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1. Introduction

Models of rationing behavior have a long tradition in the economics
literature. In the last decade there has been a revival of interest in various
aspects of the subject, both from theoretical and econometric points of view.
Witness, for example, the now extensive literature on fix-price or temporary
equilibrium models and on estimation and hypothesis testing in single and
multimarket disequilibrium models.

In much of this work, rationing emerges as the result of some inherent
rigidity, the source of which is not always made clear. There is, however,
one strand of this literature in which rationing behavior emerges as an
optimal strategy on the part of individual economic agents or policy makers.
For example, Jaffee and Modigliani (1969) and Stiglitz and Weiss (1981) have
studied the nature of optimal bank behavior which leads to credit rationing
of loan customers. Similarly, Goldfeld, Jaffee and Quandt (1980) examined the
circumstances under which it would be optimal for a policy maker such as a
central bank to ration its "customers." The empirical work reported in that
paper builds on earlier work in disequilibrium econometrics but, as the
authors acknowledge, requires some strong, perhaps implausible,
agsumptions. The present paper seeks to put the econometrics of these
types of rationing models on firmer grounds. As we shall see, this opens a
wide range of interesting econometric issues which may well have more
general applicability.

The outline of the paper is as follows. Section 2 provides some

¥*We are indebted to the National Science Foundation for support.



background on the econometrics of disequilibrium models. Section 3
summarizes the policy rationing setup that motivates the formal rationing
models presented in section 4. The next section considers the econometric
implementation of rationing models while some computational experience is
described in section 6. The paper concludes with a brief summary and some

suggestions for further research.

2. Some Background
As just suggested, many of the issues to be examined in this paper are
closely related to the econometrics of disequilibrium models. A now standard

version of this model has the following form:

Dy = Py + ByXyp * upy (2-1)
S¢ = %Py + Ba¥ay + Ugy (2-2)
Pt = Pt—l + 7(Dt—St) +ug, (2-3)
Q, = min(D,,S,) (2-4)

where X1y Xgq are vectors pf exogenous variables, u,

it

(demand) and St (supply) are unobserved by the econometrician and P

are error terms, Dt

¢ (price)
and Qt (quantity) are observed. Equations (2-1) and (2-2) are normally
derived from choice theoretic considerations but the underpinnings of (2-3)
are typically a bit more suspect. Equ. (2-4) is customarily justified on the
basis that exchange is voluntary, although the applicability of this to ag-
gregate data might be questioned. While there are many possible extensions
of this basic model (see the survey of Quandt (1982)), for purposes of dis—

playing the econometric issues this simple version will do.

Model (2-1) - (2-4) can be readily estimated by maximum likelihood tech-

niques. The joint density of the u. . (typically assumed to be multinormal)

gives rise to a joint pdf g(Dt’St’Pt) from which the joint pdf of the



observable variables is given by

ha,,p) = | g(a,,s,,P)ds, + [ £0,,q,,P,)dD, (2-5)
Qt Qt

Given the form of g, (2-5) may be explicitly computed and the likelihood
function is the product of terms such as (2-5).

A model with somewhat different underpinnings was analyzed by Goldfeld
and Quandt (1975) who considered an agricultural commodity which may not be
fully harvested under certain circumstances. Let 9 denote the crop, ht

the (ex ante) harvest amount, Py the price and let x's refer to exogenous

variables and u's to error terms. The basic equations of the model then are

RS T (2-6)
ht = ﬁéth Py toeyq Uy, (2-7)
Py = FgXgy + %g¥y * Ugy (2-8)
vy = min(qy, h) (2-9)

Equ. (2-6) states that the crop depends on exogenous variables only. Equf
(2-7) determines harvest intentions: these depend on exogenous variables
(e.g., current wages), on the price and, perhaps, on the crop size itself.
Equ. (2-8) is a conventional demand function containing Yy the amount brought
to market, which is determined by (2-9) to be the lesser of the amount of the
crop and the amount intended to be harvested. In contrast to the disequi-
librium model given above, price does clear the market. Nevertheless, the
presence of the "min-condition" in both models gives rise to quite similar
likelihood functions.

While there is a "min-condition" in the two models we have considered, it
arises for rather different reasons. In the disequilibrium model, it arises

because price rigidities lead to the rationing of one side of the market. 1In



the agricultural examble, the rationing element is imposed'by "nature" given,
of course, various exogenous variablesrwhich determine the initial planting
and the desired harvest. We now consider a third type of model in which
rationing in a market results from an optimal strategy on the part of a policy
maker.
3. Pélicy Rationing: An.Example

The idea behind this can most simply be illustrated by an example taken
from Goldfeld; Jaffee, Quandt (1980). Consider a government financial
authority which can lend to the private "banks" it supervises. The financial

authority is assumed to raise its funds in the cepital markets, paying a rate

Ct’ and in turn it'charges a rate, R , for its loans. These loans, the demand

t’
for which is denoted by Ag, are then used to finance some sort of investment,

1

say housing, Ht'

The financial authority is assumed to have some target for housing, HI and

an overall loss function which has the form
Cm 2 2 *2 .
L= (R-g(C, )% + 8 (RR,_ )7 + 6,(H H}) (3-1) .

