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by H. Moulin

These notes were used for a graduate course at Princeton University in the
Spring of 1984. I wish to thank the Department of Economics in general and
Hugo Sonnenschein in particular, who gave me the opportunity to deliver them to

a very stimulating audience.
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Exercises are proposed at the end of Chapters 1 to 8. WNo precise allocation of
the papers listed in the bibliography to the proposed results is given. Also,
I have neglected to -méntion the very numerous distinct terminologies that are

attached to each concept.

Chapters 1 to 5 present the social choice a la Arrow, where profiles of

individual preferences must be converted into a collective preference or, more



modestly, into a binary relation expressinc society's ovinion over pairs of
outcomes but lackinc transitivity. The former leads to impossibility results
(Chapter 2) while the latter cgenerates practical ways (algorithms) to deal with
the majority relation. Finally, Chanter 5 exnlores the single-peaked restric-
tion of the domain where Condorcet winners (in a slichtly more oeneral accepta-
tion of the word) are the uniguely best arrovian agareagators.

Chapters 6 to 9 compmare voting rules (for which Rrrow's Indenendence of
Irrelevant Alternatives is no longer an issue) by their strateocic features.
Scorina methods (ceneralizing the familiar Porda rule) behave nicely if we are
ready to accept a random outcome (and do not insist upon ex~ante efficiency);
moreover they choose consistently across societies of variable sizes (Chanter 7).
On the other hand, voting by veto methods disrlays a remarkable robustness to

non-coorerative and cooperative behaviors of the aaents (Chapters 8, 2).



Chapter | : SOCIAL CHOICE CORRESPONDENCES AND

SOCTAL WFLFARE ORDERINGS.

Basic definitions.

A collective decision problem arises when several individual agents
together choose among several outcomes sbout which their opinions conflict.
We denote by N with current element i the set of agents (society) and

by A with current element a , the set of outcomes {or alternatives).

Social choice correspondences idealize systematical methods for
achieving collective choice (voting rules) that do not preclude any pattern
of individual opinions nor amy restriction on the set of available outcomes.
They are universalizable choice methods (institutions) that ignore, as a
matter of principle, where the actual outcomes come from and why the
living’agents are endowed with such particular preference pattern. ‘

Denote by L(A) the set of linear orders (complete, transitive,
antisymmetric binary relatioms : any two outcomes are comparable and
indifferences are ruled out) and by u, € L(A) the opinion of agent i
(his preference ordering). Then a preference profile u associates t¢

each agent a particular ordering :

u = (ui)i €N where u belongs to L(A)

A social choice correspondence (in short s.c.c.) is a mapping S

associating to any preference profile u € L(A}N and any (nonempty)

subset B of 'A » 8 (nonempty) subset S(u;B) of B , called the choice
;325 of B at profile u . When the choice set is a singleton for all u,B,
we say that the s.c.c. is decisive ; equivalently we aail it a social

choice function.



Note that individual preferences are restricted only inasmuch
as indifferences are forbidden ; +his restriction, moreover, is mainly
pedagogical : mosi of the results presented below can be rewritten
(sometimes in a less transpareni form) to allow for preference Ezgprderings
(complete, transitive, reflexive relations), (see e.g. Exercise 1, Chap. 1).
Typically our statement of Arrow's theorem on L(A) is stronger than in

the set R(A) of preference preorderings.

2 . Binary choices :

This is virtually the only context where one faﬁily of social

choice correspondences emerge unambiguously from sxiomatic argumenis.

Let A = {a,b} be the outcome set. & preference profile is now an
element u 1in {a,b}N (ﬁi = g gstands for ui(a) :rui(b) : remember

indifferences are ruled out for simplicity).

The s.c.c. S 1is said to be anonymous if it is a symmetrical mapping
of itd |N| variables (equal influence of each and every opinion). Next

we say that S is 3

monotonic if a new supporter of outcome X can not ruin x's

election : for all profile u and agent i

{x € s(u) , ug # x} = {x€ S(vi,ui) vhere Vv, = x}

strictly monotonic if a mew supporter of an outcome already in the

choice set, makes it the unique winner : for all. profile u and agent i

{x € s{u) , u; $#X} = {S{vi’“«-i) = {x} where v, = x}

For binary choices monotonicity is equivalent to strategyproofness (see
Chap. 6 below).



Far any twe arunegative integers p,9q sach that p+q < n+l (where

n = ||y, define the following s.c.c. :

Sp T{ﬂ} S a iff at lesst p agents vote &
5%

" Sp d(u) 3p iff at least q agents vote b
b4

Notice that. Sp q is a s.c. function if and only if p¥q = n+l .
3

Lemma 1|

The s.c.c. § is anonymous and monotonic if and only if S = §

Psq
for some integers p,q as above. Further, it is strictly monotonic if

prg = n or n+i .

Corollary HMay [1952 ]

There is exactly one s.c.c. which is together anonymous, strictly
monotgnic and neuiral (non discriminating among outcomes : permuting a,b

in every agent's opinion permutes correspondingly the choice set) : it is

the (binary) majority ruie s* :

(§ =§ if n=2p or n=2p-1, p>1l
PP

W, . o "
X € 5 (u) iff at least as many agents vote for x as for y .

3 . Social welfare orderings and Avrow’s independepce of irrelevant

alternatives.

From now on the set A of outcomes has at least three distinct

elements.

Take & social choice correspondence 5 and fix a preference profile

u . Consider the choice function B + S{(u,8) selecting a choice set




S(u,B) within any conceivable subset B of A . If society was made of

a single agent, the choice set from B would be simply the best preferred
ocoutcome (or outcomes if indifferenmces are allowed) of this agent over B .
Thus the natural, authrcpomorphic, inciination is to require the same
level of rationality from a collective choice function, whatever the
number of aéencs': "il faut que les proc&dés d'une assemblée délibérante
se rapprochent autant qu'il est possible de ceux que suit 1'esprit d'un
seul individu dans 1'examen d'une question” (Condorcet). Farﬁally we need
a preordering R(u) over A& (complete and tramsitive bimary relatiom)
such that for all BCA and a €8 :

@

a € s(u,By > {a R{u) b for a2ll b € B}

We shall write S(u,B) = argmax R{u) and say that R{u) rationalizes
‘ B
the choice function S(u,e) . In this case the s.c.c. S 1is completely

described by the mapping u + R{u) (from preference profiles into

preorderings over A ). The latter is called a social welfare ordering

and was originally defined by Arvow [1963 ] in his semimal formalization
) ,
of collective choice. In the s.w.o0. approach, individual opinions are

"agregated into a "

social" preordering ; although in general no actual
agent is endowed with that representative opinion, some ideal leader
exists, who would internalize exactly this opinion : s.w.o0. are convin- .
cingly simple choice methods. Their shortcomings stem from Aryow's IIA
axiom and in turn from Arrow's impossibility theovem: Chaptexr 3. Our
iliustrative example uses Borda's s.w.o., namely Bo(u) is derived from

the vector of Borda scoring 8(u):

B(usa) = ) ﬂi(a)
i €EN

where u, is the conventional fixed-scale utility with range {0,...,p-1}
(thus ui(a) = p~-1 means that a is top of u, vhile ui(a) = ) means

that it is bottom).



An argument in the restaurant.

In this famcy restaurant & Soufflé for dessert is & must ; the
smallest piece is for three persons end monoflavoured. Today our party
- John, Kenneth and Truman - must choose among Chocolate, Vanilla,
Strawberry or Peach. You order before the meal but quite often by the end
of it, some flavours are out. e don't want to bother about choices with
full stomach, says John. So let's rank these flavours by their Borda
scores, and we will have the first on our iist of whatever is available".

This gives :

A P C 3

C v v 2

S C S i

P b P 0
_Jahn Kenneth Truman Borda scores

henheyfrom the Borda scores V{(7) > C(6) > P{3} > ${2) . So when the
waiter amnounces that only Vanilla and Chocolate are ieft, they order
Vanilla at once. One minute later, Truman strikes his forehead : 1 am
very sorry, gentieman : I have put Strawberry and Peach at bottom because
for years I was allergic to them ; 1 just remember that in my last test
a week ago, these items proved safe to me, which induces me to changé my

ranking as ¢

C>8 > 2>V

As Truman is known to be absent-minded but very honest, John willy nilly

performs the Borda count again and this time :

C(6) > V(5) > P(&) > 5(3) z £ e ehecdi

Angry Kemneth t»= Joh= : “your method is poor because our actual choice

(between Chocol#ie znd Vanilla) depends so much on our tastes for soufflés



that don't even exist for us and that we would uot choose anyhow. What if

1 ask that we think about Lemon soufflés (they were on the i1ist yesterday)
or Camembert soufflés {(they could be on the list tomorrow) ? True, they
don't show up on the list today, but what's the difference with unavailable
Strawberrys 7 We ought not to hurry aud choose only among actually
available soufflés. Since only Chocolate and Vanilla are majority vote

in the unavoidable voting rule, su we shall have Vanilla".

At this point the waiter comes back and tells that Strawberry and
Peach are available afterall, which makes John laugh : “gsee how your method
is puzzling : among the four flavours we choose Chodolate (by Borda again)
g0 you should think Chocolate is our “optimum optimorum” ; yet between
Chocolate and Vanilla you want us to choose Vanilla so Chocolate is not
our first best afterall ; no rational person would be so unconsistent”.
"I don't see why a collective body should behave according to the

rational that we feel is natural for individuals”™. "Condorcet himself,..."

"Gentleman, here comes our Soufflé ; what flavour again ?7".

2, .
Definition

Given A , the set of outcomes, and scciety N , & social choice

correspondence § is Arrow's independent of irrelevant alternatives

(in short AIIA) if for any two profiles u,v aud any subset B of A we

have :

the restriction of u and v to B
{ } = {S{u,B) = S(v,B)}
coincide

{(where the premises mean ui(a}—<ﬁui{b) “ vi(a} %ivi(b) for all a,b

in B}.

This says that choice among a subset of outcomes depends only upon

preferences over that subset. Thus the choice of the maximal universe A



encompassing sll possible outcomes is not conflictnzi ¢ & posteriori
constraints that narrow down the scope of cheice alsc achieve informational
preferences can be kept at their minimum since only opinions about ocutcomes

ultimately feasible, matter.

Typically the s.c.c. associated with the Borda s.w.c. violates
AITIA axiom. On the other hand, consider for amy subset B of A the
restriction of pt@fil@‘ u to B and pick the cutcomes with best corres-
ponding Borda score. This defines & Borda-like s.c.cs that i) satisfies

the AIIA' axiom, 1i) is no-longer derived from a 8.9.0..

As Arrow's theorem (and the related results of Chap. 2) will show
there is no way to reconcile the s.w.o. approach with the ATLA axiom
as long as individual preferences over A ave aot restyicted and A
contains at least three different outcomes. Hence three routes 3 the
first (Chap. 7) studies social welfare orderings inspired by and more
gener;1 than the Borda scoring ; the second, uore explored route (Chap. 2
to 4} insists on Arrow's ITA axiom and seeks to preserve as much of
rationality as possible in their choice function : this yields several
extensions of the binary majority rule ; the last route {(Chap. 5} mzeks
to sufficiently restrict the domain of individual preferences =o that
8.w.0.'s exist that satisfy the AIIR awiom. Of oourse, when the set A
of outcomes is fixed once and for all, the contradiction vanishes because
the ATIA axiom disappears: the correspondence wu + S{v;A} only matters.
This is the point of view of the stratsgic analysis of voting rules
{Chaptexs 6, 8, %9}. o



Exercizes on Chapter |

Exercize 1. Generalization of May's result when indifferences are allowed.

Individual preferences take now the form :

U, = X if agent 1 strictly prefers x to y ,
where {x,y} = {a,b} .

= {a,b} if he is indiffsrent.
Say that S is monotonic if for all u and i :

{x € S(u) ; ui&y#x} = {x & S{vi,u"i) where v, = ia,

and

{x € S(u) 3w, = {a,b}} = {x g S{v,.u_;) where v, = {x}}

generalize similarly strict monotomiecity.

a) Show that there is exactly one anonymous strictly monotonic and

neutral s.c.c. given by : ,

x é‘ﬁﬁ(u) iff at least as many agents strictly prefer = to

¥y &8 y Lo X .

b) How does the characterization of anonymous + efficient + monotenic

(resp. strictly monotonic) s.c.c. $ generziize ?

Exercize 2. Generalization of Lemms 1 ° Monotomic social choice functions.

o0 s # H,
A strong simple game (see Chap. 2.2 is & subset W of 2 \¢ of

-

which the elements are caslled the winuning coalivione and such thas :



TEW -~ w\T &Y alr ¢ CH¥
{T€W and T CT'} = {I° €W}
1) To any strong simple game, acsociate the following binary s.c.f. :

Sw{u) =x iff {1 €E€R/Y ui(x) >ui(y)} € W

where {x,y} = {a,b}

show that SW is a monotonic s.c.f. and that conversely any monotonic

g.c.f. can be written g § = Sw for some strong simple game ¥ .

2) Given a strong simple game (¥ , define M to be the set of

inclusion minimal elements of (¥ . Prove that M gsativfies
{W,W' €M and WCW')} = {W= W' all #,w’

and

. for all wca‘u{BWOEMswgs::W}w{vaEM:wonw;&a}

Conversely any subset M of coalitions satisfying these two properties

ia the set of inclusion minimal elements of some strong simple game W .

3) For [H| = 4 there is (up to a permutaticu of agents) exactly

three strong simple game with associated M
M= {{1}} , M" = {{i2Ha3Hm:}} . = = {{12}{13}H{14}{234}}
For |[N| = 5 determine the seven types of stromg simple games.

4) To any vector (ml’””mn) of convex weights such that for all

coalition W we have :



e

I
iéwai * 32

one can associate the weighted strong simple game :

WEW <> é a, > %

i€ew
Prove that all strong simple games are of this type for |[N| <5 , but
not for |N| >6 . .

Exercize 3. Unavoidable ties in social choice correspondences.
(Moulin [1983 ]).

Let A and N both finite with respective cardinality p and n .

'y,

ot - .

©

g
Clearly if n = p = 2 , anonymity and nezutrality together are not
r
compatible with single-valuedness: one cannot solve the tie:

u;(a > u,(b)

u,(b) > u,(a)

without breaking either anonymity (let agent 1 arbitzate) oxr neutrality
(let outcome a prevail). To pursue this argument we define formally the

neutrality axiom (no discrimination among outcomes) :

Neutrality : (nmo discrimination among outcomes) : if g is a

permutation of A into itself (a relabeling of the outcomes) through which
profile u 1is permuted as u® (ug(a) - ui(a'l(a)) then

s(u’,0(B)) = 0(S(u,B)).

a) Prove that the following two statements are equivalent :



i1

i} n has no prime factor less chan or equal to ¥ .

ii) there exists on A,N an anonymous and neutral s.c. function
Hint for i) = ii). Use a repeated versiop of the plurality s.c.c..

Under assumption i) one can comstruct an anonymoua‘é;d‘neutral
s.cqtfgn¢;iég,v which in addition, is efficient (namely selects only
Pareto optimal outcomes) : for instance by repeating the plurality s.c.c..
Suppose now that the set A of feasible outcomes is fixed and we seek

an anonymous, neutrai sad single-valued function: u'* S(u,A). Then the

efficiency axiom becumes "costly” in the following sense:

b) There exists an anonymous, neutral, efficient and single-valued

function u -+ S(u;A) if and only if property i) holds.

¢} There exists an anonymous, neutral and single-valued function
u + S{u,A) if and only if iii) holds :

iii) p can not be written as the sum of non trivial dividors of =n .

Hint : Take n =2, p = 3 (hence iii) holds but i) fails) and set

A = {a,b,c} . If both u;su, agree on their top outcome, take it as’
S(ul’uZ) ; otherwise take the remaining outcome. In general, fix n and
set Dn to be the set of integers q that can be written as the sum of
non trivial divisors of n with the convention 0 € B ; the proof goes
by induction on p . Assume p & Bn and fix a profile u . For all t ,
0 €<t <n, denote by At the (possibly empty) subset of outcomes that
are ranked first by exactly t agents. Since p is not in Dn , and

p = Z IAtf s at least one t exists such that IAt! &D
0€t<n n

and [At] <p . Take the largest such t and apply the induction

assumption.
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This proves the "if® statement. To prove “only 1{" suppose péﬁi%‘z
it [ =3 # PR Y A 5 o &5
ofn be written ag p = q,py * * oGP whava 9 g, 8re non gero
intagers and Pyrecespy are pairwise dimtinct prime divisors of n: hence
iplss.pk} im a dlvisor of n. Construct a profile among Py-cePy
agenta and Pl ¥ oaa. * p}g outoomes that cannot be declazively srbitrated

upon wnder snonymlity and neutrallty; next replicate agents and outcomes,
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Chapter 2 : RATIGHALIZABLE SOCIAL CHOICE COGKRESPONDENCES @

IMPOSSIBILITY ReEcvLTS.

1 . Arrow's theorem.

Definition 1

Given A and N , a s.c.c. S is said to be rationalizable if

for all profile u there is a bimary relation R(u) "on A such that

$(u,B) = argmax R(u) = {a&B / a R(u) b all b € B}
B fer all B

Whenever R(u) is a preordering of A for all u , the mapping R
is just a social welfare ordering (see Chap. 1.3 above) and S 1is the
associated s.c.c. : we call it transitively rationalizable. Yet
transiiivity of R(u) is not necessary for rationalizability : we can
still interpret a R(u) b as “society does not strictly prefer b to a"
as long as relation R(u) is acyclic namely its asymmetric component

Pu) (aP(u) b iff a R(u) b and mo b R{u) a) has no cycles.

