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In many countries, there are few or no panel data, but there exists
a series of independent cross-sections. For example, in the United
Kingdom, there are no panel data on consumers' expenditure or on
household labor supply, but there are several large household surveys
that are carried out every.year. Samples for these surveys are drawn
anew each year, so that individual hougeholds cannot be traced over time.
This paper is concerned with the possibilify of tracking "cohorts"
through such data. A "cohort" is defined as a group with fixed
membership, individuals of which can be identified as they show up invthe
surveys. The most obvious example is an age cohort, for example, all
males born between 1945 and 1950, but there are many other possibilities;
consider Korean war veterans, or founder members of the Econometric
Society. For large enough cohorts, or large enough samples, successive
surveys will generate successive random samples of individuals from each
of the cohorts. Summary statistics from these random samples generate a
time-series that can be used to infer behavioral relationships for the
cohort as a whole just as if panel data were available. Procedures for
constructing such cohorts and for estimation using the resulting data are

discussed in this paper.

I consider economic relationships that are linear in parameters,
though not necessarily in data, and that may or may not contain
individual fixed effects. Corresponding to these individual
relationships, there will exist averaged versions of the same form for
the cohort population,.but with unobservable data points. If there are
additive individual fixed effects, there will be corresponding additive

cohort fixed effects for the cohort population. Furthermore, the sample



cohort means from'the surveys are consistent but error-ridden estimates
of the unobservable cohort population means. Since the micro data are
used to construct the means, they can also be used to construct estimates
of the variances and covariancgs of the sample means. It is therefore
possible to use errors-in-variable estimators to estimate consistently
the population relationshipg. Sections 2 and 3 of this paper derive
appropriate estimators in the absence and in the Presence of individual

fixed effects.

Section 1, below,'presents some of the models for which the
technique is designed with particular emphasis on models of consumption
and labor supply. I suggest that the estimation pProcedures discussed
here may shed light on some long-standing puzzles in empirical demand
analy;is, and that they are likely to be useful for the estimation of

life-cycle models in the absence of panel data.

Although the methods discussed here are primarily formulated as a
response to the absence of panel data, it is not necessarily the case
that they will give inferior results. The attrition problem that
effectively curtails the useful length of much panel data is absent here.
Because new samples are drawn each Year, representativeness is constantly
maintained. Indeed, to the extent that long rumning panels replace
respondents that drop out by "look alikes", the resulting data will have
many of the features discussed here. Of course, the errors-in-variables
nature of the current methodology is absent in genuine panel studies, but
I suspect that the difference is more apparent than real. Survey

statisticians who collect panel data are in little doubt as to the




magnitude of response error, particularly in the differenced data for
individual respondents. And as Ashenfelter (1983) has shown, it is
extremely difficult to interpret the diversity of labor supply
elasticities obtainable from the Michigan PSID data (certainly the most
heavily used panel data set among American economists), without assigning
a central role to large and persistent errors of measurement. The
technique discussed here has the advantage of recognizing measurement

error from the outset and explicitly controlling for it.

1. Model formation

The models discussed in this section are of substantive interest in
their own right and form the basis for current research using the methods
discussed below. The main purpose in pPresenting them here, However, is
to motivate the methodological discussion in the following sections.
Further, the provision of concrete economic examples will justify some of

the specific issues of estimation that are dealt with later.

In all of this work, my ultimate aim has been to bring to bear the
methodology of panel data on problems of consumer demand analysis. Even
in the United States, there is little panel information on the details of
consumer expenditure, and a few isolated examples apart, the same is true
of the rest of the world. For cross-sectional consumer expenditure
surveys however, most countries of the world are better supplied than is
the United States. For example, the British Family Expenditure Survey is
in continuous operatioﬁ and surveys some 7000 households annually;

questions on income, labor supply, and a very detailed disaggregation of



consumers' expenditure provide a mass of high.quality data. There are
also many excellent series of household surveys from LDC's; India's
National Sample Survey Office has run some twenty nationwide household
expenditure surveys since independence, and both Indonesia and Sri Lanka
have closely comparable household surveys for two or more separate years.
There is therefore a large potential for any method that can "convert!

these data sets into panel data.

To illustrate some of the more important issues, consider the Engel

curve model.