The first term in (3~1) gives the utility loss when the loan rate deviates
from arspecified function, g( ), of the cost of funds and the second term
accounts for bureaucratic inertié and possible other adjustment costs. The
final term in (3-1) accounts for a utilify loss when realized housing invest-
ment deviates from desired housing investment.

In the absence of rationing, (i.e., actual loans, A , are equal to

1The institutional details are meant to capture the spirit of the U.S.
Federal Home Loan Bank Board which extends loans, called advances, to
private financial institutions known as savings and loan associations.
For more background, see Goldfeld, Jaffee, Quandt (1980) and the
references cited therein.



Ag), the authority chooses Rt so as to minimize (3-1) subject t02

d _ _, _
At = ﬁlzlt + aIRt + ug, (3-2)
Ht = ﬂéZZt + azAt + u2t (3-3)

If rationing is permitted, however, then the authority may simultaneously
choose Rt and At’ sub ject, of course, to the constraint

A, € A (3-4)
which assures that the banks cannot be forced to borrow more than they desire.
It seems reasonable to presume that the authority might experience disutility
from rationing so that we might, more generally, suppose they minimize the
modified loss function

L' = L+ 63(Actl—At)2 (3-5)

The choice of Rt and At to minimize (3-5) or (3-1) subject to (3-2) —
(3-4) requires some assumption about the way in which uncertainty is treated.
In Goldfeld, Jaffee, Quandt (1980) it was implicitly assumed that the error
terms in (3-2) and (3-3) were known by the authority but not by the outside

econometrician. This readily yields an optimal policy for R, and At, where

the form of At depends on whether the model is in a rationing mode (At < Af)

t

or not (At = AS). The same stochastic assumption also makes the estimation
problem quite tractable. Nevertheless, despite its convenience, this
treatment of the stochastic terms is rather unsatisfactbry. At the very
least, if one assumes policy makers observe structural disturbances one has to
make the timing aspects of the problem more precise. More generally, it would
seem more appropriate to regard the loss itself as a stochastic variable and

have policy makers minimize expected loss. Both of these approaches are

pursued in the next section.

2For the moment, we ignore the complications presented by the stochastic
elements in (3-2) and (3-3).



4. Rationing as an Optimal Policy
We shall now develop some alternative models of rationing by a policy
maker. To keep things simple we assume a policy maker with a single instru-

ment, x the setting of which influences the "demand" for a variable, yg, via

t’
a behavioral equation.3 The policy maker is also able to ration demand,

should it choose to do so. The loss function is given by

- k2 k2 _.d.,2 _
where we posit

X - 1 -
X3 «'zy), + £yt (4-2)
v¥= gz, +: (4-3)

t 2t 2t
yd = 7.x, + vlz + & (4-4)

t 17t 273t 3t :

The "desired" values of x, and y,, x¥ and y¥, are known exactly to the policy
t t t t

maker. Equs. (4-2) and (4-3) provide a model for those desired values where
the stochastic terms reflect the inability of the outside econometrician to

observe xt and y¥. 1In contrast, the stochastic term &

t in (4-4) is unknown

3t

to the policy maker at the time it chooses Xy This suggests choosing an
optimal X, by minimizing the expected loss, E(L). We shall, in fact, do this
below. For reasons which will be apparent when we consider issues of estima-

tion, however, we first consider another approach.

31n analogy with the preceding section, x, can be thought of as the loan

t

rate while yg corresponds to Ad We make the simplifying assumption that the

g
policy maker "cares" about y, directly, thus omitting the connection between
advances and housing of the previous example. No important generality is lost
by this since one can think of the desired level of y as coming from equ.
(3-3) with H, = H¥. This setup does simplify the computations since there is
only a singlé source of uncertainty facing the policy maker.



A simplified approach. More particularly, we posit that the policy

maker first chooses Xy and an "anticipated" value of Yy under the assumption
that Eay = 0. That is, X, and y, are chosen to minimize (4-1) subject to
(4-2) - (4-4) and the condition

d _
Vi £ Vi (4-5)

Since, at this stage, ot is assumed zero, (4-5) assumes that the anticipated
level of Yy does not exceed the expected level of borrowing, i.e., borrowers
cannot be coerced, in an ex ante sense, to borrow more than they want. We
further assume that after setting Xy the policy maker learns the actual
state of demand (i.e., in effect seeing the realization of 83t) and sets A
in an optimal fashion, made precise below.4

The solution to the policy maker's first-stage problem is determined by

forming the Lagrangean
L= (xx0% 4 v (yv02 + v, (yr,x702.)% + A(y—r,x-752.) (4-6)
1 2 1 273 1 2”3
where we have suppressed the time subscript. If we postulate that x and y are

always positive, the following Kuhn-Tucker conditions are necessary and suf-

ficient for the solution:

aL _ X ; o _ _
I - 2(x—x*) 2v271(y 7% 72z3) Ayl =0
ii = 2v (y—y*) + 2v_ (y—y.x-7rLz,) + A = 0
ay 1 2\ 71 X772

d d
yeéy s (y-y)A=0
Straightforward algebra yields the following solutions:

X_ i - X
. v171(y Y525~ X )

