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by

Whitney K., Newey and James L. Powell

1. Introduction

In the estimation of a linear regression function for a dependent
variable yi in terms of a vector of explanatery variables X choice of an
estimation method (say, least squares versus a more "robust" method, such as
least absolute deviations) is often based solely on the criterion of relative
efficiency. When y.1 is in fact generated by a linear function of the
regressors plus an i.i.d. error term which is independent of the regressors,
relative efficiency is the appropriate criterions only the interpretation of
the intercept term depends on the choice of estimation method, provided the
latter is well-behaved. However, under weaker conditions on the error terms,
interpretation of the estimated coefficients depends crucially on the method
used. If, conditional on the regressorss the dependent variable is
symmetrically distributed about a linear function of X0 this function is a
"natural” estimand,; and estimation methods based on minimization of symmetric
empirical loss functions should consistently estimate its coefficients;
however, if the conditional distribution of Yy given X5 is both
heteroskedastic and asymmetric, different lass functions correspond to
fundamentally different estimands. In this setting, "choice” of estimator
amounts to choice of estimand, and relative efficiency of estimation is a much
less compelling consideration (alfhough, as Bickel and Lehmann (1973) argue,
efficiency may be a useful criterion when choosing among possible estimands).
Indeeds an adequate characterization of the conditional distribution of the

dependent variable may require calculation of several regression coefficient



vectors, each corresponding to different notions of "location” of this
conditional distribution.

In view of the importance of homoskedasticity and/or conditional symmetry
to the interpretation of regression coefficient estimates, it is worthwhile to
test whether either of these conditions are applicable. For the linear
regression model, several tests of the null hypothesis of homoskedasticity
have recently been investigated. The majority of such tests uses residuals
from a preliminary fit of the regression equation of interest; this group
includes the tests proposed and studied by Anscombe (1961), Glejser (1969),
Goldfeld and Quandt (1972), Harvey (1976), Godfrey (1978), Breusch and Pagan
(1979), and White (1980). In their simplest form, these tests of
homoskedasticity are tests that the coefficients of a second-stage regression
of the squared values (or more general even functions) of the residuals an
transformations of the regressors are zero. Testing for symmetry of the error
distribution has received somewhat less attention in the statistical
literature (presumably since it is not directiy related to the guestion of the
relative efficiency of weighted to classical least squares, which motivates
much of the literature on heteroskedasticity)j; research has focussed on
i.i.d. observations, rather than observations generated from a linear model
(see, for example, Antille, Kersting, and Zucchini (1982), and Boos (1982)).
Nonetheless, tests for symmetry analogous to those for heteroskedasticity can
be constructed using odd rather than even functions of the residuals in a
second-stage regreésion (as diséussed in Section 4.2 below).

An alternative approach to testing homoskedasticity has been studied Ey
Koenker and Bassett (1982); the test they propose is based upon the
regression analogues of order statistics, termed "regression quantiles,”

introduced by Koenker and Bassett (1978). For their test, the null hypothesis



of homoskedasticity is rejected if the slope coefficients of the regression
equation, estimated at different quantiles of the conditional distribution of
the dependent variable, are significantly different from one another.
Comparing the asymptotic efficiency of this test relative to a corresponding
"squared residual regression" test, the authors found some inefficiency of the
regression quantiles test when the error distribution is Gaussian, but this
conclusion was reversed for contaminated Gaussian error distributions, and the
efficiency gains of the regression quantile test appeared to be substantial
even for low levels of contamination.

Koenker and Bassett’s approach to heteroskedasticity testing exploits the
previously-discussed interdependence of estimand and estimator when the error
terms are not i.i.d.; by comparing regression coefficients estimated at
different quantiles, the question of heteroskedasticity is recast as a
question concerning differences in alternative measures of "location” of the
conditional distribution of the dependent variable. And, while the authors
did not consider testing for conditional symmetry, their approach can easily
be extended to this setting. However, there are certain drawbacks to the
regression quantile approach. First, because the minimand defining the
guantile estimators is not continuously differentiable, the estimators
themselves are somewhat difficult to compute (though Koenker and Bassett do
point out that the minimization problem can be restated as a linear
programming problem, for which efficient algortihms are available). Also,
efficiency of the estimators and corresponding tests depends on the precision
with which percentiles, rather than moments, of the error distribution can be
estimated; while the guantile estimators are "robust" against heavy-tailed
error distributions {(because they are baéed on absolute rather than squared

error loss minimization), they are relatively inefficient for error



distributions which are close to Gaussian or which have low densities at the
corresponding percentiles. Finally, and perhaps maost importantly, the
asymptotic covariance matrix of quantile estimators depends on the values of
the density function of the errors at those quantiles; such density function
values are notoriously difficult to estimate, and the resulting test
statistics for heteroskedasticity and asymmetry will depend on the degree of
"smoothing" of the empirical distribution of the residuals, as chosen by the
researcher.