Yine = fine (Rpes ap,) ' | (1)
for quantity purchased of good (or leisure) i by household h in period t,
household total outlay Xt and vector of socio-economic or demographic
ht * A convenient functional form is provided by taking

characteristics a

the budget share Vinte = pitqiht/xht as dependent variable and writing

3
Vine S0 T B log x4 Zyiag te (2)

where there are J socio-economic characteristics, o, B, and y are
Parameters, and €. ht YeéPresents an error term. Equation (2) is typically
estimated in one of two derived forms. 1In the first, using a single
cross-section, the t subscript is dropped, and systems of Engel curves
are estimated. 1In the second, the equation is aggregated over h to give,

for example,
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where Wiois a‘].t and €, are weighted averages using xh/Zxh as weights, and

§t is a representative budget level defined by the aggregation procedure

(see Deaton and Muellbauer (1980) for a full discussion of the model).
The weighting procedﬁre guarantees that git is the share of good i in the
total of consumers expenditures, and provided the.distribution over
households of x does not change over time (as measured by Theil's entropy
measure of inequality), Qt‘can be replaced by it' Consequently, apart
from the substitution of demographics for prices, neither of which

explains very much in aggregate, (3) is a conventional aggregate demand
system.

The point I want to emphasize is that the values of Bi estimated
from cross-sections tend to differ substantially from those estimated
using time-series. Such contradictions were first extensively documented
by Kuznets (1962), not only for aggregate consumption, but also for the
components of consumption. It is widely known that savings ratios rise
more in cross-sections than in aggregate time series. It is less
well-known that it is generally true that total expenditure elasticities
for many commodities and groups of commodities are further dispersed from
unity when estimated on cross-sections than when estimated on time
series. For example, the food share in England in 1955 was almost
identical to its value a century earlier in spite of a manyfold increase
in real income and in spite of the repeated confirmation of Engel's law
in every household survey during that century, see Deaton (1975), Stone

and Rowe (1966) and Clark (1957) for further details. The presence of



such phenomena also poses problems for forecasting demands in those

situations where only cross-sectional data are available.

In terms of the foregoing model, 80ods are necessities if B <0,
luxuries if B > 0 and neither if B . The Kuznets' finding, so
styllzed, is that Bi is closer to zero in time-series than in
cross-sections. Presumably, the problém lies in inadequate statistical
control. Expenditure diffefences between poor and rich consumers are not
likely to be reblicated by making a poor man rich unless the poor and
rich consumers are otherwise identical. Controlling for even a long lisf
of socio-economic characterlstlcs is not satisfactory compared with the
opportunity yielded only by panel data to use individuals as their own

controls. Recognizing this, write (2) as

“ine T ¥ * By log x + 2 Yii%nt ¥ Op * Eipe (4)

for individﬁal fixed effect eih' Since, in general, eih will be
correlated with the other eXplanatory variables, such an equation can
only be consistently estimated from panel data. Consider, however, the
case where h is a member of a well-defined cohort group that can be
tracked via its (randomly chosen) representatives through successive

surveys. Let h belong to a cohort C, and take simple population averages

of (4) over all h belonging to ¢ to obtain

- e ol
~

wict = cli + B' (log x ) t2 Y1JaJct * eic * 8ict (5)




where asterisks denote population (i.e. cohort population) means. If it
were possible to observe the true cohort means, eQuation (5) would hold
for each cohort in each time period rather than for each household in
each time period, and could be directly estimated using cohort dummy
variables for the cohort fixed effects Bﬁc. This would be feasible since
each cohort appears in each time period; it is of course infeasible on
the individual model (4) since each individual household appears only
once. In practice, the other starred variables can only be proxied by
cohort means from the sample; these will contain sampling errors and if
used withoutvappropriate correction will generally lead to inconsistent
estimates since the model is effectively one of errors in variables with
all variables (except dummies) squect to error. However, the sample can
be used in the standard way to derive estimates of sampling variances and
covariances and these estimates can be used to derive consistent
estimators using more or less standard errors in variables procedures,

see Sections 2 and 3 below.

Two other features of equation (5) should be noted. First, the
total outlay variable is the mean of the logarithms, not the logarithm of
the means. There is no need in this context to fudge the issue since the
sample can be used just as easily to estimate the mean of a non-linear
function as to estimate the non-linear function of the mean. Second, it
is usually possible to select cohorts that are more or less broadly
defined. Ultimately, the cohort that is all inclusive is the total
population and (5) becomes a macroeconomic aggregate time-series model.