- 3 X a X 1 —
Xp = X if y* 2 X"t 752q (4-7)

3
1+wrn

%It is possible to develop a model in which the policy maker is forced to

commit itself to Xy and the "supply" of Y before it observes Eage



X_.1 _ X
. YY1V (Y mrhzg7y XY)

X '—'X*

. * * ] —
I1 if y* < 7% +‘7223 (4-8)

Vit Ve ? 7?"1"2
Equ. (4-7) corresponds to the case in which there is no anticipated rationing
(A # 0) while (4-8) is associated with anticipated rationing (A = 0).5

The role of Vo in the analysis is worthy of note. First, from (4-7) and
(4-8) we see that whether there is anticipated rationing or not is independent
of Vo although the quantitative amount of anticipated rationing most certain—
ly does depend on v2.6 In particular, rationing may take place even if

Vo = 0. When vy = 0, X171 becomes particularly simple, namely x = x¥, and

11
the corresponding y is given by Y1 = v*.

This case also permits a simple graphical interpretation of the solution
which is given in Figure 1 where we have drawn the iso-loss ellipses along
with two possible expected demand functions. 1In case I (see (4-7)) no
rationing is planned whereas in case II (see (4-8)) the optimal strategy is to
set Xi1 = x* and plan to ration borrowers to y*.7

Of course, as suggested earlier, we do not force the policy maker to
stick with its anticipated y. Rather, after announcing x, the policy maker
learns yd and chooses an optimal y based on this information. With x set,

this amounts to minimizing vl(y—y*)2 + vz(y—yd)2 subject to y ¢ yd.

5From (4-7) and (4-8), we see that when y¥ = y x*¥ + 7éz , then x_ = x__ = x*.
To preserve space, we have not presented the two optima% solutions for'y but,
as the text suggests, when A # 0 the anticipated Y1 is 71X1 + 7éx3.

61t cag be shozn that ant%cipated rationing when A = 0 is given by ,
vl(ylx +7223—y )/(V1+v2+71v2). Byﬁ(4~8) this is positive, and decreasing
in Vo

"The same diagrammatic apparatus works when 2 # 0 but the ellipses are
centered differently.
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Moreover, a bit of algebra reveals that this solution can be expressed
8
compactly as

X d
Vly + sz

Yy = min Yy, -

(4-9)
1" Vs

Equ. (4-7), (4-8) and (4-9) completely characterize the optimal solution. We
defer questions of estimation until the next section. Instead, we now develop
the expected loss approach.

The Expected Loss Approach. In the case just considered, the policy

process was characterized by a first stage in which x and an anticipated y
were chosen by ignoring the uncertainty associated with yd. To account for
this uncertainty requires minimizing E(L) where, as before

L= 0% 4 v (yy02 4 v (yyh? (4-1)
where yd is given by equ. (4-4). If, as is common in such contexts, we assume
that £q N(O;og), then yd ~ N(71x+7ézg,o§). For use in what follows we
denote this pdf as f(yd), with the corresponding cdf given by F(yd).

A final question arises as to the proper way to regard y in (4-1). If,
in parallel with the previous setup, we regard y as chosen in a second stage
after yd is revealed, then y is given by the min-condition, (4-9). Hence at
the time x is set, the policy authority should properly regard y as a random

variable but explicitly recognize that the distribution of this variable

is determined by its own future behavior. The optimal strategy is then to

8When y = yd, the Lagrange multiplier which is non—negative is given by
2v1(y*—y), implying y¥ 2 y = yd. Then y*¥ 2 yd implies (vly*+v2yd)/(v1+v2)

2 (vlyd+v2yd)/(v1+v2) = yd. Hence (4-9) holds. For later use, we also note
that when y = yd we have v & y* and when y = (vly*+v2yd)/(v1+v2) £ yd we have
v¥ & yd and hence y 2 y*.

10



d by (4-4) and y by

choose x to minimize E(L) when L is given by (4-1), y
(4-9).
The actual derivation of this optimal strategy is somewhat involved and

we shall just sketch a few steps. Taking expectations of (4-1) yields the

following objective function to be minimized.

B(L) = (207 + v [E(y) - yHZ + vpvar(y) + vEryH? (410)
To evaluate (4-10) we need the mean and variance of y as well as E(y—yd)z.
The first two of these require the pdf of y while the last term can be most
directly calculated from the pdf of the variable (y—yd)‘ From (4-9) and the

algebra in footnote 8 we have that

¥4 if y ¢ y*

iIN
>

sy* + (1-8)yd if y

W
g

(4-11)

where & = vl/(v1+v2). From (4.11) we see that the pdf of y, h(y) has the

following form

f(Y) T @

h{y) = X
y — 4y 1
f[ ] |1 -

N
‘<
VaN
«

(4-12)

N

T -6 6' vk ey

where f( ) is the pdf of yd.9 From (4-12) and a bit of tedious manipulation
one can derive E(y) and var(y). For example, when expressed in terms of the

standard normal pdf ¢ (with corresponding cdf #) we have

B(y) = 6y¥(1-#(w)) + (7;x+7h2,) (1-6+68(w)) — S0 0 (w) (4-13)

w(x) (y*—rlx—véz3)/03- (4-14)

d
When vy = 0 and 6 = 1, the form of (4-12) simplifies because y = min (yd,y*)
and the pdf has a mass point at y = y¥. Thus, the second term in (4-12)

reduces to h(y) = 1 -~ F(y¥) when y = yv* where F( ) is the cdf of yd.