Lemma |

if S 1is ratiomalizable, for all profile u , the binary relation

R(u) is called the base relation of the choice function S(u,s) . It is

given by :
a R{u) b iff a & SCu,{a,b})
Moreover R{u) 1is complete and acyclic.
We say that S 4is transitively rationalizable if it is rationalized

by a tramsitive relation. Equivalently S is deduced from a social welfare

ordering.



Theorem | {Avrow's theorem)

Suppose A& contains at lesst thiree outcomes. Then 8 1is a
transitively rationalizable s.c.c. satisfying the ATITA axiow as well as

the following unanimity condition :
{u;(@) >u () all i €W} = {S(u;{ab}) = {a}}
(collective choice is compatible with the Pareto dominance):

if and only if § is a dictatorial s.c.c. 3

T B RIS o ST 071

- %
for some 1 € H , where §;(u,B) = argmax ug all u,B

" B

L2
#
Lz

0f course the result could be stated for social welfave orderings :
& s.w.0. R satisfies ATTA and unanimity (the Pareto dominance relation
at @ is contained in ®{(u)) if and only if R 1is dictatorial (for some
i, R{u) = U, all u ). Yet the above presentation is more akim to the

next two theovems.

The above statement is siightly stronger tham in Ayvow [1963] (wheve
unanimity is replaced by & monctonicity aziom ~ Condition 2 - and non
imposition - Conditien 5 - : these two together are stronger than

unanimity).

When ihe coilective preference relation R(u) is vequired only

to be quasi-transitive (namely : its aniisymmetric component P{ul is

transitive) them the family of oligavrchic s.c.c.s. emerge. Given a

coalition of agents T (a nonempty subset of ) we define the T-
B

oligarchic s.c.c. ST as follows :



S;(u,B) = {a€B/ forno bEB : u.(a) <u

i i
Thus S,(u,B) is just the B. Pareto set w.r.t. the oligareny T . It is

rationalized by the quasi-transitive relation RT :

a R (u) b iff {for some i €T, u; () <u;(@}

Theorem 2 Brown [1975 ], Mas Colell and Sonnenchein [1972 ] (Review
of Economic Studies, 39, 185-192).

Suppose A contains at least three outcomes. Then S is a quasi-
transitively rationalizable s.c.c. satisfying the AIIA axiom and the

. W
unanimity condition, if and only if S 1is an oligaxchic s.c.c. (S = ST

for some coalition T }.

In particular if we insist on snonymity (one man, one vote) we are
left with an impossibility result (for transitive rationalization) and
a depressing possibility result (gmong quasi~transitively rationalizable
s.c.c., only the Pareto s.c.c. survives the AIIA axiom and the unanimity

condition).

2 . Nakamura's theorem.

Let us call arrovian the rationalizable s.c.c. satisfying the
AITA axiom. Arrovian s.c.c.s. contain more than oligaxchic s.c.c.s..
In the latter there is a sharp trade-off betwgen:&ééisiveness and symmetxy
among agents. In fact, there are arroviam s.c.c.s. distributing the
decision power in a much more flexible way. Nakamura's theorem fully

characterizes the arrovian s.c.c.s. which are, in addition, neutral.

() alt 1 €T},



Definition 2

Let W be a simglé game over gociety N namely a subzet of

2M\ ¢ , whose members are called the winning coalitions and such that :
WewWw = N\WEUW

MEW,HCW'} = W e

To any profile u in L(A)N we associate the dominance relation
gominance

Rw(u) on A

a Rw(u) b » {i€N/ u, (a) <:ui(b)} = N(u;b,a) € W

Suppose relation Rw(u) is acyclic for all profiles u : it
rationalizes a s.c.c. called the core of (¥ , which clearly satisfies

the AEIA axiom.

Cw(u;B) = argmax R(u) = {a €8/ fornmo b €B :
B

1Niu;b1a)€ W}

This s.c.c. is also neutral and monetomic in the following sense 3
for all wu,v EEL(A)N and all a2 € A if the only change from u to v
is that a has improved w.r.t. any other outcome (i.e. the restriction
of u and v on A\ {a} coincide and u, (a) >u,(b) = v, (a) > v, (b)
all 1 €N, b€ A ) then election of a is not threatened : if
a € S(u,B) then a € §(v,B) . This generalizes the definition of
Chap. I.2.

Lemma_g

Conversely let S be a neutral, monotonic, arrovian s.c.c..
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Then S can be uniquely written as the core correspondence of a simple

game W :

S(u,B) = Cw(u,B) for all u,B .

It remains to characterize the simple games { of which the
dominance relation is acyclic. We observe first that these games can not

be decisive over each pair of altermatives, i.e. many ties are necessary.

Fix A and a simple game @ on N . The dominance relation
Rw(u) is anti-symmetric (among 2 outcomes, one strictly dominates the

other) for all u if and only if the game § is strong :

3

wew - N\WEY

Lemma 3  (Condorcet paradox)

Suppose A contains at least 3 outcomes and { ie a strong simple
game over N . Then its dominance relatiom is acyclic if and only if [
is dictatorial, namely W = {W CN / i* € W} for some dictator i*en.

Proof

If W 1is i-dictatorial, the relatiom Rw(u) is just agent i's
ordering, hence an acyclic relation, Suppose now ( is non dictatorial ;
then pick an inclusion minimal winning coalition Ni (hence N] ¢ N).
Pick an agent i in Ni . Since i is not a dictator, coalitiom N \ i
is winning. Since Rl is inclusion minimal, Nl \ i is not winning,
therefore {i} U (N \ ﬁl} is winning. Now we construct & profile u

such that

for i : a>b>ec
for JEN, \ i : c>a>hb
for jEN\ N : b>c¢c>a
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One computes easily :

N(u,a,b) = N N(u,b,c) = {i} U(N \ N})

N(u,c,a) = N \ i

Henceforth
N(u,a,b) € W
N{u,b,c) € @
N(u,c,a) € @

So that Rw(u) has a cycle.

The ordinary Condorcet paradox corresponds to the strong majority

game (with a particular agent breaking possible ties)

Theorem 3  Nakamura [ 1975 ]

'Given a simple game (y on N , its Nakamura number v({§y) is the

minimal number of winning coalitions with empty intersection

Vo= b if N T+#¢

TEW

v = inf {[Tl /] TCW and N T = ¢} ‘
TEeT

Given A , the two following statements on (A,lf) are equivalent :

i) for all u in R(A)N » the relation VRw(u) is acyclic on A .

i) |A] < v
Proof

Suppose |A] < v(i) and that i fails : for some profile u ,

the strict component of relation {(u) has a cycle a,,...5a,, = 3
1 g2 2Re1T 21 o



i2

PR

namely N(a;al,az) € iy ﬁ{u;ak,ak%l) e, ... , N(“;ax’al) € W .

Since K < Vv there exists an agent i such that

i€ I8! N(a, , ) B
k=i,...,K % B

This implies a contradiction :

“i(al} <Iui(az) <fui(a3) <y <:“i(ai) <Iui(al) .

Conversely, suppose that v < |A| . We construct a profile u such

that Rw(u) is cyclic.

Denoting p = |A4| , we can find a sequence Ti””’Tp of winning

coalitions with an empty intersection @

Tk 6 W Y 311 k:wly@nﬂﬁp aﬂd m Tk # $ *
kmip:atpp
Since U T§ = N we can find a sequence Ri,b,,,kp of pairwise
k=1,...,p
disjoint (possibly empty) coalitions such that
R, CTg , k=i,...,p and U R =N .
k=1,.0..p
Next, order arbitrarily the outcomes
A = {hl,.en,bF} .
Since Tk is winning R§ = 9] R s iz winning as well,

k' # k

We now comstruct a profile u such that :
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bl <b2 < eue <bp

Q
=
-+
[ %) et

_b2 <b3 ey <bp <bl s

b <bp,; <. <bp <by <eee Kby s

R
w

Q
=]
=

b, <by <.ee <b_

We claim that relation Rw(u) is cyclic. Namely we have :

.

e
N(b,,b,) R, = b, P (Wb,

c
N(byoby, ) = Ry ™ by Plwdby

c

?

For instance the Nakamura number of the T-oligarchy game
W =W/ TCW} is 4.

As another example consider the g-quota game Wq (where q 1is an
integer lgl < q < |N]| ) of which the winning coalitions are those with
at least q agents (typically it is not strong if q ;>JE%11 ) . Its

Nakamura number is worth

. n where X is the smallest
v(wq) = {;_ ] [x]

integer not inferior to x .

Hence for a S5~outcomes problem among n agents a quota ¢ strictly
above ¢ 8 mn (e.g. 81 out of 100 ) is necessary to guarantee non

emptiness of the core Cq(u)

a€ Cq(u) _ iff no other outcome is preferred to a

by as many as « 8 n agents.



Although arrovian s.c.c.s. are rather numerous, they are very
uridecisive (they declare socially indifferent a huge number of outcomes)
as Nakamura's result (see also Exercize 2) imply. Thus in any practical
sense we will keep in mind that the rationalizability property and the

Arrow's IIA axiom are incompatible.

Proof of Arrow's theorem.

Step 1

Because S is transitively rationalizable, it satisfies the

fol%pwing property, called Chernoff's condition (see Chap. 4.1 below) :

S{u , Bl LJBZ) C S(u,Bl) U BZ all u,Bl,B2

Therefore S is efficient, for if a is Pareto superior to b
: (ui(a) >*ui(b) all i) then S(u,{a,b}) = a by unanimity hence

.
a,b €EB = S(u,B) C S(u,{a,b}) UB\ {a,b} = B\ b

Step 2
. For all a,b define N(a,b) to be the following subset of N\ g:

a subset T of agents is in N(a,b) if and only if
(1) for all profile u [{i €N/ ui(a)2>ui(b)}n T] = [S(u,{a,b})=a]
which by AIIA is equivalent to

(2) there is a profile u such that {i / ui(a) >*ui(b)} u T

and S(u,{a,b}) = a

Observe that N € N(a,b) for all a,b (a reformulation of unanimity).

Next we claim 3



(3 T &€ N(a,b) « N\ T ¢ N(b’a) all T,a,b

Take a profile u where {i / u;(a) >ui(b)} =T i.e. {i/ u;(®) >u;(a) }=
=N\T.If TeN(a,b) and R\ T € N(b,a) then we get a contradiction

"of (1), hence = . To prove + , guppose, per absurdum
T ¢ H(a,b) and N\ T & N(b,a)
By (2) this means that for all profile u : .

(4) {i/ ui(a) >Ui(b)} = T = S(u;{a,b}) = {a,b}

Pick a third ocutcome ¢ (remember lA[ » 3) and consider a profile

where

for 1 €T ui(a) > ui(c) > ui(b)

for 1 €N\ T ui(b) > ui(&) > ui(c)
By (4) and unanimity we get successively S({a,b}) = {a,b} and
S({a,c}) = a . Since § 1is transitively rationalizable this implies

S({b,c}) = b henceforth N\ T € N(b,c) . Similarly consider a profile

such as
for 1 €T ui(c) > ui(a) > ui(‘b)
for 1 €N\ T ui(b) > ui(c) > ui(a)

We get S({a b}) = {a,b} , S({a ¢}} = ¢ , hence S({b c}} = ¢ so that
T € N(c,b) . ‘

Step 3

N(a,b) = ¥ is independent of a and b . Pick 3 distinct outcomes

a,b,c and T € N(a,b) . Next comstruct a profile such as



B,
Lad

i (2) >, (a) > ou (b i€
ul(«.) dl(m} ulil}) i i

ui(b) )’ui(c) >*ui(a) i€ENYT

Then S(a,b) = a by (2) and S(c,a) = ¢ by unanimity. Hence 5{b,c) = ¢
(by transitive ratiocanalizatiom) so that T € N{c,b) . Therefore N(a,b)
does not depend on a . A symmetrical argument shows that it does not

depend on b either,

&, .
Step 4 N is a filter.

For T,T" in Nﬁl we must prove T NT' e so suppose per
absurdum T N T° %N* i.e. NY (TNTY) €X' . Let u bea profile

such that :

ui(a) >’ui(b) >"ui(c) i€rnTt’
u, () > u; (a) > u, (b) P €TV TF
u; (b) > u; (c) >’ui(a) i€T*\ T
u, (e) > u, () > u,(a) i €N V(TUTYH

Then, omitting u for simplicity, we have :

®
BN (TOT)Y ER = s{{a,c}) = ¢

T € I&Iﬁ = §{{a,b}) = a

e R = s({byel) =b

From Chernoff's condition it follows that $({a,b,c}) contains neither

"a,b or ¢, contradiction.



Step 3

From step 2 the filter N* is maximal
. \ 4 * .
(TEN o H\TEN) and contains N .

These three properties together imply (this is well~known and easy
- SN . . . . . .
to check) that N is an ultrafilter, which smounts (since N 1is finite)
. R
to the existence of an agent i  such that

Ten o iYer )

Let us prove that i* is a dictator. Fix a profile u and a
subset B and denote by a the top cutcome of W in B . For all b
in B\ a we have {i / ui(a) >»ui(b)} € ﬁﬁ hence S(u,{a,b}) = a .

By Chernoff's condition again this implies b & S(u,B) so S{u,b) = {a}

afterall, which was to be proved.

Exercizes on Chapter 2

Exercize |

Prove the thecorem on quasi~transitively rationalizable s.c.c. by

copying the proof of Arrow's theorem. Step 1,2,3 are unaffected escept fox

+3
® ., . . . . .
property (3). Then N is just a prefilter : it is stable by intersection.

Exercize 2

Prove that the only arvovian social choice functions are dictatorial.

Exercize 3 Anonymous arrovian s.c.c.s.

Let 5 be anonymous and wonotomic arrovian s.c.c., with associated

binary relation R .
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a) Show the existence for all pair (a,b) of distinct outcomes

» 0<n_ . «n (n=|N|) such that

of an integer
_ ntege na,b ~ &,b

(5) ‘;?aR(u) b * [N(u,a,b)| ”)na,b

b) Show that along a cycle of length E , the sum of LIRS is
’

bounded above by n+K-1 :

for all K-sequence 81yeeeray of distinct outcomes :

K .
I n | < n+k-] where we set = a
k=l 2k2%ke] | el TR

c) Conversely, let (a,b) -+ L b be an integer valued mapping
satisfying the above inequalities for all K< ]A| and let R(u) be
the relation associated by (5). Show that it defines an anonymous and

monotonic arrovian s.c.c..

r
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Chapter 3 : VOTING BY BINARY CHOICES.

! . Binary social choice correspondences.

To avoid ;he depressing undecisiveness of arrovian s.c.c.s., we
will weaken the rationalizability requirement into the property of
binariness. To any s.c.c. S and any profile u we associate the base
relation R(u) (a R(u) b iff a € 8{u,{a,b}) see Chap. 2.1) that
describes collective choice among doubletoms. A binary s.c.c. is one

that agregates only this information. .

Definition 1}

The s.c.c. S is binary if we have :
for all u,v {R(u) = R(v)} = .{S(u,B) = S(v,B) all B}
In other words the s.c.c. S can be written as

S(uw) = p [R(u)] where S(u) is the choice function
B> S(u,B) .

Here p is a mapping from complete relations into choice functions ;

we call it a relation aggregator.

For instance a rationalizable s.c.c. is a binary s.c.c. where, in
addition, the aggregator ¢ is just the argmax operator. In general,
however, binary s.c.c.s. will produce gxciic-base ralations R{u) (e.qg.
when R(u) is the ordinary majority relation) and agyregate them into

decisive or not too indecisive choice‘functions.



Lemma 1|

We shall say that S is a regular bimary s.c.c. if it is monotonic,

efficient, binary and satisfies the AIIA axiom. In this case :

i) Thé base relation R(u) 1is described by a family of simple
games W, p, » one for each pair a,b of distinct outcomes :
#

a R(u) b ® N(u,b,a) = {i EN/ u/(a) <u,(b)}¢& W a

ii) The relation agregator p is AIIA in the fpllowing sense :
P(R) (B) depends only uf)on the restriction of R to B, and monotonic
in the following sense : fix a,R,R" ; if the only change from R to R’
is that some b such that bP a arenow b I' a , and some b such
that a I b are now a P' b , then the election of a is not threatened ;
a€pR)(B) = a€pR"B) .

iii) The agregator p selects uniquely the winner of R whenever
there fis one :

{aPb for all b €A} = {p(R)(A) = {a}} all a

(vhere P is the asymmetric component of R).

A regular binary s.c.c. is made up of two quite independent pieces :
first a family &}a b of simple games describing collective binary choices,
i t

and restricted only so as to ensure completeness of relation R(u) :

1) T ewa’b = N\T $wb’a all T,a,b .

; To fix ideas we shall assume from now on that Wa b is for all a,b the
$

majority game namely :




Tey « |T;>-Lgl

In other words we impose anonymity and neutrality of binary choices.
In fact the anonymity assumption could be dropped without affeciing
Theorem | and 2 below ; an the other hand neutrality is needed in

these results.

Second a mapping p that selects the winner of R whenever

there is one, i.e. meets the majority primciple due to Condorcet :

whenever there is an outcome that beats any other outcome in pairwise

comparisons (a Condorcet winmer) it should be uniquely elected.

From the AITA property of p follows that we will fix the
feasible outcome space A once for all and concentrate on the mapping
5* :t R ~» d*(R) = p(R)(A) associating to each (possibly cyclic)
relation R of social preferences a subsets ﬁ#(R) of socially good
outcomes. Implicit in this simplification is that p(R)(B) is

£, .. . s
determined similarly by means of the restriction of R to B .

