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Abstract

This paper analyses a new solution of non-cooperative games, i.e. the
Closed Loop Stackelberg solution, which is shown to be very useful for
macroeconomic policy analysis. The main features of the Closed Loop
Stackelberg (CLS) solution are examined and it is shown that only if a
certain degree of uncertainty is introduced into the model, can the CLS
strategy be made credible. Furtehrmore, the relationship between the
CLS strategy and other solutions of the game are explored and conditions

for the optimality and time-consistency of the CLS strategy are provi-

ded.



HIERARCHICAL GAMES FOR MACROECONOMIC POLICY ANALYSIS

1. INTRODUCTION

In recent years, a new mathematical problem has been proposed in
the engineering literature. The main features of this problemn,
called closed-loop Stackelberg (CLS) problem, can be described

in the following way.

Suppose the control problem can be described as a game between two
decision-makers and suppose that one of the two players, called
the leader, has the power to announce his strategy first and to
make his strategy conditional on the other player's strategy. Can
the leader announce a strategy such that the follower is induced
to behave as if he were acting in the leader's interest? How can
this strategy be computed? What are the properties of the solution
of the game when such a strategy is announced by the leader? What
are the properties of the leader's optimal strategy? These
questions can be formalized into a mathematical problem and many
papers have recently tried to provide a solution to this (CLS)
problem. (1)

The features of the CLS problem are not completely new in
economics. In fact, Chow (1981, ch. 17) provides an algorithm
which can be used to compute the steady-state CLS solution of the
‘game, if the follower's strategy is included into the state vector
cf the dynamic equation describing the economic system. However,

several aspects of the CLS problem, not explored by Chow (1981),



were recently emphasized in the engineering literature, where
other solutions of the problem have also been proposed. In
particular, the existence, uniqueness, and time-consistency of the
CLS solution have been analysed.

Furthermore, no application of the CLS solution to games
representing economic problems has been provided, even if the
typical behaviour of the policy-maker can easily be fitted into
the CLS framework. The macroeconomic policymaker can indeed be
assumed to be the leader of the game and to announce the optimal
strategy by taking into account not only the follower's rational
reaction set (as in Kydland, 1975, 1977, where the feedback
Stackelberg solution is considered), but also the actual
follower's decision. Therefore, the CLS solution determines that
particular leader's strategy which induces the follower to behave
as if he were cooperating. This provides a great advantage to the
policy-maker.

If indeed the monetary authority or the government can announce a
strategy which implies the minimization of their loss function
with respect not only to their own decision variables, but also
with respect to the private sector's decision variables, then it
is obvious that, in general, a lower loss can be achieved, i.e. it
becomes easier for the policy-maker to attain the desired
targets.

Does such a strategy exist? The goal of this paper is to answer
this question and to study the properties of different CLS
strategies. Two main problems will be examined: first, under what

conditions is a CLS strategy really effective, that is, when does

[



it imply a loss for the policy-maker which is lower than the loss
implied by any other policy? Second, under what conditions is the
CLS strategy credible?

The éffectiveness of a CLS strategy depends indeed on a set of
threats (or incentives) that the leader announces he will carry out
any time the follower does not comply with the strategy selected
for him by the leader.(2)

A well-defined CLS strategy must therefore be based upon a set of
credible threats (or incentives) so that the leader does not have
any incentive to depart from the announced strategy, whenever the
follower does not act in accordance with his will. An effective
and credible CLS strategy can easily be shown to be the
policy-maker's best policy.

Suppose, for example, that the monetary authority controls the
money stock and the private sector controls the price level. If
the monetary authority can induce the private sector to keep the
price level constant, then the money stock can be used to
stimulate economic activity. In contrast, the standard optimal
policy faces the typical trade-off between output and inflation
and both targets cannot be attained.

This paper will therefore consider the effectiveness and
credibility issues for general CLS startegies and will provide
conditions for the existence of credible, effective CLS
strategies. Section 2 will deal with static games, section 3
with repeated games, and section 4 with dynamic games. An
increasing degree of complexity will be introduced and the new

problems arising when repeated and dynamic games are considered



will be analyzed.

The structure of the CLS problem and its solution for linear
quadratic static and dynamic games can be found in the

engineering literature. However, this paper provides a critical
evaluation of a relevant bulk of literature and an original
analysis of the credibility problem. It will be shown that only if
a certain degree of uncertainty is introduced into the model, can
the CLS strategy be made credible. Furthermore, the relationship
between the CLS strategy and other solutions of the game will be

explored, and conditions for the optimality and time-consistency

of a CLS strategy will be provided.

A list of remaining open problems will conclude the paper.
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2. STATIC GAMES

Let us start the analysis by showing how the closed-1loop
Stackelberg (CLS) solution can be applied to static games. In
this way, the main fetures of the CLS solution can be presented
without resorting to the complex mathematical proofs which are
necessary when dynamic games are considered. A simple example will
also be used to clarify the relationship between the CLS optimal

policy and other solutions of the game between the policy-maker

and economic agents.

