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Abstract

A quasi-linear social choice problem amounts to select one (among finitely
many) indivisible public decision and a vector of monetary transfers among
agents to cover the cost of this decision. This de;ision is based upon
individual preferences which are assumed to be additively separable and linear
in money.

The delegation axiom is a consistency property for choice methods on
societies with variable size: the decision is not affected if we remove
an arbitrary agent under the condition that he should be guaranteed of his
original utility level and the cost to the remaining agents is modified

accordingly. Thus the utility level assigned by the social choice function



to agent i is the price at which the other agents are unanimously willing
to buy agent 1i's share of the decision power.

A general characterization of choice methods satisfying this axiom is
provided. Three subclasses of particular interest are characterized by
additionél milder axioms. Those are: i) equal sharing of the surplus left
over some reference utility (e.g.; the utility at a status quo decision,

ii) utilitarian methods that merely select the efficient public decision and
perform no monetary transfers, and iii) equal sharing of nonseparable cost
that divide equally the surplus left over the utility derived froﬁ the

pivotal mechanism (also known as the Vickrey-Clarke-Groves mechanism).



THE DELEGATION AXIOM AND
EQUAL-SHARING METHODS

H. Moulin

1) Introduction

Think of any collective decision problem where the n concerned agents

view the Pareto optimal utility vector (U Un) as the fair compromise.

IERREE
To select a decision achieving this utility vector, (n-1) agents can safely
delegate their share of the decision power to the n-th agent, say agent i,
by restricting agent i's choice to those outcomes where, for all J # i ,
agent j's utility is at least ﬁj . That this one person decision problem

achieves the original utility vector (U ..,Un) is a well-known rephrasing

1°°
of Pareto optimality.

The delegation axiom states a similar, more general property: suppose
we decentralize the decision to the subcommittee {1,...,t} , while
restricting its choice set to those decisions where agents +t+1, t+2,...,n

enjoy at least the utility level U U . The axiom requires that,

t+l’Ut+2""’ n

for all t, the resulting decision is unaffected, namely the subcommittee

picks a decision with associated utility vector (U Un). In other words

100
delegating in those terms the choice problem to any subcommittee is
inconsequential.

This axiom is very powerful in that it‘relates.the decision problems
of arbitrary societies with variable size. It was first introduced in the

framework of bargaining theory by Harsanyi [1959] and later studied systematically

by Lensberg [1982] [1983] (see also Lensberg and Thomson [ 1984]). The aim



of this paper is to explore its implications in quasi-linear problems.

A quasi-linear social choice problem amounts to select one (among
finitely many) indivisible public decision and a vector of monetary transfers
among agents to cover the cost of thisAdecision. This decision is based
upon individual preferences which are assumed to be additively separable
and linear in money.

In this framework at least three families 6f arbitration methods have
been recognized so far. Equally sharing the supply above a certain reference
utility level (e.g., the utility derived from a particular status quo decision)
is the first one. Although these methods are among the most common accounting
devices when side-payments are available, their first systematical study in
a quasi-linear model appears in Dubins [1977] who explored some of their
strategical properties; more on thosé is to be found in Thomson [1979], Moulin
t1983},[1984]- The second family rely upon a crude interpretation of utilitarian-
ism: one rules out any redistributive transfers whenever there is a unique
surplus-maximizing decision; this is simple to the point of naiveté; it is
also highly vulnerable to strategical maneuvers (such as profitable disposal
of one's own utility) and might be affected a lot by small changes in the
preference profile (discontinuity). Nevertheless it meets some very demanding
axioms, notably the delegation axiom.

The third type of arbitration methods (or social choice function) are
value functions for the cooperative game associated with a quasi-linear
problem. Within those, the delegation axiom uniquely selects a particular
cost-sharing method, called the Equal Sharing of Nonseparable Costs. (Sraffin

and Heaney [1981], Legros [1982]).



This paper axiomatically characterizes the three above families of
social choce functions on the basis of the delegation axiom hich is satisfied
by all three of them) and some additional milder properties (which are met
specifically by only one of the three). It parallels an earlier paper
(Moulin E1983]) which already proposes a characterization of the first two
families on the basis of a different axiom, called No Advantageous Reallocatioms,
ruling out profitable coalitional insurance against the public decision.
Neither set of results (in the current paper and in Moulin [1983]) implies
the other: see our comments at the end of Section 6.

In the quasi-linear context, most of the existing literature addresses
the demand revealing mechanisms (notably the pivotal mechanism also known as
the Vickrey-Clarke-Groves mechanism,and do not touch the cost-sharing issue.
Our approach, on the contrary, emphasizes the redistributive role of monetary
transfers. Although some of our axioms haﬁe a strategic flavor, they are
mainly normative and the game of misrepresentation of preferences does not
show up here.

The axiomatic derivation of solutions for cooperative games (with side
payments) is another field that bears many similarities with this work. In
fact our last result (Lemma 6) characterizes a particular value function for
those games. It is strongly reminiscent of Sobolev's axiomatic characterization
of the quasi-nucleolus (Sobolev [1975]) yet technically our result is trivial
when compared to Sobole#'s: see Section 8.

There are at least two important differences between our model of quasi-
linear social choice and cooperatiﬁe games with side-payments. Firstly

we assume that the technology is indivisible: the cost of any public decision



is the same, whatevervthe coalition undertaking it. As a consequence, the
cooperative games derived from a quasi-linear problem tend to be subadditive
(instead of superadditive as is common in production economy games). Secondly
the quasi-linear model distinguisheé the utility genuinely derived from a
public decision from the compensatory transfers: typically the utility
enjoyed at a particular reference decision (e.g., status quo outcome) will
determine the fair transfers. Accordingly our social choice functions depend
on more than the set of feasible utility Qectors: they take also into account

the underlying public decisions gathered in the agenda.



2) Quasi-Linear Social Choice Functions

Let A be the set of public decisions among which n agents must jointly
pick one. Decision a is public since no individual agent can be excluded
from his consumption (although his or her opinion could be ignored in the
choice process). It has a cost c(a) that must be covered by a vector

t = (t + ) of monetary transfers across agents. Thus an outcome is a

120ty
n

pair (a,t) where I ty c(a) =0 .
i=1

Every agent i in N = {1,2,...,n} has quasi-linear preferences, described
by a vector wu. in IRA so that his or her utility for outcome (a,t) is
ui(a) oty Denote by I this vector in ZRA whose all coordinates equal 1.
Then two utility functions Us sV such that v, = ug + ol for some real
number a(or ui(a) = vi(a) +a , all a e A), represent the same preferences
over outcome set and will therefore be identified: property (2) states indeed
that the zero of utility functions plays no role. Similarly consider two
cost functions ¢, ¢' such that ¢' = ¢ + oll for some o . Then the
additional fixed cost a from ¢ to <¢' will be shared equally among agents
(property (3)): in this way only incremental costs from one decision to

another can matter: other cost estimates are typically harder to obtain.

