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I. Introduction

Most conclusions and predictions obtained by using econometric
methods to summarize economic data are sensitive to model
specification. The purpose of this paper is to provide a set of
general results for specification tests based on moment conditions,
including Hausman (1978) tests and Sargan (1958) and Hansen (1982)
tests of overidentifying restrictions, which explicitly consider the
power properties of specification tests. These results include a
theorem on the general nonconsistency of moment specification tests,
which emphasizes the importance of explicit power considerations, a
result on mutual asymptotic equivalénce of a certain class of
specification tests, and the derivation of optimal methods for testing
a subset of moment conditions.

The usefulness of the results of this paper are illustrated by
several applications. Specification testing for a single equation of a
simultaneous system is considered in some detail, in addition to
applications which discuss the relationship of several specification
tests in various contexts. Throughout the paper it is shown that
results on asymptotic equivalence reduce to numerical equality for the
gpecial case of a linear in parameters model.

Most econometric estimators are formed by making use of certain
functions of the data and parameters which have expectation zero when

evaluated at the true parameter value. We refer to these functions as
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orthogonality condition functions. Most econometric estimators can be
viewed as being obtained by minimizing a quadratic form in sample
moments of the orthogonality condition functions. This class of
estimators include maximum likelihood estimators, for which the
elements of the score vector form orthogonality condition functions,
and instrumental variables, for which cross-products of instruments and
residuals form orthogonality condition functions. When more
orthogonality condition functions than parameters are available,
specification tests can be based on how close the sample monents of the
orthogonality condition functions are to zero, when evaluated at the
estimated parameter values. Tests based on the distribution of a
linear combination of these sample moments will be referred to as
generalized method of moments (GMM) specification tests in this paper.

In section two the general form of the test statistic which we
discuss is presented and its asymptotic distribution is derived. It is
shown that GMM specification tests are not consistent against general
forms of misspecification. Section three discusses the relationship of
Hausman (1978) specification tests and GMM tests. Section four
presents some comparisons of the first order asymptotic power
properties of different specification tests, including an asymptotic
equivalence theorem for a class of maximal degree of freedom GMM tests
and an optimal test for the validity of a subset of orthogonality
conditions. Section five gives some applications of the general theory

we develop and Section six presents some conclusions.



II. GMM Specification Tests

In order to discuss the formal properties of GMM specification
tests we first develop some notation. Let z = (z1,z2,...) be a
realization of a strictly stationary stochastic process, where Zy is an
element of RP.! Let the true parameter vector bo be contained in a
subset B of Bg, and let g{z,b) be a vector-valued function from B x rP

to R*. Define
, I
gn(b) =5 1 &lzy.b) (2.1)
T og=1

A GMM estimator Q& of bo will be assumed to be obtained as the solution

to
min g (b)'W_g_(b) (2.2)
be B T T=T
where WT is a rxr positive semi-definite matrix which depends on the
data z. The estimator % is obtained by setting the sample moments

T
gT(b) close to zero by minimizing the quadratic form gT(b)'WTgT(b).

This class of estimators has been considered by Amemiya (1973),
Burguete, Gallant and Souza (1982), and Hansen (1982) among others. If

b, g(z,b), and the stochastic process for z satisfy the property

E(e(z,b)) = 0 (2.3)

so that the population moment E(gT(b)) is equal to zero at the true



parameter value bo’ then when appropriate regularity conditions,
including identification, are satisfied the estimator bT will be

consistent for bo' If specification error is present so that

(2.4)
B(g(z,b,)) # O,

N
it will often be the case that b is not consistent for bo. When more

T
orthogonality conditions than parameters are available, specification
tests can be based on how close the sample moments are to zero when
evaluated at the parameter estimates. The first order conditions for

A

bT are

8y Bp) Wren(By) = 0 (2.5)

where gTb(b) = g%g (v), so that 6& is obtained by setting linear
combinations of the sample moments equal to zero. Specification tests
can be based on how close other linear combinations of gT(gT) are to
Zero.

Let LT be a sxr matrix which can depend on the data z. Then GMM
tests are based on how close the s linear combinations LTgT(%T) are to
zero, after accounting for sampling error using asymptotic distribution
theory. Let Qa be a consistent estimator for Q~, a generalized inverse
of the asymptotic covariance matrix Q of /TLTgT(%T). Then the form of

the GMM specification test statistic is
A A
my = T ep(by) Ty O Loeg(by)-

The use of a generalized inverse allows for singularity of Q. Using

standard arguments, and regularity conditions such as those which are



presented in Hansen (1982) the asymptotic distribution of oy can be
shown to be chi-squared with degrees of freedom equal to rank (Q), when
the model is correctly specified with E(g(z,bo)) = 0. Of course there
are many possible choices of LT, and even many ways of forming g(z,b)
in most applications. In order to distinguish between different
specification tests it is desirable to have some idea of the power of
specification tests for detecting misspecification. In order to
consider asymptotic power properties of specification tests we choose
to consider a sequence of misspecification alternatives which will
result in D having a noncentral chi-squared asymptotic distribution.
We show how the usual asymptotic testing theory can be extended to
allow for comparison of tests based on any GMM estimator, as well as
comparison of maximum likelihood based tests as discussed in Hausman
and Taylor (1980) and Holly (1982).

To treat local misspecification, we let c be a misspecification
parameter which lies in R%. TFor each n the distribution function of
(21""’Zn) will be specified as Fn(z1,...,zn,c), for each c¢. Where

the expectation exists, define

n(b,c) = [ g(z,p)F,(dz,c). (2.6)

For the purpose of exposition in the body of this paper we will assume
that h(b,c) is continuously differentiable in b and c, and that g(z,b)
is continuously differentiable in b. We will assume that at a point

C
o’
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h(bo,co) = 0. (2.7)

If c = LR the model is correctly specified, since the orthogonality
conditions hold in the population.

We can now allow for local misspecification as follows. Let

cp = ¢ ¥ 5/ T. We assume that for each T, (z1,...,zT) has a
distribution function FT(z1,...,zT;cT) for each sample size T. Note
that we are implicitly assuming that the assumed model is nested within
the actual data generating process. However, our specification of
local alternatives can allow for nonnested alternatives, in the same
manner as is done in Ericsson (1983).

To derive the asymptotic distribution of m_, some additional

T
notation and assumptions are needed.
A A
Assumption 2.1: The estimator bT satisfies bT-y bo, where bo lies in

the interior of B. Also, h(b,c) exists and satisfies h(bo,co) = 0.

A
Assumption 2.1 states that bT

presence of local misspecification. We do not explicitly congider

is weakly consistent for bo in the

regularity conditions which are sufficient for the assumptions of this
section to hold. One set of sufficient regularity conditions for the

independent observations case is given in Newey (1983).



Assumption 2.2: The vector g(z,b) is a measurable function on a

measurable space Z, and for almost all zeZ a continuously

differentiable function of bd.

Assumption 2.3: The function h(b,c) is continuously differentiable in

3&n(b)
b and ¢, E ag(z b)) (b ¢), and ———Egg—— converges in probability
oh
to 50 (v, SR ) uniformly in b on every compact subset of B.

Assumption 2.3 is implied by differentiability of density of z and of
g(z,b) along with dominance conditions (see Newey (1983)).

Define

H(b) = 33 (b,c,) » B = (b))

A A
Assumption 2.4: The estimator b, satisfies /EﬁagT(bT)/ab']WTgT(bT) =

op(1) for a sequence of matrices Wy satisfying plim W= W, W positive

[l

semi-definite and H'WH nonsingular. Also, L, - L

T op(1) for L with

rank (L) =

Assumption 2.5: The random vector Y, = /T(gT(bo)

h(bo.cT))

converges in distribution to a random variable Yo ~ N(0,V) where



vV = %::1 T E(gT(bo)gT(bo)' -h(bo,cT)h(bo,cT)')

and V is nonsingular. Also VT-P V.

