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1. INTRODUCTION

This paper is concerned with solving and estimating linear simultaneous-

equations models of the form

(1.1) By, + Ayy, 1 * .ec Apyt—p +BoYileey t Bi¥epqfey T o0 qut+q't-l

= th + U,

where Y, is a column vector of G endogenous variables, z, is a vector of K exogenous

t

variables, u£ is a vector of residuals and Yigi denotes the conditional expec-

t-1
tation of Yesi given all information up to the end of period t-1. The conditional
expectations Yiegile-1 2F€ assumed to be mathematical expectations computed from the
same econometric model which generates (1.1) under the assumption of rational expec-
tations. One consistent method for estimating the parameters of such models is
given by McCallum [ 8 ]. Two other methods of estimation will be discussed in this
paper.

A closely related problem to that of estimation is the solution of model {1.1).
By solution is meant finding a stochastic mechanism to generate cbservations of v,
which is consistent with model (1.1). It is well-known that when expectations
Yers le-1 of future endogenous variables appear in a linear simultaneous-equations
model, many solutions exist if the expectations are formed by the assumpﬁion of
rational expectations. For example, see Gourieroux, Laffont and Montfort [6 1

for a treatment of the solutions of a univariate model with future expectations.

Therefore, even if all parameters of (l.1l) are known, an econometrician still faces



the problem of finding a stochastic model which will generate future observations
of Ye for the purpose of forecasting. Several approaches to finding a unique
solution of (1.1) have been proposed and are discussed in Chow [ 2 , Chapter 11].
T™wo of the apparently prbmising approaches will be discussed in this paper, one
by Chow [ 2 ] and the other by Dagli and Taylor [ 3 ]. Corresponding to each
approach is a set of methods for estimating the parameters of model (1.1). Thus
the problems of solving and estimating model (1.1) are closely related.

In section 2, Chow's method for solving the model (1.1) will be summarized.
In section 3, Dagli and Taylor's method of solving.and estimating (1.1) will be
presented. In section 4 it is shown that any solution which is linear in Yoo
z, and u, with constant coefficients is a special case of Chow's solution.
Since the Dagli-Taylor solution is of this form, it is a special case of Chow's
solution. 1In other words, by imposing certain restrictions on the parameters
of the stochastic model proposed by Chow as solution to model (l1.1), one obtains
the solution of Dagli and Taylor. The last part of section 4 is devoted to
deriving these restrictions explicitly. An important implication of this result
is that if Chow's solution is accepted, the Dagli~-Taylor method for estimating
the parameters of (1.1) will be inconsistent unless the special restrictions
imposed by their method happen to be valid. This and related issues will be

discussed in section 5 which compares the two methods.

An illustrative model consisting of two simultaneous equations and involving
the vector-yt+l|t_1 of two future endogenous variables is rresented in section 6
for the purposes of demonstrating how the two methods work and of comparing them.
When Chow's solution model [ 2 ] was presented, the methods of maximum likelihood
and minimum distance were proposed for estimating its parameters, but no actual
éomputations were reported. It is encouraging to find that these methods have
worked well for the illustrative model. We can recommend the application of these
methods to the estimation of simultaneous quations involving future expectations
in econometric practice. The inconsistency of the Dagli~Taylor method is also

illustrated in section 6.



2. CHOW'S METHOD OF SOLUTION

The method of Chow [ 2 , Chapter 11] for finding a solution model which is
consistent with (1.1) but free of future expectations can be briefly summarized.

To facilitate comparison with the Dagli-Taylor method to be presented in section 3,

we follow Dagli and Taylor [ 3 1 by assuming that the residual u, in (1.1)
satisfies
(2.1) u = A(L)elt

where Elt is an independent and identically distributed random vector with mean 0
and A(L) is a matrix polynomial in the lag operator L, with coefficients Ai, such
notation being used throughout this paper. We also assume the exogenous variables

zt to satisfy

(2.2) z, = A(L)E2t

where E2t is an independent and identically distributed random vector with mean 0
and A(L) is a matrix polynomial in the lag operator L. Economic agents described
by the model (1.l1) are assumed to know A(L) and past realizations of the exogenous

z , but not to know the future realizations

variables up to z tle-1 = Z¢

e implying z

ee. « The random vector €' = (e!

