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ABSTRACT

This paper analyses and generalizes two methods for estimating
time-varying parameter models: the regression method and the
Kalman filter-innovation correlation method. Identification
conditions for the unknown parameters of a general time-varying
model are provided and the two methods are shown to imply the
same identification conditions. Furthermore, an explicit esti-
mator is derived for all the parameters of the model, ineluding
the initial values of the time-varying parameters and the co-
variance matrices of the model. The properties of the estimates
are also analysed. Finally, the relationship between observabili-
ty and identifiability of the time-varying parameters is explored

by using the smoothing equations.




INTRODUCTION

In recent years many papers have been written on the estimation of
time varying linear econometric models.l/ With a few exceptions, these
studies make use of strong prior information to solve identification and
estimation problenms. Furthermore, even when the identification and esti-
mation of all the unknown parameters of the model are explicitly considerea,
different, apparently unrelated approaches have been proposed (see, for
example, Swamy-Tinsley, 1980; Pagan,1980). 1In particular, two general me-
thods for estimating time;varying parameter models can be identified in
the econometric literature: the regression method and the Kalman Filter
method. A brief description of the two methods is useful in order to
understand their differences and similarities.

| The most general results on the estimation of time-varying parameter
models based upon the regression method are provided by Swamy-Tinsley(1980).

In that paper the following model is considered:
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12,8+ u, Z, = diag(z1t ces zkt)
u, Vv ARMA (r,s)

where ¥y is the dependent variable, Xy and {Zit; i=1 ...k} are row
vectors respectively of k and {ﬁi; i=1 ...k} fixed explanatory variables,
Bt is a (kx1) vector of time-varying parameters, and § is a (px1) vector

of constant parameters, where p = Z?

_1 D: . Furthermore, r and s are
i=1 -1

the known parameters defining the order of the ARMA process representing

the structure of the stocastic process {ut} . Identifiability conditions




and estimation equations for all the unknown Parameters of the model are

provided by Swamy-Tinsley (1980) by using the following approach: first

apply OLS to:

then use the residuals obtained from this regression for estimating the
Structure of the ARMA process {ut} and re-estimate Ve = thtG + v, by GLS.
This is the basic framework of the regression method.

The Kalman Filter method, in contrast, considers the state-space
representation of the econometric model and uses the Kalman Filter to
derive the innovation sequence {mt} (see Appendix A) from which the innova-
tion likelihood can be determined and then maximized in order to obtain
estimates oﬁ phe unknown parameters of the model (see Chow, 1983, for a
detailed analysis of this épproéch) Identlflablllty condltlons and esti-
mation equatlons for all the unknown parameters of the model by using the

Kalman Filter method are provided by Pagan (1980). He considers the fol-

lowing model
Y. = x B +¢ €. " NID(O 02)
t tt t t ?
MILIB, - B) = wu u, "~ NID(0,Q)

r i ]
= Zi_IM.L1 Tepresents the autoregressive Structure of the

where M(L)
statlonary Stochastic process which is supposed to describe the dynamics
of the time-varying parameter vector B Furthermore, B is a vector of

constant parameters and {Et} and {ut}’are supposed white noise.




A particular version of the Kalman Filter approach was provided
by Mehra(1970) where, instead of numerically maximizing the innovation
likelihood, it is proposed to derive the estimates of the unknown pa-
rameters of the model from the autocovariance structure of the innova-
tion sequence, which cannot be considered a white noise sequence when
the covariance matrices and the transition matrix of the system are
unknown. However, only time invariant state space form (and the state
space form implied Ey Pagan's model is time invariant) are considered
by Mehra(1970).

The brief outline of the two main methods for estimating time-varying
parameter models that we have presented above gives us the possibility to
provide a precise description of the results contained in this paper.

In particular:

(1) Both the regression method and the Kalman Filter method will be
used to derive estimators of all the unknown parameters of the following

time-varying linear econometric model:
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(0.1) Vi xB, + £, e, v NID(0,0%)
(0.2) Bt = MBt-1 + ZtG tug | z, = diag(z1t...zkt)
(0.3) ug = AL)u, o+ v, vy NID(0,Q)

where M is a (kxk) matrix representing the autoregressive structure of
the time-varying vector Bt and A(L) = Z§=1AiLi—1 represents the auto-
regressive structure of the stochastic process {ut} . It is possible to
show that the model (0.1)-(0.3) includes, as particular cases, the models
considered by Swamy-Tinsley(1980), Pagén(1980),-Chow(1983), and it can also
be considered general enough to include most applied econometric applica-
tions of time-varying parameter models.

Identifiability conditions and estimation equationswill be provided
for all the unknown parameters of the model: g, {Bt; t=0,1;‘.T}, 02, Q,

M, (Ai; i=1...s).




(i1) It will be shown that the identifiability conditions derived
by applying the regression method to the model (0.1)-(0.3) coincide with
the identifiability conditions derived by applying the Kalman Filter pe-
thod. Therefore, Swamy-Tinsley's and Mehra's results will be generalized
and compared.

(1ii) The theoretical properties of the estimates obtained by using
both methods will be explored. In particular, by using the results
provided by Magnus(1978), it will be shown that the regression method
provides consistent and asymptotlcally efficient estimates of 8 and §
and consistent estimates of 0 y Qy when M and {A } are supposed to be
known. Otherwise, all the parameters of the model are consistently esti-
mated. The same conclusion will be prgved to hold when the Kalman filter
method is used.

(iv) By using the regression method, an exact estimation equation for
the initial conditions BS and PO will be derived when BO is assumed to be
BO N N(BS’PO)‘ Usually, either 83 and PO are estimated by using an ap-
proximate estimation equation (see, .g. Chow,1983) or the initial condi-
tions are assumed to be known.

(v) By using the Kalman Filter method, the relationship between the
observability of the system and the identifiability of the parameters
included in the state vector (see Appendix A) will be examined, and it will
be shown that the identification condition and the observability condition
coincide only if the smoothing equations are used to estimate the state
vector.

(vi) The innovation correlation method proposed by Mehra(1970) will be
generalized to time-varying systems and then used, together with the Kalman

Filter, for estimating the unknown parameters of the model.




The plan of the paper is the following: in the first part, regres-
sion methods will be analysed and the properties of the estimates obtained
by performing a three stage least-squares algorithm will be examined.
Furthermore, inequality constrained estimators will be proposed for the
covariance matrices oZI, Po, and Q in order to guarantee the positive
semidefiniteness of those matrices.

The second part of the paper will consider the Kalman Filter method
and will show how the parameters of the model (0.1)-(0.3) can be estimated
by combining the Kalman Filter with the innovation correlation method.

Furtehrmore, identifiability conditions and properties of the estimates

will be analysed.




PART I: REGRESSION METHODS

This part of the paper deals with a simple algorithm, based on
regression methods which is shown to be appropriate for estimating dif-
ferent types of time-varying parameter models. Restictions for the co-
variance matrices of the model to be positive semidefinite will be pro-
vided and the properties of the estimates will be discussed. When pos-
sible, both the heteroscedasticity structure and the autocorrelation struc-
ture of the residuals will be used to identify the unknown elements of
the covariance matrices of the model, the initial conditions and the
transition matrix of the time-varying parameters, and the autocorrela-

tion structure of the residuals.

A. A restricted model

We consider the general specification of the time-varying parameter
model deseribed in the introduction (egs. (0.1)-(0.3)), but we assume,
for the sake of simplicity, that the initial parameter vector BO is fixed
so that PO = 0. Furthermore, Qe assume the matrix M to be known and the
disturbance vector uy to be independently and identically distributed.