In consequence, selection of cohort size allows us to move by degrees



from micro to macro data; this is ideal for detecting the roots of a

contradiction between micro and macro results.

In the foregoing example, the formation of cohorts can be thought of
as an instrumentation procedure that removes the inconsistencies
associated with the fixed effects. In my second example, the cohort
structure arises naturally out of the formulation of the problem.
Consider an individual household choosing consumption and labor supply in

an intertemporal setting to maximize the expectation

L

By 2o (a)] ©)

subject to an evolving and uncertain budget constraint

Weep =+ ) W +y, - Py g} (7

where, as before, q, includes leisure demands, Utlis period t's utility

function, Wt is assets at t, Ve is income, and i..

t+] 18 the money interest

rate from t to t+1.

In Browning, Deaton and Irish (1985), it is shown that the solution
to this problem can be straightforwardly characterized in terms of Frisch

demand/supply functions




the vector of which.isvthe gradient with respect to P.: of a period t
"profit function™ nt(rt, pt), a convex linearly homogeneous function.
The quantity T the period t price of utility, evolves stochastically
according to
1+it+1
r

} = (9)

LR G

Et {

Once again, the discussion is more useful given a specific functional
form. Browning, Deaton and Irish show that the following.is consistent

with the theory

1
- 2 _
Q¢ = % * By log pyy + jii 0;5iPj¢/Pyed” - By log r . (10)

This model is correct both under certainty and under uncertainty.
In the former case, (9) holds without the expectation operator so that r
is simply proportional to a discount factor M(1 + it) relative to some

arbitrary date. Reintroducing the household subscript h, the certainty

version of (10) is therefore

1
2
=, +B. logp. + I 0, (b 1 (11)
YGne = %ne* By 18 Ryt 2 0,0 G By log r .
Jj#i it

where *oh is independent both of time and the commodity under considera-
tion and Bit is Pt discounted back to the arbitrary date 0. It is
therefore an individual fixed effect which is essentially a sufficient

statistic for the influence of current and future values of assets,
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prices, interest rates, and wages,\see MaCurdy (1981). Since Loh is the
price of life~time utility to h, it is an increasing function of
life-time real wealth given concavity of (6). Consequently rop Will vary
with h and thus with cohorts in the cohort version of (11). Moreover,
since younger cohorts are on average wealthier than older ones, we should
expect the cohort dummy variables to be monotonicaliy related to cohort
ége. The coho;t structure here not only has the advantage of 1inking
micro with macro, but also explicitly fecognizes the life-cycle nature of
consumption and labor supply. Indeed cohort methods have been widely
used in work with life-cycle hodelé, see e.g. Ghez and Becker (1975) and
Smith (1977), though these authors work with single cross-sections which

- lack the panel element introduced here.
Under uncertainty, (9) can be written approximately as

A log ro41 = log (1+1t+1) + Vsl (12)
where Et(vt+1) = 0. Taking differences of (10) and substituting

1

8ipe = A, ~B; log (L +p, ) +3 Ou & ®ye/pie) *+ vy (13)

where Pie is the real commodity i rate of interest. Note that in this
case, even if the shocks to the system, Vi, are statiomary, log re will
be non-stationary, so that differencing is required to obtain consistent

estimates. In general, the V. can only be guaranteed to be mean

stationary, and further'assumptions will be required for the consistency
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of techniques applied to (13). Even so, the differenced version is
1ikely.to be a better starting point for estimation than the original
version in levels once uncertainty is taken into account. Once again,
the aggregation to cohorts provides the repeated observations necessary
for differencing, while the micro data provide the estimates of cohort
means together with their sampling errors. The differenced versions will
have a different measurement error structure than the levels.models, and
this is discussed below in Sections 2 and 3. Note also that in (13), to
the extent that the current prices and interest rates contain relevant
new information, the innovation Vih will be correlated with the
explanatory variables necessitating an estimator than can deal with both

errors of measurement and simultaneity.