A. Closed-Loop Stackelberg Strategy

Let us assume that there are only two decision-makers: the leader
(player 1) and the follower (player 2). Let x; and Vi =
E[wi(sl,sz,e)], i1=1,2, be, respectively, the decision
variables and the expected loss of the two players, where S{ €
Si, 1 = 1,2, is the strategy of each player and € is a vector of
random variables with given distribution representing the
uncertainties introduced into the problem. The normal form of the
game is therefore defined by the Sstrategy sets S; and the loss
functions EWj, i = 1,2. The decision variables are related to

the SOlution of the game in its normal form by x4 = s;(85),
i=1,2, where ®; represents the information set available to
each player. Furthermore, let us define player-i's rational

reaction set R; = Ry(sy) i,j = 1,2, i # j, as



for all sjesy}

Therefore Ri(sj) defines player-i's optimal reaction to
pPlayer-j's strategy and can be determined by solving the following

problem:

Si

where S{ e S; and S§ e Sj, i, 3 =1,2.(3)
The optimal policy which is obtained by solving a standard

control problem can be interpreted as the solution of the

following problem

(2.3) min E[W3(s;,Ry(sq),&)]
S1

where the policy-maker is the leader of the game and the reaction
function of the follower describes the economic System (see Chow,
1981, for a similar interpretation). |

Before defining the closed-loop Stackelberg solution of the game,

we have to determine the team solution. If the leader of the

game can control both decision variable sets xj and x,, he can

achieve the absolute minimum of his cost function by solving:

(2.4) min E[Wi(s7,s5,€)]
S1,82



Under standard assumptions, the solution of this control problem
exists and is defined by (slt, szt).

The CLS problem can be described in the following way: find a

strategy le1s such that

(2.5.1)  s,% = arg min E[W,(s;°18,5,,¢)]
S2
(2.5.2) 51618 (sp=s,%) = s;t

where it is important to stress that s; is included into the
leader's information set. In other words,; the CLS problem is
solved if the leader can determine a strategy 51Cl5 such that
the follower is induced to behave as if he were minimizing the
leader's loss function. The solution of the follower's problem
given s; = slcls, must indeed be s; = szt, the

leader's desired strategy: Moreover, when the follower plays

t, the leader's rational reaction is slt e Rl(szt)'

$2
so that the team solution is the outcome of the game.
Therefore, the solution of the CLS problem is a strategy slcls

such that the follower is induced to adopt in his own interest a

strategy s;% which is the most desirable from the leader's
point of view.

For example. let

(2.6) 5115 = ;% + h(®y,s5,5,%)

where the function (-) is defined as

~J
.



(X

0 if sy = st
(2.7) h(ey,s;,s5%) =

Slp if sy + Szt
where s1P must be such that

(2.8) arg min E[wz(slcls s2,&)] = arg min E[Wl(slt,sz,e)]
S2 S2

If (2.8) is satisfied, we have 52015 = szt and (2.6)-(2.7) imply

cls - slt° The function h{(- ) is often called threat function

51
since it defines a set of threats (or incentives) that are used by
the leader in order to induce the follower to chocse the strategy

t

So>*~. Another particular example is given by the linear function.

s;¢1s = s1t + P(sy - s t)

where the matrix P penalizes any deviation of s, from sot. In this
last case, the CLS problem is solved by choosing a matrix P such
that R2(5101s) = szt. In section 4 we will discuss the advantage
of choosing a nonlinear threat function with respect to the
creadibility of the leader's strategy.

A comparison between the control problem (2.3) and the CLS problem
(2.5) is straightforward. If both problems are solvable, the
solution provided by the CLS strategy is preferred by the leader
since he achieves the absolute minimum of his loss function.
However, the Superiority of the CLS solution is based on a larger

information set. In fact, in the control problem, the leader



announces his decision first, given his knowledge of the
follower's reaction set (i.e. the follower's loss function and the
initial conditions). In contrast, in the CLS problem the leader
again announces his strategy first, but he also knows the
follower's actual strategy. Therefore, the follower is supposed
either to act before the leader or to declare his decision to the
leader before the game starts. In this last case, the sequence of
actions during the course of the game becomes irrelevant.

The particular information assumption upon which the CLS solution
is based might seem restrictive in a static game setting, but

becomes very plausible when dynamic games are considered.

B. Inducibility and Credibility

The closed-loop Stackelberg strategy previously described is not
well defined. Two important problem affect the existence of a CLS
strategy:

(i) the follower may prefer to be penalized by the leader rather
than adopt his desired strategy if the follower's loss is lower

under the punitive strategy, i.e. if

(2.9) E[Wy(s1%,8,%,€)] > ElW,(s,°15(5,),5,,¢)]

for some s, e S, and §2 +# szt

(ii) the threats announced by the leader and defined by the
punitive strategy slcls(sz) for s, # szt, may not be credible if

the leader finds it advantageous to follow a strategy which
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differs from the announced one when sy # szt, i.e. if

(2.10) E[Wl(SICIs(EZ),EZ,&)] > E[W1(R1(83),5,, )]

for some S, e S; and S5 # szt

where Ry (S;) defines the leader's rational reaction to S5.