Therefore, the model is:
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(1.1.1) Vg = xBp ¢t £ £y v NID(0, o)

(1.1.2) Bt MBt + th +u

N u, " NID(O,Q)

The previous restrictive assumption will be relaxed in the next
sections. The unknown parameters of the médel are the coefficient vector

BO and § and the covariance matrices 02 and Q.



In order to apply the three stage regression method that will
be described below, equations (1.1.1) and (1.1.2) have to be combined
and theiwritten as a function of the initial parameter vector BO and the
time invariant parameter vector §&.

Stacking the T observation we have:

(1.2) LY = XB* o+ €
where
B*=B1 e = g, X = X,
. 0
By 1 ° .XT

Furthermore, the stacked equations (1.1.2) can be written as:
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* Then, the equation describimg the dynamics of the T time-varying para-

meters can be written as

which, substituted into (1.2), gives

(1.3)

B* =

MO?O + FZ8 + Fu

y = XMOBO + XFZ6 + XFu + ¢

Suppose M is known (the case where M is unknown will be considered later);

then, by applying OLS to (1.3) we obtain & = y - XM B, - XFZ§

consistent estimate of w under suitable conditions (see Theil, 1971, pp. 386-

387). This is the first step of the three-stage regerssion algorithm.

which is a

In particular, (1.3) provides consistent estimates of § , BO and w,

if the matrix (1/T)W'W approachées a positive definite matrix as T goes to

infinity, where W ==[XMO . XFZ]. In order to determine the sum of squares

to be minimized in the second step of the algorithm, the covariance matrix

of the disturbance vector w must be computed.




Since w= XFu +¢, we have:

(1.4) Q= &1+ XF(I 8 QF'X?
- 2 s ] T-l
= o1+ lex1 leM'x2 . leM 'x%
x,MQx x, MQM*HQ)x] ... xZMQMT_l'x' + x2QMT"2'x'
' T-1 . )
xTMT—lei .o %ol 2 wiQ0rh) 'ix,

— i=0
Let us therefore stack the T(T+1)/2 elements of the upper triangular

i-1
part of Q into a vectorS?ah. Furthermore, define M(i) = I (MY & MJ)
j=0
1.2, ...T and
MX(i) = _Xi ] i=1, ... T
a1t
T-1i
| xpt T

where MX(i) is a (T-i+1) x k matrix.

By an appropriate vectorization of the upper triangular elements of Q ,

we have:

2 3+
Q.= %17,0 + MX(1? 0 ] (Ikﬁx 0 [Mp) rg

i
g 0 MX(T)|

T )| 0 I @ x [M(T)

k

where TQ* = vec(Q), ' is a known selection matrix which maps the k(k+1)/2
unknown elements of Q (defined by Q*) into vec(Q) and Qi is a (T-1+1) vector
of which the first element is 1 and the remaining elements are zero.
By pbvious definitions, the above equation can be rewritten as
2

(1.5) Q= 20"+ MO 2

[8, : M X MxT]6x = nihe* g1 = [0 1 Q*r]
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Therefore, after having obtained Q = ww', the following estimator can

be derived:
A _ ah, _ah.-1, _ah, »
(1.6) o = LT Y g,

Notice that, if the sample is not very large, the inequality constrained
estimator must be computed in order to assure the positive semidefiniteness
of the covariance matrices 02 and Q. If Q is assumed to be diagonal, the
Dantzig-Cottle algorithm can be used. 2/

Therefore,'under the conditions stated by Liew(1976), (1.6) provides
consistent estimates 82 and 6 which can be used to replace 02 and Q into (1.4)

so that ﬁ can be obtained and the GLS estimator

A

(1.7) B
§
can be computed in the third step of the algorithm.

ol = wdmThegy

Summarizing the previous analysis, the following three-step algorithm

has been proposed:

Step 1: regress y on XMO and XFZ and compute ¢y = y - XMOéO - XFZ3.

®
Step 2: compute ﬁ = &G' and regress ﬁah onII;h where ﬁah is a vector containing
the elements of the upper triangular part of §.
Step 3: substitute 32 and § obtained in Step 2 into (1.4) and compute the GLS

estimator of BO and §.

The properties of the estimates obtained by using the previous algorithm
can easily be studied by appliyng the results presented in Magnus(1978). First
of all, it is necessary to check the identifiability of the parameters of the
model by analysing the structure of the information matrix defined by the log-
likelihood function of the model (1.3). From Magnus (1978, Theorem 3) we have:
(1.8.1) I =[w'n‘1w 0

0 Ige
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where I denotes the information matrix and

. _1 -1
(1.8.2) 3, = &l ) o g q) el )!

Threfore, since the parameters in § are independent from those in 6%,

a first identification condition is

(1.9) rank(W) = k+p T > k+p
k
z

where p = ﬁi is the number of parameters contained in the vector & (see

Lemma 1 inlg;gnus,1978).

Furthermore, Assumption 5 and Lemma 1 in Magnus (1978) imply that the
vector 6% is also identifiable if and only if the k(k+1)/2 +1 vectors 3V809_1/302,
{EVecQ—T/Sqij, i=1,...k; j=1,...k} , where Q = {qij} » are linearly independent.

By using Gabrielsen's theorem (see Gabrielsen,1978), the above condition

is satisfied if the following rank condition holds:
h .
(1.10.1) rank(I.") = rank[f) I M X M¥T] = k(k+1)/2 + 1

Given the structure of the regression (1.5), (1.10.1) is indeed sufficient for
8% to be a consistent estimator of 6%, thus implying the identifiability of 6*.
Notice that if the parameter vectors 80,6 and 8% are required to be identified
for any T, the characteristic roots of the matrix M must be less than 1 in abso-
lute value, so that the maximum eigenvalue of the covariance matrix § has an
upper bound and the information matrix (1.8.1) is positive definite for any
T (see Theorem 2 in Pagan,1980).

The asymptotic properties of the final estimates of 6 and BO can be derived
by applying Lemma 2 in Magnus(1978). Since by (1.10.1) and the convergence in

probability of Wy to uk the estimates of the covariance matrices 021 and Q are
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consistent, then the iteration of the three-step algorithm Previously descri-
bed yields, upon convergence, a consistent root of the maximum likelihood
equations derived from the model (1.3). This root is the unique maximum like-
lihood estimator (see Lemma 2 in Magnus,1978). Since, under the usual assump-
tions, the ML estimator is consistent and asymptotically efficient, we can con-
clude that the final GLS estimates are also consistent and asymptotically ef-
ficient.

It must be noticed that the same conclusion could be obtained by using
the block diagonality of the information matrix and theorems 1 and 3 in Pagan
(1984). However, Magnus's results hold even when the information matrix is not
diagonal, if the three-step algorithm is iterated until convergence.

The results obtained in this section can be compared with the results ob-
tained by followingidifferent approaches. First of all, in the next section
it will be shown that the identification condition (1.9) coincides with the
observability of the system derived from the model (0.1)(0.2). Furthermore,

two particular cases of the identification conditiam (1.10.1) can be considered.

Let us first consider the T diagonal elements of 2, so that the

heteroscedastic structure of the disturbance vector w is used to estimate

02 and Q.

From equation (1.4) , we have:

mll = ic-2 + X, 8 x M(1) |[Tro*

wTT XT 8 Xp M(T)

—

which, by obvious definition, can be written as:
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2
o = 1%+ wrgs

[1 0 Wher)ox

h

T g%

X

Hence, a sufficient identification condition is:

(1.10.2)  rank (1) = 1+ k(k+1)/2 T> 1+ k(k+ 1)/2

which coincides with the condition derived by Swamy-Tinsley (1980) when
M=0or M=1. Therefore, condition (1.10.2) generalizes Swamy-Tinsley's
results to a more general model and condition (1.10.1) shows that Swamy-
Tinsley's approach provides only a sufficient condition when M # 0.