11



To evaluate E(y—yd)2 we note that

d 0 if y ¢ y¥
s(y*-y") if y » y¥
so that the pdf of w is given by
F(y*) ifu=0
g(u) =
f[ - %] I ifuc<o. (4-15)

Using the densities given in (4-12) and (4-15), we can compute E(Lix) and

differentiate this with respect to x to find the following first order

condition:
V2 Y1
H(x) = (x=x%) + v, v (rx07p20v%) | o55o— + om0 #(W)
1 2 1 2
V1
- 71v103¢(w) [ ;I—I—;; } =0 (4-16)

Since both ¢(w) and #(w) depend on x in a nonlinear way,lo it is not possible
to.give an explicit algebraic solution for x. One can, of course, solve
(4-16) numerically. Moreover, we can shed considerable light on the proper—
ties of the solution to (4-16).

Properties of the Optimal Strategies. We can readily establish that

H (x) = 1 + vly§[1+a(4(w)—1)]. (4-17)
Since H'(x) is therefore strictly positive we know that there is a unique

11

solution to H(x) = 0. Let us denote this by ¥ . A question naturally

arises as to the relationship of % to the solution, call it ;, given by the

0For example,

1 1
o(w) = Jﬁi exp [— 5

12



"certainty" approach summarized in (4-7) and (4-8). The nature of the rela-
tionship can most easily be seen by evaluating H(x), the left-hand side of

(4-16), at x X11 given by (4-7) and (4-8). A bit of algebra reveals

I’
H(XI) = - 7103v16[¢(wI) - (1—*(WI))WI]
(4-18)
Hixpp) = = 7yogviole(wry) + #(wppiwy]

where from (4-14) wy = w(xI) and Wrp = w(xII) are

I

2

o ok oK

wp = (¥ 7 x¥-r529) /04 (14v77)

wor = (vi+v,) (v¥-y x¥—yiz) /o, (votvotre vav.)
IT 1 2 1 2 31 271 "'1°2

Intuitively, it should be the case that when ag is small the solutions of
% and x should be quite close since % should well approximate X when there is

little uncertainty about demand. This intuition is confirmed by examining the

2
3

é(wI) < 1 and H(xI) 2> 0. Alternatively, if § < 0, é(wII) 2> 0. Comparing this

limiting behavior of (4-18) as o, > 0. If S = (y*—ylx*—yéZB) > 0 then

with (4-7) and (4-8), we see that lim X = x.
0390

Equ. (4-18) can be used to shed further light on the relationship between

% and x for nontrivial values of og. Using the standard properties of the

normal distribution, both bracketed terms in (4-18) are positive.

Hence, when 7y, < 0, we see that H(x,) and H(x.,) are both positive.
1 I 11

Since H' (x) > 0, we see that X must be less than both Xy and

X11° We have thus established that & < ;. Thus, a policy maker who minimizes

expected loss will, by choosing a lower value for x, be more likely to

11We are here ignoring the possibility that H(0) > 0, which would imply a
boundary solution of x = 0. For certain values of the parameters, e.g.,
6 =1 and 4] > 0, it can be shown that H(0) < 0, but in general the boundary

solution needs to be ruled out by assumption.

13



ration.12 This result actually holds in more general sense, which we can see
if we examine the comparative statics of the expected loss solution.

The relevant derivatives, obtained from straightforward calculations based
on (4-16) are given in the Appendix. The qualitative results, under the as—
sumptiqn that L4} < 0, are summarized in Table 1, which also gives the qualita-
tive effect of a change in each parameter on the quantity of expected
rationing. The latter is defined as E(yd—y) and some details on these cal-

culations are also given in the Appendix.

Table 1
- d
dx dE(y —y)

P dpP dp
X + _
y* — _
v1 ? ?
Vo + —
oq - +

The results are generally as expected. A decrease in x*, leads to a
reduction in § but since dﬁ/dx*( 1, also corresponds to an increase in ex—
pected rationing. An increase in the target vy, y*, is accompanied by both a
reduced ; and diminishgd rationing. Increasing Vo which raises the disutil-
ity from pationing, leads to a higher x and reduced rationing. Indeed, in the

limit as Vo gets arbitrarily large, we have that E(yd—y) tends to zero as %

12This conclusion does not depend on the sign 7y If 7y > 0 we would have

X > % but demand would be higher at X and so rationing is still more likely.
Since the assumption that 4] < 0 is more in keeping with our initial moti-

vating example, we shall confine our attention to this case.