In order to study the first problem we assume that the leader
commits himself to carrying out the declared strategy and we define
the most punitive strategy slmp as the leader's strategy which
maximizes the follower's loss function any time he does not comply
with the policy selected for him by the leader. In order words,

s1™P is the solution of:

(2.11) max E[{W,(s1,s;,e)]
S1

The follower's rational reaction to s;™P belongs to Ry (s1™P) so

that we can conclude that, whatever Strategy the leader announces,

the follower can always unilaterally guarantee himself

(2.12) BTP = E[W,(s1™P,R,y(s;™P),¢)]

= min max E[Wy(s1,s55,¢8)]
S s31

Suppose the leader tries to achieve (sl*,sz*). The most powerful

CLS strategy he can announce is:
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sl* if s = sz*
(2.13) s{€1s =

Slmp if S) # Sz*

Then, the following proposition can be proved:

Proposition 1: If the desired strategies (sl*,sz*) are such that
E[Wz(sl*,sz*,a)] > BMP, the leader cannot induce the follower to
choose sz* by using the CLS strategy defined by (2.13).

Proof: From (2.12), the follower can guarantee himself a loss

which is lower than the loss he attains when he adopts the

leader's desired strategy.

Therefore, the following definition of inducible region is

implied by the above proposition:
(2.14) IRMP =‘{Sl € Sl, Sy € Sz: E[WZ(Sl,SZ, )1 < BMP)

In other words, the inducible region defines all points in the
strategy space that the follower prefers to the conflict with the

leader, because they imply lower losses than the disagreement loss

BMP,

The definition of s{™P also implies:

Proposition 2: If (sl*,sz*) cannot be induced by SICIS as

defined by (2.13), it cannot be induced by any other CLS

strategqgy.
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Proof: Obvious, since Slmp defines the most punitive (and

effective) strategy.

This proposition also implies that IR™P is the largest inducible
region and that the minimum loss the leader can achieve without

conflict with the other player is

(51,52)€1Rmp

The previous conclusions hold if we assume either that the leader
commits himself to carrying out his declared threat strategy or
that the leader's threats are credible (the credibility issue will

be discussed later). Under this assumption, it is also possible to

prove:

Proposition 3: If the inducible region contains the team soclution
(s1%,5,%), the leader can achieve the global minimum of his
loss function and his announced strategy is time~consistent.

Proof: If (s1%,s,%) € IR™P, the solution of (2.15) is the team

solution, i.e.

(s1%,s,%) = arg min E[W1(sy,s;,8)]
(s1,s,) € IRMP

which, by definition, provides the absolute minimum of the
leader's loss function. This implies that there exists no other

strategy sl* such that the leader can attain a lower loss after
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having observed the follower's decision. Therefore, the actual
strategy coincides with the announced strategy and no
time-inconsistency problem arises.

As stated above, these results depend largely on the assumption
either that the leader commits himself to carrying out the
announced strategy or that the leader's threats are credible.
Suppose they are not. Then, the follower knows that any time he
chooses s, # szt, the leader's optimal strategy will belong to the

rational reaction set Ri(s;) so that the follower's optimal

strategy when the leader's threats are not credible is defined

by:

(2.16) S = arg min E[W3(Ry(sjy)s;,&)]
S2

Consequently, the leader's optimal reaction will be §1 = Ry1(55),
so that E[W1(§1,§2,&)] represents, by definition of rational
reaction set, the leader's minimum loss when the follower adopts
the strategy Sy = §2. Therefore, the leader will carry out the

announced strategy, i.e. will adopt SICIS(Ez), if and only if
(2.17) E[W1(s1°18(5;),5;,,€)] = E[W{(51,5,,8)]

If we assume that the minimum problem (2.1) has a unique solution,
and if the leader is not éommitted to carrying out his threats, so
that the announced Strategy must be credible, then (2.17) implies

that the only CLS outcome of the game is (51,55).

The following proposition summarizes the previous analysis:
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Proposition 4: If the leader of the game is not committed to

carrying out his threats, the only strategy he can induce the follower

to adopt is s, = S, where

(2.18) Sp = arg min E[Wy(Ry(s3),s5,8)]
S2

Therefore, the leader can achieve the absclute minimum of his loss

function if and only if szt = S5.

Notice that the solution (§1,§2) is nothing more than the standard
Stackelberg solution of the game when the follower becomes the
leader and the leader becomes the follower.

Proposition 4 also implies that the interior of the inducible
region determined by a set of credible threats is empty. Define

indeed the follower's maximum loss when the CLS strategy is

credible as B, where
B = E[Wz(Rl(Sz),Sz,E)]
Then the inducible region is redefined as
IR = {s] € Sy, sy & Sy : E[Wy(sq,s5,8)] < B}
However, by definition §2 is the best follower's Sstrategy when the
leader adopts Ri(sy) so that B is also his minimum loss and no

rational follower can be induced to adopt a strategy s> s Ez..

Therefore, the interior of IR is empty and IR = (s1,57).