Finally, we want to.consider another particular case of equation
(1.5) . In the second part of this paper, we will derive identification
conditions for 02 and Q by using the Kalman Filter and the innovation
correlation method (see Mehra, 1970).

These identification conditions can be shown to coincide exactly with
the conditions derived from the last column of (1.4) , i.e. when only the
T elements describing the autocovariance structure of the disturbance vector
w are used.

Let us therefore consider the last column of the covariance matrix Q.

By an appropriate vectorization, we obtain

_ 2 T-1 _
Qa = | Wyp = 0jo0” + XTM f 3 0 M(1) | vec(Q) =
0
0 xTM Q XT—l
w 1 .
TT | xp 8 %0 | | W(T)
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- o ol 2 = 3n,
= [eT; :u*r] 0" = 3
Q*

where the definitions are obvious.

Therefore, if the equation Qa = Wie* is used to estimate 02 and Q, the

identification condition becomes

(1.10.3) rank (1) = 14 k(k + 1)/2 T>1+k(k+1)/2

which will be seen to coincide with the condition which is required when
the innovation correlation method is used to estimate 02 and Q.

A final remark is related to the positive semidefiniteness of the
covariance matrix Q. Even in this case, if the sample is not sufficiently

large and Q is not diagonal, the second step of the algorithm must minimize

either

8 h A h a a A a
-(Qh - wxe*)'(Qh - nxe*) or (Qa - nxe*)'(ﬂa - nxe*>

under the constraints for Q to be positive semidefinite, which were

described previously. If Q is supposed to be diagonal, the Dantzig-Cottle

algorithm can be applied.

, . 2 . .
The consistent estimates of 6" and Q obtained in the second step are
then used to obtain ‘consistent and asymptotically efficient estimates of

8 by applying GLS in the third step of the algorithm.



B. Unknown A Priori Distribution of 80.

If 80, instead of being fixed, is assumed to be

(1.11) By = B +v

0 ~ N(0,P)

0 Yo

the estimation algorithm must be modified in the following way:

tuting (1.11) into (1.3), we have:

(1.12) y XMOB0 + XFZ6 + € + XFu + XMOVO

which provides the residuals of the first-stage OLS regression

variance matrix of the disturbance vector w = € + XFu + XMOVO

(1.13) Q = o1+ XF(I @ QF'X' + XM P MIX

substi-

. The co-

is
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which can be used to derive explicit estimators for the unknown elements

. , 2 .
of the covariance matrices ¢, Q and PO. Since we have

.
' - ! 2 r.,?
XMOPOMOX = Xll"fPOM Xl X].MPO(M ) X2 v X].MP

2 2.,
sz PO(M ) X,

T-1., ,
O(M ) 'x

T

T | . | T T Yo ?
xMPM'x) X MPH(M) "k

an appropriate vectorization of the upper triangular part of Q (and the

results of the previous section) provide:

= 2 * Y’
(1.14) Q, = L4007 + M X M*TQ* + M X MI P%

where FO is a known selection matrix which maps the vector Pé

containing




16
the unknown elements of PO’ into vec (PO); Mg, M* and XO have been defined

in the previous section and

M = MeM

v g u%

M 8 M

Therefore, by obvious definitions, we have

- . . = 2 ah
= * = *
(1.15) Q. [, ! MyXMAT MXMIg] | o = m, 0%
Q*
*
F5
which can be used to obtain consistent estimates of 02, Q and PO.
The identification condition is
(1.16) rank (13%) = 1+ K@k + 1 T> 14 k(k+ 1)

After having obtained 82, 6 and ﬁO from (1.15) where ﬁah has replaced Qah’

GLSJgan be applied to (1.12) in order to obtain, under the usual assumptions,
consistent and asymptotically efficient estimates of 8 and 83.

Even in this case it is possible to select only .T elements of the
matrix 2 in order to obtain consistent estimates of 62, Q and P.. If the

N 0

diagonal elements (the heteroscedastic structure) of Q are chosen, we have

"

2 o . . .h-
10 + wiM*fQ* + wimropg = i wﬁm*r ; wﬁmro]eg

h
0%

0%
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The identification condition becomes
h
rank (no) = 1+ k(k+1)

which is a sufficient condition for (1.16) to be satisfied. If the corre-

lation structure of the disturbance vector w is used, from (1.13), we

have
o, = eT02 + WiM*I‘Q* + wiﬁrops = i w;M*P wf{ﬁr-o]eg
= T8y -
which implies
rank (m9) = 1+ k(k + 1)

‘which is not a sufficient condition for.(l;lé) tovbe satisfied, since
rank (Wiﬁ) < k. Therefore, only if PO is assumed to be diagonal, does the

correlation approach provide consistent estimates of all the unknown

elements of PO.

We conclude this section by emphasizing that the regression approach
that we have just proposed provides consistent estimates of 86 and PO
(i.e. the a priori distribution of 80) instead of requiring these para-
meters to be a priori known. This is important, since in the econometric

literature no satisfactory solution for the initial condition problem has

been provided.
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C. The Transition Matrix M

All the previous analysis is based on the assumption that the tran-
sition matrix M is known. Therefore, in this section we provide a slightly
more complicated algorithm which can be used to obtain consistent estimates
of M. Suppose to sfart the fhree—step algorithm by assuming M = M° where
M° is known and fixed. The goal of the following analysis is to derive an
estimation equation for revising the starting matrix M° at the end of the
first iteration of the three-step algorithm.

In.the previous -section we showed that wo =€ + XFu + XM.v ?s esti-

¢co
mated at the énd of the first step, 6% at the end of the second step and

Al ‘A ~
= - * o
w v XMOBO XFz4

at the end of the third step, where és and & are GLS estimates and depend

. ‘o ) : . .
on the starting transition matrix M°. The fourth step of the algorithm is

the following.

~1 . .
Step 4: Use w to compute a new estimate of { and use equation

1 TNyt 2
(1.17) Q = ‘X(MOPOMO + F(I 8@ QF)X' + ¢°1

in order to derive an estimator for M. Equation (1.17) can be written as

I\l _ .f\2 ~ ~ 1.2 ' s A 1A T..l Yo
2 = "I + XI(MPDM +Q)x1 R xl(MPOM +Q) (M ) Xr
S MILAY T
sz(MPOM +Q)x1
T-1," Ta T Tl 3
LxTM (MPOM +Q)x1 P e . xT(M POM + 'Z MTQM Mx

i=0
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where the previously obtained estimates of PO’ Q and 02 were introduced so
that the only unknown elements are the coefficients of M.

Let us consider the upper triangular part of ﬁl without the main
diagonal elements and define it as ﬁu. By stacking the rows of ﬁu into

a T(T-1)/2 vector ﬁ: and by vectorizing each element of Q° we have:

— ar =
~u - 5 '
(1.18) Qa Nx(l) 0 Ik ] le(;) vec(M')
L0 ND || 1oe x fir-) |
where
Nx(i) = Xi+l i=1, ,T-1
X5 40M
XTMT—:L--l
. P =
and M(i) = MlPO(M '+ T Mdad)! i=1,...,T-1
j=0 :

By obvious definitions, (1.18) can be rewritten as

(1.19.1) QY = (N, M) vec (M') I N* vec (M')
a * £

so that the identification condition becomes

(1.19.2) rank (N%) = k2 1> K2

Therefore M can be estimated by using equation (1.19.1) and the explicit

estimator is given by
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vec(M) = (N*'N*)'1N*'§:

Threfore, when M is unknown the algorithm is based on an interactive
procedure: first, M is assumed known and all the other parameters of the
model are estimated; then, given those estimates, the transition matrix M is
estimated and the interactive procedure is iterated. Therefore, in this case,
even the regression mefhod requires a certain degree of a priori knowledge
in the first iteration of the algorithm (see Todini, 1978, for a similar itera-
tive procedure based upon the Kalman filﬁer). How sensitive the speed of con-
vergence is to a misspecified initial transition matrix is a matter to be in-
vestigated by Montecarlo simulations. Furthermore, since M is consistently
estimated, Lemma 2 in Magnus(1978) can still be used to show that all the pa-
rameters of the model are consistently estimated by the four-step algorithm
described in this section and that they are asymptotically normally distribu-

ted. However, when M is unknown, the information matrix becomes:

I = Wiy W (v 8 1)3W/26]
|
[(3w/38) 1 (v & D) N Toe |
where
Y' o= B} 2 6] ' = [0y : vec(M)']
and 1 1
_ 1 ,9vec O~ dvee”
W, -
+ Gp) (re Dy e 1Y

Therefore, the information matrix is not block diagonal, so that the final
estimates of the parameter vectors Y and 6 can be proved to be consistent and

asymptotically normally distributed, but not asymptotically efficient.
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D. Autocorrelated Residuals

A similar situation arises when relaxing the assumption u, N NID(0,Q).