Definition 1

Given a society N = {1,...,n} and a finite set A of public decisions,
a social choice function S associates to any (n+l)-uple (ul,...,uh,c)
made up of a preference profile and a cost function, a vector S (u,c) = (Sl(u,c),
...,Sn(u,c)) of utility levels: S(u,c) is a vector in IRN . We make

the following assumptions on S:



*Pareto optimality:

for all u,c: T Si(u,c) =max { I ui(a) - c(a)} (1)
ieN asA 1ieN

‘Anonymity: S is a symmetrical function of the variables Upseeestd o

*Independence of the individual utilities' zero

for all u,v,c u; = v, + all and uj = vj for all j # i} => (2)
for all i ¢ N
for all o £ R {Si(v,c) = Si(u,c) + a and Sj(v,c) = gfu,c)

for all j # i}

*Independence of the cost function zero:

for all u,c,c'qy {c' = c + uH}=>{Si(u,c') = Si(u,c) + %-for all i ¢ N} (8)
for all aceR } |

Notice that social choice functions retain only the final utility level Si(u,c)

enjoyed by agent i. Implicit in the Pareto optimality axiom (1) we have that

the committee picks an efficient outcome (a¥*,t*) to achieve these levels:

S.(u,c) = u,(a*) + t¥ where a* is a solutionof max { I wu. - ¢ }
* * * A ieN T

and Y t% + c(a®) =0 .
. i
ieN

If there is a unique efficient public decision (i.e. the problem

mzx {.ZN u, = ¢ } has a unique solution) then (a®,t*) is unambiguously
detergzned by Sl(u,c),...,Sn(u,c). Otherwise, several outcomes (a,t) achieve
the utility vector (Sl(u,c),...,Sn(u,c)). Choosing any one of these

is a merely technical issue, that the very formalism of social choice functions

ignores.



Notation
Given any z eZRA we denote z °F = max z(a) .
achA
Also for any coalition TC N we write ST = I Si
ieT

and soon . . .

Thus Pareto optimality ((1)) is compactly written as:

max
SN(u,c) = (uN -c) for all u,c .

10.
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3) The Delegation Axiom

Let Sl,...,Sn,... be a sequence of social choice functions, one for

each size n of the society N . The delegation axiom is a consistency
property between s" and St for all t <n . It is enough to state it
for t =n - 1:

Delegation Axiom

For all n > 2, all profile u and all cost function:

- a0 u
1° *“n
n

l-l(ul,...,un_l;c')

n —
Sl(ul,...,un,c) =8

where c'(a) = c(a) - un(a) + Si(u,c), all a e A (u)
The issue is to delegate the decision process originally in the hands
of the committee {1,...,n} to the subcommittee {1,...,n-1} . Agent n
simply resigns his rights under the condition that he should always end up
with the utility level SE(u,c). This in turn affects the cost function of
the subcommittee ‘{1,...,n-l}: to produce decision a, these agents must
cover its cost c(a) and pay a royalty t, to agent n in such a way that:
un(a) + ot =,Sz(u,c). Hence the modified cost function c¢' in formula (4).
Applying (4) repeatedly yields the delegation property for a subcommittee

of arbitrary size:

1

£ .
S;_l(ul,. .o ,un,c) = Sl(ul,. . ,ut,c')

for all t,n, 1 <t <n,all u SREELN and all c.

where c¢'(a) = c(a) - u (a) + 8 (a) all a
T¢ ¢
and T® = {t+l,...,n}

Its interpretation is similar.
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Lemma 1

The sequence of social choice functions Sl,...,Sn,... satisfies the

delegation axiom if and only if there exists a real valued function g(x,z)

on the domain ERA]2 satisfying i - ii

g(x,2) + o for all x,z e IRA and all aeR

i) glx + all,z)

g(0,z) =0

ii) glx,z +all) = g(x,z) for all x,z EIRA and all a € R

and such that for all n , the s.c.f. s" is worth:

S?(u,c) = %(uN—c)max

+ Fla-Delug,ueme) - 3 glug,uy - o)) (5)
J#L
Given g satisfying the invariance properties i-ii consider first the
funcfion s defined by (5). Routine checking shows that s" is a social
choice function (Definition 1). Let us check that the delegation axiom

holds true.

Given Upseeesl 5Cy define c¢' as in (4) and compute

n-l( max %lﬁ%I {(n-Q)g(ul,uN\n -c")

1
1y = - At
1 Uys--e5u gsC ) = T (uN\ e")

- 1
- z g(uj’uN\n ')}
2<j<n-1
. e at = B _ on s s ‘s
Since Uivn c Uy c Sn(u,c)H and g satisfies 1i we get
n-1 _ 1 max 1 n 1 _ _ _
Sl (ul,...,un_l,c') == (uN—c) - = Sn(ul,...,un,c) + 5:1-{(n 2)g(ul,uN c)

b g(ujjuN—C)}

2<j<n-1

Set z = U - ¢ and for all i=l,...,n, Yy = g(ui,z), next



13.

replace in the above formula Sz(ul,...,un,c) by means of (i4):

n-1 1 max 1 1l max 1
S, T(Uysee.su_,c') = =z - = [=z + = {(n-1)y - ¥ «v.1
1 1 n-1 n-1 n-1 "n n % j<n-1 |
2 [(n~-2)y, - p v 1
n-1 1 .
2<j<n-1
= l_zmax + Eii Yy - LY. QED
n 2§j 3
1 n

To prove the converse statement start with a sequence of s.c.f. S ,...,8 , ese
satisfying the delegation axiom. For n = 2, the axiom is just Pareto optimality
so apply it for n = 3. Formula (4) is written as

Sg (u,c)

N =

3 _ a2 'y - a2 _ _
Sl(u,c) = Sl(ul,uz,c ) = Sl(ul’u2’c us)
for all u = (ul,uz,us) and all ec.

Define an auxiliary function R by:

2
Sl(x,y,x+y-z)

2
Sl(ul,uz,c) = R(ul,uz,ulQ-c) <=> R(x,y,2)

We get now:

3 1 .3 -
Sl(u,c) t 5 SS(u,c) = R(ul,u2,u123—c) all u, all c
Permuting the role of the agents yield similarly:
3 1.3 _
8,(u,e) + 3 8;(u,e) = R(u, 50,50, 55=C)

3 © 1 .3 _
Ss(u,c) + §'Sg(u’°) = R(us,ul,u )

1237¢

Summing up these 3 equations and using Pareto optimality we get

) _ 3 max
R(ul,uQ,z) + R(u2,u3,z) + R(us,ul,z) =5z

. A
for all Up 5y U and z inR .



14,

. 1 . e
Thus for any fixed =z , the function f(x,y) = R(x,y,2) - a_zmax satisfies
the functional equation
= 6
f(ul,u2) + f(uz,us) + f(us,ul) = 0 all u;,u,,U, (8)
which holds iff f can be written as f(ul,uQ) = %-h(ul) —-% h(uz) for some
peal valued function h . (To check this claim make u, = 0 in (B6) so that

f(ul,uQ) = %-h(ul) --% h'(uz) for some h,h'. Applying (6) again gives h = h').

