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ABSTRACT

This paper considers generalized method of moments estimators
which use disturbance moment restrictions in nonlinear regression
models when the disturbance distribution has an unknown form. A
convenient linearized estimator is proposed. It is shown that if
the unknown density satisfies certain tail behavior restrictions,
then the asymptotic variance of the estimator approaches the Cramer-
Rao bound in two cases. The first case involves independently and
identically distributed disturbances and the second case involves a
disturbance which is symmetrically distributed conditionally on the
regressors. Results of a sampling experiment which investigates the

finite sample performance of the proposed estimators are also

presented.



1. INTRODUCTION

If the form of the distribution of the disturbance is known maximum
likelihood can be used to estimate the parameters of a regression model.
When the disturbance has an unknown distribution it is often the case that
other kinds of information can be used to estimate the parameters. This
paper considers estimation of nonlinear regression models using distur-
bance moment restrictions. For example, when the disturbance is indepen-
dently and identically distributed (i.1.d.), functions of the disturbance
will be uncorrelated with the regressors, and this fact can be used to
form generalized method of moments (GMM; Hansen, 1982) estimators of the
regression parameters. This approach to estimation of regression models
is similar to that taken by MaCurdy (1982), who considers GMM estimators
which use first, second, and higher-order raw moments of the dependent
variable.

Failure of the disturbance to be normally distributed can have serious
consequences for the efficiency of least squares. The efficiency cost of
using least squares in the presence of nonnormal disturbances has been
well documented in the robustness literature, for example in Huber (1981)
and the references cited therein. When there is no reason to believe that
the disturbance is normally distributed it is prudent to use estimators
other than least squares. Recently it has been shown by Bickel (1982)
and Manski (1984) that when the disturbance is i.i.d. it is possible to
obtain an adaptive estimator of the slope coefficients of a regression model,
that is, an estimator which does not use any knowledge of the density of the
disturbance but which is as efficient, asymptotically, as the maximum
likelihood estimator would be if the distribution of the disturbance were

known. Such an estimator provides an efficient alternative to least
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squares. In this paper it is shown that GMM estimators which use distur-
bance moment restrictions also provide efficient alternatives to least
squares, and do so in a larger variety of circumstances than those which
allow the use of the adaptive estimators of Bickel (1982) and Manski (1984).
Under two different sets of conditions it is possible to show that GMM
estimators are nearly efficient, that is, as the number of moment conditions
used in estimation grows the asymptotic distribution of the GMM estimator
approaches the best attainable distribution. One set of conditions involves
an i.i.d. disturbance. The other set of conditions involves a disturbance
which is symmetrically distributed around zero conditionally on the
regressors, and is possibly heteroskedastic, where the adaptive estimators
of Bickel (1982) and Manski (1984) do not apply.

In Section 2 the asymptotic properties of estimators which use dis-
turbance moment restrictions are discussed and a computationally convenient
linearized GMM estimator is presented. ' In Section 3 the i.i.d. disturbance
case is considered and Section 4 deals with the symmetric case. Section 5
bresents the results of a sampling experiment which shows that efficiency
gains can be achieved in finite samples using a linearized GMM estimator,
and that these estimators compare very favorably with adaptive estimators.

Section 5 offers some conclusions and directions for future research.




2. LINEARIZED MOMENT CONDITION ESTIMATION

In this section notation will be defined, the asymptotic properties
of generalized method of moments estimators will be discussed, and a

linearized, one-step estimator will be proposed. Consider the following

nonlinear regression model.

Assumption 1l: The sequence of observations (yt,xt) is independently

distributed and satisfies

Yo = f(xt,bo) + e (t=1,2,...) (1)

t 14

where Y. is a scalar, X is a 1lXp vector, b. is a kX1 vector, and

0
E(etlxt) = 0.

Note that since the conditional mean of e, is zero, equation (1) gives
a correctly specified regression model. Correct specification of the
regression function will be a maintained assumption throughout this

paper.

It is useful to impose regularity conditions on f(x,b).

Assumption 2: The parameter vector bO is an element of the interior of

a compact set B. For each x in X, f(x,b) is twice continuously differ-
entiable in b for b in B, and f(x,b) and its derivatives are continuous

in (x,b) on XXB, where X is a compact set and Prob(xtex) =1, (t =1,2,...).

The continuity of £(x,b) in x and uniform boundedness of the support of
x, are stronger than needed for the asymptotic distribution theory of this
section, but will prove to be useful in the discussion of asymptotic

efficiency in the heteroskedastic case of Section 4.
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In the absence of exact a priori knowledge of the form of the condi-
tional distribution of the disturbance, moment restrictions can be used
to estimate bO' For example, the restriction that the conditional mean df
the disturbance is zero can be used to estimate bo by nonlinear least

squares (NLS). More generally, consider moment restrictions of the

following form.

Assumption 3: The sequence (xt,et) satisfies

E[pj(et,ao)[xt] =0 , G=1,...,7; t=1,2,...) (2)
where a, is a & X 1 vector of parameters.

Equation (2) says that certain functions of a known form have conditional
expectation zero. For example, Assumptioh 1 implies that equation (2) is
satisfied for po(e) = e. More generally, these functions will be allowed
to depend on some parameters a, which may be estimated along with the
regression parameters. Additional specific examples will be given in
Sections 3 and 4.

It is useful to assume that each moment  function pj(e,a) is regular,

in the following sense. ILet

pje(e,a) = apj(e,a)/ae , pja(e,a) = apj(e,a)/aa ’

M= sup [f(x,b) - £(x,b")| , I = [-mM,M] .
XXBXB

Assumption 4: For each . pj(e,a) is continuocusly differentiable on RXA.
The vector ag is an element of the interior of a compact set A and for

each j there exist finite constants 8, N>0, such that




2+6 +6
E(suplp.(e + m,a)| ) <N, E(sup[p. (e, + m,a)ll ) <N
3t — Jje 't —
IXA IXA
1+8
E(suplpja(et + m,a)l ) <N, (t = 1,2,...)

IXA

Throughout most of this paper it will be the case that the conditional
mean restriction E(et‘xt) = 0 is used in estimation, so that it is useful

to have available a hypothesis which will guarantee that Assumption 4 is

satisfied for po(e) = e.

Assumption 5: There exists a finite constant, N > 0, such that

l 2+6

E(|e, ) <N, (t =1,2,...)

The conditional moment restrictions of Assumptions 1 and 3 imply that

for each j, pj(et,ao) will be uncorrelated with functions of x A

£
generalized method of moments (GMM) estimator (e.g. Hansen, 1982) can

therefore be formed by minimizing a quadratic form in sample averages of

products of pj(yt - f(xt,b),a) with functions of xt. Specifically, let
e=(b'ra')' r@= B XA,

and let z(x,8) be a mXl vector of functions which satisfy the following

assumption.

Assumption 6: For each x in X, z(x,06) is a continuously differentiable

function of 6 on C), z(x,9) is measurable in x for each 6, and

sup ‘z(x,8)| < + o, suple(x,@)/B@I < + o,
X X X x(H)



Let the sample size be denoted by n, and let

ple,a) = (e,pl(e,a), cee g pJ(e,a))',
h.(erxle) = P(e:a) 8 Z(xle)’

o | v
h (8) = tElh(yt - f(xt,b),xt,e)/n,

so that hn(e) is a (J + 1)m dimensional vector of sample moments. Note
that J is a positive integer which equals the number of functions in
addition to po(é) = e which are used to form hn(6). A GMM estimator é of
80 = (bé,aé) can now be obtained by solving
min h_(6)'D_h_(8) (3)
g D nn
where Dn is a conformable positive Semi—definite matrix.

It is possible to proceed to obtain the asymptotic distribution of
the GMM estimator @ in a manner almost identical to that used by Hansen
(1982) or Burgete, Gallant, and Souza (1982). - However, a different and
more convenient approach is available. This approach is based on obtaining
an initial consistent estimator of 60 and linearization of the GMM minimi-
zation problem around the initial consistent estimator.

An initial estimator of the regression parameters bO is readily
available, namely NLS. Under an additional identification assumption,
White's (1980) analysis of the asymptotic properties of.NLS with indepen-
dent observétion yieRis the consistency and asymptotic normality of NLS
in the context of this paper. Let

n

fb(x,b) = df (x,b)/db, Q = 1imt§lE[fb(xt,bo)fb(xt,bo)']/n,
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where it is assumed here and below that, for notational convenience, moment

matrices converge. It will also be assumed that bO is identified.