Assume, instead

(1.20) u, = Alut—l + Azut-_2 + ... + Asut-s + v, v, "~ NID(0,Q)

where the (k X k) matrices Al ves AS are unknown and must be estimated.

Equation (1.20) can be rewritten as

* = * *
ut Aut_1 + vt
where
* = = * =
ut ut A Al A2 As v vt
1 0 0
U otl ' 0 | - I 0 | . 0
and u, = Jui where J = [I 0 ... 0].
Define:
u = u vk = J'v = (I8 JY)v v = v
s s s
1
uT J vT vT !

Let us discuss the simple model presented in section B. We have:

= + t Ss.e.,T
wt Et Xtut s s

and

Q = 021 + X(I 8 J)E(u*u*')(I @ J")X'
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Since
1 ' ' T—Iv
E(u*ux') = I 0 ... 0 J'QJ 0 I A cee A
A I . . O .
. . ., A'
ATl .. A I 0 J'QJ O -~ 1
we can write
2 = o’1+ | x Qx! x QA'x' x,QI (AT y ryegs
1771 177172 1 T
H t \i 1
| szAJ Qx1 x2(A1QA1+Q)x2 .
(1.21) . . . . -
t-1 ' =1 i
X JA J'Qx! . e e X ( Z JA J'QJ(A Y IYx!
T 1 T2, T

Let us suppose to start the algorithm by assuming A = A°. Then, the
residuals &0 can be computed at the end of the first step and  can be
estimated. The upper triangular part of 9} can then be used to derive consis-
tent estimates of 02 and Q, so that consistent eétimates of & can be obtained
in the third step. Then, the residuals &l =y - We can be computed and the
covariance matrix ﬁl can be estimated, where ﬁl has the form described by
(1.21), but 02 and Q are replaced by 82 and Q. The upper triangular part of
ﬁl can then be vectorized in order to derive an estimation equation for A,
so that the initial guessed valué éo can be revised.

Since the algebra is particularly tedious .and cumbersome and follows
the derivation presented in the Previous section for the transition matrix
M, it will be omitfed. ﬁowever, it is important to emphasize that, as in
the previous section, the upper triangular part of ﬁl cannot. be explicitly
solved with respect to A, so that the identification conditions-and the

- o s e .
estimate of A depend on the prior matrix A.. The sensitivity of the final



eétimates of the model to a misspecified starting matrix A° must be
evaluated by Montecarlo experiments. Even if equation (1.21) cannot be
explicitly solved for JA, it provides consistent estimates of the auto-
correlation structure of the random disturbances of the model, and those
estimates can be used to itera£e the algorithm until convergence. A
similar interéctive procedure for estimating JA was suggested by Swamy-
. 2/

Tinsley (1980).

Furthermore, even if it was not always explicitly stated, it is
important to emphasin that when the vector 0* is estimated (in the second

step of the algorithm), the constraints for Q to be positive semidefinite

must always be imposed.
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PART II: KALMAN FILTER METHODS

This part of the paper follows the engineering approach to the
estimation of linear systems and provides identification conditions and
estimation algorithms which aré based on the Kalman filter and the
innovation correlation approach. The structure of the time-varying
parameter model coincides with the structure already examined in the
first part of_the paper, but a different estimation method is proposed.
The properties of the éstimates obtained by applying the Kalman filter

will also be discussed at the end of this part of the paper.

A. Identification and Estimation

We start from the model (0.1)-(0.2), i.e.

(2.1) . Yo = xB, +e, €, ™ NID(0,0%)

(2.2) 8

MB

. ee1 t th + u u, v NID(0,Q)

of which the State-space form is

(2.3) Y. = tht + €,
(2.4) bt = Ftbt—l + Gut
where .
= = =r =
b, B, B =[x :0)] F_ M z, ] G I
ét 0 Ip J 0

Equations (2.3)-(2.4) can be interpreted as the state-space represen-

tation of a system with inputs u, and output Ve where the structure of
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the system is determined>by the fixed matrices Ht’ Ft’ G for any time t.
The constancy of the coefficients § is expressed by the equation

Gt_= 6t—1 while the (n X 1) coefficient vector bt (where n = k + p) is

known as a state vector.

The estimation method is composed of the following steps;

(1) Given some initial values Mo, QO’ og, bo, P0 where P0 is the

covariance matrix of the prior coefficient vector bO’ the Kalman filter
can be applied to obtain estimates of Bt and §. Let us call I: the

O-algebra generated by the observation set {y1 s Y3 Xy oeee X3

' = 1 . 1 : . §
Z) .e- ZT}. Then we let btlj [Btlj . Gth] be an estimate, obtained by

using the Kalman filter and conditional on I?, of Bt and §, where j < t.

J

. . . , 4
The covariance matrix of these estimates is denoted by Ptl 4/
(2) The Kalman filter during its recursions generates the innovation

. t]t—l; t'=1,...,T} which is used to estimate the

autocovariance function C,_ = E(m ,m' .) where m = -Hb Whe
u ce func C;i = Em, t—1> . t n

t t]e-1"

the Kalman filter is not optimal (i.e. when M, Q and 02 are unknown) we

have:

Cit #0 i=20,1,... and t=1,...,T.

Thus the sequence {Cié can be used to revise the initial values of the

2

matrices M, Q,0I, P,.This approach is called the innovation correlation

0
method and has been proposed by Mehra (1970) for constant systems.év
(3) Given revised initial values of the matrices Q, M, 021, PO and

the vector bO’ the previous steps are repeated until convergence, i.e.

until the innovation sequence {mt} is a white-noise process.
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Since the speed of convergence depends on the initial values b., P

0’ "0’

g, QO' Mo, their choice becomes relevant. Furthermore, the final estimates
of the coefficients should be independent of the initial conditions.

As far as bO and PO are concerned, it has been suggested (see Chow, 1981),
to use the first'k + p observations for obtaining an approximate estimate
of bo and Po. Furthermore, it can be shown that under appropriate conditions,é/
the effect of the initial values by, Py vanishes asymptotically. However, when
.the sample is small, no result about ‘the influence of the initial values on the
final estimates of the parameters is available, so that this problem has to be
investigated by numerical simulation (see Carraro-Sartore, 198, for some préli-

minary results).

Let us consider first the estimation of the coefficient vector b

A sequence of estimated values {th =1,...,T} can easily be obtained

by applying to (2.3)~(2.4) the Kalman filter equations described in
Appeqdix A. Turthermore, in Appendix B we show that these estimates
coincide, either when the initial conditions are known or asymptotically,
with the estimates obtained by applying to (2.3)-(2.4) the method of
generalized least squares. This result generalizes Sant's (1977) proof

to a dynamlc system with tlme-varylng transition matrix F . Furthermore,
the proof provided in Appendix B gives us the ‘Possibility of studying the
identifiability of b by ana1y21ng the likelihood of the system (2.3)-(2.4).