Hence R can be written as R(x,y,z) = %_Zmax +-% [h(x,z) - h(y,z)]. We have

just proved existence of a real valued function h defined on C]RA)2 such

that

2 21 max , 1
Sl(ul’uQ’C) = 2(u12 c) + 3 {h(ul,u12 c) - h(u2,u12 c)}

for all wuj»Yy»© (7)

Setting now g(x,z) = h(x,z) - h(0,z) yields another function for which 82
is given by (7) (with g instead of h). In addition, g(0,z) = 0 for all z.
We derive now the invariance properties i-ii for g from properties (2) and (3).

Make first u, = 0 and write Si(ul,o,c+aﬂ) = Si(ul,o,c) - %- with the help

2
of (7):
1 max o 1 _ 1 max 1 ol
E(ul—c) -5t3 g(ul,ul-c—aﬂ) = 2(ul_c) + —Q-g(ul,ul c) - 5

Since this holds for all Uy 5Cs and o , property ii is proved. Similarly,
writing Si(ul+aH,0,c) = Si(ul,o,c) + o with the help of (7), buys us property i.
To summarize we have found g satisfying i-ii and formula (5) for n=2.

Assume now by induction that (5) holds until (n-1). Then the delegation axiom

1

and property (3) allow us to derive s®  from s"TT. Specifically (4)

amounts to:
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n _ -1 n . on-1 oy 1lsn
Sl(u,c) = Sl (ul,...,un_l,c-un + Sn(u,c)H) = Sl (u1’°°"un-l’c un)a:fn(u,c)
Fix u,c, set o, = S?(u,c) and z = u, - c . By the induction assumption,
the above formula yields:
1 1 max 1
0, +==0_ = —— z + — {(n-2)g(w,z) - I glus,z)}
1 n-1n n-l1 n-1 ot 2<i<n-1 3
A similar equation holds when agents 1, n are replaced by any pair i,].
Hence the system:
1 _ 1 max 1 _
s +ﬁ:1°j ===7z t T {(n 2)yi - .Z.Yk} , Where Yy = g(ui,z)
k#1,3
with unique solution o, = 1 pmax + l-{(n-l) Y. - Z v.} QED
i n - i 544 i

Lemma 1 is a complete characterization of the sequences of social choice
functions satisfying the delegation axiom. A first corollary is that the
whole sequence is determined as soon as 82 is known. Yet 82 can not be
taken arbitrarily. Since the function g is arbitrary except for the mild
invariance properties i-ii, the class of s.c.f.s encompassed by formula (5)
is still fairly large. In the next four sections we impose various additional

assumptions that in turn narrow considerably the choice of the function g.
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4) Equal Sharing From an Individual Reference Level

The No Disposal of Utility axiom

1527 and u, = v, for all i 3_2} => Sl(u) E_Sl(v)

for all prbfiles u, v and cost function c.
The NDU axiom rules out profitable destruction of utility contingent upon
the final public decision: by lowering my utility for some of the public
decisions I cannot raise my eventual utility level. This axiom is a mild
requirement, as we feelvthat voluntary losses of utility are failry easy
to achieve; in particular they do not require any misrepresentation of
preferences. (Of course, if true disposal of utility is profitable, then
fake disposal--i.e. by reporting a utility lower than the true one--1is even
more profitable.)

The Cost-Monotonicity Axiom

{c <c'} = {Si(u,c')_i Si(u,c)} all i, all u, and c,c’'.

This means that the agents unanimously want to improve the technology for
producing the public decisions at stake. Symmetrically, no agent can gain
by raising the cost of a decision even if that move improves his relative
bargaining position by lowering the aspiration level of his fellow agents
(e.g. he made more costly a decision that he hates but everybody else loves).
Again we argue that manipulating the arbitration by adding artificial
overhead costs is neither difficulty nor uncommon. The cost monotonicity
axiom rules out the profitability of such manipulations.
To describe the consequences of the two above axioms (together with
the Delegation axiom) we denote by R the following set of real valued

functions g with domain ZRA.
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-~

~ - A

. g is momotonic: x <y => g(x) < g(y) all x,yeR
geR 1iff - - A
g is translation invariant: g(xt+all) = g(x) + o all xeR

all a e R
Equivalently, g € R iff we have:
vy < glxty) - glx) < vk all %,y e R (8)
or simply
glxty) - gx) j_ymax all %,y e R (9)

Checking the equivalence of these 3 statements is straightforward, and therefore

omitted. Typical elements of R are g(x) = XX , g(x) = xmln,
g(x) = x.0 = £ x_0o_ where o belongs'to the unit simplex of iRA
aeA
(oa >0 for all a and aéA o, = 1), as well as any convex combinations

-~

of those. Given a utility profile Upseeest and a function g € R

we interpret é(ui) as agent i's reference utility level. Our first class
of equal sharing s.c.f.s work by starting from the reference utility vector
(é(ul),...,é(un)) and dividing equally the surplus (or deficit) left above
(or below) that reference utility vector, namely

_ _aymax ~
A = (uN c) izN g(ui)

Hence the s.c.f

1 ~ ~ .
+ = {(n-D)g(u,) - T glu,)} (10)
n i s
j#l
Any such s.c.f. is a particular case of those described in Lemma 1, namely
by making the function g(x,z) independent upon z and monotonic in x. Therefore
any sequence of s.c.f s® associated with some reference level function g

satisfies the delegation axiom. Clearly it satisfies also No Disposal of

Utility and Cost monotonicity. The converse statement is true as well.
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Theorem 1
A social choice functions satisfies Delegation, No Disposal of Utility
and Cost Monotonicity if and only if it is derived from a reference level

function é via formula (10). Then it is called égual sharing from the

reference level g.

Proof

Step 1: For a fixed size n of the population, let S be a s.c.f. satisfy-
ing No Disposal of Utility (NDU) and Cost-monotonicity (CM).
Fix a profile u and a cost function ¢, next observe:
w, - (uN_c)maxH <
Hence, by CM and property (3):

for all i € N, Si(u,c) f_Si(u,uN-(uN-c)m?XH ) = Si(u,uN) + %(uN—c)maX

On the other hand by efficiency (1)

Sy(u,c) = (uﬁ-c)max = SN(u,uN—(uN-c)m?XH)
Therefore
Si(u’C) = Si(u,uN) + %(uN_C)max for all i, u, and c. (11)

Step 2: Suppose now that the sequence s? satisfies the Delegation Axiom ,
No Disposal of Utility and Cost Monotonicity. By Lemma 1, s" can be written
as (5) for some function g(x,z) satisfying i-ii. Taking (11) into account
this gives:
(n-l)g(ui,uN—c) - I g(uj,uN—c) = (n—l)g(ui,o) - I g(uj,O) for all u,c
j#i Jj#1
which in turn means that g(x,z) - g(x,0) does not depend on x. Hence we

can simply replace g(x,z) by g(x,0) = g(x) in formula (5). This proves (10).
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We already know (by property i Lemma 1) that é(x-!-ul‘[) = é(x) + a all x,a .
Tt remains to check that é is monotonic. Suppose it is not. Then we
can find Uy vy both in IRA and an outcome a & A such that:

w(a) < vy(a), uw(p) =v(d) all b#a and g(u) > g(vy)
Next choose a function u, such that both u; t o, and vyt o, reach
their maximum at some b # a . We have