. .
27 zt+2, £ 167 €2t) is assumed to be normally

distributed with mean zero and covariance matrix . The normalizations AO = Q,

Al = I, and AO = I are applied .

The reduced-form of the structural equations (1.1) is

-1
+ ... +A + B
(2.3) B “(By, +A o t-p

cee + )
1¥e-1 o¥t|t-1 * Bi¥eepfe-1 * B taq|t-1

-1 -1 — -1
=B th + B u, = B Pzt + Ve
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where we have defined B-lut = V.. We will assume that any solution Y. of (1.1)
satisfies for m = 0,1,...,9 and for some RO""’Rq’ KO""' a-1
- ‘ = : + ... +
(2.4) Yeem = Yesm|t-1 Ro%tm, -1 * F1%4n-1,t-1 Rode, -1
+ ... +
* Koftam,t-1 * X1®tam-1,t-1 K-1%e+1,t-1
where
(2.5) Yerm,t-1 = Ztam ” Seem|t-1
= VA -

Ct+m, t-1 t+m ~ Ztem|t-1

and 'K = 0

-1

This assumption is motivated by the solution method of Chow [2, Chapter 11]

which begins by assuming that any solution to (1.1) takes the form

(2.6) Y, = Rout + Rlut-l + ... + Kozt + Klzt—l + ...

for some RO'Rl""' KO' Qe Chow shows [2, pp. 356-357] that (2.6) implies
(2.4). BAs pointed out by Evans and Honkapohja [4], however, the infinite MA
representation (2.6) runs into problems of well-definedness in nonstationary
situations. As a result, an assumption of the form (2.6) restricts the class
of solutions to stationary ones. Since, in the present paper, we do not wish
to restrict the class of solutions a priori (i.e. before observing the data),
an assumption of the form (2.6) is inappropriate. We therefore make the weaker
assumption (2.4) which allows both stationary and nonstationary solutions to
(1.1). (One should note that the solutidn given in [Chow, 2, Chapter 11] is
widentical to that given here (equation 2.7). Thus, keeping in mind the slight

modification of the Chow [2] solution method made above, the Chow [2] solution

is valid in both stationary and nonstationary situations.)



Taking expectations of (2.3) given the information set It—l available at

the end of period t-1 and subtracting the result from (2.3), we have

! -1
Ye " ¥elg-r T OB U 7B U -

R.u -1

Yele-1 = Ro = Foll¢|e-1 *MPlying Ry = B

Putting m = 0 in (2.4) yields Yy - 0

The solution for (1.1) is found by using (2.4) to substitute for all Yesmle-1

(m=20,1,...,9) in (1.1). Ihls amounts to replacing yt+m|t i by Yerm minus a

weighted sum of dt+j,t—1 (j = O,...,m? and et+j,t—l (j =1,...,m). The result is
(2.7) Byt + Alyt—l + ...+ Apyt_P + Boyt + Blyt+1 + ... + qut+q
= I"z +u + Rodt g1t ldt+l,t-1 + ...+ qut+q,t—1
* Rt e Y RBg e T R e
where
q-m
T iio PmiiRi (m=20,...,9
g-m—-1
Kn = izo Brt1+i5i (m=0,-..,9-1)

with R.O = B-l as shown previously.

