McFadden (1961 ).



An important class of such "diagnostic" tests which is particularly
easy to implement is based on a likelihood ratio. Two parameter estimates
are formed, one based on the full choice set and the other on a restricted
choice set, and their likelihoods compared. The version originally pProposed
by McFadden, Train and Tye (1977), which we call the MTT test, computed each
estimate using the largest possible sample: the first on the ‘full sample,

and the second on the subsample for which the chosen alternative is a member

of the restricted choice set; the likelihoods were then computed using this
subsample. By analogy with the classical likelihood ratio test for a parameter
restriction, the resulting test statistic was thought to be approximately
asymptotically chi Square. However, we show in this paper that the MpT test is
asymptotically biased toward accepting the null hypothesis; a variant which we
call the “split-sample MTT test" has the opposite bias. Wwe provide rough-and-
ready correction factors which, thoﬁgh strictly valid only under stringent
conditions, seem to work well in an empirical example. We then propoée a closely

related test statistic whose asymptotic distribution is chi square.

The test statistic proposed by Hausman and McFadden (1981) also converges

to the chi square distribution. In finite samples, however, the two tests

have quite different properties. Ours has the disadvantage that

parameter estimates are formed on random subsamples and therefore have larger
standard errors than the estimates ﬁsed by Hausman—McFaéden; thus our test
statistic may converge more slowly in well-behaved examples. que Hausman-McFadden

test, however, requires the inversion of the difference between two closely



related matrices, Not only:does this involve matrix manipulations not required by
our test, but it can lead to important differences between the actual and the
asymptotic distribution of the test statistic. This point is illustrated by an
-empirical application in which three asympotically equivalent versions of the
Hausman-McFadden test yield greatly differing results, including negative
test statistics; whereas our test shows much less small-sample variation..

In the next section, we define the MTT, split-sample MTT, and Hausman-McFadden
tests and derive the asymptotic distribution of the test statistic for each.
This makes clear the biases in the first two and the similarities among all
three, while laying the foundation for our proposed modification.
In Section III, we present our proposed test, and derive its
asymptotic distribution. , Section IV then applies the
tests to an empirical model of trip timing, for which other work has already
detected small but statistically significant departures from the multinomial

logit specification. Concluding comments follow.

II. DISTRIBUTION OF THE LIKELIHOOD RATIO TEST STATISTICS
Suppose each member t of a sample t =1,...,N is observed to choose
a discrete alternative j from a choice set C . Define Stj =1 if 3
is the choice for t and 0 otherwise. The multinomial logit model explains
these choices on the basis of vectors th of observed characteristics

and the (Kxl) parameter vector B . Maximum likelihood estimation chooses

B to maximize



N
(L) L®) = ¥ 1S . logP
t=1 jec t3 I
where
= o [} Br )
) Ptj exp (B ztj)/lzcexp( 2,0)e

We will need the negative Hessian of this function which, following McFadden

(1973), can be written

N
2 - -
(3) H(B) =-3°L/3B3B" = 3 1 p (z_ .-z )(z, .-z )"
e=1 jec H1 1t it
where
4) z = IP .z .
t jeC ty tj
is a function of B, Note that if we define z = -chtjztj’ a random variable
je

equal to the characteristics vector of the chosen alternative, then each term
in (3) is its covariance matrix conditional on 8. Note also that with a
trivial extension of notation, we could generalize to the case where choice

set C differs for different sample members.

The specification tests in question depend on a mathematical Property

peculiar to the logit model (2): The choice probability conditional on a

subset P<C of the choice set,
(5) P

tjlp = PtjlziDPt.Q.’

happens also to have the logit form (2) except with the summation just over
D. Thus a consistent estimate of Some components of B can be obtained

by restricting the sample to those N. members for which the observed choice

1



lies in D , and estimating the model as if D were the entire choice set.
However some components of B , such as the coefficient of any variable which
does not vary among alternatives in D , may not be identified on this

subsample. Let B8 = (y,8) be a partition of R iﬁto the (K-k)x1 vector vy

which is not so identified and thg kxl vector 6 which is, and let z, = (yt,xt)
be a commensurate partition of the explanatory variables. The conditional

choice probability is then

= 1 1
Ptj D exp(6 th)/ QED exp(8 xtl)