The matrix V is the asymptotic covariance matrix of YT, and VT
is a consistent estimator of V. Methods of obtaining such a consistent
VT are outside the scope of this paper, but are considered in White
(1980), Hansen (1982) and White and Domowitz (1982). Define the

matrices

P

v -1 H(H'WH)-LH'V,

bgT A
Hp = 55 (Pp) » Pyp

= LPVPLL'  Qp = LoPunVpFymln

R (W)L E!
I - Hy(HgWiy) ™ HylWg

D
|

Assumption 2.6: The sequence of generalized inverses Qa satisfies Qi-y

Q- where Q~ is a generalized inverse of Q.

Assumption 2.6 is required because Q may be singular. A

sufficient condition for Assumption 2.6 to hold is that for all T a
fixed generalized inverse (g-inverse) which is a continuous function of
the elements of QT is chosen.?

It is useful to consider the special case which occurs when

g(z,b) is linear in b.} Let
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g(z,v) = 6,(2) - 6,(2)b (2.8)

If we define G, = (1/T7) 2 ¢,(z,) and G, = (1/T) 2 G,(z,) then,

1T
when g(z,b) is linear in b, the estimator solving equation (2.2) is
given by

A

= -1 .
bT (GZT WT GZT) GZT T G1’I‘ (2.9)

Define a = ah(bo,co)/acoa.

Theorem 2.1: If Cp = ¢y * §//T and assumptions 2.1-2.6 are satisfied

then

A
my = T gg(Dy) 'Ly Qzlogq(by)

converges in distribution to a noncentral chi-squared distribution with

degrees of freedom equal to rank(Q) and noncentrality parameter
A2 =g 'PLQ LR

Also if My, and m& correspond to two different choices of the sequence
of g-inverses Q- satisfying Assumption 2.6 then -m =0 (1).

g Q ying P meTp()
Further, if g(z,b) is linear in b then my, is invariant with respect to

choice of g-inverse Qa .
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Proof: All proofs are given in the appendix.

An important property of GMM specification tests is that they
are not consistent against general forms of misspecification. This
inconsistency for some specific specification tests has been noted by
Bierens (1982), who also discusses methods of forming consistent
specification tests for regression models. It is our purpose to show
that this inconsistency is a fundamental phenomenon and is related to
identification of parameters under misspecification.

We can in fact show that it is & general property of GMM
specification tests that they are inconsistent against a subset of the
alternative space which has dimension equal to the dimension of the
alternative space minus the degrees of freedom of the test. To state
this result it is necessary to consider nonlocal misspecification. Let
7z be a realization from a stochastic process with a fixed ¢ not
necessarily equal to Cy* Let

plim L= L(c) , plim Wy = W(c) and plim Vo = V(e)

We impose the following different assumptions.

Assumption 2.7: The function g(z,b) is measurable in z and twice

continuously differentiable in b. The function h(b,c) exists, and is
twice continuously differentiable in b and ¢ for each b in B and ¢ in

C, where C is an open subset of R'. Further, for each ¢ in C, gT(b)
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and its first and second partial derivatives converge in probability to
h(b,c) and its first and second partial derivatives, respectively,

uniformly in b.

Assumption 2.8: For each ¢ in C, h(b,c)'W(c)n(b,c) has a unique

!}

minimum for b = b{e) in the interior of B. Also, B is compact.

Assumption 2.9: L(c) and V(c) are once continuously differentiable

functions of ¢ in C.

Assumption 2.10: For each ¢ in C, /T(LT - L(e)) = Op(1) and /T(WT-
Ww(e)) = Op(1).

Assumption 2.11l: TFor each ¢ in C, /T(gT(b(c)) - n(v(e),e)) = op(1)

dh _
and /T(gTb(b(c)) - 3% (v{e),c)) Op(1).
1 = = = a_ki = g_}i =
Define L0 = L(co), wo w(co), Ho 3% (bo,co), Ko 5o (bo,co) and vo

V(co).

Assumption 2.12: The sxu matrix

= - ] ..1|
L, (1 HO(HOWOHO) HOWO)KO

has rank s. Also H;ono and Vo are nonsingular.
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Note that assumption 2.12 implies that s > u.

Theorem 2.2: If Assumptions 2.7-2.12 are satisfied, then there is an
open set N in g% containing C such that the set of ¢ in N satisfying
= Op(1) is a u-s dimensional C!sub manifold of N.

g

Note that Assumption 2.12 implies that the rank of

= - ' -] 11t - v -1 1t '
QO LO(I HO(HOWOHO) HOWO)VO(I WOHO(HOWOHO) HO)LO

is s, which is also the degrees of freedom of the GMM specification
test, which shows that the set of ¢ values for which the GMM
specification test does not reject with probability approaching one for
every fixed significance level has dimension equal to the difference of
the dimenéion of the alternative space and the degrees of freedom of
the test.

The nonconsistency of GMM specification tests can be explained
in terms of parametric jdentification. If the model is misspecified,

so that the true value c# Cys then
E(g(z,b,) - h(b_,e)) = O

by the definition of h(b,c). Define a new orthogonality condition

function
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I1I. Hausman and GMM Specification Tests

Before discussing different GMM specification tests, it is
important to clarify the relationship between these tests and Hausman
tests. We first consider Hausman tests in the GMM estimation
framework. Let‘%T and 3& be two GMM estimators such that %T is

obtained as the solution to

m%n gT(b)'ATgT(b) (3.1)
and 3& from
min gT(b)'CTgT(b) (3.2)
b

To assumptions 2.1-2.6 we add the following assumptions

. 1. TP ~
Assumption 3.1: bT b0 and bT ¥ bo.

Assumption 3.2: AT-P A with A positive semi-definite and H'AH is non-

singular. CT-P C with C positive semi-definite and H'CH is non-
singular.
The estimators bT and b, satisfy v T gTb(bT) CT gT(bT) = op(1) and vT

sTb(%T)'ATgT@T) = op(1)-



15

Let

Ay = Bp - Pp

and

= (H'cH)- H'CVCH(H'CH)-L + (H'AH)-1H'AVAH(H'AH)"! (3.3)

=
I

- (H'CH)H'CVAH(H'AH)™! - (H*AH)-1H'AVCH(H'CH)™!

The matrix M will be the asymptotic covariance matrix of Ape A
consistent, positive semi-definite estimator of MT can be obtained from

equation (3.3) by replacing V and V,, A by An, C by Cp and H by e.g.,

Ty = gTb(%T). (3.4)

Assumption 3.3: The sequence of g-inverses M@ is chosen so that plim

M& = M-.
As with Assumption 2.6, Assumption 3.3 is required due to possible
singularity of M.

Now define the test statistic

Theorem 3.1: If Assumptions 2.2-2.5 and 3.1-3.3 are satisfied then hT
converges in distribution to a noncentral chi-squared distibution with

degrees of freedom dh= rank (M) and noncentrality parameter
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x%=aimmymr1-cﬂWmU*]w{mmmﬂnm-mwmﬂHwh

T
Assumption 3.3, then hT-hé = op(1). Further, if g(z,b) is linear in b

Also, if hT and hé correspond to different choices of M satisfying

then hT does not depend on the choice of g-inverse ME.
It should be emphasized that Theorem 3.1 gives the asymptotic
distribution under local misspecification of most of the Hausman tests

which have been proposed in the literature. ’

The orthogonality
condition functions g{z,b) and the choice of A and C give lots of
latitude for putting Hausman tests in the form of Theorem %3.1. Note
also that the form of misspecification we comsider includes various
forms of correlation of variables with residuals and finitely
parameterized likelihood function misspecification.

An attraction of the Hausman test, as presented in Hausman

(1978), is its computational simplicity. Note that if C = v-l, then
M= (H'AH)-lu'avau(E'an)-l - (H'v-ly)-1l, (3.4)

which is the difference of the asymptotic covariance matrices of %T and
3&. As shown in Hansen (1982), when C = V-1, Si is asymptotically
efficient relative to'%T, for any choice of A satisfying assumptions
3.1 and 3.2. Therefore, it is sufficienf for M to have the simple
difference form, as discussed in Hausman (1978), that one estimator

used in forming A corresponds fo the efficient choice of weighting

matrix W, for a given set of orthogonality condition functions.3 This
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result implies that all of the specification tests discussed in Hausman
(1978) have the simple matrix difference form even if the disturbances
are not normally distributed.