2. Estimation of models in levels

Before presenting the estimator to be discussed, consider an
alternative, and perhaps more obvious approach to the estimation of an
equation like (4) of section 1. To unify notation, rewrite this in

standard form as
Yhe = X B F O+ g, (14)

where the i subscript is no longer required, yﬁt is the dependent
variable for individual h at t, Xt is a vector of explanatory variables,
and Bh is the fixed effect. Aggregate first over those h belonging to
cohort c that happen to be observed in the survey taken at t. We then

get observed sample cohort means which satisfy the relationship
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Ver TEt B O v (15)
Note that Ect is the average of the fixed effects for those members of ¢
that show up in the survey; unlike the unobserved fixed effect for the
cohort population mean, GC, say, Ect is not constant over time.
Furthermore, gct is unobserved and, in general, is correlated with the
Ect‘ Hence, although (15) may be useful for "signing" the bias in
regressing §ct on Ect’ it is not an appropriate basis for consistent
estimation any more than is (14), unless the cohort sample sizes are S0

large that EEt is a very good approximation for BC. In this case, (15)

can be estimated by replacing Ect by . dummy variables, one for each

cohort.

Consider, instead of (15), the cohort Population version of (14). T
write this

y':’.-

ct = Ezt.ﬁ * ec * 8ct (16)

where'y‘é‘t and Eﬁt are the unobservable cohort population means, and GC is
the cohort fixed effect. Since the population belonging to the cohort is
assumed to be fixed through time, GC is a constant for each c and Ean be
replaced in (16) by cohort dummies. The yﬁt and gﬁt cannot be observed,
but the cohort sample means §ct and gct are error-ridden estimators, with
variances that can also be estimated from the micro survey data.

Equation (16) can then be estimated by errors in variables techniques

where all variables, except the dummies, are measured subject to error.

Equation (16) can now be written in convenient standard form
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AT A R - (17
where tHe cohorts and surveys have been "stacked" into a single index t,
running from 1 to T where T ié the product of the number of surveys and
the number of cohorts. The cohort dummies GC have been absorbed into the
gﬁ's;.there is no loss of generality since the dummies can be thought of
as being measured with an error that has zero mean and variance. To fix
ideas, take the British Family Expenditure Survey as an illustration.
Currently, there are about ten years of data available, with about 7000
observations per year. In Browning, Deaton and Irish's (1985) work on
consumption and labor supply, various selection criteria (which are
always likely to be present in one form or another) reduce this to
between 2500 and 3000 observations, which were formed into sixteen
cohorts of five-year age bands. Hence, T=80, but the cohorts, with a
maximum size of 300, are not Iarge enough for us to ignore the sampling

errors in estimating ¥ and 5? by §t and x Since, in this context

-
(and in many others) there is a new survey every year, it is sensible to
construct estimators that are consistent as T tends to infinity; with

sixteen cohorts T + ® sixteen times faster than annual, and four times as

fast as quarterly time series data. The cohort size, however, is held

fixed as T becomes large.

The error & in (17) is assumed to be normal, independent over t,
and homoskedastic; if the cohorts are very different in size, this will
require that each observation be weighted by the square root of the
cohort size. I shall assume this has been done as necessary. The model

is completed by adding to (17) the assumed measurement structure. The
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cohort means, §t and gt are observed; dropping the overbars -- from now

on these are the basic data -- I assume
~ N ; ' (18)

Given the sampling.structure, the normality does not seem to be an
implausible assumption. However, the error variances @, i will in general
have to be estimated by their sample counterparts Slj based on the micro -
survey data. Note that, in estimating the ¢. J's, all T observatlons can
be pooled, so that, if there are n_ observations in each cohort, the
sampllng varlance of s, i diminishes in proportion to (Tnc)- and that of
ﬁt and Et as (nc) - The former is (a) smaller, and (b) tends to Zero as
T » » instead of remaining fixed, so that it may be reasonable to assume
that the ¢'s are known in carrying out the estimation. Nevertheless, I
shall derive formulae for both cases, when Ogg» 9 and 2 are known, and

when they are estimated by So0° S and §.

The model is now in the form in which I can apply the results of
Fuller (1975, 1981); indeed, in the rest of this section, I essentially

repeat Fuller's (1975) formulae in the current context and notation. The

interested reader is referred to that Paper for further details.