14



tends to x., the nonrationing certainty solution. An increase in v,, the

1’ 1?
parameter affecting the disutility from deviating from y*, in general has an
uncertain sign. When Vo = 0, raising v unambiguously lowers ; as would be
expected. When Vo > 0, however, the fact that lowering X raises E(yd) more
than E(y) serves to render ambiguous the overall effect. Finally, decreasing
Tq the demand uncertainty, raises x and reduces expected rationing. This is
in accord with the earlier comparison of % and x as we have already seen that
lim % = ;.13

0390

5. Econometric Implementation
The previous section developed two related alternative models of policy-
maker behavior. The second of these is somewhat more appealing but, as we
shall see, is rather less empirically tractable. The first model consists of
equs. (4-2), (4-3), (4-4), (4-7), (4-8) and (4-9). For convenience these

are collected below in a slightly different form:

X _

x" = a'zl + sl (5-1)
¥ = Bz, + ey (5-2)
I Wi Vlylp'zzz_ 172" "1t v171;2
1+ V171 1+ V7,
if § = ﬂ'zz - 71a'zl - 7éz3 + £y = 7151 2 0 (56-3)

(V#vgle'zy + 7 v voBtzy — 7 ViverhZa  (ViHVe)E) + 7 v Vs,
+

X =

) 2
V1t Vgt MYy M ACMANAS

if S <0 - (5-4)

131t can be shown that for large %q the expected loss solution is

essentially linear in 7q-

15



YU = X+ ypEg oo (5-5)
v Y* + v Yd
. 1 2
y=mn |y, —o—— (5-6)
1 2

The only difference between this set of equations and those given earlier
is that we have used (5-1) and (5-2) to rewrite (4-7) and (4-8) as (5-3)
and (5-4). That is, we have explicitly introduced the stochastic terms and
made apparent that the "switch condition" depends on the random variable S.
The properties of S, in turn, depend on &y and Eos which stem from our
stochastic modeling of the behavior of the policy authority in the choice
of its desired or target values for x and y.

We shall consider three alternative ways in which the parameters can be
estimated, each of which applies the maximum likelihood method to some or all
of the equations of the model. For this purpose, we shall assume that the
&, are Jointly normally distributed with variances 0?.14 The first approach
consists of estimating the submodel consisting of (5-3) and (5-4). It can
readily be seen that this submodel allows one to identify almost all the

parameters of interest in the full model.15 Equs. (5-3) and (5-4),

14The most general derivation of the various likelihood functions would allow
for a nonzero covariance between £y and £, but, given our previous discussion

on timing aspects, would assume £q independent of the other &£'s. In the
sampling experiments reported below, however, we have assumed £y and &, are
independent.

15One obvious exception is og. In addition, if z, and Zg share

any common variables, including an intercept, their coefficients cannot
be separately identified.

16



constitute a version of a switching regression model to which one may apply
the approach developed by Kiefer (1977). More particularly, (5-3) and (5-4)
obviously constitute a model of the following form:

if St > 0

BZZt + u otherwise

S :BSZt+u

It can be shown that the pdf of Xt is given by

g(X) = Pf1 + (1—P)f2 (5-7)
B.Z

P=# i}
73

1 BLZ/o, + poor
F o= g 1p 1, 3773 13°1 o(r

1 1 1)
/1 - p2
13

~ ~ - B'Z/0. — po.r
= 021(1—P) 1, 34/93 7 Pagly
/ 1 - 2
Pa3

(X—BBZ)/UJ Jj=1,2

o]
|

¢(r2)

o]
I

and a? and pij are variances and correlation coefficients for the u‘j and where
as before #( ) and ¢( ) are the cdf and pdf of the standard normal, respec-—
tively. The product of terms like (5-7) then gives the relevant likelihood
function.

While maximization of this likelihood function yields most of the param-
eters of interest, these estimates are not fully efficient, since they ignore

y. Before considering estimation of the full model, it is worth noting that

there is a second submodel which can be estimated. In particular, the

17



submodel consisting of equations (5-2), (5-5) and (5-6) has a structure which
is nearly identical to that of a simple disequilibrium model without a price
equation. This is perhaps clearest when vy = 0 as the equations become

y* = ﬂ'Zz + g5 yd = 7y + 7%23 + £q and the observable y = min(yd,y*). The
likelihood function for this model is a special case of (2-5). Of course, use
of this submodel does not permit estimation of all the parameters of interest
nor does it make use of all the available information. It also appears to
suffer from a somewhat more subtle defect in that the variable x is not
independent of y*. This can be seen most directly in equ. (4-7) and (4-8).
This means that if x is regarded as exogenous in deriving the likelihood
function, the resulting estimates may suffer from a type of endogenous policy
bias. The quantitative importance of this, however, remains to be
established.