There is a simple, asymptotic relationship between Hausman tests
and GMM specification tests. This relationship follows from a one-step

theorem for GMM estimators. Where the inverse exists, define

[l
]

o ta T Y=135
= bp = (EpCeHy) HyCren(p) - (3.5)

Theorem 3.2: If Assumptions 2.2-2.5 and 3.1-3.3 are satisfied, then
/T(bT - bT) = op(l). Further, if g(z,b) is linear in b then b= bye
Theorem 3.2 is the appropriate generalization to GMM estimators of the
well known one-step theorems for maximum likelihood and nonlinear least
squares, and holds when the model is locally misspecified.

Theorem 3.2 implies that
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/Tay /E(%T -%T) + op(1) (3.6)

- (igCqy )M HCoy Tep (by) + 0, (1)

so that by nom-singulsrity of H'CH, a Hausman test based on the

difference qT='5T - bT is asymptotically equivalent to a GMM

specification test with
W=A,L=H'C. (3.7)

and is equal to the GMM test with Wp= Ap and Lp = HpCp if g(z,b) is

linear in b. Similarly, starting at bT and taking one step in the

direction of'iT it is evident that a Hausman test based on g ='%T - bT

is also asymptotically equivalent to a GMM specification test with
W=C,L=HA (3.8)

The equivalence of Hausman tests and tests based on moment conditions
has also been discussed in Ruud (1982) and White (1982). This view of
Hausman tests as GMM tests helps to facilitate first order asymptotic
comparisons, as will be illustrated in section four.

Theorem 3.2 also brings out the fact that Hausman tests are
inconsistent against general forms of misspecification. An immediate
consequence of the first order asymptotic equivalence of b and'BT is

T

that the noncentrality parameter Xi of Theorem 3.1 will be zero on a

subset of § values in RY which is an u—dh dimensional linear subspace
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of R%. A result exactly analogous to Theorem 2.2 can be shown to imply
that the set of alternatives for which a Hausman test fails has
dimension equal to the dimension of the alternative space minus the

degrees of freedom of the test.
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IV. Comparing Local Power of GMM Specification Tests

The local power of different GMM specification tests can be
compared by comparing their respective noncentral chi-squared
distributions. The tail probability of a noncentral chi-squared
distribution is increasing in the noncentrality parameter and
decreasing in the numbers of degrees of freedom. The following two
results give a convenient method of determining degrees of freedom of
specification tests when the asymptotic covariance matrix, v, of

/TgT(bo) is nonsingular. Let R(A) denote the rank of the matrix A.

Proposition 4.1. If V and H'WH are nonsingular then

R(Q) = R([WH,L']) - q

where q = dim(b) and H, W and Q have been previously defined.

Corollary 4.2: If V, H'AH and H'CH are nonsingular then

r(M) = r([AH,CH]) - q.

Recall that Q is the asymptotic covariance of the sample moments

A .
LTgT(bT), M is the asymptotic covariance matrix of the difference of
two estimators qT='%T - T&, and that q = dim(b). We will use these

results to obtain the degrees of freedom of particular tests and these
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results should prove to be useful in other applications.

Somewhat surprisingly, there is a general class of
asymptotically equivalent GMM tests. Consider two different choices of
GMM specification tests statistics By and Do corresponding to
different choices of the linear combination matrix L and the weighting

matrix W.

Proposition 4.3: If Assumptions 2.1-2.6 are satisfied by both Dym and
Mo and if the degrees of freedom of the asymptotic distribution of

Ty 27 17 = Pop

linear in b then m1T= sz.

and m, equal r-qg, then m, - m .~ op(1). Further, if g(z,b) is

To interpret this result, note that the asymptotic covariance
matrix Q@ equals LPWVP&L'. Furthermore, R(Q) < r-q, since Pw is an
idempotent matrix and

R(Pw) = trace(PW) = trace(I) - trace(H(H'WH)!H'W) = r-q.

Sincé the degrees of freedom of a GMM tests is R(Q), it follows that
the degrees of freedom of a GMM test is less than or equal to r-q. A
restatement of Proposition 4.3 is that any GMM test with the maximum
number of degrees of freedom, r-q, is asymptotically equivalent to any
other GMM test with degrees of freedom r-q, and numerical equality
holds if g(z,b) is linear in b.l

As a benchmark for comparison, it is useful to know the maximum

value of the noncentrality parameter.
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Proposition 4.4: The noncentrality parameter A2 satisfies

*2 ! t\= 2
A =Fa PW(PWVPW) Pa > A

*2
Further, A does not depend on W.

This maximum value of the noncentrality parameter is attained by the
GMM test with degrees of freedom r-q. Choose LT= I for all T, where I
is an rxr identity matrix. For a given weighting matrix W, the GMM

test with LT= I has degrees of freedom

r(Q).= R(IWH, 1)) - q = r=q,
and by Proposition 4.1, and by Theorem 2.1 has noncentrality parameter

2 = A'D'T! Y - = 1 %2
A a 'Pel (IPWVPWI ) IPp = A¥.

As discussed in Section two, GMM specification tests are
consistent only if the parameters of the model are identified when
misspecification is present. Also, comparison of different
specification tests depends on the form of the alternative considered.
A form of alternative which maintains identification when the model is
misspecified, and which is interesting in applications is given by

specifying
E(g(z ’bo)) = -E
where ¢ is restricted to have at least g components zero. This

restriction means that when the model is misspecified, at least g

orthogonality conditions remain valid. This form of alternative leads
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directly to GMM specification tests for subsets of orthogonality
conditions.

For local power purposes, misspecification which results in some
orthogonality conditions being contaminated and other orthogonality

conditions remaining valid corresponds to a partitioning of o as
a = (Oaaé)' ’

where, X is kx1 vector, with r -k » q. Let U = vl -
v-l1g(g'v-1H)-1H'V-l. Choosing W = V-l and defining P = Pw’ the maximum
value for the noncentrality parameter is given by

*2 tt LI tptyr=l ' ]
A =a'P'(PVP')Py =a'P'ViPa =« Ua»— a2U22a2

where as noted in Hansen (1982), V7! is a g-inverse of PVP' and U is
partitioned conformably with a,
Uy Uys

U21 U22

Also, partition H, V, and VT conformably with a = (O,aé)',

H1 - V11 v12 - v11T V12’1‘

2 Va1 Voo Vorp  Voor
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*2
The maximum value of A is attained by any GMM specification
test with degrees of freedom r-q. If q¢ = r - k, so that the parameters
are exactly identified under misspecification, the only consistent
tests will be GMM tests with degrees of freedom k = r - q, which are
all asymptotically equivalent by Proposition 4.3. When q < r - k, s0
that the parameters are overidentified under misspecification, a
consistent test with higher local power than the r-q degrees of freedom

test can be obtained. One such optimal test can be obtained as

follows.

Proposition 4.5. If Assumptions 2.1-2.6 are satisfied with WT = Val,

and

= - -1 ' = ' r~
LT [ Vot i Ik]’ P (O,a2), and H, has rank g, then m, converges

in distribution to a noncentral chi-squared distribution with k degrees

of freedom and noncentrality parameter A%¥2 = o'V

oUsslse Also,

U22 is non-singular.