Assume that means have been removed from all data and let the sample
moments and cross-product matrices of X and y be Mxx’ Exy and myy in an
obvious notation. Write 082 for the variance of €, and Q for the moment

matrix of the unobservable xt*'s._ Hence
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E(Mxx) =Q+23 = zxx’ say (19)

E(Exy) =QB+ 0= gxy y say . (20)
: 2 _ |

E(myy) = B'OB + O *+ 0z = oyy’ say (21)

The estimator E is then clearly consistent as T - ®, where

B= 0, -0 a0 | , (22)
=@x-19 gy - 10 (23)

and, provided (X'X-TZ) is positive definite, will be a MLE under the
normality assumptions on §§ that are sometimes made in errors in
variables models. I shall not assume normality of 5? here. Note that if

2 and ¢ are replaced by estimators S and s, E is replaced by

b
"

B= 0y - 97 @ - 9) = @x - 1)y - 1) (24)

The formula for the variances are derived first for the case where

2, 0 and Oyo 2are known, i.e. for E. Expanding (22) yields
B-g=0"m_-0)-0la_ -3 )l -0
=Xy —Xy XX XX Xy -
-1
+ OP(T ) (25)

But, from (20), Q-l(gxy-g)=ﬁ, so that



-16-

B-p=0T g M0p) - (g -3 p)) 0,(x™h (26)

The variance of E thus depends asymptotically on the variance covariance

matrix of Exy - MXXE. But

=1
oy M8l =7 2 Xy O i X kBy) (27)
1 .
=T f (F; *uy)e, + Yo T i Uy 1Py (28)

where Uy = Yio = YEO and u. = Xeo ~ X3,

Treating the X?i as fixed but unknown Constants, and using the standard

properties of the normal distribution yields
- 2 1] _ H
TV {Exy - M B} = 2.0+ Ooo ¥ B 2B - 20 B8) + (29)
) 1
t (- 28)(0 - 3p)
Hence the asymptotic variance covariance matrix of B is given by
Cole 2 -1
E = a5 w4 (o - 3G - 38)'10 (30)

where

2 2 ! ! ‘ '
W =0, +0,, +B3p -2 B (31)
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An estimate of (30) is straightforwardly derived from the observable

moment matrices. From (19) to (21)

G=M_ -3 (32)

5% = m - 0o - B O | (33)

Substitution in (31) yields an estimate of wz, i.e.

32 = % (y - XE)'(X - XE) = % E'E’ where (34)
e=y-xp (35)

But 3§ - o = (5§ + of) - (o + Of) | (36)
=M 7 Gy = % X'e S

Hence; the estimated variance-covariance matrix is given by
WE = ete + T%e erx]¥] - (38)

which is straightforwardly evaluated in practice.

The derivation of the variance-covariance matrix of B*, the
estimator using the estimated error variances, requires only minor

modification of the above. I assume that the estimates Sij of Uij’ i, j

0, 1,...K, the dimension of X, are based on vT degrees of freedom. If



all cohorts are pooled in estimating tﬁe sij’s, v=nc, the number of
observations per cohort, but clearly other schemes are possible. Some
estimate of the variances and Covariances of the Sij is also required; to
focus attention I shall use that derived from sampling under normality,

Hence, I assume that Sij is'consistent for Gij’ and that asymptoticaliy,
| (v) E{(sij - oij)(ska - crkz)'} = Gikcj,Q + Gi.onk (39)

The derivation proceeds as before except that the expansion (25) has an
additional term Corresponding to the stochastic variation in § and s.

Hence, (26) becomes

* _-1‘ - . _
B-B=0" - u_p) Oy = 28]
-7 (s - sp) - (o - )1+ 0 (17 (40)

By the properties of sampling under normality, the first and second terms

are independent, so that, asymptotically

S = 07Nz u? + (o - 3py(o - ) 107!

+ vl ly(s - gy (41)

Elementary manipulation yields

V(s = sB) = 2(gy, - 20'B + B'3p) + (o - 28)(o - 5B)" (42)
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Note that if v is large, (41) reduces to (30), the case of known

variances; this latter is likely to be a formula that would normally be

adequate in practice.