Therefore, the follow1ng analysis will use the likelihood proposed by Sant

(1977) in order to show the coincidence between identifiability and obser-~



27

vability of bt (this result was first obtained by Cooley-Wall, 1975).
However, it will be emphasized that a necessary and sufficient condition
for bt to be identified can be obtained only by using the smoothed
estimate of bt' Thistconditiop~will be shown to coincide with the iden-
tification condition (1.9) derived in the first part of the paper.

In order to derive the likelihood function of bt’ let us write the

system (2.3)-(2.4) in the following way:

y = xbt+e-Au t=2,3,...,T
where
= [ = [ i = [ — = -
Yo HZM(Z,t) . €, ' ug
_Yt_ 8 Ht ] Let_ _ut—
A = HlM(l,Z)H HlM(1,3)G ‘e HlM(l,t)G ]
0 H2M(2,3)G C eee HZM(Z,t)G
0 0
0 0 Ht_lM(t—l,t)G
0 0 0 _
FiFiop o By 12
M(i,3) = I i=7]
-1 _~-1 -1 .
Fi+lFi+2 ‘ea Fj i<j
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The log-likelihood function of model (2.1) is

(2.5.1) L = const. +-% log ]S-ll —-% tr(y - xbt)'S—l(y - Xbc)
where
S = E(y - xb)(y - xb)' = E(v')

.2 '
O"I, + ACI_ @ QA

Taking the first derivative of L with respect to bt we have:
= = -x'siy - x)
db t

Therefore, it is €asy to see that the coefficient vector bt is globally

identified if and only if

(2.5.2) rank (x'S_lx) = k+p = n

From Theorem 2 in Pagan(1980), we have:

(2.5.3) 0 < le'x < x'S_lx < vy x'x

where Yl and Ym

S-l. Therefore, (2.5.2) and (2.5.3) imply Yy > 0, which is equivalent to

are, respectively, the minimum and maximum eigenvalue of

saying that the maximum eigenvalue of the covariance matrix S must be
finite. If (2.5.2) is required to hold for any t 2k + p, then a suffi-
cient condition for Y, to be greater than zero -is Iki] < 1, where Ai are
the characteristic roots of the transition matrix M.

Furthermore, from (2.5.3), if Yy 0, the condition for the iden-

tifiability of bt becomes
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(2.6.1) rank (x) = n
where
x = | xpytH - le'l(M"t+lzt otz )
xt—lM-l - xt_lM‘lzt
X, 0
— —

We prove now the correspondence between this condition and the

observability of the system, thus connecting the econometric approach

to the engineering literature.
The linear system (2.3)(2.4).18 said to be completely observable at i=1
if and only if there exists some finite time t such that the (nxn) matrix
t

i§1 Mr(1,t)HIH M(1,t) =

1

I(t,1) = = x'x
_ ’ a?

X

is positive definite.

It follows that a necessary and sufficient condition for I(t,1) to be
positive definite is

rank ( x ) = k+p = n

which implies the order condition t > k+p.

This shows the coincidence between the identification condition (2.6.1)
and the observability of the system (2.3)(2.4). However, (2.6.1) is only a
sufficient condition for bt to be identified since we proved in the first part
of the paper that (1.9) was necessary and sufficient for the identification of
bt' Therefore, we want to prove two results: first, (1.9) coincides with
I(T,1) > O, where the symbol " > O " indicates that I(T,1) is positive definite,
and, secondly, we show that I(T,1) > 0 is equivalent to the condition for bt

to be identified when the smoothing equations are used for estimating the state

of the systeﬁ (2.3)(2.4).
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The first result can easily be proved by observing that R'I(T,1)R > 0
if and only if I(T,1) > O, where R is any square non-singular matrix of or-
der n=k+p. Furthermore, rank(x) = rank(xR). Therefore, let us choose R =
M(T,0), which is non-singular if |[M| # 0. Then we have:

T
RI(L, DR =1 I M(1,0)808,0(4,0) > o
o2 $=1 ivi

where we have used M(i,T)M(T,0) = M(i,0), that implies

(2.6.2) rank[xM(T,0)] = k + P

-

By using the definition of x given above, we can write (2.6.2) as:

rankf’x1M x, 2 T = k+p
M2 171
X, ] xz(MZ1+Zz)
x3M
. 7 T-1 1
X (Z Mz, .)
| XM T2y Tt-i7

which coineides exactly with (1.9).

The second results, i.e. the coincidence between the identifiability of
b, from the smoothing equations, the positive definiteness of I(T,1) and the

necessary and sufficient condition (1.9), can be proved by writing the system

(2.3) (2.4) in the following way:

(2.6.3) ¥y = HIM(I,t) bt + e |+ A 0 u,
. 0 B

Y, HM(t,t) | €, u

Yo HTM(T,t) €r Uy

where A was previously defined and
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B = Ht+1G 0 . 0
Ht+2M(t+2,t+1)G Ht+2G 0 . e . 0‘
HTM(T,t+l)G . e ' HTG

Since the smoothed estimatée is equivalent to the estimate of bt in the
regression model (2.6.3) by Aitken's generalized least squares (see Chow,
1981, page 93), the identifiability condition for the state vector’bt, when

all the T observations are used and Ilil < 1, becomes

(2.6.4) rank(x°) = rank T H1M(1,t) T =k +p
H, M(t-1,t)
Ht
H,  M(t+1,t)

t+1

L HTM(T,t)
The coincidence between (2.6.4) and (1.9) can be shown by post-multiplying
x> by M(t,0). We have indeed rank(x®) = rank (XSM(t,O)), so that (2.6.4) can be

wriiten as:

(2.6.5) rank | x4M Z, T =x+ p

x2M2 x2(MZ1 + Z2)
. T . T-1 5
| ¥t XT(.§ M2y 4)
i=0 -

which coincides exactly with (i.9). Therefore, the identification condition
derived by using the standard regression methods coincides with the identi-
fication condition derived by using the Kalman filter approach when the smoothed
estimate of b, is considered. Since we proved that (2.6.5) is satisfied if and
only if I(T,1) > 0, the complete observability on the whole sample is a necessa-

ry and sufficient condition for the identifiability of the vector bt for all
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t=12, ... ,T. We now show which further conditions are necessary

for identifying 02, Q and M, and a comparison with the conditions derived

in the first part of this paper will also be provided. 1In this way the
relationship between thé Kalman filter results and the econometric results
Previously obtained will be further explored and another 1link between the
two approaches will be provided.

The traditional‘algorithm, based on the innovation likelihood func~
“tion, for estimating 02, Q and M can be described by the following steps:
(1) given bo, Pos og, Qs and M°, obtain {btlt; t=1,...,T} by

applying the Kalman filter to the system (2.3)-(2.4).°

(2) Use the sequence of one-step-ahead prediction errors (innovations)

m, = Ve = tht[t-l t=1,...,T

to define the likelihood function:

T
i 1 2.-1
log(C..) - = I n°C
1 Ot 2 t=1 © ot

a3

log L = const. —-%
t

.(3) Maximize the likelihood function with respect to the unknown
parameters included in 02, Q and M, by numerical optimization.

Therefore, since numerical optimization methods must be used, no

explicit estimator . can be derived for

Q and M (however it is possible to concentrate the likelihood with

2
respect to ¢°),

Another approach is still based on the innovation sequence {mt} but
it analyzes explicitly its correlation structure in order to provide

consistent estimates of Q and M.
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This second approach, derived in Mehra (1970) for constant systems,Z/
is called innovation correlation method and can also be described in the
following way. Let us consider the standard Kalman filter described by

equations A.1-A.7 (see Appendix A). It is easy to prove that the innova-

tion sequence {mt =y, - H bt!t 1} is a Gaussian white noise sequence

(see Mehra, 1970). 1In other words, if 02, Q and M are known, the optimal

-1
. . H :
choice of Kt’ i.e. K tlt 1H (Ht tft 1H + 0 ) makes Cit vanish for

all i # 0, where {Cit} is the autocovariance function of the innovation

sequence.