The present paper proposes a least squares analogue of regression
quantile estimation, as well as associated tests of homoskedasticity and
symmetry. The regression coefficent estimators considered here were also
investigated by Aigner, Amemiya, and Poirier (1976) but only in the context of
a correctly-specifieds i.i.d. error distribution. As shown in the following
section, the estimands for this approach in a more general, non-i.i.d. setting
characterize the conditional distribution of Ys given X3 in much the same way
that the regression quantiles do; however, the estimators are simpler to
compute (using iteratively-reweighted least squares), and their asymptotic
covariance matrix can be estimated without estimation of the density function
of the errors. The efficiency af this class of estimators, which includes
least squares estimation as a special case, is governed by the efficiency of
estimation of the first moment of the error distribution, so comparison of the
resulting tests to tests using residuals from a first-stage regression do not
depend on the "robustness" of the respective procedures.

In the following section, these least squares analogues of regression
quantiles, termed "asymmetric least squares" estimators, are defined, and
properties of the corresponding estimands for i.i.d. observations and for the

linear regression model are presented. The large sample distributions of the



estimators are derived in Section 3, both for the general case when Yy and L
are jointly i.i.d. and for the special case of locally linear
heteroskedasticity and/or asymmetrys in the latter case, test statistics are
derived which have limiting noncentral chi-sguared distributions under the
local alternatives. In Section 4, the local power of the tests of
homoskedasticity and symmetry are compared to that of tests based on
regression quantiles, and of tests which use first-stage residuals, under the
assumption of contaminated Gaussian errors. ' As the results of this se;tion
show, the asymmetric least squares tests have local power functions which are
strikingly similar to certain other tests of heteroskedasticity and
conditional asymmetry, and they perform quite ;ell relative to regression
quantile tests for the range of error distributions considered. The paper
concludes with some qualitative observations concerning thé general efficacy

of the procedures considered. Proofs of the main theorems are given in a

technical appendix.



2. Definition of the Asymmeiric Least Sgquares Estimators

P

The observable data {lygu%43, 1 = 1,...,n} are assumed to be generated by

the linear model

(2.1} ¥Yi = X{Bg *+ uy,

where {x;} is a sequence of regression vectors of dimension p with first

component xjy 1, BO is a conformable vector of unknown parameters, and {ui}
is a sequence of scalar error terms.
The regression quantite (RQ) estimators, proposed by Koenker and

-~
Bassett (1978), are defined as those vectors b(6) which minimize the

function

’

over B in RP  for fixed values of 6 in (0, 1}, where rgl-) is a

convex loss function of the form
{(2.3) re(k) = |6 - 1(x < 0)f-Ixnl,

with 1(A) denoting the indicator function for the event A. Under homo-
skedasticity the probability 1imits of the regression gquantile estimators
{b(8)} for different choices of 6 deviate from Bg only in their intercept

terms. That is, under homoskedasticity,

A
(2.4) plim b{8) = f4 + n(éley,

i

A

where e; denotses the 2N unit vector and n(8) F'I(BB, the quantiile

function for the error term 4;. Under heteroskedasticity the probability
limits for the slope coefficients will in general alsgc vary with 6, with

differences depending on the joint distribution of u;  and  x,.



The regression guantils estimaiors are thus a class of empirical "loca-
tion" measurses for ths dependent variable whose sampling bGehavior involves the
true regression coefficients and the stochastic behavior of the error terms.
To abtain a similar class of location measures that are more convenient than
regression quantiles we consider replacing the "check function” criteriaon of

(2.3) with the following "asymmetric least sguares” loss function:
(2.5) pr(A) = 1T - 1(x < 0)[A\%, for T in (0, 1).

A
The corresponding class of asymmetric least squares (ALS) estimators {p(T);}

are defined to minimize

(2.6) R8s 1) = Zylyprlyy - %)

over f, for p. (-} given in (2.5). Aigner, Amemiva, and Poirier (19706)
show that this estimator can be interpretsed as a maximum likelihood estimator
when the disturbances arise from a normal distribution with unegual weight
placed on positive and negative disturbances.

To determine the class of location parameters that are estimated by
{5(?)}, consider the scalar parameter u(T) which minimizes the function
Eloe{Y - m) - p(¥Y)] over m, where the expectation is taken with respect to
the distribution of thé random variable Y, which is assumed to have finite
mean. The parameter u(7) 1is easily shown to be the solution of the

eguation

-

(2.7) pOTY = EQY) = LQRT-1/ (=TI [y 0y ) (YmR{TIIAFCY ),

where F{y) 1is the c.d.f. of Y.? When E(¥) = 0 this equation for (7}
is identical to the equation for the reservation wage for seguential,
costless sgarch from a fixed distribution when the search period interest

rate is {1-7)/(27-1}. Also, as discussed by DeGroot (1970, pp. 244-247),



is proportional to the

p—

the integral on the righi-hand side of eguation (2.7
Bayes’ risk for the problem of deciding whether a parameter is smaller or
larger than a specified value, when f{y} is interpreted as the density
function of the mean of the posterior distripbution. It is evident from
thase interpretations that pl7t is determined by the properties of the
expectation of the random variable Y condifianal on Y being in a tail of

the distribution. Motivated by this fact we will henceforth refer to p(7T)

tn 3

as the gxpectile.
The expsctile function p(T) summarizes the distribution function in
much the same way that the quantile function pi{6) = t=l(g) does. Let Ig

denote the set {yi 0 < F{y) < 1}.

Theorem 1: Suppose that E(Y) = m exists. Then for each 0 < 7T <1, a
unique solution u(T) to equation (2.7) exists and has the following
properties:

(i3 As a function u(T): (0, 1) -» R, p(T) is strictly monatonic

increasing.