Renumbering the sample members so that the first N belong to the subsample

1

for which the chosen alternative is in choice subset D , the conditional log

likelihood is

Nl
(6) L.(8) = £ I S_.logP_.
with negative Hessian .
2 1 - -
(7) H o (8)= =37L./3680"' = = I P .| (x_.-x )(x. .-%x. )"
1 1 £=1 jeD t3]0 e e’ i Fep
where
(8) }-i = TP . .x..
tD jeb tj|A™]

Each term in (7) is the covariance, conditioned on choice of some alternative

in D, of a random variable Rep = szsthtj'

~

Let éo = (yo,eo) and 6. denote the parameters which maximize L

~

1
and Ll’ respectively, and let q = 61 - 90 . We seek tests of whether

departures from the logit specification cause q to differ from zero.
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To obtain asymptotic results, we assume that increasing the sample size
involves sampling from a given underlying distribution of characteristics.

Thus under the null hypothesis that the model is correctly described by (2)

1]

with true parameter vector BO (Yo,eo), the following probability limits exist:

9) S = plim HE,)/N
(10) S, = plim H,(8,)/N;
(11) a = plim N/N.

Hausman-McFadden. Hausman and McFadden (1981) have shown that, under

the null hypothesis, /Nq is asymptotically normal with variance-covariance matrix:Z

(12) % = plim Var(/ﬁ&) = plim Var(/ﬁgl) - plim Var(/ﬁéo)

The asymptotic variance of /ﬁiel or /ﬁBO is © . the inverse

of the corresponding asymptotic negative Hessian Sl or S, respectively; dividing

the first by a = plim(Nl/N) and partitioning the second gives

-1

_ -1
(13) © = (l/a)Sl -8,

where Sal is defined to be the kxk lower right submatrix of S—l .
Hence the quadratic form

(14) Q= q'Gm g

is asymptotically distributed chi square with k degrees of freedom, provided

2The proof follows from the general result of Hausman (1978) that if,under the

. null hypothesis, 90 is efficient and 91 is consistent, then (9l - 60)

is uncorrelated with 80 .
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L is a nonsingular3 consistent estimate of % . The

"standard" estimate of I/N is obtained from (12) by sub-

Stituting the usual estimates for the covariances of 8, and 8, » namely

Hil(el) and Hgl(Bo), where Hgl is the kxk lower right submatrix of gt
An asymptotically equivalent pair of estimates is Hil(el)Nl/(Nl-k) and
H;l(eo)N/(N-k), which are the standard estimates corrected for finite-samole

degrees of freedom in analogy to ordinary least squares. Yet a third pair is

~ %

sample) conditional on 8 = eo; its virtue is that /N is then guaranteced

[Eé Hl (60)]_l and Hal (BO), where EI  1s the expectation (on the full
0

nonnegative definite (Hausman and McFadden, 1981, p- 15).

McFadden-Train-Tye.

The original MTT test uses not i itself, but rather the

amount by which the log-likelihood calculated on the subsample is affected by

the differing estimates of 6 . The test statistic used by MTT is

(15) A, —2[Ll(60) - Ll(el)] .

The test is based on the hope that the distribution of Al is approximately

chi square with k degrees of freedom.
As it turns out, this in general is not true. Taking a Taylor Series

expansion of Ll(eo) around 8., we see that

1

:A' 5 o
(16) 8, = q'H (8)q .