-~

However, when Q, 02 and M are not known, the filter cannot be optimal
and the autocorrelation function of the innovation process can be used to
obtain consistent and asymptotically efficient estimates of Q, GZ and M.

Let us th;refore compute the innovation correlation function for a

suboptimal filter. Using equations (A.1)-(A.7) it isr§/>

(2.7.1) ¢, = E(mm!) = E{(8, (b befe-) *EJE Gy - by D4 e )Y
T HEGL b POy O¢fe-1) By * E(ee)
= H Pt[t lH‘ + 02

(2.7.2) ¢, = Ean!_))
= EUEF G bt]t—l) * Et]{Ht-l(Bt—l - bt—ljt-z) te gl
= El[HF (G - Peo1fe-2 * Ht:GL‘1 THER My Fe]

[H (b

- ]
t-1't~1 bt—l[t-2> te g1

~

HtFtPt—l[t—th-l B FeXe1%0e-1
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= y - A 1] - 17 Y
= HM(c,t Z)Pt—zlt-ZFt-ch—l + H M(t,t-1)GQG H

- HtFth—ICOt-l

In a similar way, but with fairly tedious algebra, we obtain:

A = ' - ' 1 - Ty
»(2.7.3) C2t = HtM(t,t 3)Pt_31t_3Ft_2Ht_2 + HCM(t,t 2)GQG6 Ht_z

A

" HMEEDR, Chag - BeFeKe1Cren

ané Cit’ i=3.4

Define

t-i-1
= -n ' ' - k3 _- - ' '
Ait HtM(t,Q)POM(t i,0) Ht-i Ht[ jzl M(t,J)SjM(t i,3) ]Ht_i
By = HtM(t,t—l)Kt_i
S. =P gl¢ ly p
i 1[1-171701"1 1] 1-1

From the structure of the state-space Tepresentation of the model we have:

B, = ]xt 0] G = | I
0
which implies
RO i
xtM(t,t—l)G = xtM
fre = '
CHii T %y




35

Therefore, equations (2.7) can be rewritten as

2 t-l . .

, = ' = 1 S 2
(2.8.1) COt H Ptlt 1H + 0 AO,t + xt[jEOM QM) ]xt + 0
R t-2
(2.8.2) Clt = Al,t l c 0 -1 + x M[ I M Q(M ! ]x
j=0
c = A A A t-1_,
(2.8.€) “t-1,t t=l,t =B, (o1 een - B),tCto2 pop XM Q]

where we have used the matrix difference equation

-
»

(2.9 P F’ + GQG' - F P

= -1
e+l T F¢P t]t-1 t]t-1 tCOthPt]t 1¥r

in order to obtain

t .
p£|t = M(t,0)PM(t,0)" + I M(t,3)(GQG' - sj)M(t,j)'

5=1

which, substituted into (2.7), has provided équations (2.8).

We show now that an explicit estimator of 02 and Q can be derived
from equations (2.8). Let t = T, since the estimates of 02 and Q can be
computed on the full sample, and define

A

~ ~

Pr = Cpoiyp ~ A p Bro1,7%,1 o T BypCoy 1

1,1~ fA1,1 Y B1,1%, 741




By an appropriate vectorization of equations (2.8) and using the definition

of M(i) previously provided (see section C, part I), we have:

_ 2 T-1
Dp = |0fo"+ |x '@ X, . M(1) | rQ*
0 ! -
1 xp 8 X, M(T)

which, by obvious definitions, can be rewritten as

D. = e.0% + wiM*FQ*

T T [e

D WAMATe* = g
T . x X

Therefore, if the sample is large enough, the innovation correlation method

provides the following estimator,
Co% = ay, a,-l,6 a,,
e [(m) jx] (m.)'Dy,
If the éample is small, the sum of squares (DT - wiB*)(DT - ﬂ:G*)‘ must be

minimized under the constraints for Q to be a positive semidefinite matrix.

When Q is diagonal, the Dantzig-Cottle algorithm can be used..

The identification condition is

(2.10.1) rank (n;) = rank ([e : W:M*F]) = 1+ k(k +1)/2

which coincides exactly with the identification condition (1.10.3) derived
in section C of part I, by using the residuals of the OLS regression.

Notice that the innovation correlation method provides only a suffi-
cient condition for 02 and Q to be identified. All the T(T+1)/2 independent
elements of the symmetric covariance matrix of the innovation sequence {mt}

can indeed be used to identify.c2 and Q.
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By stacking the T(T+1)/2 elements of the upper triangular part of

A.—.. ! ' = .
C=E(mm'), when m [m1 e mT] we have:

2
= *
(2.10.2) D, ep 9" + | L,(D |Tq
D1 e Lx(l)
where L (T)‘ S
X X
Y = [ (x il B
Lx(l) (XiM f xl)M(l)
(xM 8 X, _PIMGE-D
B (xi °) xi)M(i) ]
Drq = Crei1, 11 ™ Arcior,r-i T Bpoio1,1-1% 441 t -
‘L1 7 AL,1e1 3,158, 1o
€0,7-1 ~ %0,7-1

i=20,2,...,T~1

* B, -1 42, 11

and where the difference equation (2.9) has been used again to solve back-

rs

wards the vari ix P .
rds the covariance matrix t+l]t

definitions,

(2.10.3) D = e02+LxFQ* = [e ! T]ex

From (2.10.2) we have, by obvious

L#0#*
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Therefore, the necessary and sufficient condition for 02 and Q to be

identified is:

(2.10.4) tank (L¥) = rank [e I LT] = 1+ k(k+ 1)/2

T > 1+ k(k + 1)/2

which can be proved to coincide exactly with the identification condition
(1.10.1) derived in section C of part 1 by appropriately changing the rows
of the matrix L*,

This result generalizes the conclusions contained in Mehra (1970) where
it was shown that when the transition matrix of the system (2.3)-(2.4) is
time invariant, then at most k elements of the covariance matrix Q can be
identified. 1In contrast, when the time-varying system (2.3);(2.4) is
considered, if (2.10.3) is satisfied, then all the unknown elements of Q
can be identified. Furfhefmore, not only the correlation structure of the
inﬁovation but all the elements of the covariance matrix of the innovation
vector m can be used to estimate Oz'and Q, so that the small sample effi-
ciency can be increased.

Finally, let us considér the case in which the heteroscedasticity
of the innovations is used to identify 02 and Q. The T diagonal elements
of C can be written as:

2 t-1

-~ _ ' -
COt c” + AOt + xtht + xtM[ :

M(t-1,3)Q(e-1,5) "I %]
3

1

t=1,2,...,T

where AOt was previously defined. Therefore, by stacking the T variances

EOt; t =1,...,T and by appropriately vectorizing the right-hand side of
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each equation, we obtain:

c - A = 10 + | x

o1 ~ %01 1 2 x4 M(1) | vec(Q)

aor - Agr X 8 x M(T)

Therefore, it is possible to write

= 1 x) *
Dy 102 + UM IQ

[1 } WM*T]ox
. X

h

T 0%

X

where the definitions are obvious. The identification condition becomes

rank (W:) = rank ([i 5 WQM*F]) = 1+ k(k + 1)/2

which coincides exactly with the identification condition (1.10.2).

This completes the proof of the coincidence between the identification
conditions derived by using the regression approach described in part I.and
the identification conditions derived by using the Kalman filter approach

described in this part of the paper.