(i1) The range of u(T) is I and p{T) maps {0, 1) onto Ig.

{iii) For ¥ = s¥Y + t, where s > 0, the < gxpectile p{t) of Y

~
satisfies p{T) = su(1T) + t.
{ivy If F(y) 1is continuously differentiable then u{1) 1is

continuously differentiable, and for y #m 1in I. and < such that

f by
y = ultyd,
. . - ‘e 5 gy - - 2 -
. gy} = -y - m + T - _4 ("T .
(2.8} Fly) Ly m yH kTy)(l ZTy)J/lp (Ly} 1 2 y) 3
where this equation holds in the 1imit for y =m (and Ty = 1/2}).

~th th

Property (iii) states that, tike the 7 quantile, the T expectile is



location and scale equivariant, Most important, (ii) and {iv) together
imply that the function u(T) characterizes the distribution of Y. The
range of p(7T) is Ip by (ii), and for any y in I- equation (2.8)
gives an expression for F(yj} in terms of u(7T) and its derivative.

We see from Theorem 1 that expectiles have properties that are
similar to quantiles. It might also be useful to have some idea of how
expectiles behave for some common distributions. In Figurs 1| we plot the
quantile and the expectile functions for the standard normal distribution.
We see that the expectile function has a smaller slope than the guantile
function near T = .5 and a larger slope than the gquantile function near T
=0 or T =1, The expectile function for the uniform distribution on the
unit interval, which can be shown to be u(7) = [T - JT(I7E)1/(2T - 1) by
using equation (2.7), also exhibits similar behavior,

In the regression case the vector B(7) that minimizes R(B,T) =
E(pT(yi - x{B) - pr{y4)1, which is a population version of R,(B,T), will
be determined by the conditional distribution of vy, given x;. The first
order conditions for this minimization problem can be shown to imply that

B{T) 1is a solution of the equation
(2.9) BITY = {ECIT - 1(yy < x{BCTI)Ixyx 13T ECIT = 1y < x{B(TI)Ixyy 1.

In gensral, the conditional 7th gxpectile of vy, will be a function

u(T,x;) that minimizes Elp (y; - m) - g lyy)ix;1 over m for almost all

X

;0 and x:B(T) will be a linear (in x;) approximation ta p{T,x;). As

in Theorem 1 and the accompanying discussion it can be shown that p(T,x;

i)

characterizes the conditional distribution of y; given X although the

i
linear approximation x{ﬁ(T) need not,

In some cases xiB(T) has a simple relationship to pi{7,%;3, and this



ralationship can provide useful information about the conditional

distribution of y,. If wu; is independent -of x; in equation (2.1}, s0

that only the location of y; depends on X then by property (i1ii) we

i

th

have p{(T,x;) = XjBg * (1), where u{T} 1is the T expectile of u;.

1

th

Since the conditional 7T expectile is linear in this case, it follows that

(2.10) B(T) = Bg + uiTley, e; (1,0, ..., 0)',

so that changing 1T only changes the intercept term in (7).
When the scale of y; also depends linearly on X say U, =

(x{zojsi and €5 and Xy independent, then p(T,xi) = K

e
T

o * ulTDx{Tg =

®{l8g + n(Tiygl, where u(T) is the TN expectile of ¢.,. It follows that
{2.119 B(T) = fp + u(T)¥g.

When the scale of y; varies with x,,

s0 that heteroskedasticity is
present in the regression equation, it follows from equation (2.11) that the
slope coefficients in f(1) also vary.with T. As with regression
quantiles, heteroskedasticity can be detected by checking whether or not the
slope coefficients in a set of ALS estimators vary with 7. Note that this
specification does not restrict the way in which the exogenous variables
affect the scale, except that functions of the axogenous variables must
enter linearly. We can always radefine the original regression vector to
include, say, nonlinear functions of a sst of "original" regressors.
Asymmetric least squares coefficients also provide information about
symmetry of the conditional distribution of y; given xy. Symmetry is an
important property of the conditional distribution of y, because, in the
absence of symmetry or homoskedasticity, conclusions about how the location
of the distribution of y; varies with x; may depend on the choice of a

location measure (e.g. mean versus median)., Also, it is possible to obtain

10



gfficient adaptive estimators of gy if symmetry holds (Manski (19847,

Mewsy (1986}, One can check for asymmeiry by using the type of spescifica-

[

tion test considered by Hausman (1978), with a comparison of two regression
estimators obtained using different location measures, such as least sguares
and least absolute deviations. One can also use the following result on the

pattern of the asymmeiric least squares coefficients to dstsct asymmetry.

Theorem 2: If the distribution of y; conditional on x; is symmetric

around xjB845 with probability one, then

(2.12) () + B(1-131/2 = B,.

In other wards, if y; is symmetrically distributed around x{f5 then, as a
function of T, B{T) will be symmeiric around ﬁo, which is equal to

B(1/2). HNote that this result holds aven if y(T,xi) is nontinear in Ky
for T # 1/2. An analogous result can be shown to hold for regression guan-

tiles.

Misspecification of the regression function may also atfect ths asymmst-

ric least squares coefficients B(7}), since in general x{B{T) 1is an approx-

imation to the actual conditional weighted mean function T, %y 0,

“f

or exam-
ple, it is well known that misspecification of the regression function can
induce heteroskedasticity, so that the slaope coefficients of B(T) might vary
with T due to, for example, the presence of an omitted variable.