Si(ul,u2,0) = %— [ul(b) + u2(b)] + -]2; [é(ul) - é(u2) >

v ) + 0y ()7 + 3 [alv)) - glu)] = s20v;,u,,0)

thus contradicting NDU. QED
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5) Equal Sharing Above a Convex Status Quo

Among the social choice functions charécterized in Theorem 1, we will
now discriminate on the basis of the utility level guaranteed to each
individual agent. Given an agent 1 endowed with a utility functiomn us s
and given a cost function ¢, we think of agent i as risk-avert and completely
ignoring other agents' utilitj functions. This agent will therefore compare

various social choice functions on the basis of his or her guaranteed utility

level namely
hn(ui,c) = infS?(ui,u_i,c) where the infimum is taken over all

’ N\{i} . . -

(n-1)- uples u_; € L(A) . Suppose a particular public decision
a% ¢ A is viewed as a status quo (initial situation) from which the surplus
(if any) is to be divided in some fair (not necessarily equal) way. Then
we would restrict attention to those social choice functions where
no player ends up below his or her status quo utility level. This leads to

the following axiom:

Individual Rationality Above a*:

Ry, ,c) > u,(a%) - S5
1l —— 1

for all n, u, and c.
Notice that the cost of the status quo decision is equally shared.

If we want to allow for a more symmetrical role of the public decisions
we can deduce the guaranteed utility level from a fixed convex combination
of decisions. This was originally suggested by Dubins [1977] for those

problems where one want to treat all decisions in A on the same foot.

(neutrality): if A has p elements we mean the status quo utility level

L ) '(ui(a) - Eigl) for agent i. In general letobe a convex decision,
achA
namely an element of the unit simplex inJRA. z g, = 1 and o, > 0 for

acA
all a . We define
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TIndividual Rationality Above o

c(a)

B(ug,e) > (o - 9o = B (wa) -

Yo, for all n, u, and c
- achA

One can interpret o as a probability distribution: the status quo (or
diéagreement) outcome amounts to draw a decision according to distribution
¢ and to share equally its cost. But this requires interpreting utility
functions in the Von Neumann and Morgenstern sense, which is by no means

necessary in our entirely deterministic model.

Theorem 2: There is exactly one sequence of social choice functions

Sl,..., Sn,.... satisfying the Delegation axiom and Individual rationality

above g , namely:

n _ 1 max 1 . P
0Si(u,c) = E(uN—c) + E-{(n-l)ui g - I wu.*0} for all n, all agent i,

1# all profile u and cosi (12)

function c¢

or equivalently

GS?(u,c).= ui'q +-% {(uN-c)max - uN-G} for all n, all agent i, all

profile u and cost function ¢

We call it equal sharing above the convex decision o .

The Equal sharing above o-soclal choice functions are a particular
case of equal sharing s.c.f. where the reference level g is linear, namely
g(ui) = u;t0 . Notice that No Disposal of Utility and Cost Monotonicity

are met by these s.c.f.s; yet they are not necessary in the characterization

result.
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Proof: The s.c.f. defined by (12) satisfies the Delegation axiom by

Theorem 1 (since g(ui) = u;.0 belongs to R) and Individual Rationality above

¢ since it can be written as:

STu,0) =, - 9.0 + = {(u 0"

- (uN-c),c}

where the term between brackets is nonnegative, being the joint surplus
left over the convex decision ¢ . Conversely let Sl,...,Sn,... be a
sequence of s.c.f. satisfying Delegation: by Lemma 1 they are given by (5)

for some function g(x,z) satisfying i-ii. We apply Individual Rationality

above ¢ by setting =z = Uy - C

{Si(u,c) > (u - %).o for all u,c} <=>{n-S?(u,z) > (my + 2z - u)do

for all u,z

Using (5) and developing this gives:

n
(n-1)g(u,,2) - z glu.,z) > [(n-)u, - T u.l.o + z*0c - g
1 . J - 1 .
J=2 1>2
. n
Setting h(x,z) = g(x,z) - %x+0 this is equivalent to (n-l)h(ul,z) - = h(uj,z)
j=2

max
> 70 - 7

which holds for all n,z and u. Choose now u2=....= %-, divide both sides by

(n-1) and let n go to infinity; we get:
h(urz) - h(u2,z) >0 all U; 5,52

i.e. h(x,z) does not depend on. x so that g(x,z) = %x,0 + h(0,z).

Adding to g a function of the variable z only leave invariant (5) so we can
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take g(x,z) = x.0 afterall. | QED

Theorem 2 pinpoints the biblically simple social choice functions 0Sn
by invoking the exogenous status quo O . We characterize now these methods
by emphasizing certain features of their guaranteed utility levels: existence

of a convex status quo is then derived endogenously from these new axioms.

We work in the class of equal-sharing methods characterized by Theorem 1,
namely equal sharing above a reference level g & R . We observe that some

of these s.c.f.s provide no guarantee at all to risk-avert individuals in

~

. . . . m
the sense that hn(ui,c) = - » !} This is true for instance if g(ui) = uiax
and n > 3 .

To chech this claim, observe that the difference ugax + ugax - (u23)max

can be made arbitrarily large (if A has cardinality at least two). Then

compute:
n 21 max , 1 max max max
Sl(ul,uz,ua,o,...,o,q) = n(u123 c) + 5{(n l)ul - u, - Uy }
1 max max max 1 max max
<7 {u, u, " - ug b+ {(u-e) + (n-Du; "}

As a matter of exercise, the reader can check that for m = 2 this s.c.f. has
2 _ 1r max min
h (ul,c) = §{ul + (ul e) 1.
The trouble with low guaranteed utility level is that at some profiles

an individuals would prefer to drop out of the committee and pay his fair

share of the cost of whatever decision the remaining committee selects: this

will happen for sure if an agent's final utility level falls short of (ui- %)mln
where zM8 i< 3 short hand for min z(a). Hence our next axiom:

a
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Minimal Individual Rationality

n c\min
h (ui,c) 2_(ui - EJ for all n, U all ¢ (13)

We view it as a necessary stability requirement in problems where the agents

can potentially withdraw from the committee.

Lemma 2

Let g € R be a reference level function and Sl,...,Sn,... be the associlated

~

sequence of social choice functions (by (5)). Then g is concave if and only

if S" satisfies Minimal Individual Rationality for all n . In this case

we have

~ C~u,

n _n-1 .7 _ i
h (ui,c) == (g(ui) g( n_l)) for all n,u, and c¢ (1w)

Thus g is concave if and only if the secure utility level to any agent is
at least what he expects when paying only his or her fair share of the public
decision (and not influencing the choice of that decision anymore). The
proof of Lemma 2 and 3 is postponed until the Appendix.