Our task now is to propose reasonable relation agregators
R > bt(R) C A . This is essentially a one person decisiom problem :
this person ("social body") is supposedly able to formulate binary
comparisons to be interpreted as preferences yet it can not guaranteé
transitivity of these binary preferences. How are we to decide upon an
outcome or subset of outcomes amidst cycles (i.e. whenever no Condorcet

winner exists) 7

Definition 2

For any complete relation R and A , we denote by % its
transitive closure and we define the top cycle of R as the set of

maximal elements of '% :



29

a / for all b there is a
te(R}) = {a/ a Kb ali b} =4 - ! R-path from a to b :
' a = afn 62 ’RQOQR GE b;

Lemma 2

The relation agregator dﬁ of any regular binary s.c.c. satisfies :

F(R) C te(R) ail R

This result strenghtens property iii) of Lemma 1. The topcycle tc
is a monotonic relation agregator ; when combined with the majority game
it yields a binary s.c.c. satisfying AITA as well, yet not a regular

binary s.c.c. because efficiency is violated.

-

Here is an example : we consider & 3-agent society deciding upon

a 4-alternatives issue with the following profile

r
< d b
d a c
a b d
b [ a
“i u, u3

The majority game yicids the following asymmetric relation.

[+

\T§~1”‘#
N

A,

—3— b

B e
\,

-

Sama

Since A itself is a R-cycle, it coincides with its top cycle. Yet

outcome a is Pareto dominated by 4 .
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The trouble with the top cycle is that it is "too big" : if K
coincides with the linear ordering a; 2»32 > oeen >*ap except for
ap I a; , then A itself is a R-cycle and colncides with its top cycle.
Yet a; is never defeated in binary contests and wins almost all the

time !

We construct now some regular binary s.c.c.s., This will be done
in two ways s in Section 2 mon neutral but decisive examples, in Section

3 neutral and undecisive examples.

3

2 . Voting on a binary tree ; the provisional wimner algorithm.

A tree is a counected graph with mno cycle, where a particular node
is singled out as the origin. Thus each node has exactly one predecessor,
A binary tree is a tree where each node has zero or two SUCCESS8OTSB.
Consider a finite binary tree and attach to each terminal node an
ouﬁcogg from A in such a way that each ocutcome appears at lest once.
Finaliy at each non terminal node, mark up one branch as a tie breaking

device. This gives a binary game tree on A . Here is a typical example :

b o A= {G,b,cgd}

d, ties are broken im favour

of the bottom branch.

Any binary game tree defines a single-valued relation agregator
*
p (R} € A that selects from any complete relation R a single outcome :

pick first a node with two terminal nodes, 8ay X,V , for successors




af

and make it a terminal node with the R-winner of x,y attached to it ;
if x and y are R-indifferent use the tie breaking mark up. Then
Tepeat the operation until a single node is left with a single ocutcome
sttached to it : this outcome is pﬁ(R) . In the exsmple above, suppose

R 1is given by

a - b
~. .
N
¥
d ¢
This gives :
a L3
- a‘
b I
&
¢ P(R) = b
“b
d .
) ti@ ~B
b

Ak ]

Lemma 3

. 3 . . .
The relation agregator p derived from a binary game tree is a

selection from the topcycle :

O*(R) € te(R) all B

To derive a regular binary s.c. function from a binary game tree
we must i} overcome the possible lack of efficiency noticed above,
‘s . o . : * .

ii) guarantee the monotonicity of the agregator .p : indeed not evary

. _ . & .
binary game tree yields a monotonic p : see Exercize 2 below.

These two difficulties are solved by the following algorithm.
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Definition 3

Let o' be a linear ordering of A according to which we write
A= 1,2,...,p. § Given a complete relation R or A , the algorithm of
provisional winners is defined by :

a = 1z for all k=l,...,p ; & = fk k R Gyaeossk R'ak—l

Gk N otherwiase

k-1 .
He set DU(R) = ap » to be called the o-wiomer-of B .

Theorem | Moulin [1979 |

The above relation agregator is derived from a binary game tree,

When combined with the majority game it yields regular binary social
choice function.

Proof ¢

To fix ideas, suppose that A = {1,2,3} so that the algorithm of
provisional winners is :

) -]
=1 ; =1 i ; = i 2,1R3
a=1 ; a,=l if 1p2; polRi=a =1 if 1Rr2, ;
2 if 2 R1 3 if 182 ,3P1,
2 if 2P1,2R3,
3 if 2?91 ,3P2,, 3P1

which derives from the binsry game tree

ties are broken in favour

3
1
2" of the bottom branch.
fw
1




33

The general proof goss by fixing A = {l,...,p} and uses the notation :

R(x,y) = =x if xpy
if yR=x

Then we define {p~1} mapping @Eﬁ,&eﬁwp”l by the following induction ;

@ (&) = Rix, 1) all == 2,,..,p

2 ) i, . i .
¢ {(x} = R{p (x),p (2)) all =z = 3,...,p
0 = R ey, G all = = k+l,...,p

ey = RP ) P 2 (-1

One checks by induction that for all E=lyoe.,p=1

@ (%) = x if xp Gyseves® P Gy

. ; = k+l,.,.
@,  otherwise } all = srresp

L .
42@ (k'ﬁ’ﬁ} = &K’ﬁ“;

On the other hand the induction formulas for @k allow to comstruct

a8 binary game tree guaranteing the election of wpml(p) for all R .

To prove the second statement of the theorem, we compound the
mapping u (profile) - Rﬁ{u) (majority relation associated with u )]
with the agregator QZ and must prove that u ¢~b§(R(u)) is both
monotonic and efficient. Menotonicity is immediately checked on the
algorithm of provisional winners. For efficiency, suppose per absurdum
ﬁ;(R(u)) = & amnd b Pareto dominates & , By construction we have

# - . .
a R (u) Oy for all provisional winners ai,@.»sap so that b i3 not
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among them. Thus, by definition of the algorithm ss2in, there is a -
provigsional winner % such that P*(u) v . From }H(u,a,ak)};> 7

IN(u,uk;b)] >"l§l results that u(u,a,0,) intersects N(u,q. ,b)
hence at le&st ape agent prefers a to b , a contradiction.

3 . Uncovered set and Copeland ser.

We comstruct now two neutral regular binary s.c,c., at the cost

of decisiveness. . :

Definition 4

Given a complete relation R we say that outoome b covers

v

outcome a if wve have

au

-

Rz = LRz
} all

zRb = zEa

with at least one of these two implications being not an equivalence,

The uncoveraed set un{R) is the set of thoge outcomes that are

not covered by any other cutcome.

Definition 5

Given a complete relation R s the Copeland score of outcome a

is defined as
€a) = 2 {{b/acvP bil + [{b /a1 b}

where P and I are the asymmetric and symmetric component of R

(strict preference and indifference respectively).




L
iR s}

The Copeland set C(E} is the set of cutcomes with maximal

Copeland score.

Theorem 2  (Millexr {1977 ]}

The Copeland set and uncovered set, when combined with the majority
. * . . ]
relation K (u) both define a neutral regular bimary s.c.c.. Moreover

the Copeland set is a subset of the uncovered set.

ggoof

The moaatsnieiﬁyicf both velation agregators un and C  arve
clear. Efficiency of uﬁ{Eﬁéu}} follows by the same srgument &s in
Theorem | once we observe the following : if a is uncovered in R
and b is any other ocutcome, st least one of the three following

statements holds :

i) afb
s i) aRz and z P B for some =
iii) aPz and 2 B b for some =

To prove efficiency of C{?ﬁ{u}) it suffices to check the inclusion
C(R) C un(R) which is cur last claim. Incidentally, this inclusion proves
non emptiness of un{R). Let a in C(R) . and suppese a 1is covered

by outcome b . Theun

{e /aRz} € {2/ 8RRz}
and
{z favz} C {z/bP¥P z}

Observe that C{a) = |[{z / a ? z}| + |{z / a R 2}| . Thus because
C(b) < C(a) we conclude that beth inclusions are equalities so that

aRz ® bRz and zRsas * zEB5L , 311 &, contradiction.

2
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The Copeland set defines a more appealing binary s.c.c. than the
uncovered set, inasmuch as it is always more decisive. Yet & point in
the uncovered set is easier to obtain than one in the Copeland set, for
the fairly simple algorithm of provisional winners always ends up
within un(R) (see the proof of Theorem | ; also Chap. 4.3, where it
ié shown that not every element of un{R} can be obtained in this
way). The following question is an open problem : does it exists a
binary gsme tree of which the associsted s.c. fumction alvays ends up

within the Copeland set 7
Notice finally that Copeland acores also define a social welfare

ordering on 4 , which is a particular member of the supporting size

methods studied in Chapter 7 .

Exercizes on Chapter 3

Exercige 1

Prove that Theorem | and 2 hold when the majority game wﬁ is
replaced by any neutral binary comparisons, namely wa B - W for some
$

fized simple game @ .

Exercize 2 Non monmotonic binary game trees

Consider the following binary game tree on A = {a,b,c,d} :

B i N " ties broken srbitrarily
Prove that it yields a non mwonotonic relation agregator,

Exercize 3 Voting by sequential elimination

It is the following binary game tree, where A = {l,...,p} is

linearly ordered :
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i F eas » -3 ties broken in favoux

23 p-1  p of the bottom branch
Thus the associated relation agregator is defined by the algorithm
Si o B, = R(2§z};953,ak = K{kgﬁkm}}g*a,sﬁp = QO(R)
where R{x,y) is deﬁiﬁed a8 in the proof of Theorem 1.

a) Prove that it is a monotonic relation agragator.

b} Prove that when o varies, QGQR} describes the whole

top cycle ta(R).

Hint for B) : tc(R) is a R-cycle and a P b for all a inm tc(R) and

b outside it : gee Chapter 4.4,

Egerﬁgge 4

In the sequential elimination aigorithm asbove as well as in the
provisional winners algorithm, the cutcome ranked first is at an obvious
disadvantage : it wins only if it is a Condorcet wianer (stricely
preferred to any other outcome) in which case it would be elected for any

other ordering of 4 .
Prove more : it is always an advantage in both agregator (o be
ranked later :

¥

Let o = {1,2,...,p} and ¢' equals to o , except that k and

k+1 have been permuted. Then we have

e s
PRy =k = Psr (B} = k

LA . . .
where Py 3® the agregator attached to eifher algorithm,
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Chapter 4 : CHOICE FUNCTIONS AND BINARY RELATIONS .

This chapter is a technical appendix va Chapters 3,4. We explore
the (one person). problem of converting a complete bimary relation
(presumably expressing society's binary preferences) into & choice
function {prescribing society's decision) through a relation aggregator.
Conversely, atarting with an arbitrary choice function, we give axioms
ensuring that it derives from an acyelic relation thraagh the argmax
operator (Section 1) or from its bhage relation %ﬁamugh a2 patisfactoyry

relation agregator (Section 2).

1 . Acyclically ravionalizable choice functions.

We recall first some definitions about complete relations R on
a set A& (for all a,b , aRb and/or b R a). We denote by P the
asymmgtric component of R (a P b iff No b R a) and by I 1its
symmetric component (a I b iff a R b and b R 4). We say that R is
acyclic if P has no cycles such as ay P a, ¥ a8y «»v Pa, Pa .
Next R 1is quasitransitive if P 1is transitive faPb and B Pc
igply a P c). If, in addition, relation I 1is tramsitive, then R
itself is transitive and we call it s praard&f%ngg Finally if R is°

transitive snd asymmetric (B = P} we call it an ordering.

Representing an ordering is easy : if A4 is finite, its elements
are just linearly ordered as in A = {a,b,c,d,8,f} . When R is a
preordering relation I is an equivalence relation, and P induces
an ordering of equivalence classes : whence the conventional rvepresen—

tation :
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where a column is an aquivalence class and relation P goes left to
righe.

8 o 7T . . s, e 5 . .
UPPOSE nest R s quasitrensitive. Then fie mememesefe - cmnmons

can be written as the intersection ot at wost 5 Linear orderings

ﬁ!,.aggﬂg 3

a Pb iff s Rk b all k=1,...,K

Thus argmax R iz just the Pareto set over B for the K-criteria
B 4

RE;..ﬁ,RK . Egmiv&lemtly R can be pictured as a Hasee diagram :

. R! = a bocde
) R o= RE F?Rz where
c & ' Ez =g debcc

a £ B = RE TR

-

M, §
2 Ri where

= g e b fde

he

T
.
£
£3
L

o
i
4
[t
4
v

¢ 5 & ¢ b

facebd

-
o
g

A downwsrd line from x to y wmeans x Py . If no line connects x

and y them 1y .

A good reference on these results is Roberts, F.J. Measurement

Theory, 1979, Addison Wesley.

We turn now to choice functions.

Given the finite set A of outeomes; & cholce function § on A

is & mapping from 74 § into itself such that :
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for all B C 4 (B} C R

Definicion 1

A choice function § 1is acyclically (resp. quasitramsitively,
résp. tramsitively, resp. linearly) rationalizable if these exists an
acyclic relation R on 4 (resp. & quasitransitive relation, resp. a
preordering, resp. an ordering) such that

S{B) = argmazx R = {fa€B/aRkRb, all b €B) all B C&
B .

As we noticed earlier (Chap, 3), if 8§ is rationalizable at all,

relation R must be the base relation of § nawmely :
aRb 1iff & € §(ab)

Theorem 1
¢
Given a choice fuuction 5 the three fnllowing statements are
equivalent :
i} § is acyclically rationalizable,
ii) for all 8,B with &€ B : {a € 5(B)} = {a € S{ab) all b € B}
iii) S satisfies Chernoff's condition and the reinforcement

property :

Chernoff

ea

BCB = S(B') NB < s(8) a1l B,B’

reinforcement :
S{B) MsEY C S¢B LI BY all B,B*?

Chernoff's condition can be given a number of equivalent formulations

(see Exercize 1) some of .thew akin to the reinforcement property, e.g. i
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S{(BUB'Y C s(B) us{r" all B,Bf
Notice also that Chernofffs coundition implies Sg = 8§ ,

Theorem 2
Given a choice function & the four following statements are
equivalent :
i} 8 is transitively raticnalizable

ii}) § saciesfies Chernoff's condition and the strong reinforcement

property :

strong,reinforeemaat H

S(B) MS(B') # 9 = S(BY US(B') ¢ (8 UB"Y ail ¥,B'

iii) 8 satisfies Nash's independence of irrelevant ziternatives ;
Nash's 1JA :
@

{BCB' and S(B'} NB # @) = ([S(B) = S{B") NB} all B,B'

iv) 8 satisfies the weak axiom of revealed preferences
{a €B\S{B) , b €8(B)} = Nola € S(B') , b € B’} all a,b,B,B’

Cﬁroliarz

The choice function § is linearly vatiomalizable if and only if
it is binary decisive (5{ab) is a singleton, al}l a,b) and satisfies

Cherncfffs condition.

. Theovrem 3

Given a choice function § the three following statements are

equivalent :
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1} 8 ia quasi-tramsitively rationalizabie
ii} 8§ is &ﬁyﬁiiﬁaiiy rationalizable and satisfiee the condition (&)
condition (&) :
{BCB and S(B') CB} = {5(8) CS(B")}

«

iii) S satrisfies Plott’s Path Independence and the reinforcemant
property : ‘
Ploot's P.I.:
S(B LUB"} = S(8(B} LS{R' 81l B,B°
One common features in the above three results is that ratiomaliza-

bility is equivalent to a combination of two properties

1} one “expansion" property of the form : if we know the choices
over small sets B,BY, we kuow something about the choice over the bigger

set B U BT ., See the reinforcement or strong veinforcement property.

8i) One "contraction® property : if we know the choice over a big
subset B , we know something about the choice over gubsets of B . Hee

Chernoff’s conditicn or Plott's Path Independence,

2 . Relation agregators

ﬁ&finitiaﬂ 2

Given A , a velation sgregator is a mapping p associating to

any complete relation R on & a choice function p(R) = § ,

Three basic exawples of relation agregators are the tapeyele e
(Ch. 3.1} the uncovered set un snd the Copeland set CO (Ch. 3,33,
We set :
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te{RY{B} = tc(R/B) where R/D denotes the yestriction

of B te B .

(and a similar definition holds for wun and CQ).

So that these agregators satisfy the following version of Arrow’s
I1A aziom :
ATIA : {8 and R’ coincide ou B} = {p(R}(B} = p(RI(B)}

811l R,R',B .

They also satisfy neutralicy and comsistency :

Heutr&i%tg :

e

if o iz a permutation of A then :
(B (o(B)) = o [p{RI(B) ]

3 il & “'lrs
f o 1%&5 - Y

é

I

where we set s BR” b i

Ccaﬁfﬁ&&nag H
fa b for all a€ B , and all B EB'Y = [p{E)(B UBE )=p(B)}

ail R,B,B' .

Lemma<i

If a relation agregator p satisfies the consistency property, then
ptR} C todlu} all &

To get characterizaiion results for our three sgregators teo, un sud €O
we resirict the range of R to tournaments namely asymmetvic and complete

relations. Then wz speak of tournsment agregators.

Theorem 4 Moulin [ 1983 ]

Whenever R is a tournsment, the cholce function un{&} (resp.

te(R)) satisfies the reinforvcement property (resp. strong reinforcement}.




&
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Conversely, any tournament sgregator o satisfying ATIA, neutralicy
and reinforcemsnt {resp, strong reinforcement) wust contain the agregator

un  (resp. the agregator tc } :

un(®)(8) € o(R) (B) &ll R,B

Since the inclusion CO C un ¢ te always hold (see Ch. 3) we view
the Copeland sgregator as more satisfactory from 8 normative standpoint.
Its axiomatic characterizations, however sre harder teo obtain.