An advantage of ALS estimators relative to regression gquantiles is that
the loss function pr(N) is continuously differentiable in X, so that the
estimators g(T) can be computed as iterated weighted least squares

estimators, i.e., as the soclution to the equation
A . fw N . A . R _1 n "\, . s
(2.13) ity = L2y 1T 1y < BLUT) My ] Eizllf-l(yi<X1£kT)JiX1yi-

11



Furthermore, and perhaps more importantly, consistent estimation of the
joint asymptotic covariance matrix of sgveral ALS estimators does not
require estimation of the density function of the error terms, as discussed
below. Unlike regression quantiles, the estimated covariance matrix will
involve no "smoothing" of the empirical distribution or quantile function of
the estimated residuals. These conveniant properties of asymmetric least
squares, along with its relatively favorable performance in the efficiency
comparisons of Section 4, suggest that asymmetric least squares merits
consideration for use in practics.

The disadvantage of asymmetric least sgquares relative to regression
quantiles is that expectiles may be more difficult to interpret than
quantiles. This should not be considered to be a serious disadvantage
however, since one can obtain a rough idea concerning the location of a
parficular ALS estimator E(T) in the conditional distribution of vy,
given x; Dby calculating the proportion of abservations for which vy; <
xgE(T). In the case where x; 1is independent of wu, this proportion will

1 1

be a consistent estimator of F{u(t)), where F(u} 1is the c.d.f. of wuj

and u(T) 1is the Tth expectile of wuy.

12



3, Large Sample Properties of Asymmetric Least Squares Estimators

The asymptotic theory for the asymmetric least squarss gstimators ang
test statistics will be developed under the following assumptions. Lat &
denote the Lebesgue measure on the real line and let =z = (y, #'), where X

isa px 1 wvector,

Assumption 1: For each sample size n, zZ; = (yy, x{), {(i=1,...,n), is i.i.d.
and for ¥, 1in rY, z; has a probability density function
fly;I%5,0,)9(%) with respect to a measure p, = % X p, such that ¥, = 74

+ 8/yn. Also, the conditional density f(ylx,#g5) 1is continuous in y for

atmost alt  x.

I

Let E[-{yl denote the expectation taken at f(ylx,¥)g(x), and let EL-1]

EL-{¥gl. Also, let ¢, (X) = |T - T < 0)1-nh.

"

Assumption 2: There is an open set I containing ¥5 such that for aimost
all z, the conditional density f(ylx,¥)} 1is continuous in ¢ on T.

Alsa, Elxy¢clyy - X{B(T))1¥l 1is continuously differentiable in ¥ on T.
For a matrix A = {a;;1, let |JAl = max; sla;;l.
153 ij

Assumption 3: There is a constant d > 0 and a measurable function afz)

that satisfy suppf(yix,#) 2 alz) and

(3.1) (121 9az)g(x)dp, < +0, fatz)gixidp, < +x.

Assumption 4: E[x;x3]1 1is nonsingular.

Assumption 1 specifies that the data are i.,i.d.. We make the identically

distributed assumption for ease of interpretation of B(7), since without

13



this assumption the J(7T) that minimizes R{§,7T) would dspend on 1i. 1I%
should aiso be noted that without identically distributed obssrvations the
estimator of the asymptotic covariance matrix of §(T) given below need not
be consistent (see White (1983)). Of course, the i.i.d. assumption does not
restrict the way that the conditional distribution of vy, depends on X;,
so that, for example, conditional hetaroskedasticity is allowed.

Assumption 1 also specifies that the data are generated by a sequence
of local alternatives to flyix,73)g(x). We make this assumption in order
to discuss the asymptotic efficiency of various test statisfics based on
ALS estimators. Of course, the case where the data are generated by a fixed
distribution is included as a special case when § = 0,

Assumption 3 requires that siightly higher than fourth moments of vy,
and x; are bounded uniformly in 7.

A Py
For a vector of waights (Ty, ..., Tp)’, let E = veclA(Ty),...,h(Ty)]

denote the vector of ALS estimators and let E = vec[ﬁ(fl),-.-;ﬁ(Tm)J be

n

the population counterpart. For u,(T) = y;-%;8(T) and Wi (T)

1T-1(u; (T)<0)) 1, let

W, = E[wi(Tj)xixgl, W = diaglWy, ..., W

J 1

m

ij = E[wi(Tj)wi(Tk)ui(Tj)ui(Tk)xix{], vV = [V

6;

jk]’ (j,k=1,...,mj},

BELW; (T3 )uy(Ty)xy 1991/, & = [6{, ..., Gy17,

where V is partitiocned conformably with €. The asymptotic distribution of

A
E is given in the following result,

Theorem 3: If Assumptions | - 4 are satisfied then for each T in (0,1)

a unigue soglution B(T) to equation (2.9) exists. Alsg,
N - — —
(3.2) JnE - g -5 nwles, wilwly,

14



In order to use Theorem 3 to construct large sample confidence intervals
or hypothesis tests, a consistent estimator of the asymptotic covariance
matrix of E must be constructed. Unlike the regression guantile esiimators,
natural, sample moment estimators of the components of this asymptotic covar-

jance matrix can be constructed using the asymmetric least squares residuals

~ ~
Gi(T) = y; - x{f(7) and the estimated weights Qi(T) = 1T - Tuy (T < 03
Let
o - N oy : ¢ : W o
Wj = .‘_..iz._l‘ﬂik‘rj))\'ixi /n, W = dTangl, vy Wm],
Uip = 2;0,@ Wi (T )0 a : Vo= Vi3, (3,k=1 )
jk = Hi:lwi(fj)wikfk)ui(’fj)Ui(Tk)K:‘)‘:i/n, = ij_| LJHrK=ly e e yMy,

The sample moment estimator of the asymptotic covariance matrix wlvw ! of

AN

A

T is W lOWL.