To show that the solution model (2.7) implies the original model (1.1), we

simply take expectations of (2.7) given the information I to yield

t-1

+ + ... + +
BYee-1 + A¥e1 P¥e-p * Po¥ele-r Y BaVesafe-1 * ot * B¥iigle-n

=T Zt + ut]t-l



We also take expectations of (2.7 given It+q-1 and subtract the result from

(2.7) to obtain

-1 -1
- . = - BB u
Bq t+g qut+q|t+q-l BqB “tag Bq t+q|t+g-1

or B-l(u

Yo " ¥lg-1 < £~ Yele-1)

if Bql exists. The case where B;l does not exist is treated in Chow [2, pp.
357-358]. When this equation is used to substitute for,Bytlt—l in the previous
equation, the original model (1.1) results. Note than in constructing the
solution model (2;7), the matrices Ri (i =12,...,9) and Ki (i =0,...,9-1) can
be arbitrary and (2.7) still implies (1.1). (Also, no assumption about station-
arity was needed to obtain this solution.) The essence of Chow's solution is
that it includes these additional parameters which characterize the multiple
solutions of the original model (1:1). Given model (1.1) alone, one can arbi-
trarily choose the values of these parameters in the solution model (2.7) to
generate different solutions of (1.1). Once the values of these parameters are
fixed, the problem of multiple solutions for (1.l) is resolved. It is there-
fore proposed to estimate the v#lues of these parameters empirically together
with the parameters in (1.1). Methods of estimation have been discussed in
Chow [2]. Two of the methods will be applied in section 6 to estimate an

illustrative model.

3. DAGLI AND TAYLOR'S METHOD OF SOLUTION AND ESTIMATION

The method of Dagli and Taylor [3] for solving system (l1.1) consists of
the following five steps. First, take conditional expectation of (1.1) given

information It—l to obtain a model of the expectations variables.



(3.1) + ...

B + cae +
eag|t-1 Bo¥es]e-1 ¥ B F B)¥ijeay ¥ A% e

FAYeplt-1 T rztlt-l I

Denote by L1 the special operator which decreases only the first time subscript

of a variable yt by one without changing the conditioning time subscript,

+m]t-l

i.e., L The ordinary lag operator L has the property

Wetm|e-1 = Yeam-1]t-17
Lyt+m|t-1 = yt+m—1]t—2' Using the operator Ll, we rewrite (3.1) as

(3.2) L+ ... +p 1t
q 1

P
1 1 + (B +Bj) +AL + ...+ Ale)yt|t-1

= HE)DYe g = T2epeng * U

where H(Ll) is a matrix polynomial in the operator Ll defined by the first line
of (3.2).

Second, factor the polynomial H(L ) in the form

(3.3) HL) = o@hoem)

where
g

-1 -1 -
d(r ) I+ @lL + ... + @qL

B
+ .en .
8(L ) 60 6.L + + GPL
and it is assumed that the determinantal polynomials of ®(z) and 0(z) have

all roots outside the unit cirgle. -1
Thirxd, premultiply (3.2) by the inverse of @(Ll') to obtain

_ -1, -1 -1,.-1
(3.4) Ol )Yy gy = [OEIDI Tz g + (O D1 0

= wZ(L)SZt + zj)l(L)elt

where wl(L) and wz(L) are polynomials with only positive and zeroc powers of L and



are obtained by using [@(L;l)]'l and the assumptions (2.1) and (2.2) for u, and

z, - Dagli and Taylor give more details. Equation (3.4) can be used to express

‘yt]t—l as a function of lagged values of Yt and lagged disturbances
-1 )
(3.5) Yelge1 = ~ 90 [Glyt_l + e+ prt—p - wZ(L)EZt - wl(L)elt]
Fourth, subtract equation (3.1) from equation (l1.1) to obtain

(3.6) By, Bytlt_l + €y

and substitute (3.5) for Yt[t—l in (3.6) to yield

(3.7) Byt

-1 " -1 -1
BGO [Glyt_l + oee. + epyt_p] + BGO IPZ(L) €yt [BGO wl(L) + J:]elt
Fifth, substitute for 82t from (2.2) to obtain the solution model
(3.8) By, = CL)y, + D(L)Z, + R(L)E

where C(L)

i

-1
BGO [60 - 6(1)1]

-1 -1
D(L) BGO wz(L)A (L)

R(L)

-1
BO, Y (L) + I .

Equation (3.8) is a dynamic model free of expectations variables which is consistent
with the original model (1.1). The parameters of (3.8) are functions of the param-
eters of (1.1). Dagli and Taylor have recommended applying maximum likelihood to

(3.8) for estimating the parameters of (1.1).