The conclusion that can be derived from the previous analysis is

that a credible CLS solution for a static game either does not

exist or coincides with the Stackelberg solution with a reversed

role for the two players. However, this disappointing conclusion

will be shown not to hold when repeated and dynamic games will be
considered. In fact, under suitable assumption, credible CLS
strategies which do not belong to the leader's rational reaction
set will be determined, and it will be shown that the leader can
achieve the absolute minimum of his loss function when the
inducible region contains the team solution.

We want to emphasize that the credibility problem that we have
discussed in this section is slightly different from the
credibility problem which arises when the optimal policy is time
inconsistent. Suppose indeed that the leader is committed to
carrying out his threats and that the follower knows that. Then,
the follower will choose Sy; = sz*, where sz* is the strategy
desired by the leader. If sz* = szt, the leader's rational
reaction is slt and the leader achieves the minimum of his loss

function (Proposition 3). Suppose, however, that the team solution .
does not belong to the inducible region, i.e.
E[Wz(slt,SZt,E,)] > BMP

If there exists a strategy sl* such that

E[Wy(s1",s,%,€)] < BUP



the leader's best CLS solution will be

Sl* if Sy = Szt
Slcls =

Slmp if Sy * Szt

The leader is committed to carrying out his threats so that the
follower will choose Sy = szt. However, the leader, after having

observed Sy = szt, will choose s; = slt instead of the announced

policy sy = sl*. (4)

This is the time-inconsistency pfoblem as it is presented in the
traditional control and rational expectations literature. (5)

As proved by Proposition 3, the time-inconsistency problem (and the
following credibility problem) affects the CLS solution of the

game only if the inducible region does not contain the team
solution. In contrast, we will show that the standard optimal
control policy is often time-inconsistent, even when the CLS

policy is time-consistent.

C. An Example

Let the game be described by the following matrix:

Player 2
(0,5) (2,2) (3,4)
Player 1 (1,0) (2,5) (4,0)

(5,3) (1,1) (5,4)




When the leader follows the most punitive strategy, the lowest
loss the follower can secure for himself is BMP = 4, so that the

inducible region is:

IR™P = {(2,1) (3,1) (1,2) (2,3) (3,2) (1,3) (3,3)

In contrast, if the leader's threats are credible, the follower
can loose only B = 1, so that IR might be IR = {(2,1) (3,2) (2,3)}.
However, the choice uj = 2 is not the leader's rational choice
when either Uy = 1 or u; = 3. Therefore, IR contains only (3,2).

In contrast, IRMP includes several possibilities. In particular,

the leader can achieve W1 = 1 by inducing up; = 1 through the

following strategy:

2 if up =1
(2.15) 5118 = Y2 if u, = 2
1 if upy = 3

However, this policy is not time-consistent since when the

follower has chosen Uy = 1, the leader has an incentive to pick uq
= 1 in order to achieve W1 = 0, the minimum loss.

This is not the case if the team solution belongs to the inducible
region. Suppose that the element (1.1) of the matrix is replaced
by (1,5) and the element (2,1) by (0,0). Then the strategy (2.15)

becomes time-consistent. Therefore, when (s;t, s,%)eIR™, the CLs

strategy is time consistent but, being defined by the inducible
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region IR™P, it is based on a set of non-credible threats.
We can conclude that two conditions must be satisfied for a
closed-loop Stackelberg strategy to be credible:

(1) the inducible region must contain the team solution;

(ii) the leader is committed to his declared strategy. This could
be the result of a binding contract, an institutional arrangement
or the minimization of a long-term loss.

Of course, this last possibility (which might be introduced
through a reputation mechanism) cannot be explored by using static
games. Therefore, the next sections will discuss the CLS solution

for repeated and dynamic games.
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3. REPEATED GAMES

The simplest way of introducing a multi-stage control problem is
to assume that the game between the policy-maker and economic
agents is repeated a finite (or infinite) number of times. Each
stage depends on the previous ones only as far as the players are
not memoryless, i.e. the information set at time t, where

1l £t £ N and N £ « defines the lenght of the game, contains the
decisions of the players in the previous stages.

A multi-stage framework gives us the possibility of providing new
insight into the credibility problem. In the previous

section we have shown that the ability to raise threats can
greatly reduce the leader's loss, provided that the follower is
convinced that the leader is really committed to his threat if the
circumstances arise in which he claims he would use it. However,
we have seen that the action following from the execution of
threats is generally not optimal with respect to the leader's loss
function at the time of their realization. If the game is repeated
N times, however, the leader may find it advantageous to carry out
his threats in the first stages of the game in order to induce the
follower to adecpt the desired strategy in the following periods.
In other words, the punitive strategy, though irrational in a
single play of a game, may well be rational in repeated play. The
reason is that =z carried-out threat enhances the leader's
credibility in doing the apparently irrational thing in a single
play so that, over the long run, the leader may develop a

sufficiently fearsome reputation to deter future undesired



actions by the follower, Thereby, while losing in the short run,
the leader can gain over time. This argument, however, can be
shown to be correct only under special assumptions.