Theorem 4: If Assumptions 1 - 4 are satisfied then
~ - - -

(3.3) WD B wrlywt,

This covariance matrix estimator is straightforward to compute. If ﬁ(T) is
interpreted as a weighted least squares estimator, as in equation {2.13), then
Q'10Q‘1 is simply the generalization of the Eicker (1967), White (1980
heteroskedasticity consistent covariance matrix for the vector E of
weighted least squares estimators.

Theorems 3 and 4 allow one to form large sample confidence intervals or
hypothesis tests concerning the population values of various asymmetric lgast
squares parameters A(T). It would pe useful to know how inference
procedures based on ALS estimators compare with other inference procedures.
For example, we would like to know how tests for heteroskedasticity based on

ALS estimators compare with other tests for heteroskedasticity, such as the

regression quantiles test presented by Koenker and Bassett (1982). 0One way

15



to make such a comparison is to compars the local power of tests that
utilize ALS estimators with the local power of other test statistics. To
make this comparison we need to specify the form of tests based on ALS
estimates and obtain their distribution under a sequence of local
alternatives.

Consider the general linear hypothesis
(3.4) Hg: HE = h.

Two particular hypotheses of interest are homoskedasticity and symmetry. As
discussed in Section 2, heteroskedasticity can be detected by checking for
differences in the vector of slope coefficients across different weights.
Suppose that (Ty, ..., Tg) is ordered so that 0 < Ty € 0 < T < 1. As

pointed out by Koenker and Bassett (1982), for this case we have h = 0, and

the matrix H can be written as

(3.5) H=ah @y,

h

where a is an {(m-1) x m matrix with typical element A?- =38

37845 7 %4¢5-1)
Gij is the Kronecker delta, and ¥ = {0, Ip_ll. Also, as discussed in
Section 2, nonsymmetry can be detected by checking whether symmetrically
placed ALS estimators average up to the least squares estimator. For this

case suppose that m 1is odd and that for j* equal to the median of

(1, ..., m},

= - - - k
Tj* = 1/2| ‘.j =1 sz-lv__j, O < j < 3 -
Then h =0 and H can be written as
(3-6) H = AS®"P, AS = [I(m__l\)/z, _ZE(m_l)lz, I(m_l)/zl,

16



where ¥ is a selection matrix. For the symmetry test we usually have ¥ =
Ipj but occasionally another choice of ¢ might be appropriate. For
example, if it is known a priori that the disturbances are i.i.d. but
possié\y not symmetrically distributed, then Y can be chosen to pick out
only the intercept term.

To compare the local power of asymmetric least squares tests of homo-
skedasticity and symmetry with other tests we need to be more specific about

the form of the data generating process. We will restrict attention to local

heteroskedasticity and asymmetry that is linear in xy.

Assumption 5: The observations satisfy y; = x{Bg + Uy, where

(3.7 Ui = UiEi, O'.i 1 + X.i?nh + 1(81 > O)xga'nsﬁ

where ¥, = Gh/Jn, SS/Jn, and £, 1is i.i.d., independent of x

Tns i is

and symmetrically distributed around zero. Also, ¢g; has the c.d.f. F(e)},

which has a continuous density f(g)}.

This assumption specifies that the data is generated by a sequence of local
alternatives to a model with i.1.d., symmetric disturbances. If &, # 0 and
8§, = 0 then we have the local heteroskedastic alternative considered oy

Koenker and Bassett (1982). 1If Sh = 0 and 65 # 0 then we have a non-

symmetry alternative like that considered by Antille, Kersting, and Zucchini

(1982) and Boos (1982), where the effect of x;

; on the distribution of vy

is confined to the upper half of the distribution of ;.
In order to guarantee that the regularity conditions given above are

satisfied for the particular data generating process in Assumption 5, it is

useful to make the following assumption.

Assumption 6: x; has compact support. Also there exist finite constants

17



D, d > 0 such that

{3.8) f(e) < D/(t + 1e13%9y,

The assumption that X3 has compact support is difficult to dispense with in
the presence of linear heteroskedasticity.
The vector of ALS estimators and the estimated asympiotic covariance

matrix can be used to form a test statistic T for the general linear

hypothesis in the usual fashion, with
A A_IAA_l _1 Vo
(3.9) T = n(HE - h)'CHW *VW *H’'] " (HE - h).