3 o s . . . .
If ¥ is singular, its inverse is replaced by a generalized inverse. This

causes no problem in principle, though recognizing an exactly singular matrix
can be tricky in practice due to computational inaccuracies. We looked rather

carefully for singularities in the empirical work reported in Section IV, buk
did not find any. Hausman and McFadden examine sufficient conditions for T
to be nonsingular, and conclude that singularity "will occur only for exceptional

configurations of the . . . variables" (p. 14]. This does not preclude computational
problems from near-singularity, however.
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Using (10) and (13), we see that (16) converges to approximately the same thing
as (14) if a = 1 and if the second term in (13) is negligible compared to
the first term. More precisely, the probability limit of (16) is a quadratic
form, with symmetric matrix (aSl), in a vector having a multivariate normal

distribution with variance-covariance matrix I ; it therefore has a chi square

distribution if and only if* 3 = (l/a)S]-:l . But (13) shows that (l/a)SIl

exceeds I by the positive definite matrix S % - plim Var(/—é ). In the

0
appendix we take advantage of this fact to prove that under the null hypothesis,

Ay 1is asymptotically dlstrlbuted as
(17) A, = Aiwi

oA
where Ai are the characteristic roots of aSlZ » each satisfying 0 < Ai <1,
and where w. are independently distributed standard normal random variables.
If aSlZ were the identity matrix, the Ai would all be one and (17) would
- have a chi square distribution with  k degrees of freedom; as it is, its
distribution is more concentrated towardszero than a chi Square statistic so
that a chi-square test based on Al is asymptotically biased toward accepting

the null hypothesis.

A Split-Sample MTT test, Suppose the sample is first divided randomly in two

asymptotically equal pPaxrts, denoted here by superscripts A and B. One pParameter estimate

g = (YA ) is obtained on the NA members of subsample A by maximizing
L (B) = I S _.logP _.(B). Another estimate BB is obtained on the NB members
. t] t] 1 1
teA jeC
of subsample B whose choices belong to the restricted choice set D, by maximizing
(e) = 3 b StjlogPtle(G). Let HA and Hi be the corresponding negative Hessians.
teB jeD A - A n
It is clear from the independence of eA and eB that qAB E eB - g2

0 1 1 0
has asymptotic variance-covariance matrix

AB

(18) %8 = (l/a)Sil + s

Lkl‘hls applies result (vii) of Rao (1973), p. 188, to the case where both
Z and aS are nonsingular.




The split-sample MTT test statistic is

A~

AR _ B, B,'B
(19) Al = -2[Ll(eo) - Ll(el)J .

~

X . . p B R . .
Taking the Taylor Series expansion of Li(eg) around 61 yields the approximation

(20) aRB - gAB

'B,~B,"AB
1 Hl‘(el)q .

An argument exactly analogous to the MTT case shows that AiB cannot be

asymptotically chi square unless the second term in the right-hand side of (18)

is negligible compared to the first; and that

(21) plim AQB =

AB AB.2
A (w.

i 1 )

nes &

i=1

AB . . A . .
where wi are independent standard normal variates and AiB , the characteristic

roots of aSlZAB , satisfy A?B > 1 . Hence the asymptotic distribution of

AB . ) . . s
Al 1s less concentrated towards zero than a chi square statistic,so that a

chi-square test based on AiB "is asymptotically biased toward rejecting the

null hypothesis. This is the exact opposite of the MTT case.

Discussion. It might appear that we could combine the two split samples

. .. 5
and form a Chow-type test statistic

3 In fact, this test was first proposéd by MIT in an earlier version of their
1977 paper, but was deleted from the published version. It has been used b¥
Horowitz (1980, 1981) to whom we are grateful for bringing it to our attention.



1o
B B A %A c,sC
(22) 2[L,(8)) + L (B) - L7(B )

where LC = LA + Li « Using the same argument as that of the appendix, one

‘ . . . . . . 6
can show that the asymptotic distribution of (22) is very complicated. Moreover,
the direction of_this Chow-type test statistic relative to the chi-square
distribution can not be worked out a priori. Hence, we are reluctant to

recommend its use.

The problem with the MTT and split-sample MTT tests is that they

~

treat 6, in (15) or Gg in (19) as though they were nonstochastic. Some

intuition can be gained by examining what this means for the variance of the

i-th component of q (or qAB » which 1s analogous):

-~

(23) var(qi) = var(eli) + var(eoi) -2 cov(eli, eoi) .