Observe that the Copeland tournament zgregator amounts £o select
from E the subsel of outcomes b that bhest the grestest number of
pponents in B . Then it is easily checked that €0 satisfies the Lo

following properties :

Stricet monotonicicy 1
for all R,R',B, a and B, if the only change from B to R’
is that for some a,b , bR a while & RB' b and if

a € o(RI(B) then {a} = p(R'3(8) .

iﬁ&ependgﬁae of preferences on Indifferent subsets :
for all R,R' , and B if R and R® differ only on B = B
and p(R}(BY = p(R"}(B} = B , then p(R) and p(R') coincide

Theorem 5  Rubinstein [ 1980 Iy Henviet [1983 .

The Copeland agregator €0 ia the unique tournament aggregator sabig-
fying ATIA, seutrality, striet wonotonicity and -Independence of preferences

on Indifferent subsets.

The above result can slso ba adapted to characterize the gocial
welfare ordering induced by the Copeland scores (where o each cutcome

is attached the number of outcomes thet it bestas}.




Exercizes on Chapter 4

Exercize 1 Equivalent formulations of Chernoff’s condition.

Prove that Chernoff’s condition is equivalent to eny of the

following properties :

a} S(B WBYY < s(B) WUB°

v
Nt

B(B UB') < S(B) USSR}

el
Tt

S(B UB'Y C 8{8(B} UB")

5(B UB') ¢ 8(8{8) USE"Y

e
Pt

e} to h} same as above, stated for all pairvs B,B' of

disjoint subzets of 4 .

Exercize 2 Ome more characterization of seyelic vationalizabilicy.

if€

&

¢ Prove that § is acyclieally rationaljigabl

S(B) MmS(B'Y = BB WE'Y NB NS’ gil B.B

Bxercize 3  Oue more chavacterization of tvemsitive vationalizability. .

o - .. s

Prove that § is itramsitively rationalizable iff it satiefieg

Chernoff's condition and the following Sen's condition ¢

e

o
Yt

Sen 2 BCBY and 8B} O BB

eanpeins

G{B} # @ = B(BYy CE&(AB'} a

Exercize 4 Plott's Pavh Independence comditiosn,

1} Prove that Plott's P.I. condition cen be vewritten equivalently

as aj ov b}

8) S(BUB') = S¢(S(B) UB') all B,B°
by S(B, W... UBg = S(S(B) Y... US(EB)




Prove thag ¥

2}
convergs doas not hold

3}

tott Ty

{gi

and Alzerman’s coundition

b2y

Aizerman's
B C B

Exercize 5

A,

Prove that Floti's P.1. is equivalent to

1.7, impliss Chernoff
4 pounterexamplie with
= S{B' \ B} = $(BYY

# %

g condition but the
v Chern condition
s @il H,BT ,

Give an exsmple (with [#] = 3} showing that
implications below do not hold H
trangitive
£ %- T
ivationslizeh i

N

ili i‘iyj

the converse of ths

¢ Plott's Pavh . ; Chernoff's,

i e, £ e w g

| Independence - | eondition |
Show that no implication hold bhetween Plott’s P.I. and scyvelic vationali-
zabilicy.

Exercize § Heak va

'7nﬁ£?4&h Té

Say that a chele

contains an acveli

i} Prove thar &
lineariy vationalizable

2}  Prove thar &

condition
Deh @ for ail B

rmaxy

s

P

Lizaeble ohc

P

LA

[ AP SN ¢

& woakly vatiopalizable
2 Lo 5

hkeve exists 2 € S(B}

s functi

Hese

rationalizablie 1€ iv

£y
function 8 is weakly rationslizeble if i

containg a

it satisfies Deb’s
CB and a€8'} =
(8°3} , &i1 B



-
)

Erercize 7 Hove on the top cyele SRTEgRtor.,

1} Forx any complete velation R . the top eyele  tolRI{(A) iz the

largest undominsted B-cvole and the &&&ilwgz head of 4 fwe say thag
BEC4& is dominated if for some 4 @ 4 s We have o P b, 811l beEp

We say that B is a head of A if BEa forall b&2 and aga\

function 8 = pedR)

2} For any complste relation R the

satisfics Bovdes’ condition

AL "

Bordea s B OB and 8(8°) np ¢ B} = SR} C 5¢BY) . all B,B®

v

3} Conversely amy Lournmment agregatoy

A

congi Blenc v and Bordes® copdiv

On We top cycle agregator.

Exercize # Uncovered get, Hextransitive set sud Copeland set.

He fix 2 tourn B and denote

'} Show that U containg o iff

theve exists o such that s R c B b

Show that U containg a #n ated subset
such that & = argmex B,
]
2} Say that 3 subset B is tramsitive if the restriction of #

to B is trvansitive. Dencte by T the ﬁﬁ%@ &0

the agt of outcomes which #te on top of some undominated transitive
B

subset of &

I3

B tramsitive , B ug&umﬂﬂ&ﬁad I

[
2a&€ T = I8 }.f
% B

£
& = grgwmas B f

Iy

neutrality,

Show that the algorithm of provigional winners sssocisted with an orderiag

g of & (Ch., 3.2) slwave sndg up iIn ¥, and chat when 7 waries, all

elements of T are reached,

& " =,

anE both € snd T, Yer ¢ &t

ineive i@nq
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CHAPTER 5: SINGLE PEAKED PREFERENCES AND CONDORCET WINNERS

When individual preferences are restricted to vary within a strict subset of
R(A), the set of preorderings over A, we speak of a restricted domain. On such
a domain the concept of neutrality vanishes so that even May's justification of
majority voting over doubletens does not hold any more. Here we explore the
much studied restriction of single-peaked preferences where A is linearly
ordered as

A= {0= a,s al,...,ap =1} (discrete model)

or alternatively A is the real interval [0,1] Ccontinuous model).

We say that a preference v on A is single peaked if there is an outcome P>

called the peak of ¥, such that v is strictly increasing before p and strictly
decreasing after it:

a <b <p =>ufa) < ulb) all a,b

P<a<b = ula) > ulb)
Note that indifferences across the peak are allowed. We denote by SP(A) the

set of single peaked preferences.

1. Ordinary Majority Relation

Given a profile u for society N, we denote by M(u) the majority relation
aM(u)b iff IN(u,a,b)I > N (u,b,a)| where N(u,a,b) = {i e N |ui(a) > ui(b)}
and by &(u) its asymmetric component: a&(u)b if. IN(u,a,b)| > |N(u,b,a)].
We call outcome a Condorcet winner at profile u on A if it is a maximal element
of M(a). Let CW(u) denote the set of Condorcet winners at u.
Lemma 1.

Let ue SP(A)N be a single-peaked profile. Then CW(u) is nonempty. It

contains outcome a iff at least half of the individual peaks are before a and

at least half are after it.
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ae CW(u) (=) |{ie N/p, < a} | 3 % and [{i e N/a < pi}l .i'%

(where n is the cardinality of N) .
Moreover,
*if n is odd, CW() is a singleton, namely the median peak (with rank E%E).
*if n is even, CW(u) is the interval from the peak with rank %- to peak

with rank §-+ 1.
Lemma 2.
The strict majority relation &(u) is transitive.
For n odd the majcrity relation M(u) is single peaked, and its peak is the
Condorcet winner.
For n even, relation M{u) is not necessarily transitive.
Thus a sharp contract: if n is odd, the majority relation is a beautiful social
welfare ordering satisfying Arrow's IIA, anonymity,kmoncxgny and efficiency

(henceforth it is strategy proof: see Chapter 6). For n even, it is not even

transitive (notice that M is not complete) hence no arrovian aggregatop:

An example of nontransitive M{u): a apainst b and a against ¢ yield a tie.

Yet b defeats ¢ three to one.
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2. Generalized Majority Relations and Condorcet Winners

A simple trick to overcome the difficulty raised when n is even is to add to
society {1,...,n} a number, with opposite parity, of phantom voters namely
fixed single peaked preferences. For instance if n =4, M(ul,uz,us,uu,v*)
(where v* is fixed and single peaked) yields a social welfare ordering sharing
all the properties listed above. In fact wé could add any number of phantom
voters without jeopardizing any of them except for efficiency:

Definition 1:

A  generalized majority relation is a relation MV taking the form:

Mv(u) = M(ul,...,un; v*,..o,vg_l) all Upsesosu @ SP(A) where V“'f,,...,v]‘j_';__l e SP(A)
are fixed single beaked preferences, called the phantom voters. The generalized
Condorcet winner cwq associated with Mv is given by

CWq(u) = CW(pl,...,pn; qf,...,qg_l) where q? is the peak of v? .

It is easy to check that any generalized Condorcet winner defines a social welfare
ordering (u - Mv(u)) aggregating single peaked profilesinto a single peaked
collective preference and satisfying moreover, AITA, anonymity, monoteny and
efficiency. The associated generalized Condorcet winner defines a fairly simple
voting rule: each agent casts his peak, the (n-1) fixed ballots qf,...,qg_l

are thrown into the urnand finally the overall median is elected. We give some

examples:

Positional Dictatorships

*Take qf = ... = qg_l = 0; the associated preference V5, 1s called the
leftist preference (a > b iff vo(a) > vo(b)). Then Cwq(u) is just

the minimum of pl,...,pn hence the maximally left-biased Pareto optimal
outcome (observe that at profile ul,...,un the Pareto optimal outcomes cover

the interval [min P., Sup pi]).
i=l,...,n i=l,...,n
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*Take qf,: cea = qﬁ—l = 0, ﬁ = ... = q* = 1 (thus (k-1) phantom voters are

leftist and n-k are rightist)., then ka(u) is k-positional dictator namely
the k-th ranked peak with respect to the fixed ordering of A. For instance

if n is even, we obtain the leftist~Condorcet winner for k = §-+ 1 and the

rightist Condorcet winner for k = %-.

Uniform Condorcet Winner

Take F to be a strictly Increasing function from A into itself, to be inter-
preted as the inverse of the cumulative distribution of a nonatomic probability
distribution on A (assume F(Q) = 0, F() = 1) in the continuous model. In the
discrete model F is associated with a probability P weighing all outcomes. Then
set for a society with size n:

n:
U

F(EJ l<k<n-1
n — —
Here the fixed ballots coincide with the n-quantiles of P. For n large, we can

think of (q;) as uniformly spread over A according to P.

k=1,n-1

An important feature of generalized Condorcet winners CWq is that their
parameters Qps-+-»q, 1 are determined by the outcomes chosen (over A) at those
simple profiles where each agent is either rightist (pi = 1) or leftist (pi = 0).
Indeed, if r agents are rightist and (n-r) are leftist, 1 <r <n-1, the
collective peak CWq(p) is just q, - Thus if the social ruler is convinced by
the arguments developed in Section 3 below, that collective choice should be
made by some generalized Condorcet winner mechanism, but he cannot make up his
mind about parameters QyaseeaQ 7> he must only find out the answer to (n-1)
simple questions, namely: which outcome is best if society splits into two
homogenous antagonistic coalitions, with o rightist against (n-r) leftist?

Now suppose he gets the following abrupt answer: if p rightist oppose (n-r)
leftist, comply with the rightist whenever r > k , otherwise comply with the

leftist. This amounts to use k as the quota necessary and sufficient to enforce
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any rightist move (while (n-k+l) is the quota for leftist Wmoves). In this case
the k~positional dictatorship is the necessary voting rule. Thus positional
dictatorships essentially enforce a quota-majority principle that is but a
variant of Condorcet's majority principle.

Suppose, on the contrary, that the compromise that he views as equitable for
an antagonistic society (r rightist and (n~r) leftist) is outcome 2%3
(continuous model ): in other words he feels that the linear nature of the
outcome space leaves room for flexible decisions where a marginal switch from
rightist to leftist moves the elected outcome just a bit to the left. In that
case we have a uniform Condorcet winner (here associated with the uniform
distribution on [0,1]). See Exercises 1, 2 for more intrition on these

voting rules.

3. Characterization Results

We prove now that the family of generalized Condorcet winner S.C.C. are
uniquely characterized as transitively rationalizable S.C.C. satisfying the AIIA
axiom. This justifies the majority relation itself in the single peaked
context.

Definition 2

A single peaked social choice function is a mapping S, associating to any
single peakked profile u e SP(A)" and any subintervai B of A a unique outcome
S(u,B) e B.

For a single peaked profile u, any generalized majority relation Mv(u) is

single peaked hence it vields a decisive choice function over any subinterval

B of A (not over any subset of A).
The point is the following fact:
if w € SP(A) is single peaked with its peak at p, and B is a
subinterval of A then w reaches uniquely its maximum over B at the

projection of p on B:
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argmax w = projB(p)

\, w . Ve .,
N ’ o~
!
- LL ’j - [: ] JE——
p P
B B
the right end of B the peak maximizes w
maximizes w over B over B

Thus the single peaked S.C.F. induced by the generallzed majority relation MV
rely only upon its generalized Condorcet winner Cq:

S(u,B) = argmax Mv(u) = projB{Cq(u)} all u e'SPn

B all subinterval B

By restricting feasible subsets of outcomes to subintervals, we reduce
drastically the relevant dimension of the family of generalized majority relations:
indeed the (n-1) peaks ql,...,qn_l as well as the n agents peaks are enough to
determine the social choice function. Moreover all that matters is the mapping
(pl,...,pn) - Cwq(pl,...,pn) associating to any n-uple of individual peaks the
collective peak from which social preferences go downward right and left. This
informational feature is formally equivalent to the Nach's IIA axiom (Chapter
4.1) and a mild continuity axiom.
Lemma 3.

The single peaked s.c.f. S satisfies the Nash's IIA and continuity axioms
if and only if it can be expressed as:

S(u,B) = projﬁ{o(u)} all ue SPn, all subintervals B. (1)
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for some mapping ¢ assocating to each single peaked profile u a collective

peak o(u).
Nash's IIA: {B¢ B' and S(u,B') e B} => {S(u,B) = S(u,B')}
all profile u and subintervals B, B'.

Continuity Discrete Model: {if B and B' djffer by one outcome, S(u,B) and

S(u,B') are equal or adjacent} &kl u and subintervals B, B'.

Continuity Continuous Model: {8(u,B) is continuous w.r.t. both ends of B}

all u and subinterval B.
Recall that in the unrestricted domain case the Nash's IIA axiom characterizes
transitive rationalizability (Chapter 4.1). Here we must add the continuity
axiom as a "price" for the restriction to subintervals.
When the Arrow's IIA axiom is added to the single peaked rationalizability
expressed by equation (1) we get a full characterization of generalized Condorcet
winners.

Theorem 1: (Moulin [1983] working paper) Continuous model, given a single

peaked s.c.f. S, the following two statements are equivalent
i) S is derived from some generalized Condorcet winner, Cwq with fixed
ballots ql,...,qn_l:
S(u,B) = projB Cw(pl’°°"pn;ql’°"’qn—l) all u, B
ii) S satisfies: ancnymity, efficiency, the Nash IIA and the continuity
axioms, and finally the Arrow's ITA axiom over subintervals:
{u and u'coincide on B} => {s(u,B) = s(u',B)} all u, u', B.

In the discrete model the same statement holds if in addition we add a minimal

monotonicity axiom namely:

if u' is a profile made up of r rightist and (n-r) leftists, then the

mapping r - S(uP,A) is nondecreasing.




55

The above two theorems can be given a more compact formulation in the simpler
context where the single peaked decision problem is the search of 3 mapping
(pl,...,pn) > s(pl,...,pn) from n-uples of individual peaks into a collective
peak. This formalism internalizes the Nash's IIA as well as the continuity
axiom.

Theorem 2. (Moulin [1980], Rorder and Jerdan(1983), Review of Economic Studies 50,
1, 153-170). Let s be a mapping from A" into A and consider the following list
of properties.

1) anonymity: s(pl,...,pn) is symmetrical in Pysee-sP

2) efficiency:

min p. < s(p.-p_) X max p, , all p
i=l,-n + 1°n i=1,-n *

3) Arrow's IIA:

. B B .
proj, s(pl,...,pn) = s(pl,...,pn) all p, all subintervals B.

where aB denotes projBa.
L) Strategyproofness:
= ]
s(p) <p; = s(pi,p_i) < s(p) all p
s(p) z_pi=>s(pi,p_i) > s(p) all i, all Pi
5) Uncompromisingness

s(p) < p! < p, =>s(p£,p_i) = s(p) all p,

]

i i

( ! = ! = 7 9

s(p) :-Pi > Py >s(pi,p_i) s(p) all i, all 3]

Then each combination 123, 124 and 125 characterizes the family of generallzed

Condorcet winners.

Concluding Remark

The domain SP(A) of single peaked preferences, can be extended slightly
(namely to the Preferences with a single plateau, and strictly increasing--

decreasing——before-~after——the Plateau). But not much if we want to preserve
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the compatibility of Nash's and Arrow's ITA axioms. Indeed consider QC(A)

to be the domain of quasi-concaves preferences on A namely v e QC(A) iff there
exists a peak p ¢ A (not necessarily unique) such that v is nondecreasing before
P and nonincreasing after it. Then one proves (see Moulin [1983]) that NIIA

and AITA are not compatible on QC(A)",

Exercises on Chapter 5

Exercise 1. Uniform Condorcet Winners with Meny Voters (Continuous Model).

Let P be a non atomic distribution on [0,1] and assume that the population of
n agents with peaks pl,...,pn grows in such a way that, in the limit, the
distribution of agents is given by a probability distribution N. Prove that the
limit of the associated uniform Condercet winners is the unique solution a of
the following system:
P(L0,al) + N ([0,a]) > 1

P("a al]) + N ([agl] _>_ 1

Exercise 2. Young's Reinforcement and Uniferm Condorcet Winners.

Any nondecreasing function F from £0,1] into itself is the inverse of the
cumulative distribution of some (possibly atomic) probability distribution p.
Observe that the positional dictatorships can be viewed as uniform Condorcet
winners in this generalized sense, and that the uniqueness of the limit in
Exercise 1 does not generalize.