4. DAGLI AND TAYLOR'S SOLUTION IS A SPECIAL CASE OF CHOW'S SOLUTION

In this section we prove that the Chow solution is the most general among
the class of constant-coefficient solutions which are linear in Yer 2y and a, .
As a result, we obtain as a corollary that the Dagli-Taylor (DT) solution (3.8)

is a special case of the Chow solution (2.7).

Theorem: If for polynomials D(L), G(L), Q(L) (containing only nonnegative

powers of L) with D(L) = Dy + DL + ... + Dde, Dy ZIand d < »

(4.1) D(L)yt = G(L)Zt + Q(L)ut

is a linear constant-coefficient model satisfying (1.1), then (4.1) is a special
case of the Chow solution in the following sense. Given any §t satisfying (4.1),

¥y also satisfies (2.7) when Ri+1’ Ki, i=20,1,2,...,9-1 are appropriately

restricted.

Proof: Define D&(L) by

- 2 q
* = * * * + ... + D*
Dq(L) DO + DlL + D2L DqL
n
where z Dr’l‘an_m = 0 for n=1,2,...,q
m=
and Da = I , Dd+i = 0 i=1,2,3,...

(Note: The D; can be computed recursively; i.e. given D*,...,DE we have
K
D* = - I D*D )

K+1 m K-m’
m=0

Premultiplying (4.1) by D&(L) gives, for any §t satisfying (4.1),

(4.2) Ve * p(L){zt_q_l = DZ(LIG(L)z, + DA(LIQ(L)u
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where P(L) is a polynomial consisting of only nonnegative powers of L and is
of degree at most d-1. (P(L) = O is possible.)

Advancing the time subscripts in (4.2) by m for 0 < m < q gives

(4.3) V(L)zt

+m + W(L)ut

Yetm * P(L)yt+(m—q)—l +m

where : V(L) = D&(L)G(L) and . W(L) = D&(L)Q(L).

Taking the expectation of (4.3) conditioned on information at date t-1 and
subtracting the result from (4.3) gives for m = 1,2,...,q (since P(L) consists

of only nonnegative powers of L)

(4.4) Yesm - §t+m|t—l = Moluin 7 Ypppe-n) F RO - Ut ame1 | £-1]
oo F W0 =0 y) Vo Boin T Zean)end)
PPy T Zeme1fe-1) T Vi B T Zegg ey

and y W

Ye 7 Yele-1 0% = Yelea1)

Now, as shown in section 2, (1.1) implies

- - -1
Ye T ¥elemr T OB Tl mm )

Using (4.4) to substitute for all §t+m|t-l (m=0,1,...,9) in (1.1)

(as in section 2) implies that §t satisfies (2.7) with Ri+ =W and Ki = Vi

1 i+l
]

Remark: Given any solution to (1.1) of the form (4.1) the proof of the

for i = 0,1,...,g-1.

theorem provides a method for deriving the restrictions which that solution
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places on the free parameters of the Chow solution. This fact will be exploited

below.

Corollary: The DT solution (3.8) is a special case of the Chow solution

(2.7).

Proof: (3.8) is a special case of (4.1) in the theorem.

O

We now derive explicitly the restrictions on the Ri+ and Ki, i=02o0,1,2,

1
«..;9-1 imposed by the DT method.

(3.8) can be written as

-1
(4.5) B(L)yt = 11)2(L)E:2t + [wl(L) + eOB ]slt
or, using (2.1) and (2.2),
(4.6) 0Ly, = V. (@A T@z, + . @ + 68 A wu
: Ye 2 t 1 0 t "

Finally, the DT root assumption allows us to premultiply by e-l(L) giving

-l -1 -1 -1, ,.-1
(4.7) Yoy = 8 <L>w2<L)A L)z, + 8 (L) Yy (L) + GOB 1A T (L)uy, -

Now (4.7) is of the form (4.1) with

D@L = I
G(L) = e‘l(L)wz(L)A'l(L)
-1 -1, -1
and QL) = & T(L)IY; (L) + 8B TIa T(L) .