Ignoring the stochastic nature of éOi amounts to

‘ t _ ‘ case is that there is no sensible
alternative (i.e., maintained) hypothesis which would vield the likelihood

. A B
functi. + i =
ction L (Bo) Li(el) with ﬁo = (eo, Yo) and eo # 61.
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neglecting the last two terms on the right. The first of these adds to the

variance of q; - The second is zero for the split-sample case, and exactly

-2 times the first for the MIT case. Hence ignoring the last two terms

~

underestimates var(&?B) in the split-sample case and overestimates var(q,) in the
MIT case. Hence the split sample test tends to regard an observed difference
between parameter estimates as significant when it is not, and vice versa

for the MTT test. Happily there is an alternative estimate of Goi for

which these extra two terms exactly cancel, forming the basis for the test

proposed in Section III.

Correction Factors. We might ask under what circumstances

one could eliminate the asymptotic biases just demonstrated through some scalar
correction factor. The answer is that whenever the characteristic roots of
aS;Z are all identical, say A , the "corrected MTT statistic" (l/A)Al is
asymptotically chi square with k degrees of freedom; as is the "corrected split
s s AB, AB ., . . AB
sample MTT statistic" (1/A )Al 1f the characteristic roots of aSlZ are
AB . . .
all equal to A . But the first condition simply means that (l/l)aSlZ

is the kxk identity matrix, or

I = (A/a)Sil )

Comparing with (13), we see this is possible if Sl = aSO in which case

A =1 -o0a Similarly, (18) shows that under precisely the same condition
AB AB _
the roots of aSlZ are all equal to A = 1 + aa. Thus under the very

restrictive condition Sl = aSO, the following corrected test statistics have

an asymptotic chi squave distribution with k degrees of freedom:

(24) A, = (
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Note that when Sl = aSO the positive definiteness of (;3) and (18) guarantees
that -1 < ga < 1. Hence (24) and (25) are positive, and correct the MTT
statistic upward and the split-sample MTT statistic downward, aé required.

While it is unlikely that Sl and S will ever differ by exactly a
scalar multiple, except in the case of one independent variable, there may be
reason to expect them to be approximately equal. In particular, suppose all
components of B are identified on the restricted’choice set so that B = 6 ,
or more generally that the variables Yy and x having unidentified and identified
coefficients, respectiﬁely, are orthogonal. Then Sl and SO are the limits
of the average term in the corresponding negative Hessian Hl or H , respectively.
As noted earlier, each such term is thé co?ariance of the vector of characteristics
of the chosen alternative forp a given sample member.v If the dispersion of such
characteristics does not greatly differ on sets C and D, then use of the
statistics (24) or (25) with o = 1 might be justified as a rough screening
procedure. Most logit estimation programs can be asked tobprint the Hessian
or its inverse, so that the reasonableness of the assumption Sl = Sp can at
least be checked.

The way &, the ratio of sample sizes, enters these correction factors

~

is fairly intuitive. Large '8 means high correlation between el and eo .

which biases the MTT test statistic toward zero, thus requiring a large correction

factor in (24); whereas small 2 means a small sample size N©

1 and hence a large

A

variance in el » which biases the Split-sample test statistic (19) upward, thus

requiring a laxge correction factor in (25). The role of ¢ is less obvicus in the

MTT case, but in the Split-sample case a small value of o again increases the variance

~

in 6?' because it means little variation of the independeént variables within

the restricted choice set.
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III. AN ASYMPTOTICALLY UNBIASED LIKELIHOOD RATIO TEST

Each likelihood ratio test discussed thus far employstwo estimates of
the parameter vector 6 : one using the complete choice set, the other using
a restricted choice set. The likelihood function maximized by the latter is
then used to compare the two. We have seen that the resulting test statistic
is asymptotically biased downward when both estimates begin from a single sample,
and upward when they are based on independent subsamples. It turns out that
there is a way to combine the two approaches so as to eliminate any

asymptotic bias. The solution is to do the full-choice-set estimate twice,

once 3 la MTT and once & la split-sample MTT, and take a weighted average.