We finally turn to the full model (5-1) - (5-6). The derivation of the
relevant likelihood function is quite similar to the corresponding derivation
for the agricultural market considered in Goldfeld and Quandt (1975) and we
shall simply sketch the steps. Let us denote the nonstochastic part on the
right-hand sides of (5-3) and (5-4) by Al and AZ’ respectively. We consider

the model in the following form:

£, + V,Y.E
%) = &)+ it (5-8)
1+ V7]
(vitv,)e, + y.v.v. &
xy = Ay 4 L2 T TN (5-9)
V1+V2+')’1V1V2
Y17 1% T 7a%3 o3 (5-10)
Y2 T Mi%2 7373t 53 (6-11)
X - g
yh = Blzy + g (5-12)

18



We know from (5-3) that when S 2 0, we observe x = X5 and the corres—
ponding yd =y where Y1 is defined in (5-10). Some algebra also reveals that
when S 2 0 we have Xy £ x2.16

regimes depending on whether S is positive or not and on whether yd is less

The full model (5-1) — (5-6) consists of four

than or greater than (vly*+v2yd)/(vl+v2). Using footnote 8 says these four
regimes correspond to (S 2 O,yd 2 y*), (S 2 0,yd < y¥), (8 < O,yd 2 y*), and
(S < O,yd < y¥). In terms of our reformulated version of the model, the four

regimes can be expressed as

FaS

(%95 ¥q) when x, £ X5, ¥; sy¥ + (1-6)y,

(X1,5Y*+(1-6)y1) when

X
ot
N
X
N
t<
el
W

6y* + (1—6)y1
(%,y) =

N

(%5, ¥,) when x, < %, ¥, < 6y% + (1-8)y,

2 6y* + (1*6)Y2

(X2,6y*+(1—6)y2) when X, < Xq,

<
(&)
i

The likelihood function then has four pieces which are obtained by first

writing down the joint densities f(xl,yl,nl), g(xz,yz,nz) where

My = sy* + (1‘6)Yi and successively integrating out A and 7y from the first

and Yo and Mo from the second. That is,

h(x,y) = J f(x,y,nl)dnl + f(x,yl,y)dyl
y

G S, @

(5-13)

+ | g(x,y,m,)dn, + | g(x,y,,y)dy
2/ %9 2 2

g em——y §
O L—

16

It can be shown that X) ~ Xy = leS where K > 0. Thus the statement in the

text assumes 4] < 0. The derivation of the likelihood function goes through
when 4} is positive with the obvious changes in the relevant inequalities. It

should also be observed that ¥y T ¥y = 71(x1—x2) so 7, < 0 means x.< x

1" 72

implies ¥y > Yo-
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The similarity between the form of (5-13) and the corresponding equation
(A-13) in Goldfeld and Quandt (1975) is readily apparent. The actual expres—
sion for (5-13) is sufficiently messy, however, that we omit it.

We now turn to the problem of estimating the expected loss model. As in
the previous case, we can directly estimate the submodel (5-2), (5-5) and
(5-6) although this would have the same sort of difficulties as before. The
more interesting problem is to estimate an equation for x where x is
implicitly given by

(x—x*) + 71v1(71+7éz3—Y*) [1 -6+ 8¢(w)] - 71v1036¢(w) =0

(5-14)

and where x* = @z + £y y¥ = ﬂzz + Eo and w = (y*—71x~7é23)/03

Estimation of (5-14) presents several problems, the least of which stems
from the fact that (5-14) is only an implicit nonlinear equation. A more
serious problem stems from the error structure of (5-14). While the x* term
introduces an additive error, y* enters (6-14) in various nonlinear ways and
the overall implied error structure is extremely complicated. It
would thus appear that in the general case, the expected loss model is not
easily estimable. 1In the special case when £y is small, we can use (5-14) to
derive the approximate pdf of x and do maximum likelihood estimation. More
specifically if B = (a’ﬂ’71’72’v1’v2’0§) is the vector df parameters to be
estimated and we let Hi = H(inB) then the condensed log-likelihood function,
save for a constant is

N

E
1=1

2 N N o
log [1+v.7,"(1-6+6¢(w.))] - 5 log T HY (56-15)
1'1 i 2 j=1 1

This approach will be precise for £, = 0 but the quality of the approximation

for other cases needs to be examined. This is done below.

20



Even with this simplification, there remains a problem of identification.
In particular, inspection of (5-14) and (5-15) reveals that if
(a,ﬁ,yl,yz,vl,vz,og) maximize (5-15) then so will
(a,ﬁ/x,yl/x,72/A,A2v1,x2v2,a§/xz)-17 In other words, with the exception of «,
using (5-15) only permits estimation of the parameters relative to each
other.

These difficulties perhaps suggest the wisdom of trying another
approximate way to estimate the expected loss model, namely by using the
model given by (5-3) and (5-4). We have already seen that (5-14) collapses
to this model as og tends to zero. It remains to be seen how this approxi-—

mation works more generally.

6. Some Computational Experience
We now describe some sampling experiments aimed at providing computa-
tional experience with rationing models. To minimize computational costs we
have chosen a bare-bones specification with an intercept and one exogenous
variable in each stochastic relationship. More specifically, the parameters
appear as follows:
L= (xx%% 4 vl(y—y*)z + v2(y—yd)2

X =
X ao + alzl + al

X -
vT = Byt Byzg + 2y

d _
Y T 790 t Yg1Zz t 7X + 2g

There are nine basic parameters (vl,v2,ao,al,ﬂo,ﬁl,yzo,yzl,yl) and, given the
assumption that the &, are independently normally distributed, three variances

2
ol 1= 1,2,3.

17This statement assumes there is no intercept in Yo
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The previous section outlined four methods for estimating the rationing
model. We shall refer to these as Exploss (eqn. 5-14), Switch (eqns. (5-3),
(5-4)), Min (eqns. (5-2), (5-5) and (5-6)) and Full (eqns. (5-1)-(5-6)).