Let Vi = E(W;(s1,s5,8)], i = 1,2, be the players' loss and let
(sl*,sz*) be the leader's desired Strategies. Suppose (sl*,sz*)e
IRTP. The inducibility of (s;*,s,*) implies

*

(3.1) Voo < VP

where Vi*, i=1,2, is player-i's loss when the solution of the
game is (sl*,sz*) and Vip, i=1,2, are the losses when the
leader's threats are actually carried out. Furthermore, (S1,55) is
the solution of the game when the follower assumes that the
leader's reaction will belong to his rational reaction set at any
stage of the game, i.e. Si1 € Ry(s;y) for any S; € Sy. The relative
losses are (V,¥,).

The normal form of the game can be described in the following way.
The follower can choose between the leader's desired strategy *
and his optimal strategy S; when he does not think the leader is
committed to carrying out the announced threats. The follower will
adopt sl* if he believes the leader's threats. He will choose s

otherwise.

In contrast, the leader's reaction is sl* whenever Sy = sz*, but
the leader can chcose between his punitive strategy s1™P and his
single-play rational strateqgy Ei, when Sy = §2. The following

matrix describes the outcomes of the game



(3.2) Follower

* -—
_Sz 52
Leader gl I Vl* ,V2* \-fl ,-\72
S ,mP f / v,P,v,P
sl* if sy = sz*

where §) € Ry(s;) and §; =

§1 if 52 = Sz

Equation (3.1) and the definition of S, imply:
(3.3) —\72 SVZ* SVZP

Furthermpre, in the previous section we have shown that the

leader's threats are not credible if
(3.4.1) T’l <le

Therefore, (3.4.1) and the definition of desired strategies (team

solution, if possible) imply:
(3.4.2) Vl* < -\71 < le

Inequalities (3.3)-(3.4) imply that the dominant strategy for the

leader is §] so that the solution of the game is (S1,S5). Indeed,

when the leader plays §1, the follower's dominant strategy becomes
52. This solution, obtained by recursively eliminating any

dominated strategy, is called the d-solution by Moulin (1981).
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Therefore, we have proved again the main result of the previous
section. However, when the game is repeated N times, it can be

argued that it pays to the leader to loose ViP - V; in some early
stage of the game in order to get Vi - Vl* in the following

periods. This argument is based upon the assumption that the

leader establishes his reputation by punishing the follower so

that in the following periods the follower will never choose a
strategy which differs from 52*. However, if the game is
deterministic, this argument is not correct. The structure of the
game is indeed equivalent to the Selten's Chain Store Paradox. It
was proved by Selten (1978) that the only perfect equilibrium of

4 game described by the normal form (3.2) is ($1,55) at each stage
of the game. The proof starts from the last period by showing that
at t = N the leader has no incentive to punish the follower when

SoN % SN* since no remaining period exists where the leader can
QEt'71 - Vl*. Therefore, at t = N we surely have SN = Spyy- But then,
at t = N - 1, the leader has no effect on the last stage (syy = Soy) .
Therefore, at t = N - 1, we surely have sp;y_1 = Syy-71. This

argument can be repeated at each stage, thus proving that
{(Elt,gzt); t = 1...N} is the solution of the repeated game. This

is the unigque perfect Nash (and Stackelberg; see Tirole, 1983)

equilibrium ¢ the game.

However, recent papers by Rosenthal (1981), Kreps-Wilson (1982a},
Milgrom~Rober—s (1982), have shown that other solutions of the
game can be c=termined when some uncertainty is introduced into

the model.

Let us rewrits <the normal form of the game in the following way:
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Follower

(3.5) sy 55
— * —
A Vl - Vl , O o, V2 - Vs
s1. | -mZmtT e =~
Leader Vzp -V, Vzp -V,
s1™P Vi - VP vt - VP
/ VoP - T, VP - ¥,

where inequalities (3.3) and (3.4) have been used to transform the
normal form (3.2) defined by the players' losses into the normal
form (3.5) defined by the players' payoffs. The positive quantity
V2P - Vz > 0 has been used to normalize the pavoffs of each
player.

Furthermore, let us assume assume:

A.l1 The follower is uncertain whether the punitive action will be
carried out at stage t of the game. Since the leader will punish
the follower only when le < §1, an equivalent assumption is that

the follower is not certain about the payoffs of the leader. (6)

A.2 The CLS strategy does not satisfy condition (2.17). In other
words, the strategy that the leader wants the follower to adopt

does not coincide with Ss.

These assumptions and the normal form (3.5) imply that the results
derived in Kreps-Wilson (1982a) can be applied to determine under

what conditions the CLS solution is actually a possible solution



of the game. The following inequalities are indeed assumed to

hold:
Il. Vl - Vl* 2 0 by definition of desired (team) solution;

I2. VZP - V2* > o by definition of inducible region;

I3. 1 > ====--- == = b > 0 by assumption A.2 and the definition of

inducible region;

I4. V £ v¢P by assumption A.1l.
>

By defining a = (Vl - Vl*)/(Vlp - Vl), the game can also be

described in the following way:

Follower
k4 —_—
52 Sz
Leader Ql l a, o0 0, b
s, TP ! / | -1,0b-1

which coincides with the normal form of the game analysed by
Kreps-Wilson (1982a) where a > 0 if A.2 hold and b < 1 if the
inducible region contains (sl*,sz*).