'~ We begin just as for the split~sample MTT test. Divide the sample randomly into

two parts A and B of @symptotically equal) sizes NA and NB. Compute estimates

I\A ~ A ~ . . . .
30 = (yg,eg) and ei as in the split-sample test. In addition,



14,

~B “B
0

. B . . s
compute the estimate BO = (v ,90) which maximizes

B
(26) L°(B) = = % S, . logP, .(B) .
teB jec ©J T3

This is the estimate that would be used in the MTT test if B were the full

sample. Define

_ B B,"B
27y  x(8) = - 2[Ll(e) - Ll(el)] s

the likelihood ratio statistic for a test which compares 6 to the value which
maximizes Li . The split#saméle test statistic is x(ag), whereas the MTT test
statistic using B as the full sample is x(ég) . We know the former is less
concentrated and the latter more concentrated than the chi square distribution

with k degrees of freedom. Form the following average:

AAB

~A ~B
.(28) 0, (1//2)90 + (1 - 1//2)90 .

We now prove that

N

__ ,2AB, _ B, ~AB B, B
(29) A =x(eO )= -2 [Ll(eO ) - Ll(el)]

is asymptotically distributed chi square with k degrees of freedom,

To see this, let b =1 - 1/V2, so that egB = (l-b)eé + beg . A

Taylor Series expansion of L? around 55 yields

~ “ABB'

B,~B."ABB
(30) A =g 109

Hl(e
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"ABB _ B ~AB

where ¢ = Gl - 60 and H? is the Hessian of L? .

Because of the random division of the sample, the following probability

limits under the null hypothesis are the same as the corresponding limits for

the full sample:7

-1 1

B ~ ~
(31) plim N Var(eg) =plimNBVar(eg) = 8,

(32) plim NBVar'(éi) =[plimHli/NB]-l=(l/a)Sj__l

One can also show, by writing out equation (12) for the subsample B, that the

covariance of e? and 82 satisfies

. B, "B B, _ -1
(33) plim XN Cov(el,eo) = SO .

“ABB . . . . . .
Furthermore, /géq B is asymptotically normal with variance-covariance matrix

B ~ ~ ~
(34) ABB plﬁnN,Var[G? - beﬁ - (l-b)eé]

=plimNBVar(6? - beg) + (l—b)%ﬂimNBVaP(Gg)

~

since eg is uncorrelated with either of the estimates formed using B.

The last term is (l-b)QSC_)l from (31). The first term is

~B B

plim NBVar(SE) + b%@Hm NBVar(eg) —2b!plhnNBCov(el,60)

_ -1 2 -1
= (1/a)s]™ + (b°-2b)S~ .

. - . 2 2 .
Combining ,the terms in SOl all cancel, since (1-b) + (b -2b) = 0, leaving

(37) =PBB - (l/a)SIl .

7 . . A
More generally, if plim (NB/N ) = h, then equation 331 ) should be written as plim
B A, -1 . - 1/2
N Var(eo) = as » and b should be modified as 1-(1"h) . Thus,
- 1/2 2 - ~
(1+0)~ Y/ 6+ (1 - ()" M3 B |
o

€8 ) becomes
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,B"ABB , . .
~Thus -the : asymptotic variance of /ﬁBq' 1s Just the inverse of

. . . . 8
plim HB/NB , which means the quadratic form (30) hag the claimed distribution.
2

IV. EMPIRICAL EXAMPLE

This section Presents calculations of the various test statistics dig~
cussed earlier, from a model and data set Previously reported by Small

(1982). 1t illustrates the relationships between the alternate tests, and

the MTT tesc. It also serves as 4 correction and extension of the re-
sults of the uncorrected MTT tegt reported by Small.

The model is a behavioral explanation of trip timing, i.e. the choice
of time of day at which work trips are taken. Each alternative is a five-
minute arrival interval, arranged so that for each commuter, alternative
number 9 is the interval centered at the employer’s official Starting time,
alternatives 10 through 12 involve arrival later than this official time,

and alternatives 1 thfough 8 earlier. Workers who report no official work-

are those who choose to arrive outside the one-hour range (from 42.5 minutes

early to 17.5 minutes late) covered by the twelve alternatives assumed available.