Assumption 7: For any neighborhood C of bO there exists finite

constants 6, n. > 0, such that

0

n

sup I EL(f(x_,b) - f(xt,bo))zl/n > 8
B\C t=1
if n 3_no. Also Q is nonsingular.

Let b be the NLS estimator obtained from solving

n
min X (yt - f(xt,b))z. (4)
B t=l

Proposition 2.1: 1If Assumptions 1-7 are satisfied then /E(g—bo) converges

in distribution to a multivariate normal random vector.

This and the other propositions of this section will not be proved here,
since the asymptotic theory is straightforward. An appendix which
contains these proofs is available from the author upon request.

In the general fqrmulation presented here it is not as obvious how
an initial consistent estimator a of a can be obtained. One méthod which
should work in the general case to obtain a is to solve

min h_(b,a)'D h (b,a) (5)
a n nn

for some choice of Bn' That is, by solving the GMM minimization problem
(3) for a only, while replacing b by b. 1In the context of the specific
situations considered later, simple methods of obtaining initial consistent
estimators will be available. For now, the following assumption will be

imposed.



Assumption 8: An estimator a exists such that /;(5—ao) converges in

distribution .

In order to see how the minimization problem (3) can be linearized
at the initial consistent estimator 6 = (E',E')', s0 that a one-step GMM

estimator can be obtained, consider the first order Taylor's exXpansion

z(Xtre)Pj(Yt —f(xt.b),a) = z(xt,e)[pj(et,a) - pje(et,a)fb(xt,b) (b=b)
M pja(et'a) (a-a)] + rjt = Z(xt,e)(pjt - thY) + rjt 6)
where
et = Yt - f(xtlb)l Pjt = pj (et;a),
We = IPje(et,a)fb(xt,b)',-pja(et,a)'],y = (6-8),

and rjt is a remainder term which includes 3z(xt,é)/86'§jt(9—é) as well as
higher order terms. The term az(xt,é)/ae-ﬁjt(e-é) will turn out to be

negligible, asymptotically, because 0 is a consistent estimator of 90 and

E[Bz(xt,ﬁo)/ae-pj(et,ao)] = E[Bz(xt,eo)/BB-E[pj(et.ao) x 11 = o.

Averaging equation (6) over the observations yields

n

tilz (xt,e)pj (yt - f(xt,b),a)/n = Z' (pj - WjY)/n + u'rj/n,

where u is an nXl vector of ones and
- —_ oy ¢ Byrya =~ = iy ]
Z = [z(xlle) l--‘rz(xnre) 1, PJ (lel---rpjn) ’

R I IO

I
—~—~
a}
.
=
K
N




Stacking by j, (3 = 0,1,...,J), gives
- vz ]
hn(e) Z'(p - Wy)/n + (IJ+l ® u)'r/n
where
I P T
W = [W',...,W&]' ’ r = (ré,...,r&)' .

By ignoring the remainder term (IJ ® u)'r/n, a version of the GMM minimiza-

+1

~

tion problem (3) which is linearized around © can be obtained. Let 6 solve

min (p - WY)'ZDnZ'(p - Wé).
8

Then 6 is given by

8=0+7 , 7%= (W'ZDnz'W)—lW'ZDnz'ﬁ ) (8)

That is, the estimator § is equal to the initial consistent estimator 8 plus
a step ?. The step‘?is formed by what is essentially one Newton-Raphson
iteration from é toward the solution of (3), with asymptotically negligible
terms deleted. ©Note that the step has a form which is familiar to most
econometricians. The step ? equals an instrumental variables estimator of a

system of eguations,

b, = Wy +r., (=0,...,3 ' (9)
p Y+ T j ,

with instrumental Variables % for each equation, Yy constrained to be equal
across equations, and Dn used as a distance matrix. This is an arcane sort
of instrumental variables estimator, since the variables X, which appear in
the original regression equation (1) are exogenous, but this instrumental

variables interpretation facilitates computation, as illustrated below.
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It remains to show that the remainder Z'v/n is asymptotically negligible
when 6 eqguals 6, and to derive the asymptotic covariance matrix of 0. 1In

order to do this it ig helpful to define some further notation. Let

t = (e ,pl(e ra ),---,pJ(et,ao))'
Z(x,) = Elv v']x ] (10)
P(x.) = -El(l,ple(et,ao),---,pJe(et,ao))'fxtl
R(xt) = E[[pOa(et,aO),...,pJa(et,aO)]']xt]
n
Q = llmtzlE[Z(xt) Q'z(xt,eo)z(xt,eo)']/n
n
Hb = lim X, E[P(x ) g z(xt eo) b( « bo)']/n
t=1
n .
Ha = llmtElE[R(x ) ® z(xt eo)l/n, H = [Hb,Ha].

An extra t subscript on L, P, and R is dropped for notational convenience.
In the specific situations considered in Sections 3 and 4, the conditionaji
distribution of e, given X, will be the same for each t.

One additional assumption, which isg essentially a local identification

condition, is required.

Assumption 9: plim Dn =D and H'DH is nonsingular.

Theorem 2.3: 1If Assumptions 1-9 are satisfied, then /;(6-6) converges in

distribution to a multivariate normal random vector with covariance matrix

(H'DH)_lH'DQDH(H'DH)—l
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Inspection of the asymptotic covariance matrix of 6 and the work of
Hansen (1982) and Burgete, Gallant, and Souza (1982) 1leads to the conclusion
that 6 has the same asymptotic distribution as the GMM estimator § obtained
from solving (3). 1In fact, it is the case that /o (5-8) converges to zero in
probability, so that the linearized estimator 6 is asymptotically equivalent
to the GMM estimator 6 obtained from solving the complicated nonlinear minimi-
zation pfoblem (3).

The asymptotic ovariance matrix of § depends on the choice of distance
matrix Dn' As shoWn by Hansen (1982), this covariance matrix is minimized
(in the positive semi-definite sense) when D = Q_l. When D = Q—l, the

ey
asymptotic covariance matrix of 6 reduces to

vV = (H'Q"lH)'l.

. AR . . n-1
To compute an optimal 6 with the smallest covariance matrix v, Dn = Qn

~ .
can be chosen, where Qn is a consistent estimator of §). Such an estimator 1s

readily available. Let

A ~2 ~2 ~2 ~2
. t 4 B
Qn = Z (dlag[pOl,...,pon,...,le,...,pJn])Z/n.

The matrix Qn is the system analogue of White's (1980) heteroskedasticity

consistent covariance matrix.

Proposition 2.3: If Assumptions 1-8 are satisfied, then

~

plim Qn = Q.

is used to form 6, the step ? is given by

1

A~ ~a] - ~A=] -
- ' ] ' T
Y (W'zQ “2'w) "w 20 "2'p.
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The step ? then has the form of the generalization of three stage least
squares (3SLS) to the heteroskedastic case which was obtained by Chamberlain
(1982). The initial estimaté of Y in eqguation (9) which is used here to

Pl

form Qn is the zero vector.
When xt is independent of et, and et is i.i.d., the computation of Y

can be further simplified to simple 3SLS. Independence of X, and e, implies

that Z(xt), P(Xt)’ and R(xt) are each constant. Let

- n
~ - N avn _ o~
P, (po<et.a).---,pJ(et,a)) . z z p.pl/n,

t=1

-~ n . -~ n .
P. = - ZP (é 15)/nl R, = )X P (é Ig)/nl
J t=1 J° ¢ Jog=p 7Bt
o = iy -~ ] o = ~l
o Pj[fb(xl,b).---,fb(xn,b)] .y [ij,Rj g ul,

where u is the nxl vector which has 1 for each element. In this case,

with independence of e, and X+ an alternative method of forming ¢ is

~ o A T~

W' (3l (2 %) " ey w) L ez @ n 153, (11)

Y

]

where W [W',...,W&]. This step size is equal to the 3SLS estimator of vy

in the equation system

5. = w. + ., (3 =o0,...,3), 12
PJ JY 3 3 ) (12)
where the initial estimator of Y used to form the disturbance covariance
matrix estimator ¥ is the zero vector, and where Y is constrained to be

equal across equations. Such estimators are readily available in several

standard regression packages, such as TSPp.
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It is straightforward to obtain a consistent estimator of the asymp-

~

. . . . . . A-1 .
totic covariance matrix of 6 when the optimal distance matrix, Dn = Qn is

used. One possibility for a consistent estimator of V is

¢ = rPwzdtzw L,

Except for the factor T2, this matrix is used to form Chamberlain's (1982)
generalization of 3SLS, and V is thus easily computed along with ?. It is

also consistent under the above assumptions.