(1) Fix F as indicated and for any integer n denote by s” the associated

single peaked s.c.f.:

k

n _ . n n . n_ .k
S (u,B) = projy CW(pl,...,pn,_l,...,qn_l) where Gy F(n) .
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Prove that {s"} satisfies Young's reinforcement axiom, namely:
n=1,2,...

Sn(u,B) = Sm(v,B) => Sn+m(u,v;B) = Sn(u,B) all integers n, m, profiljegu, v
and subintervals B.

Interpretation of the axiom is provided in Chapter 7.2.

(2) Conversely, let {s"} be a family of generalized Condorcet
n=1l,2,...

winners s.c.f. (say that S" has the fixed ballots qi_ﬁ e < qﬁ_l) satisfying
Young's axiom. Prove the existence of F, nondecreasing from [0,1] into [0,1]

such that {Sn} are the associated uniform Condorcet winners.
n=1,2,...




CHAPTER 6. DIRECT REVELATION OF PREFERENCES

1. Game Forms and Strategy Proofness

A game form (in short g.f.) describes any voting rule for a fixed society and
set of outcomes.

A game form distributes exhaustively the decision power among individuals by
endowine each agent with a fixed message space and converting any bundle of
agent's messages into a single outcome.

Definition 1. Given A, the set of outcomes, and N, the set of agents, a game

form g is an (N+1)-tuple g = (Xi’ i e N; 7), where:
(a) Xi is the strategy set (or message space) of agent i, and
(b) = is a (single valued) mapping from XN = HieNXi into A.
The mapping g describes the decision rule: if for all i agent i chooses strategy
Xss the overall strategy N-tuple is denoted x = (xi)ieN and the decision rule
forces the outcome m(x) e A.
Thus a game form is a more general object than a social choice function (decisive
S.C. correspondence) inasmuch as the message space does not necessarily coincide
with the set of individual preferences, and a less general object since the set A
of feasible outcomes is no longer allowed to vary.
Any social choice function induces a game form with message space L(A)
(linear orderings of A) and decision rule 8(.,A) (the mapping u - S(u,A)). A
game form, with message space L(A) for every agent is called a direct game form.
Lemma 1 below reduces the search of strategy proof game forms to that of
Strategy proof voting rules. The full generality of the game form concept, which
allows in particular the message space to be bigger than L(A), is needed when we
explore a more complex strategic behaviour than the dominating strategy equilibrium.

This is indeed the case in Chapters 8 and 9.
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Given a game form g = (Xi’ i e N, 7) we associate to every preference profile

u= Uiy

strategy is Xs and his or her utility level is ui(n(x)). This game reflects the

the normal form game g(u) = (Xi’ u; o, i e N), where agent i's

interdependence of the individual agents' opinions (utility) and their strategic
abilities (agent i is free to send any message within Xi)'

In this chapter we focus on those game forms such that for all profiles u
every agent has a straightforward non-cooperative strategy whether or not he or
she knows of the other agents' preference orderings. This is captured by the
notion of dominating strategy.

Definition 2. Given A and N and a game form g we say that g is strategy-proof

if for every agent i there exists a mapping from L(A) into X, denoted u, > Xi(ui)
such that the following hold true:

fu, e L 2 sy Yy, CHRED) < Ok, (W ) Jut)) .

Yu e (A),¥xle X3, {yl e X ul(w(yl,xl)) < ulSW(Xl(ul)’ul)) (L

Given a direct game form S, we say that S is strategy-proof if for every

agent i we have:
oy e LA, vup e L v e neadiu (8(v, um)) < u(SCu, ). (2)
i > > i i A R 1 i’7i
Property (1) says that if agent i's utility is u, then strategy xi(ui) is a
best response to every possible strategie behaviour x. of the other agents, in short
X; is a dominating strategy. Notice that xi(u;) is a decentralized be-
hav13urby agent 1, who can simply ignore the utility 5f the other agents. By (2)
this information is worthless as long as he cannot communicate with his fellow
agents (this is the basic informational assumption of the so-called non~cooperative
context). Notice that due to Prisoner's Dilemma effect, strategyproofness of a
game form does not imply efficiency of the corresponding decisions.
In the context of direct game forms, strategyproofness means that telling
the truth is a dominating sttategy at every profile and for all agents: hence
we expect direct revelation of their preferences by the non-cooperative agents

involved in a strategyproof direct game form.
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The following result, a particular case of the "revelation principle," states
that as far as strategyproofness is concerned, it is enough to look at direct
game forms.

Lemma 1. Leg g be a strategy-proof g.f. For all i ¢ N and all u; € L(A),
let us denote by Di(ui)(:_xi the set of agent i's dominating strategies:

{x:.L e Di(u£}<°f¥x§ € X;Vyi e Xiui(ﬁ (yi,xi)) _ ui(n(xi,x{)) }.
Then for all profiles u e L(A)N the set 1(Di(ui), i e N) is a singleton and
defines a strategy proof direct game form.
Let S be a direct game form, namely a single-valued mapping from L(A)N into A.

We say that S satisfies citizen sovereignty if S(L(A)N) = A, i.e. if no outcome

is-a priori excluded by 8. It is a very mild property, even weaker than the
unanimity condition namely if a is on top of uy for all i e N, then S(u) = a.
We shall call voting rule a direct game form satisfying citizen sovereignty.

Theorem 1: Gibbard [1973] Satterthwaite {1973].

Let society N be finite and A (not necessarily finite) contains at least
three distinct outcomes. Then a voting rule S is sttategyproof if and only if
it is dictatorial: there is an agent i (the dictator) whose top outcome is always
elected :for all u e L(A)N S(u) = top(ui).

The proof of Theorem 1 is technically equivalent to that of Arrow's theorem (see
Exercise 1).

For binary choices (A is a doubleton) sttategyproofness is equivalent to
monotonicity (Chapter 1.2) and is therefore satisfied by many nondictatorial
voting rules. As soon as three outcomes are on stage we calnot find a reasonable
(e.g., anonymous) voting rule. This suggests two lines of investigation.

In the first one we insist on the Strategy-proofness requirement, that is we
want our mechanisms to allow "pure" decentralization of the decision process,
therefore requiring that an agent's optimal strategy is unambiguous even if hé or

she ignores the other preferences, and is still unaffected if this agent happens
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to know the preferences of some among his or her fellow agents. Then, by the

Gibbard-Satterthwaite theorem we must restrict the domain of feasible profiles,

just as standard assumptions of microeconomics severely restrict the possible
configuration of the utility profile. This line will be explored in the next
section.

Another way of escaping the Gibbard-Satterthwaite result is to weaken the
equilibrium concept: not demanding that a dominating strategy equilibrium exists
for all profiles still leaves room for patterns of behaviour that are, to a large
exfent, non-cooperatively decentralized (see Chapter 8). Or we can take a
cooperative view of the decision-making mechanism so that specific equilibrium
concepts will be in order (see Chapter 9).

2. Restricted Domains

Let R(A) be the set of preferences preorderings on A (indifferences allowed).
The voting rules assigning to each profile in R(A)N an outcome in A can be
in particular restricted to L(A)N. Thus Gibbard-Satterthwaite's result holds
true as well if we allow individual preferences to vary in R(A) (it is in fact a
weaker statement).

When speaking of restricted domains we should pick several subsets D of R(A)
and assume that every agent's preferences stay in D.

Some restricted domains D allow us to overcome Arrow's impossibility theorem
i.e., there exists on DN a -nfnldictatorial social welfare ordering satisfying
the AIIA axiom and monotonicity. 1In that case we can just the same construct
strategyproof voting rule.

Lemma 2.

Let D R(A) be a restricted domain and let u » R(u) be a decisive social
welfare ordering on D, i.e. for each u e DN, R(u) is a linear ordering on A.

Consider the associated social choice function §.
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S(u,B) = argmaxR(u) all u e DN all BC A
The: two follow?ng statements are equivalent:

i) S is monotonic and satisfies the AITA axiom

ii) for all B, S(-,B) is a strategyproof game form on DN .
Under the assumptions of Lemma 2 even a stranger strategical feature hold, namely
the sincere message is coalitionally sttategyproof: no coalition of agents come
together depart from their true message and improve upon (strictly) all preference
levels in the coalition. 1In particular the elected outcome S(u,B) is weakly

Pareto optimal.

A first example where the above Lemma applies is the sinele peaked domain.

Let A be finite and linearly ordered as A = { al,...,ap} . W.r.t. this ordering
we speak of "right'" or '"left" and D = SP(A)C_R(A) is defined as in Chapter 5.
For all profile u define the righist majority relation Mr(u) by:
aM (u)b iff | N(u,a,b)| >_52’-
or -
lN(u,a,b)] = g- and a is right of b.
Lemma 3.
For all singlepeaked profile u e SP(A)N, the rightist majority relation Mr(u) is
a (single peaked) linear order. The associated social choice function is monotonic
and satisfies AIIA.

Example 2. Dichotomous Preferences and Approval Voting (Brams and Fishburn, 1978)

We say that a preordering on A is dichotomous if it contains at most two
indifference classes. The set Di(A)C: R(A) of these preorderings can be
identified with 2A\¢ if we read UiC: A as: agent i's is indifferent over Ui
and R\Ui 3 be strictly prefers Ui to A\Ui (Ui = A means overall indifference).

We shall say that agent i approves of the outcomes in Ui' Now approval voting

is the social welfare ordering induced by the number of agent of which a particular
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outcome is approved of: ap(a,U) = |{i e N/a ¢ Ui}l . If we break
ties by a particular linear ordering > of A we get a decisive
social welfare ordering:

a R(U)b iff ap(a,U) > ap(b,U)

or
ap(a,U) = ap(b,U) and a > b
This s.w.o0. is monotonic and satisfies AIIA, hence it is strategyproof.
‘One can state a converse property in the domain of dichotomous
preferences: see Brams and Fishburn, 1978.

The general characterization of those domains on which the AIIA
axiom is compatible with linear rationalization is quite difficult:
the existing results are hard to interpret: see Kalai and Muller,
JET, 16, 456-469 or the working paper by Muller and Satterthwaite
1983 Northwestern Universityl.

On the other hand, some nondictatorial strategyproof voting
rules can be obtained on domains where the Arrow's ITA axiom would
not be compatible with linear rationalization: in other words
Lemma 2 does not cover all interesting cases for strategyproofness.

Take the following example: the set A 1is a 4-outcomes tree and

D is the set of preferences that are single peaked w.r.t. this tree:

b
LR 2
™ preference v is in D iff:
\\\\ .
. a = argmax v or

I A
% "by = argmax v and v(a) > v(bg),
| v(bm) where {k,%,m} = {1,2,3} .
*b,

The set A




' One’ éhecks easily that for any profile 'in DN, a Condorcet winner
. exists (namely a,. unless a majority‘of peaks are in one bk) and
that is is unique if [N} is odd.. This ‘defines a strategyproof
_voting rule (for |N| odd, 6therwise add one phantom voter). Yet,
the majority relation may be cyclic on DN: take a profile-where
every agent's top is a; this imposes no restriction on the preferences
over {bl’bZ’bs} hence a Condorecet paradox can arisa.

| Exercise 2 below investigates singlepeakedness on arbitrary
trees. OQOur last example is one where, again, strategyproofness is

possible but not arrovianm aggregation of preferences.

Example 3. House trading

Let N = {1,2,...,n} be the set of agents and H = {1,2,...,n}
be a set of houses: initially agent i is endowed with house 1.
Any agent 1 can consume only one house and his preferences are
described by a linéar ordery u; on H ; he does not care about
other agents' allocation. We set A = 3(H) to be the set of
permutations of H , describing reallocations as follows: for all
a € At a(i) = j means agent i receives house j ,
the restricted domain D of preferences over A is identified with
L(H) as follows:

u; € L(H) represents the Preferences over A:

ui(a) > ui(b) iff ui(a(i)) > ui(b(i))

In this simple exchange economy the competitive equilibrium is
unique and can be reached by a fairly simple algorithm, called the

trading cycle algorithm (Gale):
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H . .
‘Let 0 ¢ H be constructed as: o(i) = argmax u., namely agent i's

H
best preferred house is o(i).

. (i o1 ) . - 3 +1= . . .
Any cycle of O"(llg >y where ¢ (1k) 110 K+1=1) is a trading
cycle: the corresponding exchange (which lifts the corresponding
agents to their satiation level) is performed first. Then we
repeat the same construction over +he remeining agents and houses.

Eventually we get sn xlloca+icn a®(1) which is *he unique

competitive equililvium as well as the core of our economy.
Lemma U4

The veting rule u + a%{y) iz strategyproof (even coalitionally

strategyproof) on DN,

Exercises on Chapter 6

Exercise 1. Proof of Gibbard-Satterthwaite's Theorem

Fix, N, A, with !Al > 3 and a strategyproof voting rule S
on L(A)N,
1. Prove that S satisfies the strong positive association
property namely: for any two profiles u, u', and outcome a:
{S(u) = a and (ui(a) > ui(b) => vi(a) > vi(b) all i,b} 3> S(v) = a}.
2. For all coalition T and outcomes a, b, set:
U(T,a,b) = {u ¢ L(A)N for i ¢ T, a is on top of u. b is second

}

for i e N\T, b is on top of u;, a is second

Prove that the 3 following statements are equivalent:
i) S(U(T,a,b)) = {a}
ii) Ju e LY N(u,a,b) = T and S(u) = &

111) ¥ u e LY (N(u,a,b) = T) => (S(u) # b)
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3. Define W r t0 be the set of coalitions T satisfying
3

i)~iii) above. By copying the proof of Arrow's theorem (Theorem 1,
Chapter 2) show that
i) W does not depend on a,b and
a,b
ii) dis an ultrafilter.

Conclude that S ie ddptatanial

Exercise 2. ¢rerences on a Tree (Demange, Mathematical

T T Ve et
HCLy o, (]

Given A, the finite set of outcomes, an (undirected) graph on
A is a subset G of:
Ax A - {(a,a), a e A}
such that (a,b) € G iff (b,a) ¢ G. A path between two distinct
outcomes, a and b, is a sequence {ao = a,al,.,.,ak,ak+l = b}

such that (ai,a ) e 6 for i = 0,1,...,k .

i+l

A graph G is & tree if there is a unique path between any
two distinect outcomes. This implies that all a, in any path

ao’°'°’ak+l) are distinct.

For a given trec & on A, and anv two outcomes a or b in A, we
denote by P(a,b) the path between a and b. We say that outcome c
belongs to P(a,b) if it belongs to the range of sequence P(a,b).

Now we say that a pveordering u e R(A) with top outcome a
is single peaked with respect to G if the following property holds:

¥ bece A,b # ¢ ¢ [be Pla,e)] =>Tue) < ulb)]

We denote by SPGCL.R(A) the single peaked preorderings w.r.t. G.
1) Check that single peaked preferences of Chapter 5 correspond

to a "linear" tree.

. . . N
2) TFor any society N with odd size, and any u e SPé s Prove the
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existence of a unique Condorcet winner CW(u). Prove that it
defines a strategyproof voting rule.
3) Assume {N} > 5 and prove that the majority relation M(u)
is cyclic (the strict majority relation has a 3-cycle) for

. N . .
SOome u in SPC unless G is a linear tree.
n EESS

Exercise 3. Manipiletisr The Housetwading Algorithm (Gale)

P -

Samhough oo cnm Il vaneed s S the “rading cycles
algorithm by falsifying its reported preferences, it can do so by
ex ante reallecaticns. Censider the Folicwing three agents house

trading ganc:

Agents Preferences Initial endowment
1 c >a > b a
2 a >b > ¢ b
3 a >Db > ¢ c

Compute the competitive allocation. Next suppose that agents 1,2
exchange ex ante their endowments. Compute the new competitive
allocation and observ:s “hat agent 1 gzets the same house while agent 2
F2T3 a better house.

Is it possible to design a configuration (with 3 agents or
more) where a mani-mnlabise oF this sovt could be strictly profitable

to all agents in the <esiition?
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CHAPTER 7. SCORING METHODS AND PROBABILISTIC VOTING-

1. Scoring Social Welfare Orderings

The widely used scoring methods generate a large family of social

welfare orderings. Throughout this chapter, we fix A with cardinality

p and we represent a linear ordering v € L(A) as a fixed scale utility

namely a bijection v from A into {0,...,p-1}. Thus v(a) k

means ‘that outcome a has rank p-k in v (where ranks increase from

the top outcome to the baottom outcome).

A vector of scores is an element s of Rp such that:

< = < ] < .
SO—- 1~ .—Spa]_

1%
Given s, and a profile u e L(A) » “wa score of outcome a at u is

denoted s(ajzu) and defined wy-

- 11 'u [3
sCa,u) = I S, (a) all a ¢ A, a N
ie i

l f agents fbf
Equivalently we may denote by vk(a,u) the number of ag

which a is ranked p-k:

Then we have

p-1
s(a,u) = I sk-vk(a,u) = s-v(a,u)
k=0
At profile u the vector of scores s(u) = (s(a,u)) defines a

preordering of A (a is preferred to b iff its score is higher).

s .
i . WO basic
Hence a social welfare ordering that we denote u » R7(u) T

examples are the Borda s.W.0.: 5 F k, all k and the plurality
= = = 1. We list now some facts
S.W.0,t S5 F . T SP_2 = 0, Sp—l 1

about scoring S.W.0.8:
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‘They are anonymous and neutral.

*They are monotonic.

*They satisfy unanimity and strict monotonicity iff the sequence

I is strictly increasing: in that case we say that s is a strict
vector of scores.

*They do not satisfy the majority principle: elect a Condorcet
winner whenever there is one.