The follower's uncertainty about the leader's payoff implies that,
at each stage t, the follower assesses a probability p¢ that the

leader's loss function is such that V;P < V;, so that the leader
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will carry out his threats. At stage t + 1, Py will be revised on
the base of the leader's decision at time t. The standard Bayes'
rule is assumed to be used to compute pi.q-

Furthermore, let & be the initial probability that the leader
finds it profitable to punish the follower when s, # sz* at t =1
(i.e. p; = &) and assume that both players remember the moves of
the game, as the game progresses. Therefore, we are dealing with a
game with imperfect information and perfect recall (see
Kreps-Wilson, 1982a).

An equilibrium concept which is analogous to Selten's perfect
equilibrium but which takes into account the uncertainty

introduced into the model is the sequential equilibrium described

by Kreps-Wilson (1982b).
Therefore, we want to determine the sequential equilibrium of the

game (3.5). The function P+ is defined by the following four

conditions:
(1) If spp = sp”, at stage t, then pgy; = Pr-

(11) 1If sp¢ # SZt*, Pt > 0 and the leader's reaction is

s1t = s1¢™P.

Then py4p = max(bN't, Pl

(11i1) If s,y # sp¢" and either S1t = S1¢ or pr = 0,

then peygp = 0.

(iv) pp =6



26.

Given this recursive definition of Pt, the following proposition

can be proved:

Proposition 5: Suppose the game is characterized by assumptions

A.l1 and A.2 and the lenght of the game is finite. Then, the CLS

strategy

sl* if Sy = sz*
slcls =

s1™P otherwise

where (sl 'S) *) € IRMP can induce the follower to adopt sy = 52
at any stage of the game 1f and only if & > b. Furthermore, if

85 > b the sequence {Slt = Sl ' s2t =82 ;t=1,...,N} is a
sequential equilibrium of the game and the CLS strategy is
credible. |

Proof: From Kreps-Wilson (1982a), Proposition 1, we have that Pt
> bN't~implies Sp¢ = SZt*. Furthermore, 1.2 implies b < 1 and & >
b is necessary and sufficient for Pt > BNt at any t = 1,2,...,N.
Therefore, Sy = SZt* for ¢t = 1,2,..,,N. The leaders's conseguent
rational reaction is Si1¢ = Slt* at any t = 1,2,...,N so that the
sequence {Slt*,SZt*; t=1,...,N} constitutes a seguential
equilibrium which, by definition, cannot be based on non-credibile

threats (see Kreps-Wilson, 1982b).

An immediate implication of Proposition S is the following:



Proposition 6: Suppose A.l and A.2 hold. Then, if & > b and the

inducible region contains the team solution of the static game:
(i) the leader can achieve the absolute minimum of his
multi-stage loss function;
(1ii) the leader's CLS strategy is time-consistent.
Proof: Define s;* = s1%, s,* = s, and apply Proposition 5.
Then at any stage of the game the leader achieves the minimum of
his loss function. The time consistency of the CLS strategy

follows from Proposition 3.

For any & < b other sequential equilibria can be determined by
using the leader's strategy and the follower's strategy described
in Kreps-Wilson (1982a). (7)

However, these other sequential equilibria may be characterized by
So¢ F SZt* at some t, so that it is impossible for the leader

to achieve the desired solution at any stage of the game. This
implies that the CLS strategy looses its most appealing property,
i.e. the absolute minimization of the leader's loss function.
Consequently, either the CLS strategy becomes time-inconsistent or
it may not be the leader's optimal strategy. In contrast, when
Proposition 5 holds, the CLS strategy defines the leader's optimal
policy with respect to any other possible strategy, since it
provides the absolute minimum of the leader's loss function.
Therefore the concept of CLS solution of the control problem

is shown to be the best way of computing the leader's optimal

policy if the uncertainty introduced into the game is large enough
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to imply an initial probability of the leader's commitment to his
threats greater than b. In other words, if the leader's reputation
is good enough (& > b), then hie announced policy will be credible,
Pareto optimal and time-consistent.

Let us examine more carefully the condition & > b. Ii can be

written as

(3.6) R —

SO that it will be more easily satisfied when vyt - V, is small
and Vzp - Vz is large, i.e. when the follower's relative loss

from accepting the leader's desired strategy is small and the
follower's relative loss when the leader's threats are actually
carried out is large.

Finally, we want to emphasize that (3.6) is necessary for the
leader to achieve with certainty his absolute minimum loss only if
N < », It is indeed pPossible to prove (see Kreps-Wilson, 1982a;
Milgrom-Roberts, 1982) that if N = =, for any 6 > 0 the sequential
equilibrium of the game (3.5) is determined by {(s1¢",85¢%); t =
1,...,N)}.