Proposition 2.4: If Assumptions 1-9 are satisfied and  is nonsingular then

plimVv = V.

In the case when e and x, are mutually independent, a consistent

estimator of V can be obtained via the usual 3SLS formula. Let

v = rw Gt e z@o nmL (13)

Except for the factor T this matrix is the usual formula for the 3SLS
covariance matrix for the equation system (12) when Y = O is used to form
the disturbance covariance matrix estimator. Further, since plim ? =
plim(@—é) = 0, the estimate of the disturbance covariance matrix which uses
? can also be used in place of E to fqrm G. When this alternative estimate
of Z is used, the resulting G will be the usual 3SLS covariance matrix
output by a regression package, except for the factor T, and will be
consistent for G.

The overidentifying restrictions implied by the moment conditions can

be tested using a statistic of the form discussed by Hansen (1982). Let
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p = (pd(el,a).---,po(en,a),-..,pJ(el,a),---,pJ(en,a))

where & =¥, - f(xt,b) is the residual formed from the optimal one step
estimator. Then our assumptions will be sufficient for the statistic

/\' /\_l '/\

jo) ZQn Z'p/n

to have an asymptotic chi-squared distribution with (J+1) -m - (2+k) degrees
of freedom, while if the moment conditions of equation (2) are violated this

statistic will often be far from zero.
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3. INDEPENDENCE OF THE DISTURBANCE AND THE REGRESSORS

When there is no heteroskedasticity or any other form of dependence
of the distribution of e, on x. and when e, is identically distributed across
observations, there are many conditional moment restrictions which can be

used in estimation. Any function c(e) with finite expectation yields, for

a_ = E[C(él)J,

E[c(et) - acjxt] = E[c(et)] -a, = 0, (t =1,2,...) (14)

Since independence generates such a large class of conditional moment
restrictions, one might conjecture that it will be possible to obtain a GMM
estimator which is nearly efficient, even though the distribution of u, is
unknown, by choosing an appropriate set of moment conditions. 1In this
section it is verified that a nearly efficient GMM estimator of the slope
coefficients of a nonlinear regression model does exist when the unknown
disturbance density satisfies certain tail behavior restrictions. Also,
particular examples of moment functions will be presented and discussed.

Consider the following specialization of the nonlinear regression

model to the independence case.

Assumption Il: Assumption 1 is satisfied, X, and e  are mutually stochas-
tically independent, e has a density function g(e) which is differentiable

on the real line, and b = (a,B')', where o is a scalar and
f(x,b) = o + fl(X,B). (15)

Besides specifying that the disturbance is i.i.d., this assumption restricts

the unknown density function to be differentiable and the regression function
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to include a constant. Both of these restrictions are important in the work
on adaptive estimation by Bickel (1982) and Manski (1984). The differentia-
bility of g(e) is an important regularity condition and the inclusion of a
constant is important for the existence of an adaptive estimator of the
slope coefficients B.

Conditional moment restrictions which are generated by the i.i.d.
disturbance can easily be put in the GMM estimation framework. Let
(cl(e),...,cJ(e))' be a Veétor of functions of the disturbance and let

a= (a,,...,a_)" be a Jx1 vector of constants. If a. is defined by
1 J 0

= I
a, E(cl(el),...,CJ(el?)
and pj(e,a) by
p] (ela) = cj (e) - ajl (j = .ll"'lJ)l
then the conditional moment restriction E[pj(et,ao)fxt] = 0 is satisfied.

In this context, the vector a, gives the expectations of the moment functions
cj(e) evaluated at the true disturbance.

Since the i.i.d. disturbance case fits into the GMM estimation framework,
one can think of implementing the one step GMM estimator by using the step ?
in equation (11), which can be computed by using 3SLS. Several dquestions
about such a procedure immediately come to mind. One question concerns
conditions which will bé sufficient for the one step GMM estimator to be

asymptotically normal. The following assumption will imply that pj(e,a)

= cj(e)—aj will satisfy the regularity conditions of Assumption 4.
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Assumption I2: For each j, cj(e) is continuously differentiable on the

real line and there exists & > 0 such that

2+6) l+6)

< 4o, E(sup | Cé(el+m)| < oo,

E(sup | c. (e +m)[
o It 1

A second question concerns a method of obtaining an initial estimator

of 60 = (bé,aé)'. As previously discussed, b, can be estimated by NLS.

0

Also, since a, is the vector of expectations of the moment functions cj(e),

a reasonable estimator of a is to choose

n
i, = T c. (3)/n, (5 =1,...,3)
t=1 1 ©

which is the sample mean of cj(e) evaluated at the NLS residuals. Such an

estimator will be consistent and asymptotically normal under previous condi-

tions.
A third question concerns the choice of "“instruments" z(x,0) to use in

forming the one-step GMM estimator. One would like to choose z(x,0) so that

the asymptotic covariance matrix V = (H'Q-lH)—l of the optimal one-step GMM

estimator is as small as possible. The condition that e, is i.i.d. can be
used to derive an explicit, known form for the optimal z(x,0). To see how

this is done, note that the independence of X, and e, implies that V has

the form of the asymptotic covariance matrix of a nonlinear 3SLS estimator

of 60 = (bé,aé)' in the system of equations

PJ (yt—f(xt,bo),ao) = Vjtl (] = O,...,J). (16)

By the exogeneity of Xy and e_ i.i.d., Amemiva's (1977) derivation of the

t
best nonlinear 3SLS implies that the optimal choice of "instruments" for the

jth equation should be
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E[apj (v, - f(xt,bo),aovaelxtl (17)

— — - t ) ]
= E[ pje(et,ao) £, (x sb) ,pja(et,ao) ]xt]
= . ! '
(Pj fb(xt’bo) ’Rj)'
= - i ' - : X
where Pj E[pje(el,ao)] is a scalar and Rj E[pja(el,ao)] 1s a JX1 vector.

Since a constant is included in the regression, so that the first element of
fb(xtﬂ%y is 1, the entire vector (Pj-fb(xt,bo)';Rﬁ)‘ is a linear combination
of fb(xt,bo). Therefore an optimal choice of z(x,0) should be, and is, equal
to fb(x,b).

Finally, it would be interesting to know if it is possible to obtain a
GMM estimator which is nearly efficient, and if so what conditions are suffi-
cient for the existence of such an estimator. Manski (1984) has shown that
Bickel's (1982) necesséry conditions for adaptive estimation are not satisfied
for the constant 0 but are satisfied for the slope coefficients B. Since
there is thus no hope of obtaining an adaptive (or a nearly efficient) esti-

mator of the constant, attention will be confined to analysis of the efficiency

of the GMM esfimator é of the slopevcoefficienté-

To obtain an expression for the asymptotic covariance matrix of the
slope. coefficient estimator, note that et i.i.d. implieé that‘Z(xt), P(xt),
and R(xt) are constant. Then substituting fb(x,b) for z(x,0) in the

definitions (10) gives

Q=Iro9, H.b=P@Q, H =R ®&F, H=[H.b,Ha]

where F = lim Z:—l E[fb(xt,bo)]/n. For the moment it will be assumed that

I is nonsingular, although the specific forms of Cj(e) to be considered
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later will imply that X is nonsingular. Also, note that since pj(e,a)

= cj(e) - aj, (3 =1,...,J3), and po(e,a) = e, it follows that the first row
of R is zero, and for i = 2,...,J+1 the ith row of R has -1 in the i-1
position and zeros elsewhere. Therefore R'Z—lR is also nonsingular. By

partitioned inversion the asymptotic covariance matrix of b, which is the

upper—-left kXk block of V = (H'Q_lH)_l, is given by

V) = (P'Z—lP-Q - P'Z_lR(R'Z—lR)_lR'Z_lP‘FF')_l'