To check the last claim we state a useful result. Say that the

vector (VO,...,vp_l) stochastically dominates the vector
(uo,...,up_l) if we have
up—l = vp—l
et * e 2 Yy Ve et e
Upp *oeee P UG S Vg b by

We denote v > u the stochastic dominance relation.
Lemma 1l::
For any strict vector of score and profile u, let a be a top

outcome of the preordering R°(u). Then v(a,u) 1is stochastically

undominated

a ¢ argmaxR®(u) => {for no b ¢ A v(a,u)} < v(b,u)
A

Now one can construct a profile (for |A| > 3) where the unique

Condorcet winner is stochastically dominated; the following example

with 17 agents is due to Fishburn:

agents 6 ; 3 ;4 L

outcomes a c b Ib a is the unique Condorcet
' winner; it is stochast-
bi a a jc ically dominated by b.
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Although scoring methods are monotonic, some widely used combinations
of them lead to paradoxical non-monotonicity properties.

The Paradox of Plurality with Run Off.

This voting method is widely used in various political issues:
the first step is a plurality voting, where a candidate winning a
strict majority of votes is elected. If no such outcome emerges,
the two best-scoring candidates compete in a run-off, i.e. a binary
majority contest.

Consider a situation where three candidates compete among voters

and the profile is:

-6 agents u(a) > u(b) > ule),
‘5 agents ulc) > u(a) > u(b),
‘4 agents u(b) > u(e) > u(@), ;

*2 agents u(b) > u(a) > ule).

After the first round a and b (with plurality scoring 6 each
above scoring 5 by c) go for a run-off where a passes b by 11 to 6.

Suppose now that the two agents with preferences u(b) > u(a) > u(e)
change their minds. They estimate that a is after all a better
candidate than b and their new preference is therefore ufa) > u(b) >
> u(e).

Although this change of opinion strictly improves upon the positién
of a, it actually prevents the election of a. That is to say, in
the new profile a and ¢ pass the first round (with plurality
scoring 8 and 5, respectively) but a is knocked down by ¢ 8 to 9

in the run-off.
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Many practical multi-stage elections work by retaining the

non-loosing outcome from several successive scoring methods.

Formally let sl,...,sK be a finite sequence of vectors of scores.

Define the choice set by the following induction. Bl = A\argmin RSI.

Given Bk-l’ restrict the vector sk to its first 1Bk—l-| components;
k ' -
then define Bk = Bkul\argmin R® tinless this set is empty, in
which case Bk = Bk-l'
Fishburn observed that such methods will always lead to non-

monotonic voting rules: his argument is explained in Exercise 3.

2. Young's Reinforcement Axiom

Think of the society N as variable and consider two disjoint
populations Nl’ N2 with respective profiles Uy, u, over A (the
outcome set is fixed). Then we have,

vk(a,ul) + vk(a,uz) = vk(a,ul+u2)

which implies s(a,ul) + s(a,uz) = s(a,ul+u2). Hence the following
reinforcement property:

aRS(ul)b and aRS(uz)b => aRS(ul+u2)b

aPs(ul)b and aRS(uz)b => aPS(u1+u2)b .
If both populations agree in comparing a pair of outcomes, the

overall population has the same opinion.

Call choice correspondence a correspondence S from profiles u

into A: S(u) is the choice set at profile u. In particular a
voting rule is just a single valued choice correspondence. The
reinforcement property is stated for choice correspondences as

follows:
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NUN N N

N \
T2 - 1 ~\ 2
(ul+u2) = S (ul)"‘ S (u2)

s Tupy N sNZ(uz) £ = 8
(this formulation requires anonymity of SN).

This says that an outcome which is best for society Nl and best
for society N2 is best for society N1$J'N2; also, no other outcome
is best for NlﬁJ N2 .

Clearly the choice correspondence SN(u) = argmaxRS(u) associated
with a scoring s.w.o. satisfies the reinforcemeﬁt axiom. A
beautiful theorem shows that this property uniquely characterizes
the scoring methods.

Theorem 1 (Young [19751)

Let, for all n=1,2,...,Sn be an anonymous and neutral choice
correspondence for societies of size n. Suppose the sequence
(Sn)n=1,2'_. satisfies the reinforcement property and the following .
continuity axiom:

continuity: S™(u) = {a} => for all v e L(A)™ there exists q such

that Sm+qn(v+nu) = {a}

then there exists a vector of scores s such that for all n, s” is
the associated choice correspondence.

In fact, without the continuity axiom Young proves that reinforce-
ment characterizes all choice methods derived from a finite repetition

of distinct scoring methods: see Young [1975].

3. Supporting Size Methods

To any profile u e L(A)N associate the weighted tournament
t(u,a,b) = |N(u,a,b)|

t(u) = [tlu,a,b)] .y

Fix a vector of weights t_ < t and compute the weight

< ... < T

o) 1 n

of outcome a at profile u:
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t(a,u) = =

bia tr(u,a,b)

This defines a social welfare ordering with the obvious properties
of anonymity, neutrality and monotonicity. Whenever t, < t it
satisfies unanimity as well.

Typical examples are
*The Borda s.w.o. obtained for < = 9 4, a1l 2 = 0,...,0.

'S
‘The Copeland s.w.o. obtained for:

- . n
tm = 0 if 2 < 5
{
- . n
tl =1 if L > 7

*The XKramer s.w.o. that compares the maximal size of objecting
coalitions:

aK(uw)b iff min rt(u,a,a') > min t(a,b,b")
a'#a b'#b

see also its lexicographic refinement in Exercise 1.

Lemma 2.
The Borda s.w.o. is the unique social welfare ordering associated

with a scoring method and with a supporting size method.

4. Probabilistic Voting

This section contrasts with the rest of Chapter 7 to 9. We
enlarge the class of voting rules by allowing a random choice among
the deterministic outcomes in A.

Definition 1: Given A and N, both finite, a probabilistic voting

rule S 1is a (single-valued) mapping from L(A)N into P(A), the
set of probability distribution over A. Thus S is described by p

mappings Sa , & ¢ A where Sa(u) is the probability that a is elected
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at profile u:

S (u) >0, ¥ S.(uw =1 for all u e LAY .
a - a
aehA

Notice that individual messages are purely deterministic, even
though collective decision is random.

Definition 2.

The probabilistic voting rule S is strategy-proof if for all
profile u and all cardinal representation U of this profile:
then the following inequality holds true

' .
azA U, (a)s, (w) > agA U;(a)s_ (uf,uy) all ieN
’ all u; e L(A)

Notice that the cardinal representation Ui of us cannot be part

of agent i's message: he is only allowed to reveal his (linear)
ordering of the deterministic outcomes. It is only natural to
enlarge the class of probabilistic voting rules so as to include
any mapping S from (RA)N into P(A) and state the strategyproofness
property as follows:

¥ 3 ?
agAUi(a) Sa(U) > agAUi<a)Sa(Ui’Ui) all i, U, U}

Unfortunately, the set of such strategyproof cardinal probabilistic
voting rules is unknown.

Back to Definition 1 we consider two subclasses of probabilistic
voting rules inspired respectively by scoring and supporting size

systems:
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First take a vector of scores such that:

0 < s

< aas < and s + ... + s =
o = Sp—l n S

- o} p-1

and define the scoring voting rule s® as follows:

s
S_(u) = gy s all a,u
a ieN ui(a)
(remember that the range of us is 0gec-5p=-1 ).

Next take a vector of weights t such that

+ tn =z all ¢ =90, ..., n

0=t =2 plp-1)

< ... <t 3t
— — n

o L

and define the supporting size voting rule St as follows

Sg(u) = T
b#a

tt(uga,b) all a,u

Lemma 3.
These voting rules are all anonymous neutral and strategyproof.

Theorem 2. Gibbard [19781 Barbera [1979]

A probabilistic voting rule S which is anonymous, neutral and
strategyproof is a convex combination of one scoring voting rule

and one supporting size voting rule.

Exercises on Chapter 7

Exercise 1. Lexicographic Scoring and Supporting Size Systems

1. Consider first the maximin scoring s.w.o. RO

aR_(u)b <=> min u.(a) > min u.(b)
o . =0 i
ieN ieN

Interpretation of the associated choice correspondence is as follows:
Each agent proposes first his top outcome: if they are not
unanimous, each proposes next his two best outcomes: if some outcome

is proposed by all agents it is elected and the process ends. If
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not, the process goes on with each agent proposing his three best
outcomes, and so on . .« .

Prove that RO is derived from some vector of scores. Similarly
prove that the Kramer s.w.O. is a supporting size method.

2. Next consider the lexicographic refinement of RO namely R_,
aRoob <=> (vo(a), Vl(a)’“"’vp—l(a» $ (Vo(b)"°”vp~1(b))
where < is the lexicographic ordering of RP.

Consider also the lexicographic refinement of the Kramer S.W.O.:

E
aK_,b <=> [T(a,a')]*l_i,;661 2 [t(b,b')]b,¢b

where for all z e RP7T s s#c RP~1 is obtained by rearranging
the coordinates of z in increasing order.
Prove that ROo (resp. Koo) is a scoring s.w.o. (resp. a supporting

size S.W.0.).

Exercise 2.

Any scoring s.w.0.: u -~ R®(u) satisfies the following weak AIIA

axiom. For all outcomes a,b,c,d and profiles u, u'! we have:

{{c,diN{a,b} = 4 and u and u' differ only inasmuch as c,d
have been permuted in some agents' opinion} =>{aRS(u)b <=> aR®(u")b}
Give an example of an s.w.o. satisfying weak AIIA that is not a

scoring s.w.o.

Exercise 3. The Paradox of Repeated Elimination of the Loosing Outcome:

Let A = {a,b,c} and consider the following 27 agents profile
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agents 6 4 6 2 6 3
outcomes a b b C c a
b a c b a c

C c a a b b

1) Consider any peir 513 82 of vectors of scores such that
si > s% and prove that the successive elimination of loosing

outcomes as described in Section 1 enforces the election of a

2) Consider a new profile, where the only change is that a and
b are exchanged in three of the four bac rankings and in the two
cba rankings. Prove that the same voting rule elects now c.

Exercise U.

Consider the probabilistic Borda voting rule:

2

5,0 = srEemTya

£ ui(a) .
ieN

Show that it is a (probabilistic) supporting size voting rule.
Conversely which probabilistic voting rules are together scoring

and supporting size methods?
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Chapter 8. Sophisticated Voting

In this chapter and the following, the set A of feasible outcomes
is fixed, so that the dilemma social welfare ordering versus
Arrow's IIA axiom vanishes.

1. Voting by Veto

and
Given a game form/a fixed profile, a dominating strategy of

a particular agent i is an optimal decentralized behaviour for this
agent whatever the information he or she possesses on the other
acents' preferences. If 1 is completely informed of the whole
profile or if he is only aware of his own preference ordering, he
will still use his dominating strategy as lone as cooperation with
the rest of the society is not nossible. This is how strategy-proof
game forms achieve full decentralization of collective decisions:
not creating any incentive for individual agents to acquire information
about their respective preferences.

In most familiar voting methods, however, an agent can
profitably use information about other agents’ opinions. A simple
example makes this intuition precise.

Example 1: Voting by Successive Veto. Let the set A = {a,b,c,d}

of candidates contain four outcomes and society N = {1,2,3} is
made up of three agents. The following game form is in order:

each agent successively vetoes one among the non-vetoed candidates.
The (necessarily unique) remaining candidate is elected. Suppose

next that the following profile holds:

U.l u2 Ua

e TR o IR v T
0o o o o
0O 8 U
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Agent 3 clearly has a dominating strategy. When facing a pair
{a@,B} of candidates he vetoes the one he prefers less. This
"sincere" strategy is (non-cooperatively) optimal whatever the utility,
and therefore the strategy, of the other two asents. On the other
hand, agents 1 and 2 have no dominating strategy. Actually, every
strategy of agent 2, where he never vetoes his best preferred
candidate among the three left by agent 1, is undominated. Hence,
he has 2LF undominated strategies among 3l+ possible strategies.
Finally, among the 4 possible strategies of agent 1 not one is
dominated (exercise: check that "veto a" is not a dominated strategy).
Thus, if he ignores the others' utilities, no good choice emerges
and he will presumably use the secure strategy: veto d, the unigue
best choice of a risk-averse agent. After d is vetoed, the preferences
of agents 2 and 3, restricted to a,b,c, do coincide and b will be
elected by any pair of undominated strategies.

Let us assume now that arent 1 is aware of the whole profile:
in particular he knows that by vetoing d he guarantees the election
of b. "Vetoing b might be a better strategy for agent 1. The

and u

restrictions of u 3

2 to a,c,d are:

U4y Uz

The two undominated strategies of agent 2, namely to veto c
or d, yield the election of d and a, respectively. If agent 2
ignores agent 3's preferences, he will risk-aversedly veto ¢, and

d will be the final outcome--a complete failure for agent 1's ruse!
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If, on the contrary, agent 2 is completely informed, he can anticipate
the output of his own veto, therefore optimally vetoing d to enforce
the election of a. This ultimately justifies that agent 1's best
strategy is to veto b.

Motice that no explicit communication between agents is needed
during this play. The crucial assumption is completeness of the
information (I know your preferences, you know that I know your
preferences, I know that you know...). Then by mutually anticipating
their respective strategies, the agents non-cooperatively pick a
unique equilibrium strategy. The resulting strategy n-uple is
called the sophisticated equilibrium (or subgame perfect equilibrium):
we shall define is‘formally in section 2. As an introduction to the
general results about sophisticated voting, we study the voting by
veto game forms. We fix A and N with reuz-~nrtive cardinalities »
and n. Tet+ v i ¢ ¥ be nounegative integers such thet:

pX v. = p-1.

We set v = (Vi) and we denote by I(v) the set of those

ieN
mappings o from {1,...,p=-1} dinto N such that
Vi e N: 0" (i) has cardinality v,
An element o ¢ i(v) 1is a finite sequence with length (p-1)
and values in N which entirely specifies the elimination process.
More precisely, to o we associate the game form g, defined (in
extensive form) as follows:
First, agent o(1l) eliminates one outcome within A, say ay .

Next, agent o0(2) eliminates one outcome within A‘\{al}, say a,.

°

At step k, agment o(k) eliminates one outcome within A\{a1

EIL R Y

ak—l} > say a, .
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The finally elected outcome is the remaining element of
A\{al""’ap—l}

For instance,

= (lluo.]..zzann?g.ln .n—lnn-.n)

PRI ORI S N gt

eansetr.

Vi Vo vn

means that agent 1 exercises first all his veto power, next agent 2,
and so on...0On the other hand
d = (123123123...)

means that agents 1,2 and 3 successively veto one outcome at a time.

Clearly all game forms g are neutral but not anonymous
(however -d is "more anonymous" than ¢ as the results below will
make cleér). Two different non-cooperative behaviours can be
explicitly computed for the game form g . At one extreme the sincere
(risk-averse) strategy is used by an agent who has no information
on the other agents' preferences and is only aware of his or her
own preference ordering. Thus, if at step k agent i must eliminate
one outcome among A \ {al,...,ak_lg he will eliminate his worst
outcome. Hence, if u e L(A)N is a given profile and every agent
plays sincerely, the elected outcome, denoted by sin(o,u), is given
by the following algorithm:

aq is the worst outcome of Us(1)y among A,

s AY
a, is the worst outcome of U (py AMong A \{al},

-

w J NPT 1, DU l’.'!ﬁ‘f'st ou T b
k L e af uc(k) among, A’\{al,---,ak_l} 5 (L

ap—l is the worst outcome of uo(p_l) among A\‘{al"°'°ap—2}’

sin (o,u) = A'\{al,..,,ap_l}.
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At the other extrme, sophisticated behaviour is expected from
non-cooperative agents completely informed of the overall profile.
Let us denote by sop(o,u) the outcome elected by the sophisticated
equilibrium of s at profile u. Our first theorem says that the
sophisticated equilibrium strategies as well as the sophisticated
outcome sop(o,u) can be computed by the reverse algorithm of (1).

Theorem 1. (Mueller, 1978; Moulin, 1979). For any element

¢ of £(v) let us denote by ¢ the symmetrical mapping of ¢ :

¥k = 1,...,p=1:0(k) = o(p~-k).
Then we have
vu ¢ LAY :soplo,u) = sin(g,u).

In other words, sop(¢,u) is computed by the following algorithm:
b1 is the worst outcome of uo(pml) among A,

b2 1s the worst outcome of ug(p—Z) among A‘\{bl},

°
°

bk 1s the worst outcome of uc(p—k) among Aﬂ\{bl,.,,,bk_l .},

°
°

bp~l is the worst outcome of Us¢1y among A“\{bl,..,,bp_2},
sop(oyu) = A\{bl,..,,bp_l} .

Notice that the above algorithm also gives the sophisticated
equilibrium strategy of every agent. TFor instance, agent o(1l)
must perform the entire computation of b

. b in order to obtain

1o =2
that outcome bP'l that he is to eliminate at the first step.

As an immediate corollary of theorem 1, observe that if o = o
then both the unanimously sophisticated behaviour of the agents

and their unanimously sincere behaviour yield the election of the

same outcome for all profile. There are plenty of such mappings
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¢ , as the reader can easily verify: if p is even and n = 2,

voting by alternating veto is an example:

6 = (121212....121) jl appears % times
{2 appears % < 1 times

In voting by alternating veto, each of the 2 agents successively
‘eliminates one outcome: this yields a game form as close as
anonymity as we can do within the family of voting by veto methods
(see exercise 1). However, many more game forms exist that achieve,
through sophisticated voting, an efficient, neutral and almost
anonymous social choice function. We illustrate this point for n=2

by means of the rawlsian voting rules.