Therefore, when the game is played an infinite number of times,
the uncertainty which must be introduced into the game for the
leader's cLS Strategy to be credible can be very small. In
contrast, if N < «», condition (3.6) must hold. These conclusions

will be generalized to dynamic games in the next section.



4. DYNAMIC GAMES

The previous theoretical framework can easily be generalized to

dynamic games. Therefore, the i-th player is supposed to minimize:

T-1 . .
(4.1) E[Wij(1,¥1,X1,X3)] = E[-El gt (Ve X1e.%X2¢) + gpl(yp)]
t=

i=1,2

where the first argument of the function Wi indicates the first of

the planning periods, subject to the dynamic system:
(4.2) Yt+1 = f(yt,Xlt,th) + ét t = l,...,T

where xj = [Xj7,...,%X{p-1], 1 = 1,2, and &+ is a vector of
serially uncorrelated random variables.

Again we assume that the leader declares his strategy first, but
he acts only after having known the follower's action (or the
effects of this action). This assumption is particularly plausibile
when dynamic games are considered. The CLS strategy may indeed
imply a punishment from time t + 1 on, any time the follower does
not adopt the leader's desired strategy at time t.

The leader will therefore try to achieve the absolute minimum of

his loss function by using the optimal strategy

* . _ *
X1¢ 1f Xp¢-1 = Rpg-1
(4.3) s1¢Cls =

N *x
X1¢™P if xppo1 = Xpo1



where {xlt*,XZt*; t=1,...,T-1} is the team solution of the game
and {x1¢™P; t = 1,...,T-1} is the punitive strategy determined by

solving

(4.4) min max E[Wz(l,yl,xl,xz)] t=1,...,T
X2t X1t

s.t Ye+1 = f(Ytpxlt!xzt) + E’t

The solution of this problem is a function P(1,y1) so that the

inducible region can be defined as

(4.5) IRTP = {(x7,x;): E[Wo(t,¥¢,%X1,%7)]1 < B.JP
for t = 0,1,...,T-2}

where B."P is defined as

(4.6) B¢™ = min E[gp?(yy,Xq¢, %) + P(t+l,Ye4q) ]
X2t

In other words, the follower will verify at any time t if his loss
can be reduced by choosing Xop = x2t*. If this is the case, the
leader will use his punitive strategy from time t + 1 on.
Therefore, the sequence {B"P; t = 0,1,...,T-2} defines the
inducible region for the dynamic game (see Tolwinski, 1983).

It must be emphasized that in a deterministic setting the

follower's decision at the last stage of the game cannot be



influenced by any threat, so that at the last stage of the game
no policy can be induced.

A common assumption is to exclude any follower's action at the
last stage of the game (Basar-Selbuz, 1979)(8) or to impose some
restrictions on the leader's loss function (see Tolwinski, 1981).
However, these assumptions affect the effectiveness and not the
credibility of the CLS strategy. Indeed, they can be used to show
that the leader's CLS strategy is effective even in the last stage
of the game, so that the leader can achieve the absolute minimum
of his loss function. However, Selten's argument can again be used
to show that no threat will be carried out in the last period, so
that in all the other stages of the game the follower will choose
a strategy which differs from the leader's desired strategy.
Furthermore, the credibility of a CLS strategy for dynamic games
is related to the type of strategy (linear, nonlinear, continuous,
etc.) which is adopted by the leader. Let us consider, for
example, the solution of the CLS problem provided by Basar-Selbuz

(1979) and Tolwinski (1981). The Basar- Selbuz CLS strategy is
defined by:

(4.7) 216918 = x3¢% + Pelye - Fo) t=1,...,T-1

where ¥, = f(Yt-lfxlt-l*rX2t-1*) i.e. ¥ is the state at time t if
both decision-makers used the desired strategies at t - 1. the
solution of the CLS problem is therefore a seguence
{P1,P3,...,Pp.1} such that (xl*,xz*) € IRMP, Basar-Selbuz (1979)

provide the solution for general linear quadratic control



problems. However, (4.7) implies that if x5y # X5  at any t, then
in general we have Yy # §j for j > t. Therefore the follower will
be punished forever once a deviation, however unintentional, is
observed, even if he returns to xzi* for i > t. This type of CLS
strategy is not likely to be credible unless xltCls belongs to the
leader's rational reaction set for any X2¢ and any t. (9)

Indeed, if this condition is not satisfied, when the payoff from
establishing a reputation is high (the first stages of the game) ,
the cost of carrying out the announced threats is also very high
(the punitive strategy lasts for all future periods). In contrast,
when this cost is low, the advantage of establishing a reputation
is also very low (few periods remain for the leader to get his

desired solution).

Let us consider now Tolwinski's solution. His CLS strateqgy is

defined by
(4.8) X1¢S18 = %10 * + helye - T t=1,...,T-1
where hy is a nonlinear function with h{(0) = 0 and ?t is defined

as V¢ = f(yt_l,xlt_l,XZt_l*). In this case, as long as Xjp_q =
XZt—l*' Ye = Y regardless of whether or not Xig-1 = xlt-l*' Thus,
if the follower acted improperly for whatever reason at t - 2 but
resumes the desired decision at t - 1, then the leader will only
puniéh at t -1 for one stage of the game.