The test statistic Eﬁ has the following form. For
Qo= Lo (Voe Ho(HAV Y H )L HDL, and go(bn) = (gn (Br)em,(Br) ')
p= LpWp= HplHpVpVole)™ Hp)lg o\ Py p1\Pp) 18 Py

partitioned conformably with «,

- Ay _ AJE| -1
my = [&py(bg)" = &y (bg) ViV onl G (4.1)

A A
- -]l
[epo(by) = Vpup¥3ig8m (Bp)]
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A
where bT is the optimal GMM estimator which is obtained by solving

min gT(b) 'Val gT(b) .
b

- A
The linear combination matrix Lg, used in forming m,, forms from gT(bT)
the sample counterpart to the population residuals of the regressions
of the elements of the limit of /T gT2(bo) on the limit of /T gT1(bo)
(i.e. m, partials out gy, (By))

i.e. m, partials out gny{(bp))-

Another specification test which is relevant when some

orthogonality conditions are contaminated and others are not is a
Hausman test based on the difference of bT and the GMM estimator %T

which is obtained by solving

N [] ._l
m;n gyp(D) "Vyyn g,p(b). (4.2)

The estimator‘%T is the optimal GMM estimator which uses all

orthogonality conditions which remain uncontaminated under
misspecification. From the discussion of Hausman tests we know that

~

A
the asymptotic covariance matrix of U = bT -bT will be

'vrly, )b - (mrv-ie)h.

M= (HJVILH,

Let the Hausman specification test statistic be given by

by = TaqfpQy-

Proposition 4.6: If Assumptions 2.2-2.5 and 3.1-3.3 are satisfied for

the Hausman test based on qT=‘iT - bT then E; converges in distribution
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to a noncentral chi-squared distribution with degrees of freedom
V11 H

aF = R ) + k-r (4.3)

and non-centrality parameter

*2
Ny T o V-EE(H VL) (1 vei e ) - (v - (vl E) e Y la .

Note that as long a&s the matrix in equation (4.3) has maximal rank
equal to min (r + q - k,r), then a¥ = min(q,k).

It is.possible to compare the two specification tests based on ﬂ&
and E&. A comparison of these two tests is analogous to the discussion

in Holly (1982) and Hausman and Taylor (1980). In particular the

following proposition is true.

Proposition 4.7: If 5& and E& have the same degrees of freedom then

hT;ET = o§(1). Further, if E& and E& have the same degrees of freedom

and g(z,b) is linear in b, then E& = E&. if E& and E& have different
degrees of freedom, then the asymptotic power curves of E& and ﬁ& will
cross.

Our results on power comparisons can be summarized as follows.
For a given set of orthogonality condition functions g(z,b), all GMM
specification tests with the maximum number of degrees of freedom r-q
are asymptotically equivalent. If the parameters are overidentified
when misspecification is present, then there are consistent GMM tests

which are more powerful than the r-q degrees of freedom test.
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VY. Applications

Our first application of the theoretical results we have
obtained is to the estimation framework presented by Hansen (1982).
Let T =T g (b ) (P VP )= g (b,). Use of this test statisti

et m, = &p\ Py W T T &p\bp)- se o is test statistic was
suggested by Hansen as a general test of model misspecification.

Theorem 2.2 implies that this test is inconsistent against general

forms of misspecification. When misspecification is parameterized by

plim gT(bO) the implicit null hypothesis is that & = lim /T’E(gT(bo))
belongs to the linear space spanned by the columns of E[bgT(bo)/ab].
Also, Proposition 4.3 implies that the local power of this test against
any form of misspecification is invariant with respect to the choice of
W = plim WT satisfying our assumptions so that the agymptotic
properties of’ET are independent of the GMM estimator G&. For g(z,b)
linear in b, the test statistics are invariant with respect to WT.

The test statistic }% can also be interpreted as a Hausman test
for r < 2q. Let AT be any rxr matrix satisfying plim AT= A with
rank[AH,WH] = r. Then for b, obtained from equation (3.1) Corollary

T

A ~
4.2 implies the Hausman test based on the difference bT— bT has degrees
of freedom r-q. By Proposition 4.3 and the equivalence of this Hausman
test to a GMM test, this Hausman test is asymptotically equivalent to

the test statistic'ET.
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Finally, in time series estimation there are situations where
optimal tests of a subset of orthogonality conditions are useful. 1In
the context of estimation of rational expectations models, the
orthogonality condition functions are often obtained as cross products
of disturbances and random variables belonging to an agents information
set. The tests we have presented can therefore be used to form optimal
tests of whether particular sets of random variables belong to the
information sets. These tests can also be used for testing covariance
restrictions, as discussed in Newey (1983).

Our second application concerns tests of overidentifying
restrictions in the linear simultaneous equations system. Note, first,
that our results have an interesting implication for linear system
gpecification tests. It follows from Proposition 4.3 and our
discussion of Hausman tests that the system test of overidentifying
restrictions based on the Gallant and Jorgenson (1979) criteria for
three-stage least squares (3SLS) (i.e. the Hansen(1982) minimum chi-
square test for the linear simultaneous equations system) is
numerically equal to the specification test based on the difference of
the two-stage least squares (2s1LS) and 3SLS estimators suggested by
Hausman (1978), when the two tests have the same degrees of freedom,
and the same estimate of the covariance matrix of the disturbances is
used to form both stetistics. Our results also have implications for
specification tests of a single equation, which we will consider in

gsome detail.
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Without loss of generality, let the first equation of a

simultaneous system be written in regression form as

y,= Y8 + 28 +u=Xb+u, (5.1)

where exclusion restrictions and the usual normalization have been
imposed, X1= [Y1,Z1] and b= B',y')'. The vector i is a Txl vector
of observations on the left-hand side endogenous variable, Y1 is a Txp
matrix of observations on the included right-hand side endogenous
variables, Z1 is a Txs matrix of observations on the included
predetermined variables and u is a Txl vector of disturbances. The pxl
vector B gives the endogenous variable coefficients, the sxl vector y
gives the predetermined variable coefficients and p*s = g is the number
of parameters to be estimated. Let Z = [Z1,22] be the Txr matrix of
observations on the predetermined variables of the system and
Y = [Y1,Y2] be the Tx(M-1) matrix of endogenous variables of the system
except for Yy where the system contains a total of M equatiomns.

We will assume that there is no autocorrelation or
heteroscedasticity, so that when b=bo, the true parameter vector,

d
- >

Z'u
T

N(0,V) ; V = o2 plim(gégﬁ; o2 = E[uilzt]. (5.2)

-~

The subscript t indexes the tib-observation, +=1,...,T. We will
consider specification tests based on the 2SIS estimator bT’ which

solves
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min u'z(z2'2)-12"u. (5.3)
b

Let § = y,- X,55,82 = §'4/7 ana P, = 2(z'2)-12'. Throughout the
following discussion we will take Vg = 82z'z/T.
The general minimum chi-square test statistic for 25LS is given

by

see Sargan (1958). As noted by Hausman (1983), m, = T R where R is
the r-squared from a regression of 4 on zZ.

There are two particular types of departures from correct
specification which may be of concern for a single simultaneous
equation. .One is that certain variables have been wrongly excluded
from the equation, and the other is that certain instrumental variables
(corresponding to columns of Z) may be correlated with u . If the
equation remains overidentified under misspécification, then the
theoretical results of the previous section indicate that more powerful
specification tests against these particular alternatives than that
based on'ﬁT are available.

We consider first the case where misspecification takes the form
of wrongly excluded variables. Suppose that the correct model is given

by
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74" Y1B + Zﬂ + WC + ¢ (5.5)

where W consists of £ < r-q columns of [YZ’ZZ]' Following Burgete,
Gallant and Souza (1982) we can define a gradient test of Ho: C=0 using
the criterion function of the minimization problem (5.3) which is used
to obtain the 2SLS estimator.! For € defined implicitly in equation

(5.5) we have
de'2(z2'2)1z'e/aC = - W'Z(2'2)12' (5.6)

A
so that a gradient test which uses b, is based on the asymptotic

T
distribution of W‘Z(Z'Z)'lz'ﬁ//T and is thus a GMM test with linear
combination matrix L= W'z(2'2).