~N
By partitioned inversion once again the asymptotic covariance matrix of B s

F F')_l

v(R) = (l/IJ)'(Ql - FF)

o1
where IJ = P'Z, P and for le(xt’BO) = Sfl(xt,BO)/aB

n
Q. = lim X E[f,,{(x, ,B)Ef ,(x_,B.)"]1/n,
1 =1 IR0 T1IR YO
n -
F, = lim tElE[le(Xt,BO)]/H-

One useful property of the asymptotic covariance matrix of (B is imme-

diately apparent. Note that if a, were known rather than estimated the

asymptotic covariance matrix of b would be

wa et = I

The lower right block of this matrix is V(). That is, estimation of the

nuisance parameters a_ does not affect efficiency of the slope coefficient

0

estimator B. This result in no way depends on the way in which a enters the
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moment function p(e,a). Consequently, there is a simple method of
making a single adjustment., If is a preliminary estimate of

‘the scale of e (e.g. the sample standard deviation) such that

/5(5-00) converges in distribution for some OO > 0, then the one-step GMM
estimator of the slope coefficients which is formed by using cj(e/a) will
have the same asymptotic distribution as the GMM estimator with cj(e/co).
For brevity, a formal proof is omitted.

Anothef useful property of V(é) is that it has a simple relationship
to the Cramer-Rao (CR) lower bound. The CR bound referred to here means
the asymptotic covariance matrix of the maximum likelihood estimator which
would be obtained if the distribution of the disturbance was known. To
compute the CR bound, it will be assumed for the moment that g{e) has an
associated finite information constant. Let s(e) = g'(e)/g(e) for ge)
positive and s(e) = ¢ otherwise, and let I* = EIs(el)2J. When g(e) is known
the maximum likelihood estimator (MLE) of bO is obtained by solving

n

max ¥ 1n g(yt - f(xt.b))
b t=1

The asymptotic information matrix is therefore equal to I*-Q and the asymp~-
totic CR bound for the slope coefficients is the lower right-hand k-1

dimensional block of the inverse information matrix, which is

VR o= (TN - g - FlFi)_l. (20)
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Note that the difference between V(f) and V* depends only on the scalars
IJ and I*.

The asymptotic efficiency of B is determined by how close IJ is to I*.
There is an enlightening interpretation of IJ which clarifies its relation-

ship to I*. Since both E[cj(el)2] and E[S(el)2] are finite, E[cj(el)]

= fcj(e)g(e)de is finite and integration by parts gives
Ef?j(el)] = jcé(e)g(e)de = -ch(e)g'(e)de = —E[cj(el)s(el)]. (21)

Also, by the differentiability of g(e) and fg(e) = 1 < 4 (which implies
g(o) = g(-») = 0)

r

E[S(el)] = Jg'(e)de = lim I g'(e)de = 1limlg(r)-g(-x)] = 0. (22)

Yo r->oo
-X

Combining these two equations, it follows that

P = —E[vls(el)]. (23)
From equation (23)

I. = P'IZ 'p = (—P'Z'l)Z(—Z'lp) = g*'ng*

1]

E[(vid*)2]
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where d* = E[(V v )] E[Vls(él)] is the vector of coefficients in the linear
Projection of s(el) on v, . That is, IJ is the variance of the best linear

Prediction vid* of the score s(el), so that

1 - - ] § 2
I* - IJ = I* —v d*'id* = 1% 2E[s(el)vl]d* + EJ (vld*) ] (24)

= min E[(s(e.) - v'd)zj.
1 1
d
The asymptotic efficiency of @,relative to the CR bound, is determined by
the goodness of fit of the best linear predictor vid* to the disturbance
score s(el).
The one-step GMM estimator é will be asymptotically efficient if and

only if s(el) is a linear combination of v For example, if the distur-

-
bance is normally distributed, then s(e) is proportional to the first
element of vy which is po(e,a ) = e, and B is asymptotically efficient.

Generally, though, it will not be possible to guarantee that s(e } is a

unknown. But one might suspect that by letting J grow or, in other words,
increasing the numbér of moment functions, it might be possible to make

é come arbitrarily close to being asymptotically efficient. Equation (24)
provides the key to an analysis of this conjecture. If the moment functions
are elements of a sequence {cj(e); 3 =1,2,...} which forms a basis for the
Hilbert space of random variables (measurable functions of e ) with finite

second moment, or in other words the sequence {cj(el)} is complete, then a

nearly efficient GMM estimator can be obtained by letting J grow.
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The completeness of the seguence {cj(e)} requires some discussion in
the current context because the disturbance density can be positive on the
entiré real line. The viewpoint of this paper is that the form of the
distribution of the disturbance is unknown, while the moment functions are
known and are used in estimation. As far as asymptotic efficiency is
concerned, it would be useful to know what sort of moment functions would
turn out to yield a complete sequence for a wide variety of disturbance
distributions. For example,vif the moment functions consist of powers of
ej+l

e, c,(e) =

3 , 3 Z_l), then the sequence {cj(el)} will fail to be complete

|J) is

when some raw moments of the disturbance do not exist (i.e. E(|el
infinite for some positive integer J). 1In general, choice of a particular
sequence of moment functions will imply that the GMM estimator is nearly
efficient when the unknown disturbance distribution belongs to a class of
unknown distributions. A complete characterization of this class of distur-
bance distributions will not be given here for any sequence of moment
functions. It is possible to obtain a characterization of a subset of the
class of distributions for which a nearly efficient GMM estimator exists

when the sequence of moment functions has a particular kind of form.

Consider functions which have the form
o le) = [c(e)]? (3 =1,2,...) (25)
where c(e) satisfies the following assumption.

Assumption I3: The function c(e) is continuously differentiable and

c'(e) > 0 on the entire real line.
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The functions of equation (25) are powers of a monotonic function. It is
useful to note that when the moment functions take this form, nonsingularity
of the covariance matrix ¥ of the moment functions is, essentially, a
consequence of the disturbance having a continuous distribution. Let 4 have
a zerc for a first element. Then

a'7d = E[( g a, {leen1? -a h? s o

B 521 j+1 1 0j

because c(e) is strictly monotonic and any nonzero polynomial has at most
a finite number of roots. Nonsingularity of Z_then follows as long as ey
is not a linear combination of a finite number of powers of c(el).

It is well known that the sequence of functions {uj exp(-uz/Z)}, linear
combinations of which form Hermite polynomials, provide a basis for
L2(-w,+w), the space of square integrable functions on the real line. A
slight generalization of this fact can be used to obtain a characterization

of a subset of unknown densities for which a nearly efficient GMM estimator

exists when powers of c(e) are used as moment functions.

Theorem 3.1: If Assumptions I1-I3 are satisfied and there exist finite

constants vy > 1, N, § > 0 such that
gle) < Ne'(e)exp(-§|c(e)|Y), jS(e)2C'(e)eXP(~GIC(e)|Y)de < 4w, (26)

then lim I_ = I*.
J
J-o0

Proof: By hypothesis c(e) is invertible; its range is an open interval.

By a change of variables (Halmos, 1950, P. 164) u = c(e) and, by (26),
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Js(c_l(u))zexp(-ﬁiulY)du = {s(e)zexp(—6|c(e)|y)c'(e)de < 4o, (27)

where the first integral is over the range of c(e). The inequality y > 1
allows a simple modification of the proof of Theorem 5, p. 57, of Helmberg

(1965) to show that the functions
. (S )
ujexp(- 3 [uIY), j>0

form a basis for the Hilbert space of square (Lebesgue) integrable functions

on the range of c(e). By equation (27) s(c_l(u))exp(— %—lu[Y) is such a

square integrable function. Therefore, for each J there exists do,dl,...,dJ

(an additional J subscript is suppressed for convenience) such that

0 = lixj{s(c_l(u))'exm— %|uly) -
T j

I ™Mo

d.ulexp (- §July)]2du (28)
o 2

-1 T
= 1i:J[s(c (W) - I d.u’l%xp-6]ul)du
J 3=0 J

J . .
= 1i2j[s(e) - I d.c(e)jlzexp(—6|c(e)!Y)c'(e)de ,
J j=0

where the last equality is obtained by another change of variables. To

account for the presence of a constant term do in equation (28), note that

by E{s(el)] = 0, the least squares projection of s(el) on v. equals the least

1

squares projection of s(el) on (l,el,cl(el),...,cJ(el)) . Then, by the

dominance of g{(e) in equation (26)

0<I* - I_ = min E[(s(e;) - v'd)?] (29)
— J a 1 1
J o

= min J[s(e) -d 1 —xdoe - 2 d.c(e)j] g(e)de

a.,d.,...,4 - 5=1 7

-1’70y

. J . —
< J[s(e) - I djc(e)]] g(e)de

3=0
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gy

<N J [s(e) - éjc(e)j]2exp(—cslc(e)[Y)c' (e)de

j=0

The conclusion then follows from equation (28).