Therefore, Tolwinski's sStrategy is more likely to be credible
since at any t < T the leader can compensate his punishment loss

with the payoffs he can obtain, in all future periods, from

Ga

o
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establishing the credibility of his threats. (10)
Furthermore, by using Tolwinski's strategy, the analysis of the
previous section can be repeated simply by adding a time index to
the losses Vi*, Vi, ViP. Therefore, if the conditions given by
Kreps-Wilson (1982a) are satisfied for any t, where bN-t ig
T . : *

substituted by i=t$l b;, and b, is defined as b, = (Vg -
V31)/(ViP - Vi), then the CLS strategy is credible and attains
the absoclute minimum of the leader's loss function. However, the
deterministic structure of the game cannot be maintained. The
conclusions derived from Proposition 5 can be applied to dynamic
games only if some unceratinty about the leader's pavoff is
introduced into the model. How this uncertainty affects the
solution of stochastic dynamic games is a matter to be
investigated. The general solutions of the CLS problem provided by
Basar-Selbuz (1979) and Tolwinski (1981) can be applied only to
linear quadratic deterministic dynamic games and few attempts to
solve stochastic dynamic games have appeared in the literature
(see Ho-Luh-Muralidharan, 1981; Chang-Ho, 1981 and Chow, 1981).
Summing up, we can conclude that three major ingredients are
necessary to determine a credible and effective CLS strategy:

(1) The team solution (xl*,xz*) must belong to the inducible
region, otherwise the CLS strategy is time-inconsistent.

(ii) Either the leader has a reputation such that the

probability of his commitment to his announced threats is high or,
if it is low, the time-horizon is infinite.

(1ii) The punishment for any follower's deviation from the



desired strategy must last a finite number of periods, and the

loss for the leader must be finite.

6. CONCLUSION

This paper has tried to achieve several goals: first, a new
interesting solution of the control problem has been presented and
its main features have been discussed. This solution, called
Closed~-Loop Stackelberg solution, is based on an optimal
announcement strategy so that a credibility problem arises.
Therefore, this paper has also shown under which conditions the

- optimal announcement is credible. Static, repeated and dynamic
games have been considered.

However, several extensions of the results contained in this paper
should be provided. For instance, a general CLS solution for
stochastic games has not been provided (see Chang-Ho, 1981, for a
first attempt) and the new problems arising when multi-level games
are considered have not been examined (see Luh-Chang-Ning, 1984).
Furthermore, more effective CLS strategies can be determined when
two or more followers are intrbduced into the game, so that the
leader can exploit their interaction in order to achieve his team
solution (see Chang-Ho, 1983). Finally, several Problems related
toc the information structure of the two pPlayers have not been
considered. If, for example, the follower's strategy is not
observable by the leader, who must therefore induce the follower
to reveal his actual decision, then the CLS Strategy becomes more

complex and a two-sided credibility problem must be solved (see

Ho-Luh-0Olsder, 1982).
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FOOTNOTES

(1) See, for example, Basaz-Selbuz (1979), Tolwinski (1981,
1983), Chang-Ho (1983), Chang-Luh (1984), Basar (1979),
Ho-Luh-Muralidharan (1981), and Luh-Chang-Ning (1984). It must be
stressed that the CLS problem for dynamic games does not have a

simple solution. See Simaan-Cruz (1973).

(2) This is not a new idea in the economic literature. See,

for example, the issue of the Review of Economic Studies (1979)

devoted to the "incentive comptability" problem and the book by

Green-Laffont (1979).

(3) For the sake of simplicity, we assume that the minimum

problem (2.2) has a unigque solution.

(4) This cheating solution, which can be considered a
particular, time-inconsistent version of a CLS strategy, has been

studied by Hamalainen (1981).

(5) Luh-Chang-Chang (1984} define a policy as
time~inconsistent when it does not satisfy the principle of
optimality along the equilibrium desired path (s;%,s,%) and define a
policy as not credible when it does not satisfy the principle of
optimality off the optimal path. These definitions are consistent

with our analysis.



(6) A similar assumption is used by Kreps-Wilson (1982a) in

order to provide a solution of the Chain-Store Paradox.

(7) The multiplicity of sequential equilibria that can be
determined may be considered a limit of this solution concept, if

no other criterium is provided that enables us to choose between

different equilibria.

(8) Basar-Selbuz (1979) also provide the CLS solution without
assuming the follower does not act at the last stage of the game,

but, in this case, the team solution is not attained.

(9) This condition is equivalent to the conditions required

by Luh—Chang-Chang (1984) for a cLs strategy to be credible. See

slso footnote 4.

(10) However, Tolwinski's solution is highly nonlinear as will

be shown later on.
(11) n is the dimension of the state vector Vi

(12) However, an explicit discussion of the existence of a

non-empty inducible region is not provided by Basar-Selbuz (1979)

and Tolwinski (1981).
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