Therefore, two goals have been achieved: first, we have shown that the
identification conditions for the covariance matrices 02 and @ to be identi-
fiable, obtained by using the innovation correlation method coincide with

those obtained by using the covariance matrix of the OLS residuals; secon-
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dly, we have provided explicit estimators for all the unknown elements

contained in 02 and Q.

Furthermore, another important result can be derived from equation

(2.10.2). Define

= : "yt
P: HtM(t,O)POM(l,O) Hl
Tyt
HtM(t,O)POM(t,O) Ht_
% = % =
and Dt Dt+Pt t 1,...,T

Therefore, (2.10.2) can be rewritten as

2

D% = ed 4 L*TQ* + LO(T) PoPﬁ
*
D1 _Lo(l)
wheré
Lo(t) = vyec (P:) = HIM(I,O) 1} HtM(t,O) vec (PO)
_HtM(t,O) 2] HtM(t,O)_
t=1,...,T

and FO is a known selection matrix which maps the (n2 x 1) vector vec(PO)
into the (n{n + 1)/2 x 1) vector PS.




S e -

41

Therefore, by obvious definitions, (2.10.4) can be written as

- * - 2 -
(2.10.5) D* = fe . LXT . Lofo] o} = L*¢

This equation can be used to estimate 02, Q and PO if the identification

condition

rank (LE) = 1+ k(k+1)/2+n(n+ 1)/2 <T

is sdtisfied.

This result provides an algorithm which can be used to revise the
initial condition PO; Given a starting covariance matrix ﬁO (which may
be obtained by performing a regression on the first k + p observations
(see Chow, 1981), the Kalman filter-can.be applied and the innovation
sequencé {mt} can be used to derive the vector D#*. Then, from (2.10.5)
a revised estimate of PO (and of 02 and Q) can be obtained, and it can
be used to iterate the Kalman filter on the same sample.

- A simpler equation than (2.10.5) can be obtained if only the T

. R . . 2
diagonal elements of the covariance matrix C are used to estimate O s

Q and PO.
A final estimation equation must be derived in order to provide an
estimator to be used for revising the prior transition matrix M°. The
first iteration of the Kalman filter which generates the innovation
sequence {mt} depends indeed on the starting value M° which has been

chosen for the transition matrix M. Therefore, the covariance matrix of

the innovation vector m must also be used to derive an explicit estimator
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for M. However, équation (2.10.2) is a very complex nonlinear function of

M and it cannot be solved explicitly with respect to M. Let us therefore

consider the upper triangular part of the covariance matrix C without the

diagonal elements and define:

where Si is an i x (i - 1) matrix which selects the first (i - 1) rows of

the matrix post-multiplying S;- Furthermore, define

—

O ~
Rx(l) = xiM ] le(l)
|
}_xi e xi—lM(l - l)d
and
. -1 .,
M(1) = T Mgy
j=0

From equation (2.40.2) we héve:

— - -~ 2 13 — 1
l'STDT = STeT o° + RX(T) vee (M') = RX(T) vec (M')

. .
. . .

_52D2 Sze2 RX(Z) i RX(Z)
Equivaiently, we can write
(2.10.6) A p° = R vee (M')

where the definitions are obvious,
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If (2.10.6) is used to estimate M, then the identification condition
is

2
rank (Rx) = k

which can be shown to coincide. exactly with condition (1.19.2) by appro-
priately re-ordering the rows of Rx'

The revised estimate of the transition matrix M is provided by

._1 s
' = 1 '
vec (M') (Rx Rx) RxD

—

and can be used to iterate the Kalman filter on the same sample.

After having determined consistent estimates of 02, Q, PO and M, the
algorithm described at the beginning of the second part of the paper can
be iterated uﬂtil convergence, where the‘innovation seqﬁence {mt} can be
used to define convergence. We have seen indeed that thg innovation cor-
relation method is based on the structure of the autocovariance function.
of {mt} when the filter is suboptimal. However, when the filter is optimal
the stochastic proéess {mt} is white noise. Therefore, we can say that the
algorithm has converged when the null fxypothesis that the innovation se-
queﬁce is white can be accepted. Having obtained the identification condi-
tions for the unknown parameters of the model and having derived the

relative estimators, we must now analyze the properties of the estimates

obtained combining the Kalman filter and the innovation correlation method.
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bty

However, before introducing the statistical analysis of the previous

estimates, we want to emphasize that a more general hypothesis on the

residuals of the model can be introduced. As in the case of estimation

procedures based on the least-squares method presented in the first part

of the paper, it is poésible to assume
u, = Alu + ...+ 4Au + v v, " NID(0,Q)

Identification conditions for the coefficient matrices Al . e As are
derived in Carraro (1984) by using again the innovation correlation

approach, but will not be presented here since the algebra is particularly

tedious.
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B. Properties of the Estimates

The characteristics of optimality of the Kalman Filter can be used
to .analyse the properties of the estimates of the coefficient vector bt’
obtained by using the methodology presented in the previous section. It
is well known.inaeed that the Kalman Filter provides unbiased and efficient
estimates of the state vector bt’ when the initial conditions b, and P. and

0 0
the matrices Q, M and 02 are supposed to be known.gj Therefore, in this

-section, we want to analyse the properties of the Kalman Filter estimate

. 2 .
of the state vector bf under the assumption that ¢, Q and M are consis-

tently estimated and the initial conditions b0 and PO are unknown. Suppose

first that 02, Q and M are known: by minimizing the likelihood (2.5.1) it

is possible to: obtain the maximum likelihood estimate

Gt C= _(x'S—lx)—lx'S—ly

which can be shown to coincide asymptotically with the Kalman Filter

estimate btlt when bO and P0 are unknown (see Carraro,1985,App.B and Jazwinski,

~

1970, ch. 7). Therefore, since bt is asymptotically unbiased and efficient,

b also shares the same properties.

t]t
When 02 and Q are also unknown, the maximum likelihood estimate

becomes g: = (x'g_lx)—lx'g-ly where § = 821t + A(It—l 2 Q)A' was previously

defined and 62 and a are consistent estimates of 02 and Q. By replacing

S with g in Carraro(1985),App.B, it is possible to prove again the coincidence

between bt}t and gt (asymptotically, if bo and PO are unknown). Therefore,
it is sufficient to analyse the properties of bt.

Since gt is symmetrically distributed around bt,lgf Kakwani's results

can be used to prove the unbiasedness of gt {see Kakwani, 1967). Further-
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more, we have

3L

abtavec(s)

1 1

(2.11) E l l = E(v'S @x'§) =0
so that €§ is also asymptotically efficient.

Therefore we can conclude that ﬁt and hence b are asymptotically

t|t

unbiased and efficient when the covariance matrices 02 and Q are unknown.
Finally, let us coﬁsider the case where the transition matrix M is

also unknown. The maximum likelihood estimator becomes g:* =

(ﬁ'g-lﬁ)_lﬁ'g-ly where ¥ is obtained by replacing M with M into the

matriceé M({i,t), i = 1,...,t-1, which were used to define x; furthermore,

M is a consistent estimate of M. Again, by replacing M with ﬁ into the proof pro-

vided by Carraro(1985);App.B, it is possible to show that g%* and bt[t coincide asymp-

‘totically. However, E[BZL/Bbtavec(M)] # 0 so that gg* is asymptotically

unbiased (Kakwani's proof can be applied again) but not asymptotically

efficient.
A final result on the asymptotic properties of the Kalman Filter

estimates can be derived by using the concepts of observability and

controllability. Let C(t,i) and I(t,i) denote, respectively, the control-

lability and observability matrices of the system (2.3)-(2.4) where:

t
(2.12.1) C(t,1) = I M(t,i)GQG"™M(t,1i)
i=1
and . “
t
(2.12.2) I(t,1) = I M(i,t)'H!H.M({,t)
i=1 rr

The following important result can be proved (see Jazwinski, 1970, ch. 7)

(2.13) P, < I7Me,1) + (e, D) £>1

tit
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Furthermore, by using the definition of M(1,3j), G and Hi previously given,

we have

(2.14) C(t,1) = Cov(bt) = Cov(Bt) 0

0 0

where Cov(Bt).is the covariance matrix of the stochastic time-varying
coefficient vector Bt.