One alternative requirement about the guaranteed utility level
hn(ui,c) is that they should not depend upon the size of the committee in
the following sense

for all n hn(ui,nc) = h2(ui,2c), all u, and all c (15)

The point here is that the guaranteed utility level to agent i depends only
upon the individual utility and the pér ¢apita cost function, but not on the
size of the committee of which 1 1is a member. It is ﬁeaningless to compare
guaranteed utility levels in two committees with different size but the

same global cost function since this induces a genuine economy of scale--as

decisions are publicly consumed-- .
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Lemma 3

~

Let Sl,...,Sn,... be the equal sharing from the reference level g

s.c.f. Then its guaranteed utility level is size-independent (property

(15)) if and only if g(x) = x°0 , all x for some convex decision o .

Combining theorem 1 and Lemma 3: the family of equal sharing above a

convex status quo s.c.f. ((12)) is characterized by four axioms namely

Delegation, No Disposal of Utility, Cost Monotonicity and Guaranteed utility
level size-independent.
Remark 1

Among the equal sharing methods characterized in Lemma 2 (é is in R
and concave) those with a fixed convex status gquo (g(x) = x*g for some o )
endow coalitions with a guaranteed utility level that merely add up the
guaranteed utility levels to each agent in the coalition.

Let t, 2 <t <n-l, be the size of our coalition and define

t
n R . n .
ht(ul,...,ut,c) = inf ¥ Si(ul,...,un,c)

ut+l""’un i=1

Clearly for all social choice functions and all u,c,
t .
n n e .
T h (ui;c) i_ht(ul,...,ut;c): "coalition formation cannot conflict with
i=1

. ns__s 1 n .
individual guarantees. Now suppose S ,...,5 ,... are derived from a concave

reference level function g & R so that (Lemma 2) individual guaranteed

utility levels are given by (14). A similar computation (omitted for the

sake of brevity) yields

-~ . C=U

- .
g(ui) - tg(

)]

n-t t
n _ —10Iz=z
ht(ul""’ut’C) = n 321 n-t



t ~
Thus equality I hn(ui,c) = hE(ul,a.e,ut,c) holds iff g is linear,
- i=1
g(x) = x*0 for some convex status quo o , in which case
tc

n - - m—
ht(ul""’ut’C) = (uT = Yoo .

26.
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6) Utilitarianism

The previous section was concerned with the minimal utility level that
an agent 1s guaranteed of when entering the arbitration room. Here we
look symmetrically at the maximal aspiration level that an agent can dream
of achieving. Specifically, we consider:

The No Free Lunch Axiom:

for all n, all u and all c: S?(u,c) _<_'(ui - ﬁ)max

The upper bound to your aspirations is not better than being able to choose
dictatorially the public decision while equally sharing its cost. 1In
particular an agent deriving no individual surplus from the control of

c(a) is independent of a ¢ A) receives no share

the public decision (ui(a) -
of the collective surplus.
Typically none of the equal sharing methods in sections 4, 5 satisfies
the No Free Lunch axiom: think of a costless problem with two agents and a
status quo a*. Although agent 1 is unconcerned: ul(a) = ul(a*) all a, he
is entitled to one-half of the surplus ugax - u2(a*) generated by player 2:

T v l max .
= ®w —_ - w
"\a*sl\ul’UQ) ul(a ) + > {u2 u2(a ) }

When combined with the Delegation Axiom and Minimal Individual Rationality
the above axiom characterizes a narrow set of arbitration methods.

Definition 2

Let 7t be a mapping from :RA intoe R satisfying
i) for all z, t(z) is in the unit simplex onRA:
(z)_ >0 a3llaand 3T 1t(z) =1
a— a

ach
ii) for all z, a, if T(Z)a >0 then z(a) = =z

(18)
max

iii) dnvariance: T(z+4all) = t(z) for all zdRA, oeR
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Thus t(z) is a convex combination of those public decisions maximizing z.
To each such function T we associate a sequence of social choice

functions TSl,...,TSn,... defined by:

TS?(u,c) = (ui - %J'T(UN'C)-' all i, u and ¢ an

We call 's" an utilitarian social choice function.

These methods (originally introduced in Moulin [1983]) essentially
prevent the social planner to play any redistributive role by means of the
private transfers: indeed when only one efficient public decision is at
hand (only one a maximizes joint surplus uN—c) then formula (17) means
that this decision is undertaken and its cost is equally shared among agents.
Only when more than one efficient decision exists, does the utilitarian
social planner have some room for arbitration: he can enforce any convex
combination of the utility vectors associated with the various efficient
decisions; thé coefficients of this combination, however, depend only upon
the joint surplus we—¢ (from which he can infer nothing of the relative
individual preferences).

Theorem 3

Given any Tt satisfying (16), the associated sequence of utilitarian
social choice functions TSl,...,TSn,... satisfies the Delegation axiom,
Minimal Individual Rationality and the No Free Lunch axiom. Conversely,
any sequence of social choice functions satisfying these 3 axioms is obtained
in this way.

Despite its statement as a positive characterization result, we want to

interpret Theorem 3 as a negative result. For a utilitarian social choice
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function satisfies neither the No Disposal of Utility nor the Cost-Monotonicity
properties.

To check that NDU is violated, choose u, ¢ with two efficient
decisions a, b such that ul(a) < ul(b), c(a) = c¢(b). Taking a small >0 set:

v = - = !
ui, uy by ui(a) = ul(a) e < ula) +e ul(a)

ui(d) = ul(d) = u{(d) all d # a

,¢) decision b is uniquely efficient while at (u",u_ ,c) decision a

At (ui,u !

-1 1

is unquely efficient. Thus agent 1 suffers a loss when his utility increases

from ui to uz . Similarly define c¢', c¢" by

c'(a) = c(a) e < c"(a) = c(a) + ¢

c'(d)

c(d)

c"(d) all d # a

Then agent 1 enjoys a gain when the cost function increases from c' to c".
Thus utilitarian social choice functions are highly vulnerable to voluntary
cuts in one's own utility and to tactical increase of costs; this makes them
very unappealing as arbitration methods. Hence the negative reading of
Theorem 3: any social choice function satisfying Delegation and No Disposal
of Utllity (or Delegation and Cost-Monotonicity) implies some free lunches
and/or violates Minimal Individual Rationality.