Under a sequence of local alternatives to Hg, T will have a noncentral chi-

square distribution. Let

(3.10) (T, ) = Elw; (TIuy(TIw;(8Juy(8)1, d(T) = EQwy(T)],

i = S(Ty, T[I/LATPHATIT, Gk = 1,...,m),

and let Z be the matrix with typical element Ty Alsa, let D = Elx;xiy1,
H o= (plTy), e, H{TR))", where p(T) s the fth weighted mean of €;, and
vo= (u(Ty), ..., V(TL)), where

(3.11) v{T}

te{Pefcerde + (1-20){Pax0,v{T et (eygeT «

{T01 - F(uiT))l + (1-T)F(uit))3~ L,

Theorem 6: Suppose that Assumptions 1, 4, 5, and 6 are satisfied. Also
suppose that Hy 1is satisfied when 7 = g, & 1is nonsingular, and H has
full row rank. Then T converges in distribution to a noncentral chi~

squared with rank(H) degrees of freedom and noncentrality paramester

(3.12) (@8, + v S 'HIHE @D DHH' I Hp @ 8, + v ® &)
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The local power of asymmetric least squares tests can De compared with
that of other tests that have the same degrees of fresdom by comparing the
respective noncentrality parameters. For the local power comparisons to be
considered in the next section it will be useful to have available expressions
for the noncentrality parameter of the asymmetric least squares test of homo-
skedasticity in the absence of lacal asymmetry and that of the symmetry tast
in the absence of the local heteroskedasticity. The following result gives

these expressions.

Coraltary 1: If H = Al ®¢¥ and 85 = 0, then the noncentrality parameter

for T s KES-(wsh)'(wo'lw')'1(wah), where

(3.13) Py = aMrahzal o e

wy

Also, if H = AS ®¢Y and 8, = 0, then the noncentrality parameter for T

is kfsr(¥8g) (¥0 ey h(¥8,), where
(3.14) kP = (a%u)/(a%2aS ) 1ady),

The noncentrality parameter for the asymmetric least squares test of
homoskedasticity under a heteroskedastic alternative that is given in Corol-
ltary 1 has a similar form to the noncentrality parameter for the regression
quantiles test of homaskedasticity. The matrix Z 1is the covariance matrix
for a vector of weighted mean estimators. Also, as shown by Koenker and
Bassett {1982), the regression quantiles test of homoskedasticity has a limit-

ing noncentrality parameter that is egual to KSQ-(TGh)‘(?D—IT')'li?sh), with
(3.15)  «Bg = aMnyafaah ) tahy),

whare n = (n(6y), ..., n(6g))" s the vector of gquantiles, and @ the

asymptotic covariance matrix of the vector of quantile estimators. Thus, KSO
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involves the differences Eniej)-n(ej_l)] of quantiles and the precision with
which these differences are sestimated, so that by comparing KES' and xgo,

we see that the relative sfficiency of the ALS test and RQ test is governed

by the sensitivity of quantiles and weighted means to the choice of T and

& and the precision with which the respective location measures are
estimated.

One can also form regression quantile tests of symmetry by using
regression quantile estimators and their estimated covariance matrix to form
a test statistic, as discussed by Koenker and Bassett (1982), with the H
matrix given in equation (3.6). It is straightforward toc show that for the
asymmetric alternative the regression quantiles test of symmetry has a

noncentrality parameter that is squal to Kéo'(TGS)’(?D'IY')"1(?65), with
(3.16)  k8g = (a%p")(a%aa® ) 1 (aSp*y,

where n* = (n(ep¥, ..., n(6)")’ and ()T = max{0,n(6)}. As with the
homoskedasticity tests, comparison of KSQ and KES indicates that the
relative power of asymmetric least squares and regression quantile tests of
symmetry will depend on the sensitivity of the respective location parameters

and the precision with which they are estimated.

Finally, it is worth noting that, because of the special form of the Ah
and 4° matrices and the jaoint covariance matrix T of the expectile estimators
for values of v symmetric about v = 1/2, it can be shown that the ALS test
statistics for either hamoskedasticity or conditional symmetry are
asymptotically independent under either of the null hypotheses (with an
analogous result holding for the regression quantile tests.) Thus,
significance levels for joint tests of these hypotheses are particularly easy

to calculate.
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4. Asymptotic Relative Efficiencies of Alternative Tests

In the two subsections below, the efficiencies of tests based on the
asymmetric least squares estimators relative to other tests of
heteroskedasticity and asymmetry are calculated for the class of contaminated
Gaussian error distributions. Section 4.1 compares the ALS test for
heteroskedasticity to tests which use the absolute or squared residuals of a
preliminary fit of (2.1), and to the regression quantile test of
heteroskedasticity. In this context, Koenker and Bassett’s (1982) original
calculations concerning the latter two tests are revised; due to an algebraic
error (described below), their Figures 1| and 2 give a misleading depiction of
the relative performance of the tests for this class of error distributions.
Section 4.2 discusses how odd functions of residuals can be used to construct
tests of symmetry, and compares the pefformance of such tests to the
corresponding tests using asymmetric least squares and regression quantile
estimators. A surprising finding is that the ALS test of heteroskedasticity
performs virtually identically to Glejser’s (1969) absclute residual
regression test in terms of local power; another surprising result is that
the ALS test for symmetry behaves much like a test based on a comparison of
least squares (mean) and least absolute deviations {(median) regression
coefficients. A general conclusion is that the ALS tests dominate the
corresponding RQ tests over a range of error distributions which does not

depend on whether homoskedasticity or conditional symmetry is being tested.
4,1 Tests of Homoskedasticity