Accordingly, we easily obtain D&(L) = I. So, using the proof of the theorem

gives that Yy satisfies (2.7) with
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(4.8) Ri+1 = Gi+l and Ki = Qi ’ i=20,1,...,9-1

2 2
(where G(L) = G0 + GlL + G2L .+ ceer QL) = QO + QlL + Q2L + ...). Hence

(4.8) provides explicitly the restrictions imposed on the free parameters of

the Chow solution by the solution proposed by Dagli and Taylor.

5. COMPARISON OF THE TWO METHODS

As remarked in the introduction, in general we cannot hope to obtain a
unique solution to (1.1) under the rational expectations assumption. As a
result, in addition to the rational expectations hypothesis, stationarity
and/or covergent expectations have often been imposed on the solution in
order to obtain uniqueness. Recently there have been attempts to relax some
of these ex ante restrictions and use instead empirical information to
determine their appropriateness. Examples are the works of Flood and Garber
[5] and Burmeister and Wéll [1]. The reasoning here is simple enough. if
we are sufficiently unsure about the validity of ex ante restrictions on
the solution to (1.1) we ought not impose them, but rather we should test for
them. Indeed we shall see below that imposing false restrictions can lead to
serious problems with the resulting estimates.

Let us consider the problem faced by an econometrician of obtaining and
estimating the reduced-form solution to (1.1), (We say "the reduced-form
solution” since although (1.1) has a multiplicity of solutions we suppose that

only one describes the data.) The only information available (other than data)
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is (1.1) and the knowledge that the solution is linear with constant coeffi-
cients. One available procedure would be to start with a linear constant-
coefficient model D(L)yt = G(L)zt + Q(L)ut and use (1.1) to obtain the neces-
sary restrictions on the parameters. This method was employed in part by
McCallum [8] to obtain consistent parameter estimates, but in McCallum's
method the number of lagged endogenous as well as exogenous variables to
include in the reduced form was left unspecified and the cross-equation
restrictions were not explicitly taken into account.

As we know'from the theorem of section 4, the method given in section 2
provides the most general solution to (1.1) among the class of linear
constant—coefficientvsolutions. Thus, our econometrician need not make any
possibly erroneous assumptions concerning the nature of the solution to
apply this method. Also, the method of section 2 is free of both short-
comings of the McCallum procedure.

As described in section 3, in order to obtain their solution Dagli and

Taylor employ a factorization technique. In particular they factorize

H(L) as

-1
H(L) = &(L 7)e(L)
and assume that 6(L) and @(L—l) be of degrees p and q respec-
tively and that 6(z) and &(z) have all roots outside the unit
circle. Under these assumptions (which have previously been made
in the literature; for instance see pp. 333-337 in Sargent [9] for a univariate

example) they are able to obtain a unique solution to (1.1). It is not clear



- 14 -

however, into which class these assumptions restrict the solution to (l1.1).
For example, one might suspect that these assumptions are equivalent to sta-
tionarity, but they are in fact stronger. Staticnarity can be achieved
without these assumptions. One sees this by noting that as long as the deter-
minantal polynomial of H(L) = @(L_l)G(L) has all roots outside the unit circle
any solution to (2.7) will be stationary. But if this is the case then |®(2) |
has all roots inside the unit circle contrary to the DT assqmption. Hence
there are maﬁy stationary time series which satisfy (1.1) but are ruled out
by the Dagli-Taylor assumptions. With this in mind one may question the
reason (apart from their ability to induce a unique solution) behind the rés—
trictions imposed on the roots of the determinantal polynomials of 6(L) and
@(L—l). Indeed, not only have we discovered that the Dagli-Taylor assumption
implies arbitrary restrictions on the free parameters of the more general Chow
solution, but that this assumption can lead to inconsistent estimates of the
structural parameteré as well as unresolvable identification problems. The
last two points are illustrated by the following simple example.