Proof of Theorem 3

Fix T satisfying (16) and define g(x,z) = x-1(z). Then g satisfies

i-ii from Lemma 1. Let us compute the associated s.c.f. by (5):

max

S;(u,c) = %(uN—c) + %[(n—l)ul - -Z ui]'T(uNfc) for all n,u,c.
i>2

ma

From (16) we have z-1(z) = z'°% for all Z, hence:

o
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Si(u,c) = %[(uN-c) + (n—l)ul - I ui]°T(uN-c) = (u:L - %J.T(uN—c)

i>2

Thus equation (11) defines a sequence of s.c.f.s satisfying the Delegation

Axiom. They satisfy Minimal Individual Rationality and No Free Lunch, too:

(16) implies xR f_x.r(z) f-xmax for all %,z hence (ul - ﬁ)mln <

(g = Do) < - D

We prove now the converse statement. Let g(x,z) satisfying i-ii Lemma 1
and ...,Sn,...' be the associated sequence of s.c.f.s by (5). The No Free

Lunch property is written as

max max

(n—l)g(ul,uN—c) - 152 g(ui,uN—c) 5_(nul—c) - (uN—c) for all n,u,c,
Setting z= e - ¢ this is equivalent to

(n-1)g(uy,2) = I g(u;,2) < ((a=Dup-we g + 2070 =2 (18)

i>2
for all n.,u,z

Similarly the Minimal Individual Rationality axiom is written as:

(n-1)gluy,2) = 2 glu;,2) > ((-Duy-wyy + 20 =20 (19)
i>2
Applying (18) whenever u, = 2 gives
"4 T a1 Y
1 1
g(E:I T ui,z) ot pX g(ui,z) all n, all z (20)
i>2 i>2 .
- — all U sesesl .
_ 2 n
Similarly from (19) we get
1 1 1 min max
gl= u,,z) > — I g(u,,z) + — (z -z ) all n,z and u,...u_.
n-1 isp T n-1 i>2 i n-1 2 n

Use now a replication argument (replacing (n-1) by k(n-1) and .each u, by

k identical replicas) to derive from the latter property
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g(—%f T u.,z) z.nil z g(ui,z) all n, all z, all uy,...,u, (21)

i>2 i>2
Combining (20) and (21) we get equality in both: together with g(0,z) = 0

this guarantees that g(x,z) is a linear function of x, provided we make sure

that g 1s continuous in x. But this follows from (18) for n=2:

“

max Zmax max

g(uy,2) - glu,,2z) < (u;-u,+z) < (uy-u,) (22)

So we have proved that g(x,z) = x°1(2) for some mapping T from ZRA into
itself. From i) in Lemma 1 we deduce I.t(z) = 1 and from (22) we get
t(z) > 0 (since g must be montonic in x). Also from ii) in Lemma 1 follows
T(z+all) = t(z) for all real o . Thus the proof of Theorem 3 is complete
if we establish (16)ii.
. . max

Applying (22) to uy = 0 and u2 =z gives =z < glz,2) = z 1(2).

On the other hand =z.t1(z) f-zmax since t(z) is in the simplex of IRA .
max ; . . ‘s

Thus z°t(z) = =z which implies (16)ii. QED
Remark 2

The results of sections 5 and 6 bear close resemblance to those in

Moulin [1983]. There the powerful axiom is the following property:

No Advantageous Reallocation (NAR)

for all coalition TCN

- {u, = v, for all 4 ¢ T and u, = v} =>{No 8. (u,c)<S,(v,c’

for all profiles u,v and 3 J T T + =
for all i e T }

cost function c¢
The idea here is to rule out coalitional insurance taking the form of monetary R
transfers contingent upon the final public decision. When we adapt the

results in the mentioned paper to quasi-linear problems with cost functions it
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turns out that:
i) The NAR axiom and Individual Rationality above o characterize the
s.c.f. US (corollary to theorem 2 in [1983].
ii) The NAR axiom and Non Disposal of Utility and Cost monotonicity
characterize the family of equal sharing above a convex status quo
(this is an easy consequence of Theorem 1 in [1983])
iii) The NAR axiom and No Free Lunch characterize a family of utilitarian
s.c.f. slightly more general than those of Definition 2 (by adapting
theorem 3 in [1983]).
However, there is no obvious relation between the Delegation axiom and

the No Advantageous Reallocation axiom.
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7) Equal Allocation of Nonseparable Costs

We propose here one more sequence of social choice functions satisfying
the delegation axiom, yet quite different from the s.c.f.s encountered so
far. This method emerged originally in the cost-sharing literature (Ransmeier
[1942]) and was recently investigated in the framework of cooperative games
with side-payments (Straffin and Heaney [1981] Legros [1983]); see also Moulin
[1981] where it is the equilibrium outcome of an auction mechanism suited
to quasi-linear problems.

Definition 3: Let A and N be given. To any utility profile u and cost

function ¢ , associate the following game in characteristic form:

max
c)

for all TCN v(T) = (u,- (23)

Define the separable cost to agent i as 8; = v(N) - v(N\1). The Equal
allocation of nonseparable cost social choice function (in short EANS)
amounts to share equally the surplus (or deficit) left above (or below) the

utility vector (sl,...,sn). It is denoted S%:
1 n 1 n
S?(u,c) =s, +=[viN) - Zs.]l==[v(N)+ T v(Mj)] - v(\1) (24)
i ' n 521 3 n 51

To interpret this s.c.f. suppose first ¢ = 0 (dropping the cost sharing issue).

max m

.Then s: é Uy - Ui X is the utility level allocated to agent i by

the familiar demand revealing pivotal mechanism (also called Vickrey-Clarke-Groves

mechanism): every agent is taxed the amount of the external effect that he
n
inflicts on the other agents. Then w(N) - I Sj > 0 is a nonnegative surplus
. j=1
that the EANS s.c.f. proposes to share equally.

]
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0f course if cost is no longer zero;»there is no restriction on the
sign of v(N) - 'glsj . This is because the value of a coalition T is taken
to be its maximii joint surplus in the event that T chooses dictatorially
the public decision while covering its full cost (see formula (23)). This
specific choice is necessary for the delegation axiom to be satisfied, as
the proof of our next result makes clear.
Lemma U4

The sequence of Equal Allocation of Nonseparable cost s.c.f.s satisfies
the delegation axiom as well as No Disposal of Utility and Minimal Individual
Rationality. On the other hand it violates Cost-Monotonicity and No Free
Lunch.
Proof

ax max . . s . es s
- (z-x) . Then g®* satisfies i-ii in Lemma 1.

Set g*(x,z) = 2"
We claim that the associated sequence of s.c.f.s (by (5)) are precisely the
EANS: the routine proof is omitted. To check No Disposal of Utility observe
in (24) that v(N) as well as v(N\j) are nondecreasing functions of u. for
all § # i, while v(N\i) is independent of u,

To check Minimal Individual Rationality, rewrite the inequality

c min
% S J—
Sl(u,c) __(ul ,n) as

v(N) + I v(N\j) 3_(n—l)v(N\i) + (nui-c)mln
j#i
Pick an arbitrary a € A and compute

(n-1)(ug, ;-¢)(@) + (nu;-c)(@) = (y-e)(a) + .2_(uN\j-C)(a) < v + I v(N])
J#L j#i

Choosing a such that'(uN\i—c)(a) = v(N\i) yields the desired inequality by:
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(n-1)v(N\i) + (nui—c)min < (n-1)v(N\i) + (nuiwc)(a) = (n-l)(uN\i—c)(a)

+ (nui—c)(a)

We check now that Cost Monotonicity is violated even for n=2. Namely:

S§(uy ,u,,0) = %—[v(12)+v(l) - v(2)] = %{<u12-c>max + (u, )" max

1 - (uQ—C)

max max

When the function ¢ increases, it may well be that (u,,-¢) and (ul-c)

12

stay put while (u2—c)max strictly decreases: take a profile where the
functions (ulz—c) and (ul—c) both reach uniquely their maximum at a while

the maximum of u,-c is reached at b ; then increases a little bit c(b) while

c(a) stays put.
Suppose finally that No Free Lunch holds for n=2. This would imply for

all ul,uz,c:

max

% - E
Sl(ul,uQ,c)‘i (ul 2)

(=) (uy,=e)™@* + (u,-e)" < (u)-e)"*

For any real valued functions W i=l,...,4 defined on A and such that

Wy + w2 = w3 + w, one can find Uy 5U,,C such that

Wy T U ,mCy W, U

5 17Cs Wy = U

3 -C, W

= 2ul-c

2 L

Thus we would have for all Wes 1=l,.4.,4.

