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We investigate the statistical properties of an
estimator which is obtained on one Newton-Raphson step from an
initial consistent estimator using a stepsize which maximizes the
likelihood function. We show that the maximum likelihood stepsize
has a probability limit of one and, consequently that the resulting
estimator is asymptotically equivalent to the maximum likelihood
estimator. This result is useful in hypothesis testing applications and
as a crude diagnostic check of the validity of a one-step procedure.

*
Discussions with Daniel McFadden led to this note and

Jerry Hausman has provided useful comments.



I. Introduction

In spite of recent strong advances in computing technology, the use of
one Newton-Raphson ( or Gauss-Newton) iteration starting from an initial
consistent estimator can still provide a useful alternative to full maximum
likelihood in large problems or problems where the likelihood function is
not well behaved.1 It is well known that when the step size on this iteration
is chosen to be one the resulting estimator is asymptotically equivalent to the
maximum likelihood estimator (MLE).la An alternative choice of step size is
to choose the step size which maximizes the likelihood in a one dimensional
search. For example, if the initial estimator is a maximum likelihood estimator
subject to parameter restrictions, and one iteration is used to obtain an
unrestricted estimator, the use of the maximum likelihood step size can
guarantee that the resulting likelihood ratio statistic is positive.2 We
show that, under appropriate regularity conditions, the maximum. likelihood
step size converges in probability to one, so that the resulting estimator is

asymptotically equivalent to the maximum likelihood estimator.

II. The Maximum Likelihood Step Size

Let 0 be a g x 1 vector of parameters, and z, be a 1 x p vector
of random variables, t=1, ..., T. Let L(8) = “%T‘ lnf(zl, ceos lee) be

the normalized log-likelihood function. We will assume that L(B) is twice
continuously differentiable and will denote the g x 1 gradient vector by

Le(e) and the Hessian matrix by Lee(e). The following assumption specifies

the data generating process.



Assumption 1: For each T the random vector z e-+s Z, has probability

ll

density function f(zl,\..., zTIGO), where 60 lies in the interior of some

T

compact set S.

 Consider an estimator 6 of 90 . We are interested in the properties of

an estimator 6 obtained from the iteration.

6.= 8 + }\TDTLO(G) (1)

where D is a g x g matrix and AT is a suitably chosen step size. 1In
order to obtain the asymptotic Properties we make the following assumptions

concerning L(6) and 5 .

’

Assumption 2: For any GT such that plim GT = 60

plim Lee(BT) = -J (2)

where J is positive definite.

~

Assumption 3: The maximum likelihood estimator 0 satisfies L(0) = max L(0)
9 in s

and

plim 6 = Go (3)

where 90 is contained in the interior of the compact set S .



Assumption 4: For some a > o , 8 satisfies

26 - 8) = 0, (1) (4)

lim 1lim sup P(Tza(g - 8@ - 5) <b) =0 (5)
b*o T->0

where 5 is restricted to be greater than zero. The matrix J of

Assumption 2 is the information matrix, and this Assumption specifies that
Lee(@) has a uniform convergence property. Assumption 3 specifies that the
MLE is consistent for 90. For simplicity we do not give fundamental regularity
conditions which imply that Assumptions 2 and 3 are satisfied. Assumption 5
states that Ta(é - é) is bounded in probability and does not have a limiting
point mass at zero. This assumption will be satisfied for a = 1/2 if both

~

/T (6-86) and /7T (6 - 6,) have limiting normal distributions and 0

is not asymptotically equivalent to 6 . A case where Assumption 5 might

be satisfied with, say, a = 3/2 is if 8 is itself obtained from an itera-
tion like equation (1), so that 6 is first-order equivalent to 8 but not
second order.

To obtain our result we make the following assumption concerning DT and

the step size XT .

Assumption 5: The matrix DT satisfies

plim D = 37 (6)



and the step size AT is obtained from solving

max L(6 + AD Le(e)) (7)
0<A<A
where A > 1 .,
Equation (6) will be satisfied if DT = -Lee(e)-l » as for Newton-Raphson,

or if DT is the outer product estimator presented in Berndt, Hall, Hall,

and Hausman (1974).

Theorem 1: If Assumptions 1-5 are satisfied then plim AT = 1 and
. a,a =
Plim T (6 - §) =
Proof: Measurability of AT follows from Jennrich (1969), Lemma 2
Let 0 =8 + DTLG(G) - We will work with sequences which are tail equivalent

to ST ’ OT ; 8, and 8 without new notation. A mean value expansion of

Le(é) around 0 yields

T (§-8)

a .z a Ay (A A
T (6-0) + DTLee(S)T (6-6) | (8)

. g~ A
r + DTLee(e)]T (6-8) = op(l).

where © lies between 6 and 6 , so that by Assumptions 3 and 4

plim © 9 and the third equality follows by Assumptlons 2, 4, and 5.

Expanding L(e) we find that

~

T a[L(‘é)—L(e)] = %-Ta(é—g)‘Lee(e)Ta(é-G) (9)

1

Qp(l)Op(l)op(l) = Op(l) .



where € 1lies between 6 and 6 and the second equality follows from

equation (8) and Assumption 2.