Consider the univariate model

(5.1)

+ =
Yo 7 Weynle-1 Bzy + vy

where Zele-1 T Zer zt[t-z =0, E(z,z, _.) =0,¥1i2>1, and u_ is a white noise

disturbance term uncorrelated with Z.. Using the DT solution method (which re-

quires lal <1 since Q(L) = 1 and @(L-l) = l+aL_l) we obtain the reduced form

(5.2) ' Ye = Bz, + u ;

Advancing the time subscripts in (5.2) by one and taking expectations as of date

t-1 gives
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5.3 -
(-3 Yesrfe-1 = O

Looking at (5.2) we notice immediately that the parameter ¢ is absent and hence

cannot be estimated. The reason for this is clear by observing (5.3). Combining

(5.3) with (5.1) not only gives (5.2) but helps us realize that o is unidentifiable
by the DT solution method.

The solution model for (5.1) obtained by the Chow method is

(5.4) + Ru

Yo = - (M/0)y,y + K+ B0z ) 4wy -1

where R and K are arbitrary. As is readily seen this solution employs two param-

eters which characterize the multiple solutions associated with (5.1) in addition

to the two structural parameters & and B. The restrictions of R and K implied

by the DT solution are that K = B, R = 1/0. Putting K =R = 0 and assuming

]a] > 1 (which is contrary to the DT assumption) we obtain from (5.4)

(5.5) Yy, = I (- é-)l[:ut_i + (B/a)z }
i=0 )

To demonstrate the possibility of inconsistent estimates arising from the

DT method we shall assume that the actual time series process satisfies (5.5) and

hence (5.1). Estimating B from (5.2) via the DT solution gives

. T T
B = Zzy / Iz
t=1 % 7 o

2
t

Using (5.5) and the assumptions on z, and u, above give

plim B = 0 # B.

This example illustrates that the DT solution method can lead to inconsistent

estimates if the DT root conditions are not met and to identification problems.
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We have pointed out that the.two methods for solving and estimating a
system of linear simultaneous equations under rational expectations imply
different assumptions about the parameters of the model. Specifically, the
DT method implies a set of restrictions on the parameters of a more general
model assumed by the Chow method. A choice between the two methods can be
made by testing the restrictions implied by the DT method. Tb'make such a
choice, the specification test of Hausman (1978) can be applied. Let 9 be
a vVector of parameters oflthe model (1.1), @O be the maximum likelihood esti-
mator of Dagli and Taylor, and 6 be the maximum likelihood estimator using
the Chow solution. Under the assumption that the DT restrictions are correct,

20 . . . . , L
6" is asymptotically efficient, but if the DT restrictions are not correct,

60

is inconsistent. When the DT restrictions are incorrect, the estimator

>

6 is still consistent. . Let § = § - @O. The test statistic is
q' (cov 9§

where the covariance matrix Cov § can be estimated by

~

Cov 6 - Cov 8 .

Cov §

Under the null hypothesis that the DT restrictions are correct, this
statistic is asymptotically distributed as x2 with the number of degrees of
freedom equal to the number of elements in the vector §g.

To illustrate the Hausman test Qe generated time series data (fifty

observations) using (5.4) with z, ~ N(0,l) (treated as exogenous, u_ v N(0,.25),

t t

B=1, R=K=0and a = 2 (so that la| > 1 and the DT root assumptions do not

hold nor do their implied restrictions on R and K). Since (5.2) contains ohly

)

one parameter (namely B)} we have § = BC - BDT where Bc and BDT are the estimates
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of B obtained from (5.4) and (5.2) respectively. Estimation of the parameters
was performed using a full-information maximum likelihood technique (as in

section 6 below). The results are as follows:

Sc = 1.35 Var(Bc) = .169
BDT = =_117 var(BDT) = .0132 .
Hence the test statistic is
x> = (1.35 + .117%(.169 - .0132)"% = 13.8 .