Then

[viHg, Iy = [82 (2'2)712'K,,(2'2) 2 2'V] (5.7)

so that by Proposition 4.1 the degrees of freedom of this test will be

A A
2 so long as plim Z'[X1,W]T has rank q+&. Define X1= PzX1 and W = Pzw.
In terms of our previous notation, HT= - Z'X1/T so that
- tyr=l -1 =A ' 4
Vo HT(HTVT HT) Hp A Mﬁ1Z/T (5.8)
A A'A I\'
where Mg = I.- x1(x1x1)-1x1. The GMM (gradient) test statistic is

1
then given by
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m.= 1'ZL" [L Z'My ZL, ]-1L z'0e (1/82) (5.9)
1

T
A
= Tﬁ|ﬁ(ﬁlMﬁ W)—IVAI' / |ﬁ’
B

A
where the non-singularity of the matrix ﬁ'Mﬁ ¥ for large T follows from

the degrees of freedom of m_, being equal to 2. Note that it follows

T
A
from the normal equations X;ﬁ =0 that m, = TRZ2 where R2 is the r-
N A A A

squared from a regression of U on [X1,W].

While we have not explicitly considered the power properties of
tests of parametric hypotheses such as HO: C = 0, the following direct
argument shows that T gives an optimal GMM test. Let CT satisfy

lim /TCT= 6. Then by u = WCp + €, an appropriate central limit

d
theorem implies Z'uo/T' + N(plim(Z'W/T)5,V) so that

*2
A

6'p1im(W'Z/T)[V"'1T-V'1TH 2V '1HT)‘1H v-l](z W/T)s= (5.10)

& 'plim(1/182) (W' L s
1

. [ t ] -]l - ' (] -1 (] [] <1 LI A
Further, since LoP,2'= W'Z(Z'2) [IK z2'%, (X;X,) x,2(2'2) 1z WM£1,
the non-centrality parameter of B is given by
A2 = 68" plim (1/T02 )W’ ZP L (W' My w)'lL Po2'W]s (5.11)

1

A ALA A
8 "plim| (1/10% )W' Mg W(W' Mg W)'lﬁ'Mi Ws =A%,
1 1 1
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The second particular form of misspecification which is of
interest involves instrumental variable contamination. For this form
of misspecification we can use the optimal GMM test of Proposition
4.5. Suppose that Z = [Zl,Zz] where 72 is a Txk vector, k < r-q, which
is correlated with u, when misspecification is present and 7l is a
Tx(r-k) vector of predetermined variables which remain uncorrelated
with LA Let H1= - plim Zl'X1/T have rank g, so that the parameters
bo remain identified under misspecification. Then from Proposition
4.5 this optimal GMM test has L= [-z2°'2' (2 '21)-1, 1 ]. Note that 21
=7 = (IT-Zl(Zl'Zl)"IZl')Z2 is the Txk matrix of residuals from a

regression of the columns of 7 on 7. The test statistic is given by

ET G'ZLI',(LTZ'M%ZL%)'I Lp2'Q 52 (5.12)

= 1 &'VE My V)IV'G/80G = TR?
1

where B is the r-gquared from the regression of 4 on [i1;7].

Another test for instrument contamination, which is particularly
useful when primary interest centers on the parameter vector b, is a
Hausman test based on the difference of QT end the 25LS estimator of b
using only 7! as instrumental variables. This Hausman test statistic
has been considered by Hausman and Taylor (1980) and Spencer and Berk
(1981). By Proposition 4.6 this Hausman test has degrees of freedom

given by
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d = rank(plim z'[2 X, /1) + k-r (5.13)

As discussed in Hausman and Taylor (1980), the rank of the matrix plim
Z'[ZI,X1]/T is equal to min(r,q+r-k-n), where n is the number of common

columns of Z!' and Z,. Then E£= min(k,q-n). By Theorem 3.2 and

linearity in b the Hausman test statistic is equal to a GMM test with

A —
L= [x;7 (2 "2 )-1,0]. Let ﬁ; = X7t (217 )7k, and let ' be a dy x

N A
q selection matrix such that S'X{Mi i1S' is non-singular. Then by
1

Lemma A2 of the appendix and the invariance of the GMM statistic with

respect to g-inverse

By ﬁ'ZL,i‘(LTZ'Mi1ZLT')' LTz'ﬁ/82 (5.14)

A a
- ! 2
14 )7X}u/o

A A PRy
4'x (ﬁ'Mﬁ ﬁ1
1

A 3, A A
Tﬁ'x1s(s"x>'m»~ i1s)-1s'x1'ﬁ a4

1 X1
= mp 2
TRh
A A
where ﬁ% is the R-squared from a regression of G on [X1,X1S].2
Note that Proposition 4.7 implies that if d,_ = k, then h, = m.

h T T

If the set of predetermined variables being tested for contamination,
72, is a subset of the predetermined variables included in the
equation, Z1, k + n< q, so that E£ = k, and for the important special
case of testing for the predetermined status of included variables, 3&
= 5&,

When a full set of overidentifying restrictions is being tested
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then each of these test statistics is identical. That is, if
L =k= §£= r-q, then Proposition 4.3 implies that ET= my,= E&= E&.

Note that these equalities hold independently of the particular set of

overidentifying coefficient restrictions being tested or the particular
subset of instrumental variables being tested for contamination. When
the misspecification of interest is omitted variables or endogeneity of
an instrumental variable, and the equation is overidentified under
misspecification, then the appropriate test gives an optimal GMM test.
However, even when a particular form of misspecification occurs, the
statistic‘ET retains a certain kind of robustness. Its noncentrality
parameter is at least as large as that of the individual statistiecs, no
matter what form the misspecification takes. Asymptotic power loss
from use of'ETrather than a specific statistic will result from'ﬁT

having larger degrees of freedom.
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VI. Conclusions.

We have presented results for a class of specification tests,
which we have referred to as generalized method of moments
specification tests, which include Hausman (1978) tests. Due to lack
of identification under general misspecification, GMM specification
tests are not consistent. We have shown that all maximal degree of
freedom GMM tests are mutually equivalent, asymptotically. When
specific forms of misspecification are congidered such that the model
parameters are identified under misspecification, consistent GMM tests
can be compared on the basis of their local power. Overidentification
under misspecification leads to specification tests which are locally
more powerful than the maximal degree of freedom test of
overidentifying restrictions.

The results of this paper also show that specification tests can
be found wherever there are more orthogonality functions than
parameters to be estimated. In many econometric models, there are an
infinite number of such orthogonality condition functions available.
It is often the case in econometric models that there is an nxl vector
e(z,b) fﬁnction of z and b such that, if the model is correctly

specified, the conditional expectation E[e(zt,bo)llt]"satisfies

Ele(z,,p )1,] = 0, (6.1)
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where It is & conditioning set. In the estimation of rational
expectations modls e(zt,bo) is often a vector of forecast errors and
Itis the information set available to an agent at time t. Then for any
rxn random variable w(IT) satisfying Elw(It)| { +o and
Elw(It)e(zt,bo)l < + » the law of iterated expectations (Chung (1974))
implies

B[w(1,)e(zy,b )] = E[w(T,)E[e(z, ) |1,]] = O. (6.2)

Therefore we can use as orthogonality condition functions g(zt,b) =
w(It)e(zt,b).

There are very many ways of picking the W(It) random variables to
form specification tests, which illustrates that in most econometric
models there will be many ways of forming a specification test. It is
therefore important to pick a test statistic which is appropriate for a
particular application. In this paper we have given results which
allow an econometrician to distinguish among different specification
tests based on classical power considerations, for a particular set of
moment condition functions. In Newey (1983) we give methods of picking
the optimal W(It) to form an optimal set of orthogonality condition
functions, where again the optimality criteria employed are classical

power considerations.



Agpendix

We first give several lemmas which are useful in the proofs that

follow.

Lemma Al: (Rao(1973), 1.b.5, (vi),a): TFor a matrix A, A(A'A)-A'A = A

and A'A(A'A)~A' = A' for any choice of g-inverse.

Lemma A2: (Rao and Mitra (1971) Lemma 2.2.5(b)): For conformable
matrices A and B, if R(ABA') = R(B), then A'(ABA')~A is a g-inverse of

B for any choice of (ABA')~.