Here we investigate the local power of tests for heteroskedasticity,

assuming conditional symmetry, i.e., 65 = 0. Following Koenker and Bassett’s
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(1982) setup, we consider the two-parameter class of contaminated Gaussian

distributions, with cumulative distributions of the form

(4.1) FIMN s @) = (1 = a)+B(N) + x-B(N/0)

for #{(:) denoting the standard normal cumulative and for « in the interval

{0, 1). For this class of distributions, the Tth weighted mean satisfies

(27 — 1041 — a)Pp(T)) + (a/a)P{p{T)/a)]
T+ (1 —21)[{1 — ®)B(R{T)) + ad{p(T)/a)]

(4.2) i) = ’
for 9(+) the standard normal density function. To conform to Koenker and
Bassett’s framework, we consider only the efficiency of the asymmetric least
squares test using a single difference of symmetrically chosen weights, i.e.,
a test based upon E(T) - 8(1 - 711, for % < 1 < 1. The corresponding
regression quantile test uses 8(9) - 8(1 - 8), the difference in symmetric
regression quantile estimators, where the same normalization é <8 <1is

imposed. For these tests, the scalars kts and KQQ’ defined in the discussion

following Corollary 1 above, can easily be calculated as functions of « and o,
using the special form of the distribution function in {(4.1). For example,
the term c(8, 1) appearing in the expression for the asymptotic covariance

matrix of the ALS estimators is

{4.3) c(B, T) = {(1 —8){1 — TIG(R(B)) + B8(1 — TIIG(R(T)) — B(R()]

+ 8701 — G{r(T))1} — 8{1 — 1)-p(B)H{T)

where
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(4.4) Gix) = {1 — )&M) + GUEQ(A/U) .

Expressions for the remaining components of KtS and “;Q can be obtained in a
similar manner.

Koenker and Bassett compared the scalar Kgg to the corresponding term ng
for a heteroskedasticity test using squared residuals from a preliminary least
squares fit of equation (2.1), a test closely related to those investigated by
Breusch and Pagan (1979) and White (1980). More generally, tests for
heteroskedasticity can be based on the sample correlation of l(ai) with the

N

regressors Xy where u, = Yy T x;g(é) is the least sguares residual and L(-)
is an even function. To obtain a test with more asymptotic power than the

squared residual regression test for (heavy-tailed) nonnormal disturbances,
the & function could be chosen to penalize large errors less heavily, e.g.s

2(u) = |ui® for 1 ¢ p < 2 rather than p = 2.

The test statistic for this type of test is

{4.3) T

nR .

the sample size n times the constant-adjusted R"2 of the regression of u<ﬁi) on
X Bickel (1978) has cbtained the asymptotic properties of this class of
tests when it is assumed that 6h = 60, but his results can be extended to the
more general linear scale model considered in the previous‘section. With some
additional regularity conditions (such asithe boundedness of E[m(al)Je) which
can be verified for the cases we consider here, the test statistic TQ of (4.3)

can be shown to have a limiting noncentral chi-square distribution with

{p — 1) degrees of freedom and noncentrality parameter
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(4.6) [EW’ (e )el)]eEVar(&(S ))]-1(W6h)’(WD—1W’)(W5h)

1 1

= N s (wp Ly
= x, - (V8,07 (¥D "¥7)(PS,)

under the conditions given in section 3.2.
In our application we focus attention on the squared residual regression

test (L{u) = ua) and the more "robust" test which uses absolute residuals

(i.e.s L{u) = {ul)., For the former test, the scalar KZ = KgR is

(4.7) K;R = 4L{3(1 + o<(0'4 =~ 10/(1 + «(GE - 1))2} - 11

1

when the errors are contaminated Gaussian, while for the absolute residual

regression test xh = xh is given as
9 > ¥y = ¥ap 15 9
(4.8) xh = [{m({1l + q(ca - 1))y/2(1 + ale - 1))8} - 1]_1 .

The local power of thehe squared residual regression, absolute residual
regression, regression quantile, and asymmetric least squares tests may be
compared by computing their Pitman asymptotic relative efficiencies (AREs);
since the limiting degrees of freedom for all of these test statistics are
equal, the AREs are just the ratios of the respective noncentrality
parameters, which in turn reduce to the ratios of the respective x
coefficients., However, the noncentrality parameters of the regression
quantiles and asymmetric least squares tests depend upen the particular

weights (8 and 7, respectively) chosen. Rather than considering the AREs for
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these tests for a range of weights, we consider only the weights
[{t — 86, 8] = [.13, .871 for the regression gquantiles test and
£l — 1, 71 = [.46, .541 for the asymmetric least squares test. These values
of 8 and 7 were selected after a preliminary calculation of the weights which
maximized the respective noncentrality parameters in a grid search for a
selection of « and ¢ combinations; the results of this optimization for tests
of homoskedasticity are given in Table | below. As the table shows, the
optimal 8 values for the regression guantiles test are typically between .75
and .90, and decrease as « and ¢ increase (although there is a sharp reversal
in this pattern for values of « near .50). The optimal values of T for the
asymmetric least squares test are usually between .51 and .73, and also
typically decrease with increasing o and d. A simple arithmetic average of
the optimal values in Table 1 and Table 3 below (which contains the
corresponding optimal weights for tests of conditional symmetry) suggests
6 = .87 and 1 = .54 are reasonable choices for the respective weights, so
these average values were used in this and the following subsection.