As a result of this test, we may reject, at the 99.5 percent confidence
level, the null hypothesis that the DT assumptions hold. This is both
comforting and not surprising since the example was designed to violate

the DT assumptions. For this simple example, then, the Hausman test directs
us toward the more parsimonious specification (5.4) whose complete set of

estimates turn out to be

& = 2.31 B = 1.35
C [0

X = -.003 R = .003
[o4 [o4

8% = .18
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6. ESTIMATING AN ILLUSTRATIVE MODEL

To illustrate how well the Chow_method works and what results might be obtained
by the DT method, we have employed data generated from a two-equation model to esti-

mate its parameters using both techniques. The model takes the form

(6.1) Byt + ytlt-l + Blyt+llt-l = th +ou

where the matrices B, B, and T are all 2x2, u,. and zt are uncorrelated random

1 t

disturbances with covariance matrices GiI and I respectively, z, is treated as

exogenous with ztltrl = zt and ztltr2 = utltrl = 0. This gives rise to the Chow
solution

_ =1 =1 -1 -1 -1
(6.2) Yy = -B) (B+I)y,_, + B Kz, + B‘l I‘zt_l +BTu +B Ru .

where K and R are arbitrary real 2x2 matrices and Bl is assumed to be nonsingular
for simplicity. The corresponding DT solution is
1

(6.3) Yy = (1?.+I')'1I‘zt + B u,

implying the restrictions,
R= BB;_l (B+I1)B~t

1

and K= B(B+I) T

As in our simple example in section 5, there is an identification problem here
in that Bl cannot be estimated. Nevertheless we can compare the estimates of

those parameters which can be estimated.

Four samples of the time series Yer with fifty observations each, were
generated by using (6.2). The parameter values for the four samples are

summarized in Table 1 below.
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Table 1. Parameter Values Generating Four Samples

Sample cu X, R
1 .01 K=R=0
2 .1 "
3 .01 K, R subject to
DT restrictions
a .1 o "

For each sample, the structural parameters have the values

which imply that Ye is a stationary time series. Each of the time series
generated by (6.2) satisfies the original model (6.1). With those parameter

values the Dagli-Taylor implicit restrictions on R and K are,

0.447 0.763

R =

L—O.044 -0.447

,

-5 -30
K=

-1 13

.

Given the sample data, we used an approximate full-information maximum likeli-
hood (FIML) method described below to estimate the parameters of both (6.2) and

(6.3). 1In addition, the method of minimum distance as suggested by Malinvaud (1970)
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was also used to estimate (6.2). This method consists of minimizing the

expression
T ~ »
-1
Z u'Q
£=1 t t
N T
iteratively, where { = T z utué is obtained from the previous iteration.
t=1

The log-likelihood function to be maximized in conjunction with the approximate

FIML method is

T
log L = T log |B| --:g—log 03 - 12 I ouwla
2Uu t=1

where (6.2) or (6.3) is used to éubstitute for ut, but the initial value uO was
assumed to be zero as an approximation. In each case for the Chow method the
starting values used in the optimization routine were obtained by applying two-
stage least squares to the model (6.1) with Vel £-1 replaced by Vg1 For the
DT method the starting valués were equal to the actual parameter values. For
identification purposes the structural bParameters were restricted as follows

(the B's and y's were to be estimated).
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When estimating (6.2)

were left unrestricted. Tables 2 to 5 summarize the results. The following
abbreviations are used in Tables 2 to 5. ‘

DT: Dagli-Taylor Method - FIML

CM: Chow Method‘— Minimum Distance

CF: Chow Method - FIML
The gradient algorithm of Davidon, Fletcher and Powell included in the GQOPT
pProgram of Goldfeld and Quandt was used to perform the numerical maximization,

In each case the Chow method provides reasonably close estimates of all
parameters and the method of minimum distance seems to perform about as
weil as the approximate FIML method. With Gu = ,01 we see from Table 2
that the DT method does not provide close estimates of the structural parameters,
with some missing the parameter values by almost a factor of two and others being
less than one half the true parameter values. The estimate of cu is by far the
worst, being 8.99. These poor estimates are not surprising since the data
used do not satisfy the implicit restrictions imposed by the DT method. When
Ou is increased to .l and again the implicit restrictions are not satisfied,

the DT method breaks down by g¢giving parameter estimates in the range lO12 - 1014_

(see Table 3). On the other hand, when the data satisfy the DT implicit
restrictions, the DT method as well as the Chow method combined with FIML
and minimum distance all perform very well (see Tables 4 and 5). The reader

should be reminded, however, that even under this circumstance, the DT method

was unable to provide estimates for 83, 84 or 85 due to the identification

problem discussed earlier.