Lemma A3: (Rao and Mitra (1971) Lemma 2.2.6(g)): TFor conformable
matrices A and B, if R(ABA') = R(A) then A'(ABA')"A is invariant for

any choice of g-inverse.

Lemma A4: For conformable matrices A and B, A(A'A)"A" and A(A'A)"A' -

AB(B'A'AB)"B'A' are idempotent.

Proof: Idempotency of A(A'A)”A' follows immediately from Lemma Al.

Also, by Lemma Al

(A(A'A)=A" - AB(B'A'AB)7B'A')?

A(A'A)"A' - A(A'A)"A'AB(B'A'AB)"B'A’

AB(B'A'AB)-B'A'A(A'A)-A'

+

AB(B'A'AB)"B'A'AB(B'A'AB)"B'A’

A(A'A)-A' - AB(B'A'AB)"B'A".
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For a matrix A, let N(A) be the null space of A and c(4) the column

space of A.

Lemma A5: Let A be a kx{ matrix, B a fxm matrix and C a Lxn matrix.
If the columns of C form a basis for N(A) and R(B) = m, then, R(AB) =

r([c,B]) - n.

Proof: For x in N(AB), let y = Bx. Then y is an element of N(4), so
that by C a basis for N(A) there is a unique z such that Cz =y = Bx,
which implies [c,B] [-z',x']' = 0. Similarly, suppose [c,B] [-z',x']"
= 0. Then Cz = Bx implies ABx = ACz = O. Therefore N(AB) is

dim ¥([C,B]). By Lancaster

isomorphic to N([c,B]) and so dim N(AB)

(1969) Theorem 1.16.2 R(AB) = m - dimN(AB) and R([C,B]) =m + n -
aimN([c,B]), so that R(AB) - m = r[¢,B] - m - n or R(AB) = r[c,B] -
Ne.

Lemma A6: For comformable matrices A and B, if B is positive definite,

then R(A'(ABA')-a) = R(4).

Proof: We know R(A) » R(A'(ABA')-A). By the definition of a g-
inverse

AB(A'(ABA')~A)BA' = ABA'
so that R(A'(ABA')-A) > R(ABA') = R(A), where the last equality follows

by the positive definiteness of B.
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Proof of Theorem 2.1: TFor notational convenience, we will suppress the
A

z argument. Since bo lies in the interior of B and plim bT bo, the
first condition of assumption 1.4 implies
(6.)'WA/T g.(b) = o_(1) (A.1)
Eqy, o) Wy T 8q(bp) = 0 (1) .

Without changing notation, we consider a sequence of random variables
A

tail equivalent to bT which lie in an open convex neighborhood of bo

which is contained in the interior of B. Apply a mean value expansion

to obtain
A A
/T gp(by) = /T grlby) + gTb(TaT> /T (by - b)) (a.2)

"o A ~
where IbT - bo\ < le - bo| and b, actually differs from row to row of

Y . N A_ .~= .
gTb(bT)' Since plim by = b , plim by b,+ Equations (A.1) and (A.2)
imply
e (5.) W g (b WrI(h - b) = - g (5)'WH/T gr(d ) + 0 (1) (4.3)
G A 7~ % b L A p y

. A N . AN
By Assumption 2.3, plim by = b and plim by = b, plim gTb(bT)

plim gTb(%T) = H, so that

. A ] - !
and

A
plim gTb(bT)'WT = H'W (A.5)

by the usual rules for probability limits of sums and products of
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random variables. By Assumption 2.5 and the definition of h(b,c),

/T gT(bo) =Y, ¢ /T h(bo,cT) = Op(l) + /T h(bo,cT). (a.6)
Take a mean value expansion of h(bo, cT) around ¢ _ %o obtain
YT h(b ,c.) =¥7T h(b_,c ) + 28 (b 2 YYD (en - ) (A.7)
o' T 0’ o dC o’ T T 0 *
- oh
ol v (bo,cT)é + 0(1)

where 1ZT - col £ |c - c°|. By Assumption 2.3 and 1ich = ¢,

T o)

. . 0oh .
lim v/ T h(bo,cT) = 1lim 53-(bo,cT)6 = q¢. Then by equations (A.6) and
(A.7)

/T gT(bo) =Yy ta+ o(1) = op(1). (4.8)
Then by equations (A.8), (A.3) and (A.5)
gTb(g&)'W g, (o) /T (b - b)) = = H'W(Y, +a) + 0, (1) (4.9)

Then since H'WH is non-singular by Assumption 2.4,
A vy -1 . . P s
(gTb(bT) WTgTb(BT)) exists with probability approaching one, and by

equations (A.3) and (A.4)

/T (QT - By) = - (WRW(T, +a) + o (1) = 0 (1). (4.10)

A
Now, expand v T gT(bT) around b _ to find
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/T gy(by) = /T gy(b) + &gy (B) /T (By - B) (A.11)
=Yy *ta+o(1)+ B/T(by - By) + 0 (1) = Po(Yy + «)
+ o (1) = 0.(1)

~ A
where IbT - b°| < IbT - bol, and the last three equalities follow from
equation (A4.10) and the arguments leading to it. Then by plim Lp= L

and VT gT(QE) = Op(l),

L/ T gT(ﬂE) = 1P, (Ty *+a) + o (1) $ N«,Q) (A.12)

A
by Assumption 2.5. By Assumption 2.6, equation (A.12) and /T LTgT(bT)

= 0,(1),

AV|_' A .
TgT(bT) LTQTLTgT(bT) + oP(l) (A.13)

mT

(YT + a)'P;,L'Q-LPW(YT +q) + op(l)

from which follows the fact that By converges in distribution to a non-
central chi-squared with degrees of freedom rank (Q) and noncentrality
parameter A2. The asymptotic equivalence of D and mé follows from
Lemma A% and Lemma A6, which imply P_"’L'Q"LPw is invariant with respect
to g-inverse of Q.

To show that when g(z,b) is linear in b, m, is invariant with

respect to choice of g-inverse, note that
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eq(Pp) = G Copbym [Tm o (Coig@on) ™ Gy 161y (a.14)
= Pyl

so that

my= 761 Py (CyPyeVaPynly) TPy g (4.15)
and invariance of B, follows by the same argument as asymptotic
equivalence of Lo and mé.
Proof of Theorem 2.2: Let J(e¢) = L(e)h(b(c),c). Note that by
b= blc,) and h(b_,c) =0, I(c ) =10 =0, and %%(co) =L [H %%-(co)

+ Ko]. Let £(b,c) = (1/2)h(b,c)'W(c)h(b,e). Then by the definition

of b(c), and b(e) in the interior of B, b(c) solves

g% (b(c),c) ' W(e)n(b(c),e) = O. (4.16)

By the implicit function theorem, h(bo’co) = 0 and H")WHo nonsingular,

equation (A.16) implies

ob = _ [ -l 7t
53-(c0) (HOWOHO) HW K . (A.17)

Then by (A.16),

b_J_ = ' -] yrt
dc (co) Lo[I - Ho(Hoono) Howo]Ko'
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By Assumption 2.12, g% is a sxu matrix of rank s. The vector function
o)

J(c) is continuously differentiable in an open neighborhood X' of ¢ by
Assumption 1.7 and 1.9 and the implicit function theorem applied to
equation (A.16). By J(e) continuous on N', J(c) has rank s on for all
¢ in an open neighborhood N"cN'. Then by the implicit function theorem
(e.g., Hirsch (1976) Theorem A£.9) the set of ¢ in N' such that J(e) =0
is a Cl, u-s dimensional submanifold of N. It now suffices to show
that for ¢ in N', if J(¢) = O, then my = Op(l).