Implementing Two-Person Rawlsian Voting Rules

Given A and N = {1,2} we represent an individual preference
by a fixed scale utility function us namely a one-to-one mapping
from A into {0,...,(p-1)} . Denote by R(ul,uz) the rawlsian
outcomes at profile (ul,uz) namely

a € R(u,,u,) <=> a is solution of max min {u,(b), u,(bl}
1272 beA 1 2
We define k* by p-1l-k* = max min{ul,uz}. Typically if profile
A
v(ul,uz) has a unique rawlsian outcome a* then A\{a} is partitioned

into:

AlLJ A, (B where A; ara the outcomes uj;-superior to a¥

and B are the outcomes Pareto inferior to a®:

ul u2
. NG . .
e fo]  Wotdoe IAy] = |Ap) -kt
a% X
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Another possibility that we discard for simplicity is when there
are two rawlsian candidates (see Exercise 4).
Observe first that voting by alternating veto does not implement

a rawlsian voting rule, as the following profile shows:

U1 U2

Ay By

a a for instance take

Ay B 8] = |A;| but this
B Al is not necessary.

One can implement a rawlsian voting rule by either one of the
following two methods:

*Voting by successive approval (Laffond)

There are 2 agents and p outcomes. Each agent, starting with
agent 1 successively approves of one outcome (an agent must approve
of a different outcome at each play). As soon as one outcome is
approved by both players it is elected.

Here a prudent, maximinimizer agent, approves first his top
outcome, next his second preferred outcome and so on.... If both
agents are prudent then a® is elected.

On the contrary, sophisticated agents approve first alternatively
one outcome from B until B is exhausted, whereafter they approve of
Ai until a®* is finally approved by both. Such delaying strategy

allows optimal exploitation of the opponent's mistakes.
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Another method is:

Conditional Auction.

For the sake of simplicity we assume that p = 2p' - 1 is odd.
Step 1: Each agent i gimultaneously bids an integer xi s
1 < A; 2P, reports a utility v; and a number e; ¢ {0, +1} (to
be used to break possible ties). The agent whose bid is highest
becomes the leader in Step 2. In case of a tie, a "matching pennies"
rule is used from the messages ¢€;, i=1,2: agent 1 {resp. 2) is
+

declared leader if = +1 (resp. if e, + €, = 0 or 2).

1 7 %2 1 2
Step 2: Agent i, the leader, picks the final outcome a under
the sole constraint Xj < Vs (a) (where j is the non-leader agent).

Agent i's (essentially unique) prudent (maximin) strategy is to

announce \A; = p' and to reveal as v, his true utility uy (with
an arbitrary ei)“ By such a message he is guaranteed of the
utility level p': if i is not leader in Step 2, this follows

from the definition of our mechanism. If i is leader in Step 2,
he faces a constraint such as vy (a) > Aj where xj < p', thus
forbidding at most (p'-1) candidates: hence at least one a can be
found satisfying the constraint and moreover u. (a) > p'. We let
the reader check that any other message guarantees a lower utility
level.

Now sophisticated agents are easily shown to use the following
pair of mirror strategies (each player announcing a mirror image
of the other's utility):

xp = (KEUp,e))  xy = (KE,Tpey)

where Ei is the reverse of uy and e; is arbitrary.
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Indeed, the leader in Step 2--say agent i--faces the constraint
ﬁi(a) > k% (=) u;(a) < ui(a""f)° Strikingly enough, both voting by
alternating veto and the two above methods implement the same
outcome with two equally prudent or two equally sophisticated voters.
Yet a sophisticated (completely informed) agent can extract a lot

more utility from a prudent (uninformed) agent.

2. Dominance Solvable Game Forms

We formalize the strategic mutual anticipation exemplified
above.

Notation: Undominated strategies. Given A and N, both finite,

let g = (Xi, i e N3yn) be a game form and u € L(A)N be a fixed
profile. For any subsets Yi(: Xi, i ¢ N, and any agent J e N, we
denote by Jﬁj(uj; Yi’ i € N) the set of agent j's undominated
strategies when the strategy spaces are restricted to Yi, ie N.

Thus, Xj belongs to Jﬁj(uﬁ; Yi° i e N) if and only if

~4

| Yxz € Y.:ius .3 K3 (ys55%2))
| ¥x3 € Yg uj(w(xj,xj)) < (n y42%3)75
Xy € Yj and for no y. € Yj _
3 ﬂx% 3 Y%:tﬁ(n(xj,xa)) < uj(n(yj,xa))

Definition 1. Given a game form g and a profile u € L(A)N the

successive elimination of dominated strategies is the following N-tuple

of decreasing sequences: Xg, i e N, t e N:
o} t+1 Py t . . t
X: = X.3 X. = D.(u.s X Ny C .
I R gugs X 1 e Db Xy

We say that g is dominance-solvable at u if there is an integer

-t
t such that n(XiGNXi

) is a singleton, denoted S(u). We say that g
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is dominance solvable if it is so at every profile. 1In that case

we say that g sophisticatedly implements the social choice function S.

The crucial behavioural assumptions underlying the concept of
sophisticated voting are complete information (every agent is aware
of the whole profile) and non-cooperation (agent i's strategic
choice is made independently of the other agents' choices). Hence,
a dominance-solvable game form is a decentralization device to the
extent that it gives an incentive to the agents to acquire information
on their mutual preferences, which in turn yields the selection of
an unambiguous outcome. Thus, it is a realistic equilibrium concept
only when the relevant information can be obtained and non-cooperative
behaviour can be enforced. This restriction did not apply to
strategy-proof game forms.

Actually, at any fixed profile, dominance-solvability is a
generalization of strategy-proofness: if every agent has a dominating
strategy in the normal form game (Xi,u. o m, 1 € N), then'X% is

1

%1y is a

made up of agent i's dominating strategies and “(XieN i

singleton. The key observation is that dominance-solvable game
forms are a rich class of decision-making procedures (allowing great
flexibility in the distribution of power) and therefore implement a
great variety of social choice functions. By weakening strategy-
proofness into dominance-solvability we convert the Gibbard-
‘Satterthwaite impossibility theorem into a wide possibility result.
A large family of dominance solvable game forms is generated by
finite game trees: these generalize the binary game trees of

Chapter 3.2 in the following way:
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Consider any finite tree (not necessarily a binary one) and
assign to each nonterminal node m a strategy-proof game form bearing
on the successors of m. Formally, a finite tree is a pair
I = (M,0), where M is the finite set of nodes and ¢ associates to
each node its nearby predecessor. We require that o satisfy the
following properties:

(a) There is a unique node m subject to o(m ) = m . Tt

is the origin of T .

(b) There is an integer & subject to o*(m) = m, for all m ¢ M.

(¢) The smallest such integer is the length of T .

A node m subject to o_l(m) = ¢ 1is called a terminal node of
T , and their set is denoted Z. For a non-terminal node m, we call
c‘l(m) the set of successors of m.

Given a set A of outcomes, we construct a game form on A by
assigning to each terminal node an element of A and to each non-
terminal node a game form bearing on its successor nodes. Formally,
let © be a mapping from Z onto A, and for all me M 7Z, let

m

- m
= (X5

, 1 e Nj =) be a game form on c_l(m). (Thus, o X, =

(o3 . .
“m ieN"1

c_l(m)o) Then the game form associated with (M,0,8,8) is described
as follows:

*A strategy X of agent i associates to each non-terminal node

m € M\Z an element x? of X?O Their set is denoted X..

*For each strategy N-tuple x = (xi, i e N) we define g(x) = @(mT),
where Mo, is the first terminal node of the sequence

m_ m m, m
o) o ’
(mo,m1 = g (X T)gee.,m, = 7 t(x t),,,,
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Let us visualize a typical game form associated to a finite
tree: o associates to each node the nearby upper node; at nodes
m, and n a majority vote is taken to pick one successor:; and at m
(resp. at m', n') agent 1 (resp. agent 2) selects dictatorially

the successor node.

start

Theorem 2. (Moulin, 1979). Under the above notations and assumptions
suppose that for each non-terminal node m, the game form B is
strategy-proof. Then the game form associated with (r,0,g) is
dominance~solvable.

In view of the Gibbard-Satterthwaite theorem, if the game form

g

En is strategy~-proof, then either g is binary, i.e., m has at

most one successor, or i is dictatorial. Therefore the two main
examples of dominance-solvable game forms derived from theorem 2
are the voting by binary choices at one extreme and the "voting by
dictatorial choices" at the other extreme.

Voting by binary choices are derived from the binary game'trees
of Chapter 3.2. The idea is to decide on the successor of any node
by an anonymous voting such as a g-quota majority games q > %.

(0Of course, we could use a nonanonymous simple game but the privilege
of voting by binary choices is to allow for a strict anonymity.) Take

the game tree at the beginning of Chapter 3.2. The game form starts

from the origin of the tree and decides each move to the left by
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the g-quota game: a +tie breaking device (e.g. favoring the
downward branch) must be attached to the tree in case no successor
receives the quota .

From the proof of theorem 2 follows that sophisticated voting
will implement by this game form the binary social choice functions
derived from this tree. Thus the elected outcome always belongs to
the top cycle.

Notice the opposite orientations of the voting rule and its

implemented s.c.f., e.g. voting by successive amendments:

a b c
/ / / d
Afirst maiority vote

implements the sequential elimination aggregator:

c b a

AN

eliminate first ¢ or 4

Similarly voting by successive elimination

OV N
f

vote first to eliminate ¢ or 4

d

implements the provisional winner aggregator (see Chapter 3.2).
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The second important subclass of game trees voting methods
emerges when each game form 1w is dictatorial: of this type are
the voting by veto game forms, as well as the successive approval
voting rule (Example 2). Here is one more example.

Kingmaker

Agent 1 pinpoints to one other agent, say i2 who must name a
successor agent in N\{l,iz} , say i3 who must name a successor in
IJ\{l,iz,ig} and so on... until only one agent is left who
dictatorially chooses the final outcome. Computing the sophisticated
outcome of this method does not seem tractable, yet a centrist
voter (assuming for instance that preferences are single-peaked)

has a clear advantage.

3. Sophisticated Implementation

A sophisticated social choice function is one that is
sophisticatedly implemented by some finite dominance solvable game
form (requiring finiteness of the message space is consistent with
our assumption, throughout this chapter, that A and N are both
finite). Thus, it is a s.c.f. that results from the non-cooperative
behaviour of completely informed agents in some procedure.
Optimally, we would like to characterize the set é; of
gsophisticated s.c.f.s. This .would indeed explain much of the
collective implications of non-cooperation. Actually, we know
only a few facts about é;: it is very big (theorem 2), but many
familiar s.c.f.s are outside éS(corollary of theorem 3). We
establish a necessary condition for an s.c.f. to be sophisticated.

Notation. Given a utility u ¢ L(A) and a coalition TC N ,
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we denote by U the reverse of u: u(a) < u(b) iff u(b) < ula),
and by [u]T € L(A)T the profile of coalition T of which every
coordinate is u.

Definition 2. Let A, N and a s.c.f. S be given. We will say

that S is tight if the following property holds:
Yu € L(A), ¥T C;Ndu(S(vT,[E] C)) < u(S([u]T,[E] ))

T ¢
< u(S([u]T,v c))
T
T T
all Vg € LAY, all v o € LAY . (2)
T

This means that for those profiles for which society splits
into two homogeneous and antagonistic coalitions (members of T all
having utility u, members of T all having utility u) then the
sincere messages [u]T, [ﬁ]TC form a saddle-point of the two-person
zero sum game where T and its complement TS are the two players
with respective utilities u and u. Hence, for this very peculiar
sort of profile, truth is an optimal strategy for each coalition.
It is a "maximin" strategy as well:

u(S([u]T,[ﬁ]Tc)) = infu(S([u]T,v )) = sup inf u(Svp,v ).

c
A4 T A\ v T
T Tc

TC
These equations are an easy consequence of (2): it is well
known that in the two-person zero sum games where a saddle point
does exist, optimal strategies and maximin (prudent) strategies
do coincide. Notice that it does not follow from (2) that the
truth is a dominating strategy of either T or TC .

Theorem 3. Moulin [1983].

A sophisticated voting rule is tight.
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Corollary.
For n = |N| large enough and a vector of scores
S, € 8y < ... < 8. 3

no associated scoring voting rule (i.e. a single valued selection
of the choice set of that scoring s.w.o.) is sophisticated. For
instance no Borda voting rule is sophisticated.
Unfortunately the set of sophisticated voting rules is mostly
unknown. Here are some open problems:
-if n is a prime integer strictly greater than p, there exists
an anonymous, neutral and efficient sophisticated voting rule
(see Moulin [19831). What if n has no prime factor less
than or equal to p (see Exercise 3, Chapter DK
‘It is known that some sophisticated voting rules cannot be
derived from a game tree; how to characterize those derived

from a game tree?

Exercises on Chapter 8

Exercise 1. A sophisticated efficient anonymous and neutral s.c.f.

(Kim and Roush, 1980). We suppose |A] = p = 3 and |N| =n = 5.
We denote by o¢ an arbitrary ordering of A, written as a one-to-one
mapping from {1,2,3} into A. Next Go denotes the voting by
successive amendments corresponding to o (fig. 5.8).

For all i ¢ N, let Hi be the following voting rule: aent 1
picks one among the four other agents--say j--then agent j chooses

an ordering o of A, finally Ga is played.
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The overall procedure is any voting by binary choices

over Hl"“’HS‘ Prove that this procedure is

d-solvable and implements the plurality with N
-
a run-off.s.c.f. (see Chapter 7), and hence go(1)
an efficient anonymous and neutral s.c.f. N
q5(2)
Exercise 2. YOtilin »y yUnanimous Approval.

Let A be fixed with cardinality a
- and let c(3)
A = {al,oe.,ap} be an ordering of
A. The agents vote first to elect a; or rejec.
Unanimity
is required toO enforce aq. 1f at least one agent's Vo
) against
a; we g0 +o the second round of voting where a, 18 On the flo.
unanimity being needed to enforce a,, and soO oOn.
This procedure is pictured as a binary tree (identical to the
tree of voting by successive amendments) where o each node is
attached a non-neutral strategy-proof game form. Prove that the

sophisticatedly implemented s.c.f. is as follows.

We set P, = P» P © sup{k ¢ {1l,...5P} /ay is Pareto superior

to ap}s.,,, Diyy = SUP {k e {1,,.o,pt}/aPt+1 is Pareto superior
to a_} . Then S(u) = a_ » where p, is the first ineger such that

no Pyyq exists. In particular S(u) is an efficient, anonymous
and monotonic s.c.f.

Fxercise 3. Voting by Alternating Veto. Society contains two

agents N = {1,2} who alternately eliminate one among the
existing outcomes. For a given cardinality p of A, two voting by

veto methods are in order:



95

o = (12121....)
where agent 1 starts the eliminating process, and

o, = (2121....)
where agent 2 starts the eliminating process.

(1) For any given p > 2, find an example of a profile u e L(A)2
such that

sop(ol,u) # sop(oz,u)°

(2) Prove that, when sophisticated voting is in order, it is
always an advantage to start to eliminate first:

setting a; = sop(oi,u):ui(ai)>_ ui(aj), for {i,3} = 1,2 .
When sincere voting is in order, it is an advantage or a disadvantage
to start first?

(3) Prove that the outcomes of sophisticated voting ass
i=1,2, either coincide or are two consecutive Pareto optima. There
is no outcome ¢ such that

ul(az) < ul(c) < ul(al)
and

uz(al) < u2(c) < u2(a2),

Exercise 4. More on Implementing Rawlsian s.c.f.s

a) Analyze the two voting rules (voting by successive approval
and conditional auction) when two rawlsian outcomes are at hand.
Show that the sophisticated equilibrium outcome is one of them.

b) Consider voting by variable veto:

Step 1. Each agent selects a subset of outcome Ai and a

number s € {-1,+1} +to break possible ties.
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Step 2. If [Ai[ < ‘Aj[ then j 1is leader; he must select
the final outcome within A\Ai

If |A

Ayl = ‘ A,| a matching pennies rule decides upon the

leader.

Prove that the sophisticated equilibrium outcome is a Rawlsian
one. What about prudent behaviour?

c) Consider the following voting rule:

Step 1.

Agent 1 selects an integer k, 0 < k < p - 1.

Step 2.

Agent 2 selects one from two possible g.f. Gl(k) or Gz(k):
Gl(k): first agent 1 vetoes k candidates and then agent 2 vetoes
P -1 - k of the remaining candidates.

Gz(k): first agent 2 vetoes k candidates and then agent 1
vetoes p = 1 -~ k of the remaining candidates.

Intuitively, agent 1 cannot select too high a value for the
integer k (for k = p - 1, agent 2 is a dictator when choosing
GZ(P—l)) nor can he or she select too low a value (for k=0,
agent 2 is again a dictator when choosing Gl(O)).

Prove that the sophisticated equilibrium outcome is Rawlsian,

whereas prudent behaviour is- not.
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CHAPTER 9. Cooperative Voting

1) Cooperative Instability and Strong Equilibrium

We describe cooperative behavior by the concept of strong
equilibrium.

Definition. Given a game form g = (Xi, i e Ny m) and a profile

u e L(A)N we shall say that x = (xi)i€N is a strong equilibrium
if the following holds:

YT N, ¥yT e XT:N0{¥i~e T: uiﬂﬁyT,xTc)
We denote by SE(g;u) the set of strong equilibriums of g at u.

> u,r(x)}
i

In words, x is a strong equilibrium if no coalition of players
can jointly deviate, this deviation being profitable if the players
outside the coalition do not react. This passive behavior from the
non-deviating players must be seen as a threat successfully deterring
the complement coalition. The fact that this threat is merely "no
move" makes it particularly easy to carry out. Let us remark finally
that a strong equilibrium must be in particular a Nash equilibrium
and a Pareto optimum (as follows when T is a singleton coalition
or is the grand coalition).