Using equation (9) and expanding L(8) around L(8) in A , and using

the fact that 6 is the MLE,

0 < 2L - L@

22 [L(8) - L(®)] + o, (1) (10)

20, = " X
T Le(e) DTLe(e)(l - XT)

1 2 2a_ ! N ~
+ (1 - AT) T _Le(e) DTLee(G)DTLe(G) + op(l).

where O =0 + XTDTLe(é) for XT and 1. By Assumption 5 and J_l positive

definite XT>O with probability approaching one as T grows (see Berndt,
Hall, Hall, and Hausman (1974) Gradient Theorem). By the first order condition

for AT and A>1 it follows that
— ~ _ < .
LG(G) DTLe(G)(l KT)-— 0 (11)
From equations (10) and (11) we obtain

: 2 a o~ .- ~
0< (1 - KT) T LS(G) DTLee(G)DTLe(G) + op(l) (12)

(1—AT)2Ta(5 - By =t - 6) + 0, (1)

where the last equality follows by AT bounded, so that by Assumptions 3, 5

and equation 8, plim 6 = 60 + Op(l)plim(é -0) = 60 , and by

T30 - 8) = T°(8 - 8) + o (1) = 0_(1).
P P



Equation (5) of Assumption 4 and Equation (12) imply that if AT does
not converge in probability to one equation (12) will be violated.
Let €, 8§ > 0 and (Tn) be a subsequence such that for each Tn'
2
P(A, = 1)" >¢) > 6 (13)
n
Equation (5) and J positive definite imply that there exists Tl and

N > 0 such that T > Tl implies
2a = A - ~ A
PO -8 -0THE -8 <am > 18, (1)
so that for all Tn > Tl

p(Tza(AT -0%E - BTG -8 < -ney> 5/2 (15)
n

violating equation (12).

From equation (1) and the definition of @ it follows that

a A -

T (6 - 9)

a s a ~
T (6 -06) + (1 - AT)DTT Le(e) (16)

1 - 0_(1) = 1 1)O_(1)0 (1
oP( ) + (1 AT)DT P( ) op( )+ op( ) p( ) p( )

OP (1) ,

where the second equality follows from equation (8) and the third equality

from plim AT = 1 and Assumption 5.

3. Discussion

The fact that the maximum likelihood stepsize converges in probability to

one can be used as a rough diagnostic check of the validity of a one-step




estimator. If the likelihood is correctly specified and the sample size
is large then XT should be close to one, so that if the maximum likelihood
step-size is far from one the sample may be undersized or the likelihood is
misspecified.3

One of the applications of Theorem 1 is to situations where it is useful
to guarantee that the iteration of equation (1) results in an increase in
the likelihood function, such as when testing hypotheses. Of course, it seems
reasonable to expect that a stepsize of one should result in an increase in
the likelihood in large samples. We verify that a stepsize of one will result

in an increase in the likelihood function in the following result.

Theorem 2: If Assumptions 1-5 are satisfied then, for 6 = 6 + DTLG(G) ’

L(é) > L(B) with probability approaching one as the sample size grows.

Proof: Expanding L(0) in a mean value expansion around 6

2a

222 [5(8) - L(0)] = -TaLe(é)'[Ta(é -8)] - —%;45 - é)”Lee(é)(é-é> (17)

where 6 lies between 6 and 6 , so that plim 8 = 90 . Expanding Le(é)

~

around 6
a s "a.'_"__ _
T Le(e) = LGG(G)T (6 0) = Op(l)op(l) = op(l) (18)

where the second equality follows from Assumption 2. Then by equations (17)

and (18) and T%(d - §) = o, (1),



(L) - L@)) = 1%L (6) “IT*(§ - §)] (19)
1 a, A oy Ay md
- —3—'1' (6 - 9) Lee(e) (6 - 8)T° + oP(l)
=0 (1)0 (1) + —=1%® - §) g %6 - 8) + o (1)
p p 2 p

=—§—Ta(5— 9”3 @ -8 +0 (1).
P

The conclusion follows by positive definiteness of J and Assumption 4, as in
the proof of Theorem 1. Thus, both AT and whether or not the likeiihood
function increases can be used as rough diagnostic checks for one-step
Procedures.

Finally, it is straightforward to show that our results apply to situations
where criterion functions other than the likelihood function are used to obtain
estimators. For example stepsize obtained minimizing a quadratic form in moment
functions would yield on estimator which is asymptotically equivalent to a

one-step géneralized method of moments estimator (see Newey (1983) Theorem 3.2).



la.

Footnotes

An important example where there is often a large number of parameters

is the nested logit model of McFadden (1981).
See, for example, Zacks (1971), pp. 250-251.
See, for example, Berkovec, Hausman, and Rust (1983).

A format test based on the asymptotic distribution /FE-(AT - 1) would be
would be difficult to obtain. Some Preliminary calculations, which are
not reported here, indicate that this asymptotic distribution would
involve third derivatives of the likelihood and the reciprocal of a

quadratic form of asymptotically normal random variables.
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