Let fT(b) =1/2 gT(b)'WTgT(b). By Assumption 2.7, fT(b)
converges in probability to f(b,c) uniformly in b. Assumption 2.8 and
a convergence in probability version of Amemiya (1973) Lemma 3 implies
that there exists a measureable QT solving

min fT(b) (A.18)
beB

A
end satisfying plim by = b(c). Since b(c) lies in the interior of B,
A
statisfies
(B.)" W /T gn(Dy) =
gy, (bp)" Wy VT gT(bT) = op(1). (A.19)
A
Expanding gT(bT) in a mean value expansion (as in the proof of Theorem
2.1) equation (A.19) implies
A'
(bT) W

(BT (B - b(e)) + (1.20)

€rp el

gy (Pp)Wg 7T &p((e)) = 0 (1)

with TET - b(e)] < |€T - b(c)]. Define H(c) = %%—(b(c),c). By adding

and subtracting appropriate terms, using equation (A.16)



45

gy (0p) Wi/ T 8g(b(e)) = g, (Op) W/ T (g(b(e)) - nl(e),e)) (4.21)
+ gy (B W Ty - W(e)) nln(e),c)
+ /T gy (by) - B(e)]"W(eIn(b(e),e)

A A

By Assumption 2.7, and plim by = b(e), plim gTb(bT) = H(c). Then by
Assumptions 2.10 and 2.11 the first two terms after the equality in
equation (A.21) are op(1). By Assumption 2.7 we can apply a mean-value

expansion to the last term to obtain

/T gy (By) - B(e)] = /TLeg (b(c)) - Hle)] (.22)
q dg

21 e (bp)(Bpy- b(e) W T

=1

' — A
with le- b(e)l < le- b(c)|. Then by Assumption 2.10 and equations

(A.21) and (A.22)
g (B Wiy (B (B L)) +

Om zd
T (Bp)W(e)n(b(e),c)y/Tlbps - bled ) = Q (1).

1 J

Cde
W10

s N - . A - N ST -
By Assumption 2.7 and plim b= b(c), plim gTb(bT) plim gTb(bT)

o8
H(c), and plim abTb( = —%— [ (b(c),c)]. By continuity in c,
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H;ono non-singular and h(bo,co) = 0, it follows that there is Nc X"
such that for c¢ in N,

/T(ST - v(e)) = 0 (1) (A.23)

Now, to show that Iﬁ{TgT(GT) = Op(1) if J(¢) = O for ¢ in N, the
mean value expansion of /T gT(QE) implies, using

J(c) = L{e)h(p(e),c) = O,

LT/T gT(ﬁ&) = LTgTb(%T)/T (bT - bo) (A.24)
+ /Ly - L(c)lgq(b(e))
+ L(cWTlep(r(e)) - n(v(e),e) ]

The first and second terms are Op(l) by equation (A.23), its proof,
Assumption 2.10, and Assumption 2.7 which implies plim gT(b(c)) =
h(v(e),c) so that gT(b(c)) = Op(1). By Assumption 2.11, the second

term is also Op(l).

Proof of Proposition 2.3: For a positive matrix B, and conformable A,
N(A)cN(A'(ABA')-A) is obvious. Suppose A'(ABA')~Ax = O. Then

premultiplying by AB and letting C = Bl/2
0 = ABA"(ABA')"Ax = ACCA' (ACCA')-ACC-lx
= ACClx = Ax
where the third equality follows from Lemma A1. The conclusion then

follows, upon noting that a = bh(bo,co)/ac-é, from taking A = LPW and
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Proof of Theorem 3.1: The assumptions of Theorem 1.1 are satisfied for

% and b., so that equation (A.10) of the proof of Theorem 1.l implies

T T

/1(by - b)) = - (AtH) T HA( Y + @) ¢ op(l)

and

/T(i& - bo) - (H'CH)-IH'C(YT +a) + op(l).

Subtraction yields

/T Q= [(H'CH)'IH'C—(H'ﬁﬁ)“lﬁ'k](YT +aq) + op(l).

(A.25)

(A.26)

(A.27)

Let D = (H'CH)-H'C - (H'AH)-!H'A. Then /T q = D(YT +q) + op(l), 80

that

VT qTAQ D(Yo+ a) ~ N(Dx, DVD').

Note that M = DVD', so that by /T q,= Op(l),

By = Tag(Mg - ¥ay + Tagt gy

T Mgt op(l)

(A.28)

(A.29)

and the asymptotic distribution result follows. To see that hT- h& =

op(1), note that D' (DVD')-D is invariant with respect to g-inverse

and the conclusion follows by the same argument as used in the proof of

Theorem 2.1.
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To see that hT is invariant with respect to the g-inverse for the

linear case, note that

by - bp= - Dpbyq (A.30)
= v -l - [ =1t
for D= (65,Co8,on) ™ 850 (G5pdaCon)™ Conhy
Further,
hy= T(by- Bp) (DTVTDT)-(BT- by) (A.31)

= TG4 pDp(DgVyDp) ™Dy

and the invariance of hT follows from the invariance of DT(DTVTDT)‘DT,
which is implied by Lemma A3 and Lemma A6.
Proof of Theorem 3.2: From the proof of Theorem 1.4, it follows that
E = - ' =]
7/ (by, b)) (B'CH)H'C(Yy + a) + op(l) (a.32)

so that
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/(o - by) = /2(y - b)) - /2(by - ) (A.33)

-(H'CH)-ln'c(YT +a) - /E(BT - bo) + (ﬁécéﬁT)-IﬁicT/EgT(BT) + op(1)

1 - (ﬁécfﬁT)'YﬁéchTb(iT)]/ﬁ(ET - b,)

+

[(ﬁéciﬁT)~YﬁécT- (H'CH)-lﬂ'c](YT+ a) + op(l),

where I%T - bol < riT- bol and the last equality follows by expanding

gT(iT)around b, Upon noting that Y, +a = Op(l) and /T(BT - bo)

. —_' . N . > er -1
Op(l), it follows that /T(bT bT) is oP(1), since plim (HTCTHT)

' -l Cas = ' s T =
(H'cH), plim HTCTgTb(bT) H'CH and plim HiCn = HC.

Further, if g(z,b) is linear in b, then

by = By - (65Cp8pp) ™ (<650 )0 (6yp- Cppby) (8.34)
= ~ - . =1nt o d ' =lnt
By - (650CpCon) ™ ConCalonPrt (BnCrbon)™ EonlnGyy
= bT

Proof of Proposition 4.1: The proof consists of showing that
r(Q) = R([wH,1'])) - q- (4.35)

Since Q = LPWVP;L' and V is positive definite, R(Q) = R(P;L'). Since
P =1 -WH(H'WH)-1H' is idempotent, R(P;) = r-q. Since H'WH is non-

singular, q = R(H'WH) < R(WH) implies R(WH) = g, so that the q columns
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of WH are linearly independent. By lancaster (1969) Theorem 1.6.2

dimN(P;) = q, and since P;WH = WH - WH(H'WH)-1H'WH = O the columns

of WH form a basis for N(P&). Then by R(L') = s, Lemma A5 implies

r(e)L') = R([VE,1']D) - q.

Proof of Corollary 4.2: Theorem 3.2 implies a GMM test with W = A, L

H'C is asymptotically equivalent to a Hausman test based on qT='% - D

Applying Proposition 4.1,

R(M) = R([4H,1']) - q = R([aH,cH]) - q

Proof of Proposition 4.%: From the proof of Theorem 2.1 it

that

my= (YT + a) PWL Q'LPW(YT +q) + op(l).
Therefore it suffices to show that if R(Q) = r-q, then
P;IL'Q-LPw =y =v!l - vyla@'v-in)-ly'v-l.

We know that R(PWVP;) = r-q. If

R(LPWVP;L') = r-q, then by Lemma A2,
L (LPwVPwL )L = (PwVPw)'

so that by Lemma A3

follows

(4.36)
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P'(P.VP')"P_ = P'L'(LP_VP'L')LP .
w w W w w W W w
Then it suffices to show

U-P(PV')P =0.