W W ™ Q

w

N

DT
8.99
6.09
1.64

DT
2.2x1014
9.8x1013
6.1x10M*

ag .020

5.00
.833

.100
5.00
.833

™ ™ ™ Q
N

()

CM
.01e6
4.99
.834
.501

CM
.080
5.00
.835
.504

.019

5.00
.833
.500

.094
5.00
.833
.3500
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Table 2. Parameter Estimates Using Sample Data Set 1
CF DT CM CF M “CF
.016 B4 —— 6.00 6.00 kl -.003 -.003 rl
-4.99 BS -— 2,00 2.00 k2 .002 .002 r,
.833 Yl -1.88 =5.00 -4.99 k3 -.002 -.002 r,
.501 Y2 1.31 1.00 1.00 k4 .002 .002 r,
Table 3. Parameter Estimates Using Sample Data Set 2.
CF DT CM CF M CF
.078 84 --=-  6.00 6.00 kl -.013 -.016 r
5.00 85 ——— 2.00 2.00 k2 .008 .008 r2
834 v, 1x10'7 -4.99 -4.99 ky -.009 -.010| =z,
.503 Y2_-2x1013 1.01 1.00 k4 .0l .012 r4
Table 4. Parameter Estimates Using Sample Data Set 3
CF BT M CF M CF
020 B, =--- 6.00 6.00| k; =5.00 - 5.00| r,
5.00f By =--- 2.00 2.00 k, -30.00 -30.00 r,
.833 Yl -5.00 -5.00 -5.00 k3 -1.00 - 1.00 r,
.500 Y2 1.00 1.00 1.00 k4 13.00 13.00 r4
Table 5. Parameter Estimates Using Sample Data Set 4
CF DT M CF ™ CF
.100 84 -  6.00 6.00 kl -.5.00 -.5.00 r,
5.00 Bs —— 2.00 2.00 k2 -30.00 =30.00 r,
.833 Yl -5.00 -5.00 -5.00 k3 - 1700 - 1.00 r3
.500 Y2 1.00 1.00 1.00 k4 13.00 13.00 X,

cM
0.00
-.002
-.001
.002

M
0.00
-.002
0.00
.003

CcM
.447
.763

-.044
-.447

.447
763
-.044
-.447

CF

0.0
0.0
0.0
0.0

0.0
-.003
-.002

.006

.447

.763
-0.44
-.447

.447
.765
-.044
-, 447
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7. Conclusion

The method of Dagli-Taylor [ 3 ] for solving linear simultaneous-equation
models under rational expectations has been shown to be a special case of the
method of Chow [ 2 ]. Furthermore, it has been shown that the Dagli-Taylor
solution implies certain arbitrary restrictions on free parameters of the Chow
solution which serve to characterize the multiple solutions grising from the
original‘model. We call thése‘restrictions arbitrary because they do not result
in a solution set characterized by any of the more common restrictions employed
in the literature (stationarity, convergent expectations). We have shown that
there are many nonpathological (i.e., stationary with convergent expectations)
time series processes which satisfy a given rational expectations model but for
which the DT method provides inconsistent parameter estimates. The Chow solution
has been shown to be the most general solution of the rational expectations model
(1.1) which takes the form of a linear constant-coefficient process involving Yy

the disturbance u_ and the exogenous variable =z The methods of

t t°
FIML and Minimum distance when applied to Chow's solution have worked well for
our illustrative model, and can be recommended for econometric work employing

linear simultaneous equations with expectations formed under the assumption of

rational expectations.
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