Previously, we proved that bt|t is an asymptoFically unbiased estimate
of bt’ i.e. that E(bt4t - bt) = 0 asymptotically. Ndw we want to prove
that Cov(bt]t) also converges to Cov(bt). By definition, we have Pt]t =

Cov(bt[t) so that (2.14) implies that we have to show

lim Pt!t = C(t,l)

tro

"By (2.13), this is equivalent to showing:

(2.15) 1im I-l(t,l) = 0

ot g ]

In other words, if (2.15) can be proved, not only do we have

(2.16.1) lim E(btft) = E(bt)
t—)oo

but also:

(2.16.2) lim Cov(btlt) = Cov(bt)
t>co :

where, in fact, (2.16.1) holds for all t > 1. Furthermore, since b%lt =

: = = i - i have, from equations
[B%lt : dé!t] and dt 6t-1 § is non-stochastic, we have, q

(2.16):
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lim E(églt) = § lim Cov(étlt) = 0

£+ -0

so that the consistency of the Kalman Filter estimate of the parameter

vector § is also proved by proving (2.15), Therefore, the following theorem

.has to be proved:

Theorem : If the system (2.3)-(2.4) is completely observable at any

t < =, then the inverse of the observability matrix goes to zero as t goes

to infinity,

Proof: The complete observability of the system implies (see Jaz winski,

1970):
(2.17) I(t,t-N) > aI > 0 t >N
Furthermore, from Theorem 2 in Pagan(1980),

1 .
I "(t,1) < )\mtI

where th is the maximum eigenvalue of I—l(t,l). It is also known that
|

mt Ylt

where Ylt is the minimum eigenvalue of I(t,1).

Since there exists a positive-integer N* such that
I(t,1) = I(N%,1) + T(2N%,N* + 1) + I(3N%,2N% + 1) + ... + I(c,bn% + 1) 12/

then, assuming t = N*, 2N% ... and N = N* - 1, it is easy to conclude
from (2.17) that the complete observability of the system implies that

I(t,1) is the sum of symmetric positive definite matrices (the order condi-
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tion is N > k + p) whose eigenvalues are all positive. Then Ylt is
greater or equal to a sum of positive numbers.
Hence, defining the minimum eigenvalue of I(iN*,(i-1)N* + 1) by Yi1e®

we have

h

limy,, > lim zyi’lt > limhey¥ = o

toe hoeo i=1 h-eo

*x = i
where Y%, m;n{Yilt} > 0.

Consequently, Kmt converges to zero as t goes to infinity. Therefore:

—~—

. =1 . -
. 0 < lim I "(t,1) < 1lim AmtI = 0

This proves (2.15) and the theorem.
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CONCLUSION.

Time varying parameter models can be estimated by using either the
regression method or the Kalman filter-innovation correlation approach.
This paper has compared the two methods and shown that they imply the same
identification conditions for the parameters of the model. Furthermore,
explicit estimators. for all the unknown coefficients of the model have been
derived and theif properties have been studied.

However, the comparison between regression and Kalman filter methods
for estimating time varying models should be further extended to the analysis
of the actual performance of each method. Therefore, numerical simulations
should be performed in order to test the sensitivity of the two methods to
misspecified initial conditions and to the sample dimension. Furthermore,
the speed of convergence and the precision of the two methods should also
be examined.

Some preliminary results are contained in Carraro-Sartore(1984) and a
full evaluation of the properties and characteristics of the regression and

Kalman filter methods will be presented in a following paper.
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Footnotes

1See, for example, Belsley (1973), Cooley-Prescott (1973), Cooley-
Wall (1975), Hatanaka (1978), Harvey-Phillips (1978, 1981), Pagan (1980),
Rosemberg (1973), Sant (1977), Sarris (1973), Wall (1976), Brannas (1980),
Swamy-Tinsley (1980).
2The inequality constrained estimator (see Liew,1976) is the solution
of the following problem:
win (9, - I%%)1 (o - 22%x)
subject to
S6*% > 0
where S is a known selection matrix , and can be obtained by applying the Dantzig-
Cottle algorithm (see Dantzig-Cottle, 1967). It can be shown that, under the
usual rank condition on the matrix Hih , the inequality constrained estimator
is consistent and coincides with 8% when the sample is large (see Liew,1976).
However, when Q is not diagonal, some additional constraints must be added to
S6% > 0, where S is now a selection matrix which picks the diagonal elements
of Q (see Carraro,1985, pért I), and the simple Dantzig-Cottle algorithm cannot
be used. Therefore, a numerical optimization algorithm must be used in order

to minimize the sum of squares (Qah - H:he*)'(ﬂ - nihe*) subject to the con-

ah

straints for 02 and Q to be positive definite.

31n Swamy-Tinsley(1980) and Swamy-Mehta(1977) the estimates of the para-
meters of the model obtained by using the interactive algorithm previously
described are shown to be consistent and asymptotically normal. See Swamy-

Tinsley(1980, pp.124-125) for a discussion of this problem.
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4'Although the Kalman filter has appeared many‘other places in the
literature, we give a brief description of this procedure in Appendix A.

5Since the method is based on autocovariance function Cit’ it should
be called innovation covariance method. However, the name correlation
method has prevailed in the literature, and we will continue to use it to

identify the method described above.

i

61t can be proved (see Jazwinski, 1970) that the effect of the
initial conditions vanishes asymptotlcally if the system (2.3)-(2.4) is

unlformly and completely observable and controllable

7Godbole (1974) extends Mehra's results to the case where the state
and measurement noises have unknown means and are correlated to each

other. However, he does not consider time-varying systems.

8We use {Git} to indicate that the autocorrelation function is
computed using t observations and, since 02, Q, M are unknown, it differs
from the true autocorrelation function {C }
See Wonham (1968) for the analysis of the efficiency of the Kalman
Filter in the continuous case and Caines-Mayne (1971) for the extension

to the discrete filter.

10, . . . . .
This may be seen observing that the innovation sequence changes sign

~

ot ’Cl 3e+4,C used to estimate

when y - xbt is replaced by ~(y —xbt), but C qt

Q and M remain unchanged for any t.
llln this proof the initial conditions bo and PO are assumed known.

When they are unknown bt]t and gt coincide asymptotically.

th is the greatest integer less than t/N*.
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Appendix A

The Kalman filter is given by the following equations:

(4.1) Pele-1 = FePeo1]e-

’ = ' '
(A.2) Pe|e-1 FePe_p)eoFy + 6QC
(4.3) e 5 Ve T Htbt|t-1
(A.4)  C._ = HEB . H'+o

_ Ot t-t]t-1"t
2,~1
= ' '
(A.5) K, P emtBr B Py B+ 00
(4.6) btlt - bt]t-l TR OG- thtlt—l)
(A.7) Peje = (T -RHEIP

Eqﬁatiéns (A.1), (A.2) represent respectively the one-stéap—ahead
predictor (based on the observations Iz_l) and its covariance matrix;

m, is the one-period prediction érror for Y, and is called "innovation";
COt is the covariance matrix of the innovation at time t and Kt is
called the gain of the Kalman filter. The last two equations give the
revised estimates (based on Ig) of the coefficient vectors bt and the

relative covariance matrix.
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