The specification used here is "Model 4" of Small (1982), except that the
Sample size has been extended to 527 by reconstructing some previously missing
data indicating whether or not the trip utilized a car pPool. The 9 independent

variables include traﬁel time, several measures of the extent to which a given

8Alternatively, using an argument barallel to that of Appendix A, (35) implies
that the roots A4BB of aSlZABB are all equal to 1. Hence the analogue
» i

of (A2) states that plim AiBB'is the sum of k independent squared normal

variates.
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arrival time differs from the official st arting time, and two variables
designed to capture tendency to round answers to multiples of 10 or 15
minutes. Several of these variables are constant on one or more of the
subsets D investigated, hence k, the degrees of freedom of the chi square
statistic, is sometimes less than 9.

Small discusses two reasons to doubt the validity of the logit speci-
fication. The first is the possibility that the altematives are viewed
as grouped: Alternatives 1-8 (early), 9 (on-time), and 10-12 (late) might be
considered qualitatively distinct, thereby leading to an error structure
suitable for a nested logit model (McFadden, 1978). The second
is that the altermatives are ordered in such a way that com-
muters probably view pairs of alternatives whose labels are close to each
other (e.g. 2 and 3) as closer substitutes than other pairs (e.g. 2 and 8).
This leads to the "ordered logit" model devel ped Ly Small (1981). The
first departure can be tested by letting D be some combination of the likely
groupings; we have somewhat arbitrarily added the grouping {5-12}. The second

departure might be detected by letting D consist of alternmatives which are separated
on the ordering by

/one or more alternatives (e.g. D could be all the even-numbered alternatives).
Small (1982) tested the first of these possibilities, and was surprised
" to find only weak evidence of misspecification based on the (uncorrected)
MTT  test. The reason is now apparent: As shown in Table 1, all the correct
or corrected test statistics exceed the uncorrected MIT for six of the
seven choice subsets D tried. Based on the values shown in the table,
a reasonable case could be made for rejecting éhe logit specification in all

four of the nested-structure tests and in two of the three .ordered-structure
tests. The nested-structure results are corroborated by Small and Brownstone's

{1982] finding that logit is rejected in favor of nested logit

IThese seven tests are not independent, and ideally we would like a rigorous
analysis of their joint properties. We have not found a way to do this, so can
only reiterate the usual warning against over-interpreting "significant" results
when many formulations are tried.
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Table 1

Test of the Multinomial Logit Specification

Nested-Structure Tests Ordered-Structure Tests
(a) (b) (e) (d) (e) (£) (g)
Choice subset (D) {1-8, {1-9}  {9-12} {5-12} {even} {odd} {3,6,9}
10-12}
No. alternatives - .
identified (k) . 9 7 7 9 8 8 6
Ratio of Sample Sizes(N./N) 0.65 ~0.96  0.40  0.83 0.35 0.85 0.62
Hausman-Mcgadden Test S%atistic:
Standard 8.3%8 11.0 31.7%% 9.5 18.0%* 15.0 9.1
Deg.-Freedom
Adjusted 5.8 10.9  30.4%% 9.4 20.9%%  14.6 8.7
Guaranteed
Pos. Def.f 1583.%*% 11.1 1436.%% 31.5%=% 37.1%% 9.2 5.8
MTT Test Statistic:
Uncorrected® 3.6 0.7 14.5% 6.0 13.6 4.6 3.2
Corrected® 15.8  16.2%% 24.1%% 34.2%% 20.9%% 13.2 8.5
Split=-Sample MTT“Test‘Statistic:
h
Uncorrected 15.86 20.7%%  19,1%% 19 1 12.7 20.3%% 12 g&%
Corrected 9.5 10.4  13.5h 5.5 9.5  12.1 8.0
‘Small-Hsiao Test Statistic: 8.1 11.1 17.5&xD 7.5 9.7 13.2 6.9

Repeat on Interchanged
Subsamples A,B:

Split-Sample Uncorrected  2u.u%% 1§, 5%% 18.3%% 12,5 20.1%% 18

2% 17 od
Split-Sample Corrected 14.8 8.5 13.3 7.0 14.8 11.2 10.6
Small-Hsiazo 16.4 8.9 16.3%% 8.3 17.5%% 11.3 11.2

a s - 4y 2

Test statistic is Al = 2[L1(61) Ll(eo)].

bTest statistic is [N/(N-Nl)]Al.