The hypotheses of this theorem restrict the tail behavior of the unknown
distribution of the disturbance. The first inequality in (26) says that the
disturbance density must decline to zero at least as fast as the function

-c'(e)exp[—GlelY] as lel increases. The second inequality restricts the rate
of growth of the disturbance score s(e). 1In order to further interpret the
meaning of condition (26) and to see what choices of moment functions might
work well in practice, it is useful to examine some particular forms of
moment functions.

Consider choosing moment functions to be positive integer powers of e,

o;(e) = It i21, pyle) =e.

Using moment functions which are powers of e amounts to using information
about raw moments of the disturbance to help in estimating the regression
Parameters. MaCurdy's (1982) method will be asymptotically equivalent to
the one-step GMM estimator proposed in Section 2, when the heteroskedasticity
which is induced by using raw moments of the dependent variable is corrected
for.

When powers of the disturbance are used so that c¢'(e) = 1, the condi-

tions (26) for the existence of a nearly efficient GMM estimator become
gle) < Nexp(—é]ely), Js(e)zexp(—ﬁlefy)de < 4+ o (30)

The first inequality is quite strict, specifying that the unknown density
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has tails which decline exponentially fast. Such a restriction is a natural
sufficient condition for the existence of all raw moments. The second
inequality is not very strict, specifying that s(e)2 grows at less than an
exponential rate as Ie[ grows. Most familiar families of distributions would
satisfy this restriction. It would be interesting to know what other choices
of moment functions would lead to looser restrictions on the "thickness" of
the tail of the unknown distribution without making the second condition too
onerous.

There are some heuristic reasons to think that chooéing something other
than powers of the distﬁrbance as moment functions might be a good thing to
do in many situations. The kinds of departures from normality which are
often of interest and those which appear te have the most serious conseguences
for the efficiency of least squares involve thick-tailed distributions. In
such cases higher-order moments are notoriously difficult to estimate, and
in finite samples the efficiency of the estimator of the slope coefficients
may be adversely affected. Also, in terms of the asymptotic efficiency theory,
using polynomials to approximate the disturbance score, as is done indirectly
through the GMM estimation when powers of e are used, does not seem like a
good idea where thick-tailed distributions are a concern. In most familiar
families with thicker tails than the normal distribution, such as the t
distribution, [s(e)[ grow less rapidly with le| than lei. Polynomials
are particularly poor approximants to such functions in
the tails, where particularly heavy weight is given in the mean square error
calculation in thick-tailed cases. Finally, the GMM estimator is likely to
be quite sensitive to outliers in the residuals since the moment conditions

involve residuals raised to positive integer powers.
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One way to try to deal with the potential of thick-tailed departures
from normality is to choose c(e) to be a bounded function. When c(e) is
bounded, exp(—dlc(e),Y) is bounded away from zero and the condition (26)

for the existence of a nearly efficient GMM estimator reduces to
Ne ! 2 v
g(e) < Ne'le), Js(e) c'(e)de < 4+ o,

To interpret these inequalities, suppose for the moment that c(e) is a
cumulative distribution function which has positive density on the entire
real line. Then the first inequality says that the unknown disturbance
distributions have no thicker tails than the distribution c(e). The second
inequality requires that s(e)2 have finite expectation if the disturbance
were actually distributed as c(e). To be specific, suppose that c(e) is
the cymulative distribution function of a t-distribution with r degrees of
freedom. Then the first of these inequalities will be satisfied as long as

+1 . .
'r 1 is bounded and s(e)2/]e|r+l 1s integrable. For r > 2 these

gle)|e
restrictions will be satisfied for most of the common families of distribu-
tions, including the normal distribution, the t-distribution {(with at least
two degrees of freedom), and the Box-Tiao family. A function which has

similar tail behavior to the t-distribution with r degrees of freedom, but

which is easier to compute and therefore might prove useful in practice, is
. r r
cle) = sign(e)[(+|e[)” - 11/1Q+|ehT + 11, (31)

where sign(e) equals 1 for e > 0 and equals -1 otherwise.
There are certainly other choices of moment functions which would be
interesting to consider. This subject remains an important topic for future -

research. 1In Section 5, the relative merits of using raw moments of the



disturbance, or a bounded function like c(e) in eguation (31), will be

examined in some Monte Carlo experiments.

29.
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4. THE HETEROSKEDASTIC CASE

When the distribution of the disturbance is symmetrically diétributed
around zero, conditionally on the regressors, the assumption that the
disturbance is i.i.d. can be relaxed. Remarkably, it is possible to obtain
a GMM estimator of the regression coefficients which is arbitrarily close to
being as efficient, asymptotically, aé the maximum-likelihood estimator would
be if the entire conditional distribution of the disturbance were known. 1In
this section, conditions sufficient for the eéistence of such a nearly effi~-
cient GMM estimator are obtained.

The symmetry hypothesis is imporfant. Menski (1984) has shown that in
the absence of symmetry adaptive estimation is not possible when hetero-
skedasticity is allowed for. Also, Chamberlain (1983) has provided lower
bounds for the asymptotic covariance matrix of estimators which utilize
conditional moment restrictions and has shown that if the only a priori
information available is that the disturbance has a conditional mean of zero,
then the best that can be done is the generalized least squares estimator.

The symmetry hypothesis generates many conditional moment restrictions.
Any odd function c(e) (i.e. c(-e) = -c(e)) with finite expectation will

satisfy
Ele(e ) |x 1 = o (32)

when the disturbance et is symmetrically distributed conditional on the
regressor X, -

Consider the following specialization of the nonlinear regression model

to the symmetric case.
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Assumption Hl: Assumption 1 is satisfied, and for each t the distribution

fo e, conditional on X, has a conditional density g(elx) which is symmetric
around zero,(g(-elx) = g(e|x)),for each x in X. Further, for each x in X,

g(elx) is differentiable in e on the entire real and, for each e, g(e[x)

and g'(e!x), (= Bg(e!x)/ae), are continuous in x.

Note that a hypothesis of Assumption Hl is that the conditional distribution
of the disturbance is stationary across observations. This hypothesis does
not rule out nonstationary observations since the distribution of X, can
vary across observations. For example, a sample which is stratified on the
exogenous variables is allowed for. Alsoc note tﬂat the regression function
is not restricted to contain a constant term. The symmetry hypothesis means
that a nearly efficient GMM estimator of all the regression coefficients will
exist, as might be surmised from Manski's (1984) necessary conditions for
adaptive estimation.

Conditional restrictions which are generated by conditional symmetry
can easily be put in the GMM estimation framework. Let (cl(e),,..,cJ(e))

be a vector of odd functions of the disturbance and let
PJ (e) = Cj (e)l (j = l""IJ)! Po(e) = €.

To make sure that the regularity conditions for asymptotic normality are

satisfied, the following assumption can be made.

Assumption H2: For each j, cj(e) is an odd function which is continuously

differentiable on the real line and there exist finite constants N, § > 0,

such that
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248

§
E(suplcj(et+m)l )

2+
) <N, E(sup|c! (e _+m)|
I 1 3t

Note that no nuisance parameter vector appears in the moment functions
specified above. It may still be desirable to have a scale parameter which

is a positive

adjusts for the scale of the disturbance. Suppose that OO

constant and 0 an estimator for which /H(G—Oo) converges in distribution.
Differentiating a scale adjusted moment function c(e/0) with respect to the

Scale parameter O gives
dc(e/0)/d0 = —c'(e/O)(e/Oz) = (—1/02)0'(e/0)e.