¥ W W W

Let F be a symmetric square root of V, with F2 = V. Then

[t
1

' "V=p = p-l[1-F-l rg-lp-ly)=lyg'p-1
PW(PWVPW) P, =F [1-F-lu@'Fl¥-1H)-14'F (A.37)

FP'P FFP') = P'FJF-Ll.
W W w

Now FlHH'F-L1P-l1uH)-1H'F! and FP;I(PWFTP‘;)'PWF are idempotent by Lemma
' *)- -l A —1 —1 -1 ' -1 = =
A4. TFurther, [FPW(PWFFPW) PWF] FLHE'P-lP-lH)-1H'F-1] = 0 by PH
0, so that I-F-1H(H'F-l¥-lH)-1H'F-l - FP!(P FFP')"P F = G is
w W w w

idempotent. Therefore

R(G) = trace(G) - r-q—trace(PWVP;(PwVPw)’) = 0 by Rao (1973).’

For g(z,b) linear in b, equation (A.15) implies that we can

replace YT +a by G1T and PW,V,L by P, ,VT,LT respectively in the above

argument to give numerical equality of By and Bom
Proof of Lemma 1.4: The difference A*¥2. - A2 gatisfies
%2 _ 122 = o '3[ 7P' (P ¥2P')-P.F - FP'L" 2pry, -1
A A2 = o'F-L[FPL(PF?PL)"PLF - FPLL' (LP F2PL )LP F]F-la  (A.38)

which is non-negative, since the matrix in square brackets is

idempotent by Lemma A4.
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Proof of Proposition 4.5: Note that [o,IK]v-l = (v-1),,L, so that by

nonsingularity of (V-1 ),, we can take L = [O,IK]V"1 . Then LP = [O,IK]U
and by UVU = U , Q = [O,IK]U{O,IK]' = U22. Then the degrees of freedom

of this test are rank(Q) = rank(U = k, by Proposition 4.1. Also

22)
171 tA= = (R
P'L'Q-LP U[o,IK] U22[O,IK]U (A.39)

2 = 1ty 1A= = [ -] = *2
so that A a'P'L'Q7LPa a2U22U22U22a A¥*e,

Proof of Proposition 4.6: By Theorem 3.2, this Hausman test is

asymptotically equivalent to a GMM test with W = v-l and

-1
V11 0

0 0

L= H and numerically equal if g(z,b) is linear. By

Proposition 4.1, the degrees of freedom of this test is

R([V-lH, L']) - q
Hy H

-1
LPYARTRY

r([H, Vi']) - a = R( ) - q

H,

H 0]
R(

- = - -1
U g q = R,V V3iHy)
o EVolyr Hy

= s - -1 = [ -1
by R(H1) q- Since H, - V,, V3iH, [ Vo, V3 Ik]H,

- "1 = 3 - -l = -
r([ v21v11,1k]) k, so that dim N([ vV, 3 Ik]) r-k, and
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V11

v

[-v,,v3i, 1.]
k 21

Rt = 0 with [V}, V},]' of rank r-k by V non

singular, Lemma A6 implies

R(H v..vl 1) = r( T ) = (r-k)
2~ Vo1l ™y v H r=x).
21 2 ,
v;ﬁ 0
let A = . Then H'VTlH, = H'AH = H'AVAH so that
0 0 1711

M= (H{V;%H1)'1 - (H'V-H)-l. The form of the noncentrality parameter

given then follows by Theorem 3.1.

Proof of Proposition 4.7: Let W = V-1, so that P,= P, and let

W

L= [H;VT%,O] be the linear combination matrix for the GMM version of

this Hausman test. Define the kxq matrix, B = H2- V21VT%H1.

[0,B']. Then by

Straightforward calculation shows that LV-H'
P = VU and H'U = 0, LP = LVU = (LV-H')U = -B'[0,T, U and Q =

B'[O,IK]U[O,IK]'B. It follows that

P'L'Q7LP = U[O,IK]'B(B'[O,IK]U[O,IK]'B)‘B'[O,IK]U (A.40)

From the proof of Proposition 4.6 the degrees of freedom of the Hausman
test is d; = rank(B). If d; = k, then by nonsingularity of

U,, and Lemma A2, B(B'UzZB)‘B' = UE%' Then equation (A.39) gives
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Pt A - = tor=1
P'L'Q-LP U[O,IK] U22[O,IK]U | (A.41)

Then asymptotic equivalence of m_ and hT for dh = k follows from

T
equations (A.39) and (4.41).

The numerical equivalence of Eﬁ end m, for rank(B) = k follows
from the exact same argument, replacing V by VT’ H by HT = - G2T' B by

= - -1 = - ' "l -l ! "1 = -1
BT HTZ vT21VT11HT1’ P by PT I HT(HTVT HT) HTvT » U by UT VT PT

_= M "‘1 =_.
qp-  Then By G1TUT[O,Ik] UT22[O,Ik]UTG1T my,
Now, if rank(B) # k, rank(B) < k, so that the degrees of freedom

and YT+ a by G

of the Hausman test are less than the degrees of freedom of e It

follows that there are a, values such that xy # O and x;f = 0 implying

mT has higher local power. If 5= By, so that o = [O,Ik]'By, equation
(4.40) implies
x;? y'B'[O,Ik]U[O,Ik]'B(B'[O,Ik]U[O,Ik]'B)'B'[O,Ik]U[O,Ik]'By

. *2
YBU22BY_)‘- ’

]

so that d; < k implies the Hausman test has higher local power.
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Footnotes

Section 11

1  The stationarity assumption is not essential. Research in
progress indicates that an asymptotic testing theory is available even
when moment matrices do not converge. Thus our stochastic assumptions
could be weakened and the methods of, e.g., Domowitz and White (1982),
could be used. The stationarity assuﬁption simplifies notation,

without changing any of the essential results.

2 0ne method of obtaining the sequence Qa is to form
- v v -] . = = '
Qg ST(STQTS T) Sq» Where plim Sp = S rank(Q) = rank(SQs'), and SQS
is nonsingular. Then Q™ = s'(sqs')"ls follows from Lemma A2. Holly
and Monfort (1982) have presented methods of forming a generalized
inverse when required for a maximum likelihood Hausman test.

3  The most important case where g(z,b) is linear in b, is when
a linear equation is estimated by instrumental variables. Such an

example is discussed in section five.
Section III

1 Specification tests which use different orthogonality
condition functions, such as the test based on the difference of two
weighted least squares estimators suggested in Domowitz end White
(1982), can be accomodated by stacking all the orthogonality condition
functions into one vector and specifying that AT and CT have all zeros

in certain rows and columns.

2The expressions -(H'AH)™}H'Ax and -(H'CH)"1H'Ca are the
directional derivatives of plim %T and plim 3& with respect to ¢ in the

direction 8§, evaluated at ¢, Thus, X% is a quadratic form in the

difference of the derivatives of the asymptotic bias of"BT and 3&.
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3  An alternative, more complicated, derivation of the matrix
difference form of the covariance matrix of 4p can be obtained using
the asymptotic Rao-Blackwell theorem of Hausman (1978, Lemma 2.1).
Using Lemma 2.1 of Spencer and Berk (1981) it can be shown that for any
q dimensional nonsingular matrix J, bT = j%T + (I—ini is also a GMM

estimator of bo using the same orthogonality condition functions.
Section IV

1  We have implicitly assumed that the same estimator VT of V is
used in forming each test statistic. Fach of our results on numerical

equality depend on this assumption.
Section V

1  fThese tests will be based on the 2SLS estimator, which is
consistent only when the null hypothesis of correct specification is
true, so that the tests will be gradient (or Lagrange multiplier)
tests.

2 fThis derivation makes precise the method by which the Hausman
(1978) test of Spencer and Berk (1981) can be obtained in an expanded
regression framework. The form of this test sthistic is that of
Lagrange multiplier test for the inclusion of X1S in a regression with
right-hand side variables i1 and residual vector fi. Note that the
statistic Eﬁ is numerically equal to 5& in the Spencer and Berk (1981)
case, and explicitly avoids having to choose a selection matrix S. An
alternative method for testing for the exogeneity of a subset of

included variables is given by Holly (1982).
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