“Test statistic is &'(f/N)_la,.with q= 61 - 60 and £/N as below.

dUsing £/N = HIl(él) - H;}(éo)

e 3 -1,4 -1,a

Using Z/N Hl (Gl)Nll(Nl—k) - HO (GO)N/N k.
£ S 8 y171 _ 41,4

Using I/N = [Eéoﬂl(eo)] H,7(8).

8% not positive definite."

Estimation of @l failed becaﬁse of flat spot on likelihood function; however

Ll (el) appears to be well defined.

**indicates that test statistic exceeds the 5% critical level of the appropriate
chi-square distribution.
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(though coefficient estimates of the variables of interest are only moderately
affected).

Unfortunately, the results shown still leave room for doubt in five of
the seven cases, due to considerable variation among even the asymptotically
equivalent test statistics. The main problem is that the Hausman test statistic,
as mentioned earlier, is sensitive to which of several consistent
estimates i/N is used. The "standard" and the "guaranteed positive definite"
estimates are those recommended in Hausman and McFadden (1981), the latter
designed to guarantee that z be positive definite. In
contrast to Hausman and McFadden, we find the latter estimate to give sometimes

ridiculous results when I is nearly singular. Thus in four of the seven

cases, these alternative estimates of the chi-square statistic (with 6 to 9
" degrees of freedom) differed by 19 or more. In two cases the differences are
more than 1000; applying the asymptotic theory to the results in column (a)
leads to a significance level varying from 75% to less than 0.0001%, depending
on which version is chosen. Also shown is the "degrees-of-freedom-corrected"
estimate described earlier, using the finite-sample correction normally applied
by QUAIL (the computer program used here) in its estimates of covariance
matrices. In most cases this is close to the standard estimate. Note
that the rough corrections to the MTT and split-sample tests give results
reasonably in line with the two asymptotically unbiased tests, except in the
MTT case when sample sizes N; and N are nearly the same (columns b and d).
Columns (a) and (c) are the two cases where the Hausman-McFadden

statistic turned out to be extremely unstable. When the tests shown in

column (a) were repeated on the smaller sample (N=u453) used in Small (1982),
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the three versions of the Hausman-McFadden test statistic were -11.9,
~-21.7 and 1364.5; whereas the corrected MTT, corrected split-sample MTT, and Small-
Hsiao statisﬁics were 11.5, 13.4,‘and 10.5, respectively. Computation of the
eigenvalues confirmed that the matrix E used in the standard Hausman-McFadden
test was not poéitive definite; the same is true for the sample (N=527)
shown in column (a), even though the test statistic happened to come out
positive.

There is a different and less severe kind of instability in the Small-
Hsiao test. As described in the previous section, our test randomly divides
the sample into two parts A and B. It is just as natural to reverse the

~

roles of A and B: i.e., to compute estimate Qﬁ by maximizing the likelihood
function Li(e) of the Nﬁ members of subsample A whose choices belong

to the restricted choice set D » and form the statistic
A "BA, _ A, "BA A,CA
(37) (6,) = -2 [Ll(eO ) - Ll(el)] s

BA

where GO

= (1/V2) ég + (1 - l/Vb)ég - The results of the interchanged
Small-Hsiao test are reported at the bottom line of Table 1. The difference

in observed significance level between the original and interchanged tests

can pose a decision problem: Had we chosen a 5% significance level as the

size of each of these two tests, then in column (e) we would have accepted

HO in one case and rejected it in the other. However, the instability in

the Small—Hsiao test is of a different nature from that of the Hausman-McFadden
test. In the latter, instability is caused by different ways of computing

the asymptotically equivalent variance covariance matrix, which poses
particularly serious problems if the estimated variance covariance matrix is

near singular or not positive definite. In our test the instability is due

to sampling variability in drawing subsamples, which we suspect would disappear



21.