Since c(e/0) is odd, it follows that c'(e/0)e is also odd and that
E[c'(et/c)et] = 0. Therefore the usﬁal kind of asymptotic Taylor's expansicn
of the first order conditions for the GMM estimator implies that an estimator
with moment functions cj(e/ﬁ) would have the same asymptotic distribution as
an estimator with moment functions cj(e/OO).

To obtain the asymptotic covariance matrix of the GMM estimator, consider
the notation of equation (10). Note that the first element of P(xt) is 1,
so that if £, (x,b) is included among the elements of z (x,b), H_ will have
full rank by the nonsingularity of Q. It will also be assumed that Q is
nonsingular. Since there is no nuisance parameter vector, the asymptotic

covariance matrix of the optimal one-step GMM estimator is given by

A -1 -1
V(b) = (HEQ Hb) . (33)
Unfortunately, in the heteroskedastic case the form of the optimal
functions z(x,b) of the exogenous variables which minimize V(b) depends on

the form of the unknown conditional distribution of the disturbance.
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Chamberlain (1983) has derived a lower bound for the covariance matrix of
any GMM estimator which uses a fixed set of conditional moment restrictions.
It will be assumed for the moment that the conditional covariance matrix of
the moment functions, Z(Xt), is nonsingular. Specific forms of moment
conditions considered later will imply Z(xt) is nonsingular. To state

Chamberlain's (1983) lower bound for the case considered here, let
I(x) = P(x)'I(x PH.

From equation (4.3) of Chamberlain (1983) the form of a lower bound should

be

n

_ R
v, = {1im télE[IJ(x )f (x bo)fb(xt bO 1/n} (34)

where it is assumed that the limit is nonsingular. Chamberlain's (1984)
Theorem 3 does not apply directly in the current context because the distribu-
tion of the exégenous variables is allowed to be nonstationary. The essential
hypothesis is stationarity of the conditional distribution, which does hold
here, and it can be shown V(B) - VJ is positive semi-definite in the current
context, although, for brevity, no proof will be given here.

Chamberlain (1983) has also shown that the lower bound can be approximately
obtained by choosing z(x,b) appropriately. This will also be true in the cur-
rent context, so that for the moment attention will be restricted to comparing
the lower bound VJ with the CR bound.

When the conditional density g(e|x) of the disturbance is known, the
maximum likelihood estimator of b. is given by the solution to

0

n
max I 1ln g(yt —f(xt,b)lxt). (35)
t=1
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Let s(e,x) be the conditional disturbance score, which is g'(elx)/g(e!x)
when g(e]x) is positive and is equal to zero otherwise. Let I*(x) be the

conditional information
T2
I*(x) = IS(e,x) g(e]x)de,

where it is assumed for the moment that this integral exists for all x in X.

It will also be assumed that the asymptotic information matrix for b is

nonsingular.

Assumption H3: The matrix

n
limtElE[I*(xt)fb(xt,bo)fb(xt,bo)']/n

is nonsingular.

The asymptotic CR bound for estimators of b0 is then given by

%
n

o= Alim B EITN () g (x,bo) g, (x k) 1 /m) L

The comparison of the lower bound VJ for conditional moment restriction
estimators and the CR bound V* parallels closely the asymptotic efficiency

discussion of Section 3. The relationship of VJ to V* depends entirely on

the scalar functions IJ(x) and I*(x). Note that

v = (e,cl(e),..;,cJ(e))',

so that integration by parts gives

P(x) = -.[vs(e,x)g(e:x)de = —E[vs(e,x)[x].
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It follows that
d*(x) = =-I(x)P(x) = [E(vv'lx)]-lEfvs(e,x)[x]

is the vector of coefficients of the linear projection of s(e,x) on v when

e has density g(elx), so that

(4.4) ‘ I*(xt) - I (x,) = min E[(s(e ,xt) - th)2|X

] (36)
J7t 3

t t

That is, the difference between I*(xt) and IJ(xt) is the minimum mean
square from using v'd*(x) as the best linear predictor (at xt) of the
conditional disturbance score s (e,x).

When the form of the conditional distribution of the disturbance is
unknown, it will generally not be possible to guarantee that IJ(x) is equal
to I*(x) for any finite J. As in Theorem 3.1, it is possible to characterize
a subset of conditional densities for which IJ(x) converges to I*(x) as J
grows, so that VJ converges to V¥. By combining choice of large J with choice
of z(x,b) so that the lower bound VJ is nearly attained for a one-step GMM
estimator, it will be possible to obtain an estimator which is nearly as
efficient as the maximum-likelihood estimator would be if the entire condi-
tional distribution of the disturbance was known.

Consider choosing a sequence of moment functions {cj(e)} which satisfy

1

cje) = Len®™h, =120,

where c(e) satisfies the following assumption.

Assumption H4: The function c(e) is an odd function which is continuously

differentiable on the entire real line, with c'(e) > O.
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That is, the sequence of moment functions consists of odd powers of the
monotonic, odd function c(e). Such functions will also be odd. The following
result characterizes a subset of unknown conditional distributions of the

disturbance for which a nearly efficient GMM estimator exists.

Theorem 4.1: If Assumptions H1-H4 are satisfied, fb(x,b) is a subvector of
z(x,b), z(x,b) is chosen so that {) is nonsingular, and
there exist finite constants y > 1, n, § > 0 such that

sup g(elx) < Nc'(e)exp(—ﬁ]c(e)lY), (37)
X .

Isup s(e,x)zc'(e)exp(-ﬁ[c(e)ly)de <+ o,
X

then for each J there exists z(x,b) such that

lim V(b) = v*.
J-roo

Proof: First, to show that VJ converges to V¥, note that as in the proof
of Theorem 3.1, the inequalities {37) imply that for each x in X, for each

~

J there exists ao,...,dzJ_l (depending on x and J) such that

23-1 .
lim f [ste,x) - I d.,c(e)llexp(-8|c(e)|V)c' (e)ae = o. (38)
2 23-2,
Let w = (L,c(e)”,...,c(e) )' be a JX1 vector of even powers of c(e).
Note that s(e,x) is an odd function of e, because g(elx) is an even function
of e, (g(—erx) = g(elx), and g'(elx) is odd). Since a product of an even and

an odd function is also odd, s(e,x):w is a vector of odd functions, and wv'

T
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is a matrix of odd functions. Therefore, by symmetry and the inequalities

(which imply these integrals are finite)
Js(e,x)wg(elx)de = 0, fwv'g(e[x)de = 0.

It follows that the coefficients of w in the linear projection of s(e,x) on

w and v are zero when e has density g(e|x), so that by the density dominance

condition of (37)

0 < I1*(x) - IJ(X) = min f[s(e,x) - v'd]2g(e]x)de (39)
\ d
. 2
= min f[s(e,x) - v'd - w'f] g(e|x)de
4,f
2J-1 _ -
< JIS(e,X) - I d,cle)’] gle|x)de
= Y
j=0
2J-1 -
< N J[s(e,x) - X djc(e)J] exp(—5lc(e)ly)c'(e)de.