While the Full method estimates all parameters, the remaining methods can
only estimate some subset. For Switch the estimable parameters are
(vl’v2’aO’al’ﬂl’72l’71’0§’o§) while for Min they are (ﬁO’ﬂl’720’721’71’0§’0§)'

In addition, Min provides an estimate of & = vl/(v1 + v As noted earlier,

2)'
the Exploss method only provides estimates of relative parameters.

We have implemented this by constraining 71 to its true value in the sampling
experiments.18 Other things equal, this would tend to favor Exploss as
compared with the remaining methods. Fortunately, it is easy to correct for
this tendency by transforming the results of the sampling experiments to yield
estimates corresponding to alternative values for 71.

Aside from the estimating methods, the other potentially important dimen-
sion of the analysis is the underlying model. We have two possibilities: the
policy maker minimizes expected loss or minimizes loss ignoring uncertainty.
We shall generate data using both assumptions, and the presumption is that the
Exploss method should work better with the expected loss data.

The other details of the experiments are as follows. The zi's were
generated from the uniform distribution with ranges (0,100), (0,100) and
(200,400), or with ranges multiplied by 10. The parameter values were
g = 2, «q = 70, @ = 1, ﬁl = .5, Yog = 60, Yo = -.25, Y= .5 .

For the small z range, ﬁo = 20 while ﬁo = —655 for the large z range. These

values were chosen so that the mean of the switch variable S = (Y*_71X*—7ézg)

8Preliminary computational tests revealed no reason to favor the choice of
one constraint to another. Moreover, Y, seems to be a parameter for which

one might have some a priori information.
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was zero. For all experiments o? = 250 while the values of og and og were
varied as indicated below. Finally, all experiments consisted of 50 replica-
tions and, except for one case, we dealt with sample sizes of size 40.

An overview of the sampling experiments is provided in Taﬁle 2. There
are two preliminary experiments, cases I and II, and six basic cases,
I1I-VIII. The latter come in pairs and in the first of each pair, the data
are generated by ignoring demand uncertainty while the second generates data

by assuming expected loss minimization. The range of the z's and

o§ vary across the pairs. All four estimation methods are used in the basic

cases.
Table 2
Design of Experiments
o2 o2

Case 2 3 Z-Range Data Generation

I 0 125 small expected loss
sample size = 80

I1 0 125 small expected loss

I11 250 125 small certainty

v 250 125 small expected loss

v 250 2000 small certainty

VI 250 2000 small expected loss

VIiI 250 500 big certainty

VIII 250 500 big expected loss

The two preliminary experiments deal only with the Exploss method,
clearly the one about which there are the most questions. In both these

cases og = 0, a priori the most favorable circumstance for the Exploss
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method. Table 3 reports the mean absolute deviations (MADs) as a percentage

of the absolute value of the true parameter. For Case I (sample size = 80)

Table 3

Preliminary Exploss Results

Case I Case II % WIN % WIN
% MAD % MAD Ivs., II IT vs. IV
Vi 107 190 59 52
2 74 234 59 87
% 12 15 59 41
) 15 20 59 54
ﬁl 16 33 57 54
791 14 24 61 67

the %MADs are about 15%, except for Vi and Vo where they are much larger. For
Case II (sample size = 40), the MADs are roughly twice as large, a factor
consistent with the relative sample sizes. For vy and Vo there is some indi-
cation that the MADs are affected by outliers. This phenomenon is even more
strongly evident in a number of other cases where og # 0.

As a cohsequence, in analyzing the results we shall mainly rely on a non—
parametric statistic, the fraction of times one estimator is closer to the
truth than another. This statistic appears in the third column of Table 3
comparing the Exploss method for the two sample sizes. Averaged across
parameters, Exploss for Case I wins 59 percent of the time. While, strictly
speaking, the behavior across parameters is not independent, a rough measure
of the standard error of this percentage is .029, so one can reject the hypo-

thesis that the Exploss method performs equally well as sample size changes.
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As noted earlier, strictly speaking, our Exploss method only applies when
when og = 0. We can see the consequences of using the method when og Z 0 by
comparing Cases II and IV. This is done in the last column of Table 3. The
average percentage win statistic is again 59, suggesting that Exploss
performs significantly better when ogz 0. Unfortunately, this assumption is
unlikely to be met in practice so in comparing the Exploss method with the
other three, we utilize nonzero values of og.