_ - max max max max o
Wit W, S W bW =W W,y WS W QED

In order to single out the sequence of EANS social choice functions
among those satisfying the Delegation Axiom we shall use two more axioms.

The No Transfer Paradox axiom:

for all n, profile u, cost function ¢ and all increment function § eZRﬁ :

+ (2u1_c)max

EY



- 36.

= - 8 = . = u. 1> =>
{v u 83 v, = u, + 6 and vy o= Uy all j > 3} {Sl(u,c) Z_Sl(V=C)}
This axiom (originally introduced in Moulin [1983]) says that giving away
some utility to a fellow agent (this gift taking the form of a monetary
transfer contingent upon the final public decision) can never be profitable
to the donor. Equivalently we want that such a gift is never harmful to the

receiver: the NTP axiom can be written as

{v, = u, - &; vy = uy t § and vy o= g all j > 3} = {SQ(u,c) E_SQ(V,c)}

A1l social choice functions encountered so far, equal sharing above a reference
utility level, utilitarian s.c.f.s as well as the Equal Allocation of Non-
Separable Costs, share the No transfer Paradox property.
Lemma 5

Let g(x,z) satisfying i-ii Lemma 1 and Sl,..,Sn,... be the associated
sequence of s.c.f.s by (5). Then the three following statements’ are
equivalent:

i) g 1is nondecreasing in its first variable:

X f_xl = g(x,2z) j_g(x’,z) all x,x)z EZRA
ii) for all n, the s.c.f. st satisfies the No Transfer
Paradox
iii) For all n, the s.c.f. s™ is such that for all profile u,

. . . A
cost function ¢ and increment function § e]R+

{e'" = c+ 683 v, =u, +96 3 vj = uj all j > 2} =>{Sl(u,c) E_Sl(v,c‘)} (21)

Property iii is easily interpreted: if the cost of a decision increases by

what amounts to a private income to agent i, this income cannot be taxed more
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than 100% in the redistributive process.

Proof of Lemma 5

In view of formula (5), the No Tpansfer Paradox is written as

for all u,c and § > O:

Sl

%-{(n-l)g(ul,uN-c) - gluy,u=e)} > {(n-D)g(u,-8,uy-c) - gluy+s sug=c)}

that is to say

(n-1)g(x,2z) - g(y,2) > (n-L)g(x-6,2) - g(y+8,2)

This inequality holds if g is nondecreasing in x. Conversely, apply it
to x =y + 6 to show that g is nondecreasing. The proof of i)<=>1ii)
is a straightforward application of (5). QED

Our last axiom deals with the tiny sub-class of problems where all agents
but one are unconcerned namely indifferent among all public decisions:

U, = Uy = ... =u = 0 . Then every s.c.f. bearing upon society {2,...,n}

would select the cheapest public decision and share its cost equally (by

anonymity and efficiency: Definition 1) whence the final utility - %-cmln

to every agent. The axiom requires that none of the unconcerned agents will

suffer if one single concerned agent joins the society:
Cmin

for all u,c {u2 = ... u = 0} => {Si(u,c) > - = all i > 2 } (25)

o]

Notice that if the above.inequality is strict the concerned agent 1 is actually
subsidizing the others, which makes sense since agent 1 needs the consent of
his partners {2,...,n}‘ to enforce a noncheapest decision. On the other

hand, if decisions are not discriminated by costs (cost function is constant)
then the rationale for agent 1 subsidizing the others disappears which suggests

the property

for all u,c {u2 = ... =u_ =c=0} = {Si(u,c) =0 (26)

all i > 2}
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Theorem 4

Thére is exactly one sequence of social choice functions atisfying i)
the Delegation Axiom, ii) No Transfer Paradox, iii) properties (25) and (26).
It is the sequence of Equal allocation of Nonseparable costs.
Proof

Given a function g(x,z) satisfying i-ii) in Lemma 1 the associated

sequence ...,Sn;... of s.c.f.s satisfies (25) if and only if

1 max 1 1 min

H(ul—c) - Eg(ul,ul-c)_i -=c for all uy s
which is rewritten as

g(x,z) E-Zmax - (g-x)" all x,z (27)
Similarly property (26) amounts to

g(z,2z) = 2% all z (28)

We check now that there is only one function g satisfying (27)and (28)

max max

and nondecreasing in x, namely g¥%(x,z) = z - (z-x) . This will prove

our theorem in view of Lemma 5. From (27) and (28) follows

g(x,z) - g(z,2) < - (z-x)"F

On the other hand for any fixed z the mapping ¢(x) = g(x,2) is nondecreasing
and translation invariant (i)-lemma 1). Therefore ¢ satisfies (8) (see
the description.of R in section 4). 1In particular

—(z-x)" = (x-z)min < g(x,z) - g(z,z)
so the above inequality is an equality. QED
Remark 3

Actually the EANS social choice function satisfies a property which is

stronger than both (25) and (26). Namely:
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: ~ min
. C N N
for all u,c {u2 = ... =u = 0} => {Si(u,c) =-= all i > 2 } (29)

Moreover, the Delegation Axiom and property (29) together characterize the
sequence of EANS s.c.f.s (these two claims are routinely checked via formula

(5) and Lemma 1). However we feel that condition (29) is less easily interpreted.
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8) Value Functions and the Delegation Axiom

One striking feature of the EANS social choice functions is that they
are expressed as a value function of the game in characteristic form (23).
This implies in particular that Pareto inferior decisions (decision a is
Pareto inferior to b if ui(a) :_ui(b) all i and c(b) < c(a)) do not matter:
removing_them from the decision set if of no consequence to anybody; symmetfically,
adding foolish decisions to the agenda is no possible trick to influence the
overall decision. We ask now if other value functions could be derived
from the delegation axiom and answer negatively in Lemma 6 below. Given N,
a cooperative game (with side-payments) is any mapping v associating to

each coalition'T@E N a real number v(T). A value function in the context

of our problem is any mapping ¢ associating to each game v a vector ¢(v)
in 1RN and satisfying i) anonymity, ii) efficiency ( I ¢i(v) = v(N))

ieN
and 1ii) two invariance properties that parallel those in Definition 1 namely

for all games v,w:

for some A e R {w(T) = v(T) + A for all T} = {¢i(w) = ¢i(V) + %

for all i }

for some A cR }_fw(T) v(T) + A for all T containing i }

=>{¢j(W) = ¢j(V)“

v(T) for all T not containing i

and some ieN w(T)
for all j # i}

To each such value function ¢ and each set A we associate the social choice
function defined by:
max
Si(u,c) = ¢i(v) where v(T) = mT—c) , all TCN (30)

We let the reader check that properties i to iii in the Definition of ¢

ensure that S is a social choice function (Definition 1).
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Lemma 6

There is exactly one sequence of social choice function, derived (via
formula (30)) from a sequence of valﬁe functions (one for each size n of N),
and satisfying the Delegation Axiom. It is the sequence of Equal Allocatiom
of Nonseparable ;osts s.c.f.s.
Proof
Although a proof can be worked out by using once more Lemma 1, we prefer a
more specific argument. Let ¢l,...,¢n,... be a sequence of value functions.