Equations (23), (24), (38) and (41) are the basic results of this
section. I conclude with four issues of practical importance. First,
the error variances Og0° C and 2 will generally vary from survey to
survey and cohort to cohort. Write GOE’ gt and Zt for the values at

observation t, so that (19) and (20) become

EM ) =0+% (197

E(m,) = 9B + 0 , (207)

where ¥ . 0 are the mean values over the t observations. The analysis
then goes through with Ogg° 9 and 2 (or Sp0° S and S in the case of
est?mated variances) replaced by their means. Given the nature of the
variation with t, an appropriate variance-covariance matrix for the §ij's
can be derived and substituted for V(s - SB) in (41). Second, it is
necessary to allow for the presence of some X variables that are measured
without errors. For example, relationships like (5) of Section 1 contain
cohort dummies that are clearly error free. Other variables may not be
drawn from the surveys but from other data sources; macroeconomic |
variables that are the same for all cohorts but vary with time (prices)
are the obvious examples, and, exceptionally, there may be other relevant
data on the cohorts themselves. One way to proceed is to introduce
additional error free variables to the right-hand side of (14) and to

track them through the analysis. This turns out to be equivalent to the
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simpler (and intuitive) procedure of setting the appropriate elements of
O and rows and columns of 3 to zero; the formulae for E, B* and their
asymptotic variances then remain unchanged. Third, for the reasons
discussed in Section 1, it may be necessary to recognize contemporaneous
correlations between some of the gﬁ's and €.. Instrumental variables
will typically be available; in the example of Section 1, in the form of
lagged cohort wages or prices. On the assumption that the'instrumenﬁ
vector ¥, 1s constructed from a Survey prior to that used for X, so that
their errors of measurement are uncorrelated, the appropriate

instrumental variable estimator is
g l 1 ' ~1.0 -1 1 1 -1..1
= [WX(WW - TZW) X W “[wxw WA- TZW) Wyl (43)

with a variance matrix calculable by the methods given above. If
Measurement errors in W and X are correlated, the obvious additional
corrections can be made. Fourth, and finally, note that there will
typically be some flexibility in constructing cohorts. If cohbrts are
constructed by age, the age bands can be taken broad or narrow (e.g., a
five year window Versus a one year window), and other qualifying
characteristics can be left unspecifigd or tightly defined. Clearly, the
construction of cohorts with members that are distinct from one another
and internally homogeneous will minimize the errors in variable problem
and enhance precision. Beyond that, it is pPossible to use trial cohorts
to estimgte E and its variance, and to use ‘these consistent estimates to

8auge the consequences of combining or separating cohorts.
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3. Estimation of Models in Differences

In this section, I develop the estimators appropriate for the case
where the model, like the second model of Section 1, requires
differencing prior to estimation. The previous results do not go
through directly because the measuremént errors induced by the sampling
scheme now have a MA(1) structure relative to the unobservable true first
differénces.

I now write the model in the form

Ayg = _g-g te, (44)

for the true unobservable first differences. Corresponding to (18), the

measurement structure is

Ayt = Ay? + Veo ‘ (45)

Ax, = Ax¥ + v, , (46)
and

Veo T Yo T Me-10 (47)

Vei T Yei T Ye-1d (48)
with Lo and u . the original measurement errors on the Ve and X s

variables respectively. The relationship between Ayt and A§t is

therefore given by

Ayt = E.A§t + (St + Veo " E'Xt)' (49)
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In passing note a temptingvbut ineffective possible route to

estimation. Consider Nxt = X, + Xt—l’ the moving average, as a possible

instrument for Axt, the first-difference, and for simplicity, assume X,

is scalar. Since Nx = in +tu + U _qs and since u +u

& € is
u

t-1
independent of Ve = - u£_1, Nxt is orthogonal to the compound error

in (49). However, in large samples Nxt is also orthogonal to the

) _ J*x2 *2 -1 R .
regressor Axt, E(Nxt.Axt) = x, X, _1» so that E(T ZNxt.Axt) =T “(x T
- x*g) with a limit as T + o of zero. In comsequence, instrumental
variables estimation of this type will not work. It is therefore

necessary to follow through a scheme similar to that of Section 2.

To ease notation, write n = Ayt and z, = A§t so that, corresponding

to (19) to (21) the moment matrices are now

E(Mzz) =W+ 2= Zzz’ say (50)

E(gzn) =WB + 20 = gzn’ say (51)
- 2 -

E(gnn) = B'WB + Og + 20, = O.n’ Say (52)

where W is the sample moment matrix of the Aﬁi = Ei variables. The
doubled role of measurement error comes from the moving average errors in

(47) and (48). The first-difference estimator,EA is immediately given as

— - -1 -
By= - 23) (@, - 20) (53)
or equivalently

By =@z - 2071 (z0g - 2Ta). (54)
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Expansion, as in Section 2, yields