Table 4 reports the reéults of the average percentage win statistics for
a bivariate comparison of methods across the various experiments. As far as
the Exploss method is concerned, the comparison with the Switch method, which
also uses the x but not the y data, is perhaps most relevant. There is a
slight tendency for the Exploss method to do better with the expected loss
data generation but, with the exception of the last two cases, the Exploss
method does not do all that well. Moreover, the results for the last two
cases give a misleading impression of the success of the Exploss method. In
particular, it will be recalled that the Exploss method constrains "1 to its
true value. If, alternatively, in Case VIII we had constrained 141 to 10%
above or below its true value, the average percentage win statistics would be
40.7 and 42.3 respectively.19

What this suggests is that the Exploss method, even where the data are
appropriately generated, does not have much to recommend it over the Switch

method. The comparison with the Full method is even less favorable, as the

second row of Table 4 indicates. Once again, the last two columns give a mis—

19The deterioration of Exploss is most severe in Cases VII and VIII. 1In
Case VI, for example, moving 7, up or down by 20% leaves the average per-—
centage win statistic virtually unchanged. The reason is that the absolute
performance for all methods is both better and less disparate for Case VIII.
See Table 5.
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Table 4

Average Percentage Win Statisticsx

111 IV v VI _VII VIII

Exploss vs Switch 47.0 45.3 48.3 55.3 67.0 70.7

Full vs Exploss 59.0 66.3 53.7 52.0 52.3 47.0

Full vs Switch 61.7 58.6 51.7 58.9 71.0 68.3

Full vs Min 66.7 70.3 59.7 60.7 46.7 41.7
Table 5

Relative MADs

Case IV _ Case VIII

Full Exploss Switch Min Full. Exploss Switch Min
vy 1.0 15.9 20.9 - 1.0 1.3 2.3 -
2 1.0 59.2 16.4 - 1.0 1.1 1.4 -
* 1.5 1.2 1.0 - 1.3 1.0 1.4 -
&y 1.0 14.0 1.7 - 1.2 1.0 1.8 -
ﬁo 1.0 - - 2.5 1.2 -~ - 1.0
ﬂl 1.0 2.1' 1.3 4.9 1.0 1.4 2.3 1.3
Y20 1.0 - - 1.0 1.4 - ~ 1.0
Y91 1.0 3.5 2.7 2.6 1.0 1.3 2.4 1.1
7 1.0 - 2.7 2.4 1.0 -~ 3.2 1.3
) 1.0 2.9 2.1 1.4 1.1 1.1 1.0 1.1

¥Entries give the average percentage of wins for the first-named method in
each row.
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leading impression of the Exploss method. For example, for Case VIII con-—
straining 71 to 10% above or below its true value, pushes the percentage win
for Full to over 70%.

More generally, as Table 4 shows, the Full method, hardly surprisingly,
emerges as the most reliable estimating technique, whatever the underlying
data generation scheme.20 This can also be seen in Table 5 which reports the
MADs for two cases, normalized so that the lowest entry in each row is unity.
The advantages of the Full method are particularly striking in Case IV but are

also evident in Case VIII where the methods perform more comparably.21

7. Conclusions
This paper presents two types of rationing models that differ in their
treatment of the underlying uncertainty. From a theoretical perspective the
expected loss approach has the more appeal. Indeed, a number of interesting
extensions of this model can be readily suggested. For one, it would be pos-—
sible to extend the model to allow for more than one source of uncertainty.

Such a situation was implicit in the setup described by equs. (3-2) and

20

The comparison of the Full vs Switch methods is based on seven parameters,
the six in Table 3 plus 71 while Full vs Min is based on BO’ ﬁl, Yog* 7217

Yy and 6. The last parameter is only directly estimated by the Min method.

As the Min method has relatively few parameters in common with Exploss and
Switch, these comparisons are not presented.

21The discrepancy between the relative performance of the Full and Min
methods in Case VIII in Tables 4 and 5 largely stems from the percentage wins
for the intercepts. In general, the Full method does least well for the
intercept terms. It should also be noted that there is some mild evidence
of a "policy bias" with the simple Min model. More particularly, for about
two-thirds of all the parameter estimates the Min model had larger biases
than the Full model.
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(3-3). Another source of multiple uncertainty would arise if we allowed for
the possibility that the policy maker is uncertain both with respect to the
strength of demand and in regards to the elasticity of demand with respect to
its instrument (i.e., 71). Preliminary analysis of such a model reveals a
number of new wrinkles that we plan to report on in a subsequent paper.
Still another related extension would be to adopt an explicit multiperiod
setting where, perhaps, anticipations or rationing might be important.22
From an econometric point of view, the Full method, even when it is only
approximately valid, appears to be the most useful of the four estimating

methods. Nevertheless, it remains a challenge to provide a more satisfactory

way to estimate directly the expected loss model.

22Several potential areas of application of the extended expected loss model
can be noted. One example stems from the work of Abel (1985) who analyzes
inventory behavior in the face of stockouts, a setup that leads to min con-
ditions. It also appears fruitful to apply the expected loss model to the
multiperiod interest-rate setting behavior analyzed in Goldfeld and Jaffee
(1970).
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Appendix

The relevant expressions for the comparative statics of the expected loss

model referred to in the text are given below.

&= 1 (x) = vy (1-6+68) /B ()
B oy 0, [6(2-6) (w(1-#)—8)-w]/H' (x)

dv1 13

3%; =~y 6% [w(s-1)+e] /B (x) ggg = v,7,00/H' (%)

To calculate the quantity of expected rationing, E(yd—y), one can proceed
directly from the pdf of yd—y or combine (4-13) and (4-16). The result is:
d 1+v17§
R = E(y -y) = (_71"_1)X +y 5z o ¥ - Ny
From this one can directly calculate the relevant derivatives. For example:

B = 98-8y () ok = ~6(1-4) /B (x)
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