Equations (38) and (39) imply that for each x in X,

lim I_(x) = I*(x).
J‘>°°J

Furthermore, it can alsc be shown that this convergence is uniform in x.
From (37)

s(e,x)zg(elx) < N sup s(e,x)zexp(—Slc(e)]Y)c'(e),
X

so that (37) and the dominated convergence theorem imply that I*(x) is
continuous on X. Similarly, Z(x) and P(x) are continuous on X, implying

IJ(x) is continuous on X. Then uniform convergence follows by X compact,
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I (x) > Io.,(x),

and Rudin's (1976) Theorem 7.13. Convergence of VJ to V* then follows from
boundedness of fb(x,b), the uniform convergence of IJ(x), and Assumption H3.
To show that for any J there exists a choice of a known vector z(x,b) of

functions for which V(b) is arbitrarily close to V_, note that x is a p-dimen-

J

sional vector. Let {hg(x)} be a sequence of functions such that for any

continuous function f(x) on X there exist d_,...,d

1 (d2 depending on L) such

L
that

lim Xd,h, (x) = £(x),
Trbes 278

where convergence is uniform in x. For example, by the Weirstrass Theorem
{hg(x)} will have this property if its elements include all crossproducts
of nonnegative integer powers of the elements of x. Since f(x,bO)P(x)'Z(x)_l

is a kX(J+1) matrix of continuous functions, for each L there exists a

kX[ (J+1)-L}] matrix DL such that for z(x{b) = (hl(x),...,hL(x))
lim D_[I @ z(x,b)] = £(x,b )P (x)'F(x) *
Lo L 0 .

where I is a J+1 dimensional identity matrix and convergence is uniform in

x. Consequently, by boundedness of f(x,bo), P(x), and J (x),

lim D_[P(x) & z(x,b )f (x,b . )'] = 1lim D_[F(x) & z(x,b. )z(x,b.)"']D"
N 0’ p 0 Lo L 0 0 L
= IJ(x)fb(x,bo)fb(x,bo)' (40)

where convergence is uniform in x. Consequently, for Hb and 2 as defined

in (10) with z(x,bo) = (hl(x),...,hL(x)),
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n
lim D = 1lim D'D = lim X E[ZI
T LHb I L L t=1

(x, )E (x,_,b.)

g B E e P B (2 b ) Tl /n. o (41)

By uniform convergence of IJ(x) to I*{(x) and Assumption H3, the matrix of
the right-hand side of the second equality is nonsingular for large J, so

that DLHb is nonsingular for large L and J. Then, by equation (41),

. -1 T T ! -1 _
lim (DLHb) DLQDL (HbDL) = VJ. . (42)
oo

From Hansen's (1982) Theorem (3.2)

1 1 1

Yy ' -1 -
Dy S (HDp) © - (Hbg2 H)

(DLHb)

is positive semidefinite, so that, by equation (42)

. R | -1
iig (HbQ Hb) = VJ. (43)
To make sure that z(x,b) satisfies the hypotheses, include fb(x,b) among
the elements of z(x,b) and delete linearly dependent elements from the
sequence {hl(x)} (see Chamberlain, 1983, p. 27).
Finally, to prove the results use equation (43) and convergence of
VJto V¥, For J =1, let z(x,b) = fb(x,b) and let L. = 0. For J > 1 define

1

L_ recursively as the maximum of L and an L from equation (43), such that

J J-1
(HEQ_le)-l is no more than 1/J in distance from VJ, and let z(x,b) =
. -1 -1, .
(fb(x,b),hl(x),...,hLJ(x))'. Then, since (HﬁQ Hb) is monotonically
decreasing in L, the conclusion follows.
To interpret the hypotheses of this theorem, suppose that c(e) is a

bounded function. Then, since exp(—5|c(e)[Y) is bounded away from zero, the

conditions (37) reduce to
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! 2
sup g(elx) < Nc'(e), JSUP s(e,x) c'(e)de < + o, (44)
X X

These conditions are tail behavior restrictions which are specified to hold
uniformly in x. To see the role of the uniformity in x, suppose that the

conditional density has the heteroskedastic form
glelx) = I[gle/o(x))1/0(x),

where 0(x) is positive and continuous on X and §(e) is a symmetric, conti-
nuously differentiable density on the real line. In this case the dependence

of e, on x is limited to scale changes in the distribution of e - Let

S = [min O0(x), max O(x)1.
X X

In this case the inequalities (44) become

suplg(e/0)] < Nc'(e), fsupxa'(e/o)/a(e/o)lc'(e)de < 4+ o, (45)
S S

Because S is bounded away from zero and is compact, these inequalities will
be satisfied, for example, if B(e) declines monotonically to zero at a faster
rate than c'(e) for large values of ]e] and 5'(e)/§(e) is bounded. The
uniformity in x restrictién does not seem to be very onerous.

This result also applies to more general forms of dependence of the
distribution of the disturbance of the regressors. The shape of the distribu-
tion can also change with x, as long as it changes in a continuous fashion
and the inequalities (37) are satisfied. Alsc, the distribution of xt is
allowed to be continuous, in which case changing x, would trace out an

t

uncountably infinite number of different distributions of the disturbance.
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Use of two dimensions moment conditions, i.e. the moment functions and the
elements of z(x,b), yields a nearly efficient GMM estimator. Manski's (1984)
heteroskedastic case, which involves a finite number of unknown conditional
densities, can also be subsumed in Theorem 4.1 by allowing X, to include a
set of dummy variables, each of which is 1 when the conditional distribution
takes on a particular (unknown) value, and zero otherwise.

Examples of moment functions which can be used in the symmetric case
include odd, positive powers of e, which corresponds to c(e) = e, and odd,
positive integer powers of some bounded function of e, such as that given in
equation (31). Since a known "instrument" vector z(x,8) which is optimal does
not generally exist in the heteroskedastic case, one must also choose z(x,8).
An example of a choice of z(x,0) is z(x,6) = (fb(x,b)’,hl(x),...,hL(x)),
where hg(x) is some product of positive integer powers of the elements of
X, Or hg(x) is a sine or cosine of linear combinations of the elements of x,
as discussed in another context by Gallant (1981). The choice of moment
functions and "instruments" which will work well in practice in the hetero-

skedastic case remains a topic for future research.
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5. A SAMPLING EXPERIMENT

A small sampling study was conducted to determine to what extent the
efficiency gains can be realized in finite samples using the one-step GMM
estimator. 'Attention was restricted to the i.i.d. disturbance case to allow
comparisons with the adaptive maximum~likelihood (AML) estimators of Bickel
(1982) and Manski (1984). . The model which was used is identical to that used
in the Monte Carlo experiments reported by Manski (1984).

Consider the model y = 0 + Bx + e with a = 1, B = -1, x distributed
uniformly on [-1,1], and e i.i.d. witﬁ mean zero and variance one. In the
experiments three alternative densities were used to draw the realizations
of e. These include (1) normal; (2) contaminéted normal, being the convolu~
tion .9N(0,1/9) + .1N(0,9); and‘(3) lognormal,

Given each density, a random sample of observations was drawn. Results
were obtained for two sample sizés, n = 25 and n = 100. The ordinary least
squares (OLS) estimator was computed and used as the initial estimator in the
one-step GMM estimator. For n = 25 an AML estimator was computed. The AML
estimator was identical to the one in Manki's (1984) experiments which used
the entire sample at each stage of computation (with 0 = .08, b = 4.0,
¢ = .004, & = 30.0 in Manski's (1984) notation). Six one-step GMM estimators
were also computed, three using raw moments (RAW) and three using the bounded
function given in equation (31) (OTH) with r = 4. For both types of moment
functions the 3SLS stepsize.of equation (11) was used to form estimators for
J = 2,3, and 4 extra moment functions. This seemed to be a reasonable range
for J. For n = 100, the AML estimator was also identical to the estimator
considered by Manski (1984) (with 0 = .06, b = 5.0, ¢ = .002, @ = 36.0).

For n = 100, J = 4, 5, and 6 extra moment functions were used. Each experiment
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consisted of 500 replications in which a sample was drawn and the estimators
computed. For brevity, and because only-the slope coefficient estimator is
guaranteed to be nearly efficient, results are reported only for the estimator
of B. Table 1 presents results on the precision of the estimators, as
measured by root mean square errors.

In the normal case, the OLS estimator sliéhtly outperforms the AML and
GMM estimators. The GMM estimators perform almost the same as the AML esti-
mator. In half the 12 cases (where a case is a choice of moment function
and J) the GMM estimator outperforms the AML estimator and in no case is the
difference very large.

In the nonnormal cases the one-step GMM estimators almost always out-~
perform the OLS estimator by a wide margin. The GMM estimator also outperforms
the AML estimator in 16 of the 24 nonnormal cases. The best performance
occurs for the GMM estimator which uses raw moments. For low values of J .
this estimator outperfoms the AML estimator by more than the AML estimator
outperforms least squares, except in the 100 observations lognormal case.

This exception may be significant since the lognormal distribution has. thicker
tails than exp(—6|e|Y) for any § > 0, Y > 1, so that the sufficient conditions
of Theorem 3.1 for the existence of a nearly efficient GMM estimator are not
satisfied for the lognormal case when raw moments are used.