The definition of value functions (property i to iii) leaves no freedom of

choice for ¢l and ¢2

ot ()

¥2(v)

v(1)

2v(12) + (1) - v(2)]

Now apply the delegation axiom to the sequence of social choice functions
derived from ¢l,..., ¢n,... Specifically consider formula (4). If v is

the game derived from (ul,...,un,c) then the game derived from (ul,...,un_l,cl)

is v':

c)max - ( )max

v'(T) = (uT—

n _ _ oD
Ten~ - Sn(u,c) = v(T+n) Sn(u,c).
Thus, by the invariance property of ¢n-l, the delegation axiom amounts to:
. .n _ n=1 . (n) 1 .n
for all n, all v: ¢l(v) = ¢l (v -It1¢n (v)
where we set v(n)(T) = v(T+n) al1 T € {1,...,n-1}
This yields a system of equations
20 +2o%w) = o8t vy ani v, a1 4,3 1<4,3<n
1 n-11] 1 - -
This system determines the wvalue function ¢n once ¢n—1 is given. Thus
by an induction argument already encountered at the end of the proof of Lemma 1,

we conclude

n
¢?(v) = %{V(N) + T v(N\j)] - v(N\i) QED
j=1
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The paper by Sobolev [ 19827 bears close resemblance to the above proof.

However Sobolev has a different definition of the game 'v' facing agents
{1,...,n-1} once player n delegates his decision power. Specifically, we

define +v'(T) = v(T+n) ; ¢2(v) while he sets v'(T) = max {v(T), v(T+n) - ¢§(v) } o
coalition T has a choice to incorporate player n or not. This difference has

far reaching technical comsequences: while our Lemma 6 is quite elementary

his. characterization of the quasi-nucleolus solution is anything but simple.
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APPENDIX

Proof of Lemma 2

Suppose first g 1is concave. We prove formula (14):

~

For all n, u, c, the concavity of g implies:

a1

- \
g(u;) < g(—=7)- Therefore

max n-1 " n-1 "~
+ = g(ul) - — g(

(31)

u?\l)

n 1
Sl(u’C) 2_5-(uN—c) n &'n-1

On the other hand from (9) we derive

max

=y)™ - (-DgED > - (eDgly) el wy

Applying this with =x = Uny » Y S c¢-u in (31):

1

n n-1 .~ ~ T
Sl(u,C) > o {g(ul) - g(E:I—)} all n, u, ¢ (32)

which is just one-half of (14). To prove the other half we fix n, U, ¢

and we construct Uss 2 <1 <n such that (14) actually is an equality.
c-u

Taking u. = L » 2 < i<n does the job. Thus (1l4) is proved. This

i n-1

implies at once (13) in view of (8) since
c-u c-u,

1 Lyymin _ n c,\min
n-1 )) (u - 5‘)

glu;) - &l a1 %

—7 ) 3_(ui - (

It remains to prove that if Sl,...,Sn,... derived from g e R all

satisfy (13) then g is concave. By assumption

S?+l (u,c) > (u, - —)™n
i =i

_I;'T‘I all n, i, 1, C



us,

. 1
Apply.this to arbitrary Upseesst , 1= n+l, u. = =

i 521 9

n+l n . c
¢ = —E—-( 'Z uj), through formula (10). Since u - ¢ = 0 and u; = 7

J=1
we get
n n
n BIPRR 1 -
—_ g(= I u,))-=— I g(u,)>0
n+l nosq 1 n+l 521 3

This gives us the concavity inequality for all convex combinations with
rational coefficients. As g 1s continuous ((8)) we conclude that it is

concave. QED

Proof of Lemma 3

Firstly the equal sharing above the convex decision ¥ has guaranteed
utility level hn(ui,c) = (ui - %)'o : at any profile u and cost functicn

¢ such that w -c = 0 we have indeed S?(u,c) _>_.(uj - g).c for all J ,

whereas z S?(u,c) =0= I (u.-=).0 so that equality holds everywhere.
jeN J jeN n

The converse statement is more difficult. We start with a function
é € R and denocte Sl,...,Sn, the associated s.c.f.s (by (10)). We assume
property (15) and must prove that é takes the form é(x) = x,0 for some
¢ in the unit simplex of IRA . To save space we simply sketch the proof.

~

First by the monotonicity and tramslation invariance of g one computes

2 . ma - - - ~
hy(uy,e) = inf3 [(u) =)™ + gluy) - gluy)] = dglud-gle-u)]  (83)
Yo
the infimum being reached at u, = ¢ - u .

Next we observe that for all social choice functions and any n :
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n
% h7(u.,.,nc) < (uN - ne)™®
. i -
i=1
Using (15) this gives
1 o 2 1 max
= I h (ui,2c) i-(ﬁ'uN - c) all n, u, c
i=1
Fizx x EIRA : the above inequality implies
K 2 K ma;
sup{ I X.,h"(u.,c)/x = I A,u.} < (x-c) ® all x,c
. i i . i"it —
i=1 i=1l

The supremum being taken over K and all convex coefficients

(A A.u. = x. Thus the left hand side term is

11

it ™R

l,...,AK) such that

i=1

h2(x,2c) where h2 is the concave hull of h2 with respect to x .

h2(x,2c) 5_(x—c)max

Fix ¢: the left hand term is concave, the right hand term is convex and
they both vanish at =x = c¢. Therefore we can separate them by a linear

max

function: for some a(c) eIRA : h2(x,20) < (x=-c)rale) < (x-c) (34)

~

. . . . . . 2 2
It is easy to check that 9(c) is in the unit simplex since h", as well as h,
are monotonic in x and translation invariant.

Combining (33) and (34) we have finally:

He(x) - g(26-x)] < (x-¢)'o(e)  all xc
Replacing x by 2c-x yields the reverse inequality so this is an equality.
The left hand term is a nonincreasing function of ¢, so the right hand

side must be:
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for all 4 EIRf, all x, ¢ eIRA : (x-c-d).o(c+d) < (x-c).o(e)

which is rewritten as

(x-c)+{o(ctd) = o(e)} * < d.o(ctd)

Fix ¢ and d. This takes the form

X* o <B all x

where o is a vector in ]RA and B a real number. This implies a = 0

“hence o(c) is independent of ¢ after all:

%g(x) = g(2¢c-x) = (x-c)+0o all x,c

Taking ¢ =§ and recalling g(0) = 0 we are home.