Definition. We shall say that game form g is stable if for all

profile u e L(A)N it has at least one strong equilibrium: for all
u, S E (g,u) # & .

To any game form g we associate the simple game W(g) of its
winning coalitions, namely:

T e W(g) <=> YacA I x

e X e X : w(xT,x_T) = a

. u
T T ¢ YXor ~T
A first necessary condition for a game form g +to be stable is
that the dominance relation derived 'from its simple game at any

profile is acyclic, since we have
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Lemna

For any game form g and profile u a strong equilibrium

outcome belongs to the core of game W(g) at u:
7(SE(g,u)) CW(g)(U) | for all profile u
(notations as in Chapter 2.2).

Thus, for a game form to be stable, it is necessary that its
simple game g satisfies the premises of Nakamura theorem (theorem
3, Chapter 2): if g is stable then the Nakamura number of its
simple game W(g) is strictly ereater than |A| .

In other words the Condorcet paradox can be thought of as
expressing cooperative instability of any game form where any
strict majority is winning (as soon as A has at least 3 outcomes

and [N| is 3 or > 5). The family of voting by veto games do not

share that instability.

2) Cooperation in Voting by Veto

Cooperative stability allows to endow every coalition (however
small) with some decision power. Consider a voting by veto game
form as described in Chapter 7:

v = (vi, ieN) is the vector of veto power: 'ZNVi = p -1
(where p = A ); for aﬁy o € £(v), denote by giethe associated
game form (see Chapter 7.1). |

Any such game form is stable. Moreover its strong equilibrium
outcomes are easily described. As far as cooperative stability is
concerned it turns out that the particular choice of an ordering

g of the agents is irrelevant: the vector v of individual veto

power only matters.
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Given v and a coalition T , observe that by acting cooperat-
ively, the agents in T can veto any subset B of outcomes as long
as |B] < ’ZTVi . The righthand side of this inequality, we call
the veto po;Zr of coalition T and we denote it v(T). Intuition
suggests, and theorem 1 below confirms, that an outcome a can
possibly be stable with respect to cooperative behavior in
(g ,u) only if
g’?i e T

: |B] = p - v(T) and 4 : u (b)) > ug(a).

<{a'r N
£»¥b e B

No
GBC A

The above property defines the veto core Cv(u) of v associated with
u.

The following notation will be useful:

for all TN, a ¢ A, u e LAY Pr(T,a,0)

= {b e A/¥i¢T ui(a) < ui(b)},

Thus, the veto core Cv(u) is equivalently defined by

c,(u) = {ae A/NT TN : |Pr(T,a,u)| <p - v(T) - 1= 1 vilte

thus an outcome a is not stable if some coalition T can find a
subset B of A such that:

(i) a coalition T can force the final outcome in B by vetoing
its complement 3%; and

(ii) all members of coalition T have an advantage to do so
because every agent within T strictly prefers every outcome in B

to a.

Theorem 1. Given v and a profile u e L(A)Na the set of strong
equilibrium outcomes of the game (go,u) is non-empty and does not
depend on the particular choice of ¢ within &S(v). It coincides

with the veto core Cv(u):
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Va ¢ Afa e Cv(u)}
<=> a strong equilibrium x of (gc,u) exists, s.t. a = m(x)}.
Moreover the veto core Cv(u) equals the set of sophisticated
equilibrium (resp. sincere) outcomes when ¢ varies over I{(v):

Cv(u) = {soplo,u)/ o e £(v)} ={sin(o,ul/o e n(v)}

This theorem provides two different characterizations of the veto
core Cv(u)‘ On the one hand it is the set of strong equilibrium
outcomes of every game form &, (provided that o e I(v)): as

is apparent from the proof of the theorem, one can describe explicit~-
1y a strong equilibrium strategy n-tuple to "implement" any given
element of Cv(u)° Actually other (direct) game forms are

available to implement the veto core by strong equilibrium (see the
self-implementation property below). On the other hand Cv(u) is just
the set of sincere (resp. sophisticated) outcomes of g, when the
éfdering o of the veto algorithm (but not the overall veto function)
varies: thus outcome in C _(u) are easy to compute.

The above theorem also raises a remarkable property of the voting
by veto method: the non-cooperative outcome always is coalitionally
stable as well. This is not to say that a sincere (resp.
sophisticated) strategy n~tuple is immune against coalitional
manipulation--which would indeed contradict the Gibbard-

Satterhwaite theorem! More modestly we say that any outcome
that results from the sincere (resp. sophisticated) strategy
n-tuple also results from a strong equilibrium (in general

different) strategy n-tuple. This consistency property was

first introduced by Peleg (in a slightly different context)
see Peleg [1978].
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The choice correspondence CV (it is a s.c.c. where the set
of feasible outcomes is kept fixed) has a number of appealing
properties: it is neutral and efficient; it is strongly monotonic
(see Moulin 1983, Ch. 3) as well as inclusion minimal with that
property. Finally it is self-implementable in the following
sense: take any single valued selection S of CV:S(u) € Cv(u)
all u; thus S is just a voting rule, to which is associated a
direct game form (where the message space of any agent is L(A)).
Then this game form does implement Cv by means of strong equilibrium.
This fact is an easy consequence of the above theorem. Tor
any a e Cv(u) we can find a labelling t : A - N such that

r_l(i) has cardinality V. for all i e N and moreover:

1

ol

! ie N ¥b e 1

'

(i) ui(b) < ui(a)
Then any message n-uple v where rul(i) is at bottom of Ve is a

strong equilibrium of S with associated outcome a.

3) Rational Voting by Veto

If p 1is small relative to n, the indivisibility of veto
power in game forms g described above does not allow for an
anonymous allocation of decision power. 1In fact one can enlarge
the class of voting by veto game forms by a replication argument
which in turn endows each individual agent with a rational veto
power:

We fix A and N with respective‘cardinalities p and n. Let
o ie N, and Ay @ € A, be some non-negative integers such

that



SoI

l + Z U° = Z }\ e
ieN ae
Now consider a set AA made up of Aa replicas of outcome
a, for all a ¢ A. TFormally:
A, = {(a,z)/a ¢ A, 1 <2 < Moz
Next, let us denote by :(u) the set of all finite sequences

integer } .

of N such that i appears exactly us times for all i.

Formally:

() -1

(i) = up.l ,

{o :{l,...,%} >~ N/ |o i

where | = Zi c N“i o

To every particular element o ¢ Xu) we associate the

following game form, denoted g .2
2

First, agent o(1) eliminates one outcome within AA , say
(al’tl)°

Next agent ¢(2) eliminates one outcome within AA {(al,tl)},
say (a2’t2)°

@
s

At step k agent o(k) eliminates one outcome within

AA'\\(al,tl).,.(ak_lstk_l) » say (a; .ty ).

®
°
&

After step u there remains exactly one non-eliminated outcome

within A | sy (a,t): then a is the finally elected outcome.

The additienal rroperiy of g , as compared with the voting

DG’A
by integer veto g_, 18 Wha@. we ape now able to adjust at will

the resistance of the various outcom.. of A to elimination:

for if xa > Ay it 1s strictly easier for “ v agent or coalition
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of agents to eliminate b rather than a. Game forms ¢ are

TaA
not neutral in general.

General voting by veto shares most strategic properties of
voting by integer veto.

First the sincere elimination algorithm results when each
agent kills a replica of the outcomes he likes least among those
still alive. Then sophisticated behavior is given by the
elimination algorithm of the reverse ordering ~ . (thus copying
theorem 1, Chapter 7).

Going now to the cooperative behavior, we observe that given
(A,u) the possibility for coalition T to veto the subset B of
outcomes is no longer determined by the cardinality of B alone:

the veto power of is not neutral in general.

gcsx
Actually, we have that T can veto B if and only if

Tous = u(T) > (B = & a_ .
ieT? aeB 2

Thus the veto core associated to a pair A,y 1is denoted

Ay u

c, u(u) = {a e A/¥T C N:a(Pr(T,a,u)) + (T) < ,} .
9

Theorem. Given A, u and a profile u ¢ L(A)N, the set of strong
equilibrium outcomes of the game (go,A’U) is non-empty and does not
depend on the particular choice of ¢ within z(p). It coincides
with the veto core Clsu(U) defined by (43). Moreover, it ecquals

the set of sophisticated equilibrium (resp. sincere) outcomes

when ¢ varies over z(u):

stu(u) = {sop(o,r3 ul/o ex(u)} = {sin(g,r:u)/g ez (1)}

Notice that CA n’ however, is no longer neutral, nor self-
3

implementable, nor inclusion minimal strongly monotonic.
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4( The Proportional Veto Core

Whenever n and p are relatively prime, we can find two integers
As,u such that
1 +nu = pX
thus allocating u veto token to each voter and setting the veto
price of any outcome at A is a rational voting by veto method.
The point here is that allocation of veto power is both anonymous
and neutral. Even when n, p are not relatively prime, we can meet

these two requirements:

Definition: Given A the set of outcomes and society N, with

respective cardinalities p, n, an anonymous veto function is a

nondecreasing function v from {l1,...,n} into {0,...,p=-1} ,
where v(t) = k is interpreted as: any coalition with size t
can veto any subset with at most k outcomes.

Definition:

Fix A, N, and an anonymous veto function v. Given a profile
u € L(A)N, the core of v associated with u 1is denoted by
Cv(u)° By definition it contains a iff for all coalition T we
have
|Pr(T,a,u)|] + v(t) <p -1
where t = |T| (same notation as in Section 2).

Definition: We say that an anaonymous veto function v e V 1is

stable if for every profile u e L(A)N the associated core is
non-empty:

yu e LD C (W) £ 0
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For instance the veto function of a gq-majority game (vq(t) = 0
if t < q, vq(t) =p~-1if g < t) is stable if and only if
qQ >n - % , that is to say if the associated simple game yields
an acyclic dominance relation (see Nakamura's theorem, Chapter 2).
An easy necessary condition for stability of a veto function
is as follows:

ty + ... F L, <n o> vity) + ... 4 V(tr) <p-~1

Indeed if this fails, we can find a partition Tl"“”Tr of N and

a partition Bl”“"B of A such that coalition Tl can veto Bl,,o,,

r

T, can veto Br° It is not difficult, then, to find a profile u

at which the v-core is empty.

Proportional Veto

For fixed n, p the proportional veto function is defined by
v = [p-L7 - =
Vo, pt) = [pegl - 1 all t=1,2,...,n

where [x] is the smallest integer bounded below by x. Hence

Vh P('t) is the greatest integer strictly less than p-% .
9

Theorem 2. Moulin [1981] For all n, p(i) The proportional

veto function Vn D is stable. TFor every profile u the associated
’ B

core is called the veto core associated to u and denoted Cn P(u).
b
(ii) An anonymous veto function is stable if and only if it is
bounded above by the proportional veto function

Yv e V {vstable} <=>{¥t = 1,...,n:v(t) ¢ Vn P(t)} .
5

Thus the proportional distribution of power (as precisely
described by the proportional veto function vn P) is the optimal
3
distribution of coalitional power if one wants firstly to guarantee

the stability of at least one outcome and secondly to make the set
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of stable outcomes as small as possible. Namely v < Vn 5 implies
- 2 x

that Cn,p(U) is a subset of Cv(u) for all profile u.
To allocate veto power across coalitions is to arbitrate

a trade-off: if we give too much veto power, cooperatively stable

outcomes will disappear, yet if we give too little, stable outcomes

will be too many. In the anonymous and neutral case, this dilemma

has a unique solution, that we call the minority principle:

any coalition should be given a veto power nearly proportional

to its size (Theorem 2 above makes this statement precise). The
point is that this method gives some decision power (taken to be a
right-to veto some outcomes) to all coalitions, however small.

In this way is met an ethical requirement that appears as an early
objection to the majority principle, namely the need to prevent
minorities of being crushed by the antagonistic majority:
"cependant une minorite ne peut pas etre a la merci d'une majorite:
la justice, qui est la negation de la force, veut que la minorite
ait ses garanties" (Proudhon).

To illustrate, let us oppose on several examples the minority
principle embodied into the proportional veto core, and the
majority principle that suggests to choose the Condorcet winner
whenever there is one.

Suppose first n, p are large (so that v(t) = p % is a good
approximation of Vh,p and society splits into two homogeneous
and antagonistic coalitions

t agents having preferences: 1 < 2 < ... < D

(n-t) agents having preferences 1 3 2 > ... > D
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Then the Condorcet winner is just 1 or P according to t > n-t

or n-t > t. In contrast, the proportional veto allows the t
rightist to veto (roughly) the (p°%) outcomes with smallest index,
while the (n-t) leftist veto nearly all remaining outcomes: the
corresponding core is in general a singleton (it is a doubleton
only if p"% is an integer) namely [p-%]° This solution clearly
reflects a compromise oriented view of collective choice (observe
that if coincides with the uniform Condorcet winner of Chapter 5).

As another example take n = 3 and p = 4, so that the proportional

veto is simply 53 (8 =t 1 <t < 3. Consider the following
]
profile:
Yy Y2 U3
d a a
c d c
b b b
a c d

Here a is the Condorcet winner, whereas the proportional veto
core is C, q(U) = (b) since outcomes a, ¢ and 4 are blocked
2
respectively by agents 1, 2 and 3. In words, b is the only candidate

that no voter regards as extremist.

Our last example is one where the veto core is poorly decisive:
we choose n = 5 and p = 6 80O that the proportional veto function

is V(t) = t, L <t < 5.
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a a a f
b c d e
c d e d
d e b c
e b c b
f £ £ a
Uy U, Uy Uy »Ug

Here a is a Condorcet winner since it is the top candidate of a
majority coalition {1,2,3}. The minority coalition {4,5} ,
however, has a veto power of 2 that it can use to prevent the
election of both a and b. On the other hand, the majority {1,2,3}
although endowed with a right to veto any three outcomes will not
use it since the agents in {1,2,3} (although they agree on their
top candidate a and their bottom candidate f) disagree on the
ranking of the middle candidates (b,c,d,e). Only candidate f is
therefore vetoed (by any single agent 1, 2 or 3) and the veto

core is then C5 6(u) = {c,d,el.
9

5) Effectivity Functions

Definition 1. Given A and N an effectivity function is a

binary relation defined on coalitions and subsets of outcomes (it

N

is then a subset of 2 x 2A) denoted "eff" and satisfying the

following properties.
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(i) Monotonicity with respect to coalitions:

TeffB and TC T' => T' eff B , for all T, T' and B.

(ii) Monotonicity with respect to subsets of outcomes:

TeffB and B {_ B => TeffB' , for all T, B and B'.

(iii) Boundary conditions:‘

TeffA, for all T,
NeffB, for all B.

An effectivity function is a model of the distribution of power
among agents and coalitions. Given A the set of outcomes, and N
the society, we say that coalition T N is effective for the
subset B of A if T can force the final decision within B or,
equivalently, can veto the subset B° = ANB of A. The main
examples are simple games, anonymous veto functions, and additive
effectivity functions (see below).

Definition 7. Given an effectivity function eff, and a profile

u € L(A)N the core C(eff,u) is the following--possibly empty--
subset of A:
def

¥a ¢ A {a ¢ C(eff,u)l<=> {¥T¢ N:{No TeffPr(T,a,ul}} .

We shall say that eff is a stable effectivity function if the
associated core is non-empty for all profiles:
eff is stable fif {¥u ¢ L(A)Nc(effau) £ 0 3.

The core of an effectivity function at a particular profile
is the set of cooperatively stable outcomes: an outcome a is
unstable if a coalition T can force the final outcome within B,
where all members of T strictly prefer every outcome in B to a.

Since N is effective for any singleton, it follows that the core of

any e.f. at any profile contains only Pareto optimal outcomes.



Definition. An effectivity function eff is said to be maximal

if we have
T eff B <=> No(T® eff BC)
(where T° = N\T and BS = A\B).
To any game form g on A, N we associate itseffectivity function
effg as follows:

T effg B iff ﬁij € XT’ ¥XTC € XTC w(xT,XTc) e B}

Theorem 3. Moulin Peleg [1982]
If g is a stable game form, its effectivity function effg is
stable and maximal. Moreover
7 (SE(g,u)) C C(effg,u) all profile u
Conversely the core corfespondence of any stable effectivity
function can be implemented by strong equilibrium.
Hence the study of stable g.f. is (almost) equivalent to that

of stable and maximal effectivity functions.

Definition

Say that an effectivity function eff is convex if it satisfies

3 = > - - {1 ™
for all Ti’Bi i=1,2 {Ti eff Bi i=1,2} =»> {T1k¢ T2 eff B B

172

and/or T1(W T, eff B, \J B,

Theorem 4 Peleg [1982]

A convex effectivity function is stable. A stable and

maximal effectivity function is convex.

Corollary 1. Additive Effectivity Functions

Given two probability distributions & and m on A and N,

respectively:
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2 = (2) s 2_ >0 3 b3 2 =1,
a’ae A a 2 e A a
m = (mi)i ¢ N° m; > 03 I m, = 1,
i ie N

we denote by eff the following effectivity function:

2 ,m
Teffz B, iff m(T) + 2(B) > 1
T
We say that an effectivity function is additive if it coincides
with effz,m for some probability distributions ¢ and m .
Clearly these effectivity functions are convex. Hence they are
stable. However only those derived from a rational allocation of

veto power (see above Section 3) are maximal.

Corollary 2. Veto Functions

A neutral effectivity

runction is described as a veto function v : ZN + {0,...,P-1}

where T eff B iff v(T) > p-|B| and, in addition, Vv is nondecreasing.

A veto function is a convex effectivity function iff it satisfies:
v(T{ U Ty + v(Ty OV Ty) > v(T) + v(Ty)s all Ty,Ty-

Tt is a maximal effectivity function iff

w(T) + v(T) = p -1 all T
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