By 8= Gy - 207 Gy -8 - (o, - 3, p) v 0 a7 (55)

so that if C is the variance-covariance matrix of m - M B, the
—zn ZZ
asymptotic variance of EA is given by
- _ -1 _ -1
(g, = (z,, - 207 ¢z - 27 (56)
. _ - -l -
Now (@zn MZZE)i = Zzti(nt E.gt), so that
_ l x _
Moy = MppB)y =7 2 (zgy + v ) (e + vy - I By ). (7)

k

The variance of this is tedious to calculate, particularly given the MA

structure (47) and (48). 1In the appendix it is shown that

C= (W+ 22)(o§ + zoi) - ci W +W -3) (58)
+ 14 (0 - 3B)(g - 3B)"

where
2 2 '
Oy = Opg = 20.B + B 3B (59)
and
+ _ _1_ % oN
W=z (60)
- 1 N !
W T zEt—IEt . : (61)
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The presence of W' and W reflects the autocorrelation in the measurement
error. Comparing with (29), and taking the case where W' = ¥y~ = 0, the
measurement errors now play a much larger role in determining the
variance. Put differently, given the same amount of variance in the true
unobservables under levels and differences, estimation precision will be
lower in the latter case. This result, which is not surprising, can be
enhanced or modified by positive or negative autocorrelation in the true
g§ series,

The asymptotic variance covariance matrix of EA is obtained by
substituting (58) into (56). 1In practice, an estimation formula can be

obtained by noting that, from (52)

3 =m, 204 - B0, (62)

Hence, from (59)

5 + 20f =m_ - 2B, (20 + W + BAGH + 25, (63)

= Man” ZEK Bon ? EZ&MZZEA (64)

= T—lglg , where A (65)

e=n - Z. A = Ay - AX. A (66)
Similarly

o5 A - 20 = 238, + i, - WE, - 20 = M By - =TZe (67)
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. . + -1 - .
Finally, therefore, writing Mzz for T thgt_l and Mzz similarly, the

estimated variance matrix of EA is given by

TE) =W Lee - Pt ww s e Lt ]

v (EA) =WM, Tee- 00 +M )+ 2 Z ee ZIW ' (68)
~) 2 '

Ox = %9 ZQ.EA + EAZEA' | (69)

The modification of these formulae for the case where 0402 © and 2 are

replaced by estimates is straightforward and is left to the reader.

Appendix

Derivation of the variance for the differenced case

Starting from equation (57), define

ei = (Ezn B Mzzﬁ)i : (A1)
e =& * Vg - i BrVek (A2)
so that
| *
Bi =T Z(zti + vti)gt (A3)

To obtain the variance-covariance matrix of ei, start from

_ -2 * * .
E(Giﬁj) = E{T Ei (z; + vti)it(zsj + vsj)és} (A4)
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= E{T" z>:(zt1 sifebs * Veibev, )] (a5)

since §t and V. are jointly normal with zero third moments. By the MA(1)

structure of the v's

| 7%7’:2
E(eiej) =T {E(Ztiztjgt E(ztlzt+1 ebeey)

+ E(zt+1iztj §t+1§t)+E(vti£tvtjgt)+2E(vti tvt+1j§t+1)} (46)

Now E(E,2 = 0 + 20’50 + ZE'ZQ - 4f'g = 02 + 202 , say (A7)
' 2
E(§ §t+1 =~ 0y t2B'0c-B 3B = - Oy (48)

Hence, evaluating (A6) term by term using, where necessary, the standard

formulae for fourth movements of normals

y gives
_ 2. .2 |

(z; th ) = w0 + 20)) (49)
E(z* z EE . ) ==y 2 (A10)

tiTt+155t 541 . ijrA?

with a similar expression for its transpose.

E(vtl £ £ )= 20 (o +20 )+2{20 -22 Bk k}{ZG ZZBk k}
_ 2 2 - _
= 2oij(c8 + ZGA) +8 (o Zﬁ)i(g Zﬁ)j (A11)
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- 2 - e ,
EOeibeeangdesn) = 035 0y * 500 - ), (o - IB), (A12)
Hence, collecting terms and subtracting E(Bi) E(Oj) = 4(c - Zﬁ)i

(o - Zﬁ)j yields
V@) = W+ 202+ 200 ) - o WA -3 4

+ 14(g - 3p) (o - 3B) (A13)
which is equation (58) of the main text.
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