more quickly with larger overall sample size. Furthermore, the possibility

of conflicting inferences in our test can be eliminated if one is willing to
accept a test whose asymptotic size is unknown but lies within a known interval.
For example, a test whose size lies in the interval [0,a] is defined by

the decision rule: reject HO if both AAB and ABA exceed e(a,k),

the critical value of the chi-square distribution corresponding to significance
level o . Alternatively, a test whose size lies within the narrower interval
(a/2 , o] is defined by the decision rule: reject HO if either

AAB or ABA exceeds c¢(a/2,k). Since the first decision rule leads to an
interval which can always be narrowed by using the second decision rule, the

latter is preferred. We recommend it as the most natural way to take

advantage of the availability at little cost of both test statistics.

IV. CONCLUSION

We have shown that the original MTT and split-sample MTT likelihood ratio
tests are asymptotically biased toward accepting and toward rejecting,

respectively, the null hypothesis of multinomial logit, We provide

correction factors which, under the very restrictive condition that the asymptotic
moment matrices of the independent variables on different choice sets be equal,
removes this bias. The factors are 1/(l-a) and 1/(1+a), respectively, where

a 1is the fraction of the full sample included in the subsample estimation.

We also provide a general test with no asymptotic bias which, like that receﬂtly

proposed by Hausman and McFadden, utilizes a test statistic which is

asymptotically chi-square distributed.
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An empirical application demonstrates that in most cases the corrected
MTT and‘split-sample tests give results much closer to each other and to the other
tests than do the uncorrected versions. The application also illustrates the
finite-sample variability that sometimes occurs in the Hausman-McFadden
test due to inversion of a matrix which is nearly singular and/or not
positive definite. The test we propose avoids this severe fluctuation when
asymptotically equivalent versions are computed. Our test requires no

matrix manipulation or inversion, and can be

computed using repeated applications of any logit estimation routine with the
ability wo ccripute the likelihood function at an arbitrary parameter vector.
Hence, we suspect many users. will find our test the easiest to use for routine

applications.
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APPENDIX

A. Proof of Equation (17):

~ asymptotically
We are given that VNq is mormally distributed with variance-covariance

matrix I ; and that [(l/a)Sil - %] is positive definite (p.d.), where S, is

given by (10).
Since I is symmetric and positive definite, it can be decomposed into a
product of a kxk nonsingular matrix B-l and its transpose:

(A1) -1

3 1(a)

B/Nq is a vector of independent normal variates, since Var(v) =

Hence v
BIB' =1 .

Because Sl is p.d., so is A = (B')_l(aSl)Bnl° Hence there exists a kxk
orthogonal matrix F which diagonalizes A:

A)

' = = i .
FAF A dlag(kl,.. Ay

where Ai > 0 are the characteristic roots of A.
By using (10) and inserting identity matrices at various places, the

probability limit of (16) can be written as
. | -1
plima, = plim/Nq' B'(B') (aSl)B BvNq

= v'Av
= v'F'FAF'Fv

=w'A w
k 2
(A2) = I A.W.
. i'i
i=1

where w= Fv is a vector of independent standard normal variates (independent because
Var(w) = F'IF = F'F = I). ' :

Since Ai are the characteristic roots of A, they are the roots of the

k-th degree polynomial equation
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0 = IA - )\II
(A3) = |Bra(a")”! ABT(B')"|
(Al4) = las;z -1 |
(A5) = |t -A(l/a)sil l

where (A3)and (A5) result from pPre- and/or post-multiplying the matrix inside the
determinant by some Square matrix whose determinant is nonzero. (Ay) shows that
Ai are the characteristic roots of aSlZ. Because (l/a)S;l - I is p.d.,

(AS) implies that Xi <1.

B. Proof of Equation (21)

The proof of (21) is exactly analogous to that of (17), with appropriate

superscripts A and B;except that (l/a)S]-_l - ZAB is negative definite

because of (18), so that the characteristic roots AiB of -aSlZAB are-greater

than 1.