The outstanding performance of the raw moments estimator for some
nonnormal cases is offset by the sensitivity of this estimator with respect
to the number of higher-order moments used. Its performance deteriorates
rapidly as more moments are used, probably reflecting the fact that it is
very difficult to estimate high-order raw moments of thick-tailed distribu-

‘tion. The other GMM estimator, which uses a bounded moment function, is much
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less sensitive to the choice of J. It outperforms the AML estimator in all
cases but the 25 observations and the contaminated normal case, and its
performance relative to both the AML and raw moment GMM estimators improved
with the increase in sample size. Also, OTH does best in the lognormal case,
which is the case with the thickest tail. Given the remarkable performance
of the raw moment GMM estimator for some cases and the insensitivity of the
other GMM estimator to the choice of J, one suspects that there are probably
other choices of moment functions which would do better than OTH without being
very sensitive to the choice of J.

Since experiments were performed for two different sample sizes, one can
obtain a rough idea of what an appropriate rate of growth of J might be. For
each distribution of the disturbances and each GMM estimator, let J1 be the J
which gave the best performance of the GMM estimator (in the range of J values
examined) when n = 25 and let J2 be the best J when n = 100. Then, excluding
the raw moment estimator for the lognormal distribution, the average ratio of
total moment functions used (J2+l)/(Jl+l) was 1.8, suggesting that a rate of
growth of J between nl/3 and nl/2 might»be appropriate.

The OTH GMM estimator computed for Table 1 was not scale invariant and
neither is the AML estimator. The RAW GMM estimator is scale'invariant
because positive integer powers of e are homogenous functions. To see what
effect a scale adjustment would have on the GMM estimators, another version
of OTH was also computed with the moment function cj(e) replaced by cj(e/B),
(i =1,...,3), where & was the sample standard deviation of the OLS residuals.
Table 2 contains the resulting root mean square errors. Comparing Table 2
with the last three columns of Table 1 shows that using a scale parameter has
some harmful effects for n = 25, particularly for the contaminated normal

distribution, but that these effects disappear in the n = 100 observations case.
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After examination of Table 1 it is clear that asymptotic standard error
formulas must be misleading in some cases. For example, the dispersion of the
raw moments estimator can increase dramatically as the number of moment func-
tions increases, while asymptotic standard error estimates must fall as the
number of moment functions increases as long as the estimated asymptotic
standard errors are evaluated at the same parameter estimates. 1In the experi-
ments, estimates of the standard error of é were computed using the asymptotic
formula (13). Also, in each experiment an estimate of the AML standard error
was computed by estimating the information constant for the unknown density
by the average of the square of the estimated disturbance score for each
observation. Table 3 reports the ratios of the root mean square (RMS) of the
estimated standard errors to the actual standard errors of the slope coeffi-
cient estimators. The asymptotic standard error estimates, including those
for the AML estimator, do indeed perform quite poorly in most cases, including
the estimated AML standard errors. Performance always deteriorates as J
increases and improves substantially with the increase in sample size from
25 to 100 observations. Performance also improves with increase in observa-

1/3

tions as J increases with sample size at a rate which is between n and

n1/2

One potential solution to the problem of estimating standard errors is
to use the bootstrap method, see Efron (1982). To see 1f bootstrap standard
error estimates for the one-step GMM estimator might work well, a separate
experiment was performed. The model used was the same as for the previous
experiment. The density used to draw realizations of e was the same log-
normal density which was used above. Results were obtained for the raw

moments GMM estimator with J = 4 and a sample size of 25.
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The experiment consisted of 100 replications. For each replication the

~

one-step GMM estimator B was computed and residuals were obtained by

B, o = y-3%B, t=1,...,025.

For each such vector éf residuals, 100 bootstrap replications of 25 obser-
vations were drawn from the resulting empirical distribution function of the
residuals. For each bootstrap replication y values were generated as if é
were the true value of § and the sample disturbances were the actual distur-
bances, and the one-step GMM estimator was recomputed. The bootstrap standard
error estimate was taken to be the sample standard deviation of the GMM esti-
mators over the 100 bootstrap replications. Table 4 reports the results of
this experiment. The asymptotic standard error estimates are biased down-
ward by a factor of two while the bootstrap standard error estimate gives a
very accurate estimate, on average.

The performance of the bootstrap standard error estimate in this
'éxperiment is very promising. Since computation of the one-step GMM esti-
mator requires no iteration,once an initial estimator of the regression
parameters has been obtained bootstrap estimates of the standard errors should
not be difficult to obtain in practice. Since the asymptotic standard error
estiﬁates may be biased downward by a substantial amount, the bootstrap esti-

mator of the standard deviation should probably be used in practice.
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6. CONCLUSION

In Sections 3 and 4 it has been shown that nearly efficient moment
condition estimators of regression coefficients exist in the i.i.d. and
symmetric, heteroskedastic disturbance cases. One can make these estimators
adaptive by allowing J (and z(x,9) in the heteroskedastic case) to grow
slowly enough with the-sample size. The argument of Amemiva (1973, Theorem
5) shows that this is the case. It has not been specified here what rate
of growth of J is slow enough and this question remains a topic for future
research.

Even knowing the appropriate rate for J would not help answer the
question of what J to pick in a particular application. The Monte Carlo
results of Section 5 do indicate that using several extra moment functions
may give good results in the i.i.d. case, even with quite small samples.
Also, the bootstrap standard error estimates could be used to select J.

One could choose J by computing bootstrap standard errors for several dif-
different values of J, choosing J equal to that value_with the smallest boot-
strap standard error. Of course, the bootstrap standard error for the par-
ticular J would then likely be biased downward somewhat if used as an

estimate of the standard error of the resulting regression parameter estimates,
because it does not account for varying J.

Moment condition estimators provide a particularly rich framework for
future research into the attainment of asymptotic efficiency bounds. Systems
of regression equations can be handled in the moment condition framework with
some added notational complexity and Thecrems 3.1 and 4.1 should extend
without difficulty to the systems case to show that nearly efficient GMM

estimators exist. By estimating the reduced form and using a minimum distance
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estimator of the structural coefficients, nearly efficient estimators of a
linear simultaneous equations system can also be constructed. It would also
be interesting to know how efficient a moment condition estimator could be

obtained in a nonlinear simultaneous equations system, where Manski (1984)

has shown that adaptive estimators do not exist.
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TABLE 1: ROOT MEAN SQUARE ERRORS

J OLS AML RAW _ OTH
n=25 2 3 4 2 3 4
Normal .3733  .3919  .4110  .4082  .3900  .4189  .3812  .3801
Cont. Normal .3738  .3260 .2136  .2368  .3369 .3752  .3577  .3565
Lognormal .3759  .3277  .1507  .2364  .3442  .2438  .3056  .3002
J oLS AML RAW ) OTH
n=100 4 5 6 4 5 6
Normal .1792  .1884  .1913  .1937  .1939  .1880  .1845  .1841
Cont. Normal .1804 .1366  .0835 .0961  .1440  .1318  .1249  .1302

Lognormal .1691 .1101 .0845 .1173 .1749 .09832 .1025 .0968
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TABLE 2: RMSE OF SCALE ADJUSTED GMM ESTIMATOR

J n = 25 n = 100
2 3 4 4 5 6
Normal .4191 .3829 .3821 . .1878 .1843 .1840
Cont. Normal .3698 .3728 .3779 .1306 .1297 .1335

Lognormal .2362 .3065 .3101 .0875 . 0964 .0896
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TABLE 3: RATIO OF RMS OF ESTIMATED STANDARD ERRORS

TO ACTUAL STANDARD ERRORS

J RAW OTH
AML
n=25 2 3 4 2 3 4
Normal .263 .666 .622 .386 . 460 .279 . 264
Cont. Normal .321 .765 .526 .169 .581 .426 .362
Lognormal .311 .808 .440 .176 .728 .496 .358
J RAW OTH
AML
n=100 4 5 6 4 5 9]
Normal .228 .769 .726 .537 . 340 .230 .227
Cont. Normal .353 .791 .614 .309 772 . 599 .555

Lognormal .380 .484 .308 .145 .743 .649 .593




TABLE 4: COMPARISON OF ACTUAL STANDARD ERROR
WITH ROOT MEAN SQUARE OF BOOTSTRAP AND

ASYMPTOTIC ESTIMATES

RMS Asymptotic RMS Bootstrap
Actual SE . . .
Estimate Estimate

.2056 .1014 .2062

52.
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