It is important to note that the value of the noncentrality parameter is
usually quite insensitive to moderate perturbation of the weights from their

optimal values. For example, for the regression gquantiles test, when o« = .03

and ¢ = 3, use of 6 = .87 rather than the optimal 8 .89 results in an
efficiency loss of only twe percent (although for « = 0, the efficiency lass
rises to 10 percent, with optimal 8 = .93).

Table 2 gives the AREs af the regfession quantile, asymmetric least
squares, and absolute residual regression tests, all relative to the sguared
residual regression test. One striking feature of this table is the nearly

identical performance of the absolute residual regression test and the

asymmetric least squares test. While it is not surprising that these two
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tests should have qualitatively similar performance (since their respective x
functions are both determined by the efficiency with which the first moment of
the residuals can be estimated), the fact that the ARE of the asymmetric least
squares test never differs from the ARE of the absolute residual regression
test by more than one percent was unexpected. 0Of course, this ocutcome is more
than coincidental; it can be shown (with some tediocus algebra) that the
limiting value of the asymmetric least squares noncentrality parameter as

T * 1/2 is identical to the absclute residual regression noncentrality
parameter. Moreover, this result is not special to the family of contaminated
normal error distributions considered here, but holds for any symmetric error
distribution satisfying the regularity conditions of the previocus section.
Hence, the large number of values of v = .51 in Table 1 suggests that for most
(but not all) of the distributions considered here, the highest possible
efficiency of the expectile-based test is attained by the absolute residual
regression test,

Table 2 shows that both the asymmetric least squares and absaolute
residual regression tests are more éfficient than the squared residual
regression test except when o and ¢ are large {(or when « = 0, in which case
the squared residual regression test is locally most powerful). The ARE of
the asymmetric least squares test is small for ¢ = 2, but increases
substantially as ¢ increases.

Another interesting feature of Table 2 is the behavior of the AREs of the
regression guantile test. For ¢ = 2 the squared residual regression test is
‘always more ef%icient than the regression quéntile test, and for ¢ = 3 the
asymmetric least squares {(or absolute residual regression) test is efficient
relative to the regression quantile test. For ¢ = 4 and 5, the regression

quantile test is the most efficient of all tests considered when o is between
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5 and 20 percent; for ¢ = 4, however, its efficiency gain over the asymmetric
least squares test is not particularly large, amounting, for example, to 29
percent at « = .10,

These results on the ARE of the regression quantile test relative to the
squared residual regression test are quite different from those reported in
Koenker and Bassett (1982). For example, when 6 = .73, the relative scale
¢ = 3, and there is 20 percent contamination, we find the ARE of the
regression quantile test to be 1.64, rather than the "40+" figure reported
previously. This difference is explained by an error in equations (4.12) and

{4,14) of Koenker and Bassett (1988);4 the term corresponding to Kh in these

5R
expressions is "4[Var(€§)]_1" instead of the correct
h 2.2 2. .-1 .
¥eRp = 4[E(ei) 1 [Var(ﬂi)] . The omitted term overstates the ARE aof the

regression quan£ile test for ¢ > 1, particularly when the contamination
percentage o is large; hence the "iso-efficiency" contours of Figures 1 and 2
of Koenker and Bassett (1982) should actually be shifted upward and "U"-
shaped, with the ARE of the regression quantile test sharply declining as the
distinction between the "contaminating” and "contaminated" distributions of
the error vanishes.

It should be noted, however, that for sufficiently large ¢ and
sufficiently small «, dramatic efficiency gains of the regression guantile
test to the other procedures are attainable, For example, for « = ,0125 and
¢ = 10, the ARE of the regression quantile test is 21.33, over twice as large
as that for the asymmetric least squares and absolute residual regression
tests; this improvement, though, drops off quite rapidly as « increases.

Thus the regression quantile test should perform very well for large data sets

which contain a few sizable outliers.
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4,2 Tests of Conditional Symmetry

Turning now to the null hypothesis of conditional symmetry of the
distribution of u, about zero, we consider for simplicity only the case with
65 # 0 but 6h = 0 {that is, the potential heteroskedasticity is confined to
the "positive half" of the error distribution). Again, we restrict attention
to the family of contaminated Gaussian distributions given in (4.1) above, and
evaluate the relative local powers of the tests for the same range of « and g.

Using the result of Theorem 2, a teét of conditional symmetry using
asymmetric least squares (or regression quantile) estimators can be based on
the "symmetric second difference"” (1) + (1 — 1) — 8-6(%), which is zero
under the null hypothesis of symmetry. In the notation of the dis;ussion
following Corollary 1, the & matrix would represent the single contrast
[1, -2, 11 applied to the matrix [8(1 — T}, a(%), E(T)], while ¥ can be an
arbitrary selection matrix, whose rank determines the degrees of freedom of
the corresponding test statistic (thus, if it is known a priori that 65 is
propaortional to e1 -— that is, that the error terms are i.i.d. but possibly
asymmetrically distributed -- then ¥ can be chosen to pick out only the
intercept term of the contrast). Calculation of the scalars KES and u;Q
proceeds as in the previocus section; the coefficient v(T), for example, can
be computed using the formula

b :
(4.9) f ANdF{Ala, ) = (1 — &)EP(a) — P{b)] + aolPla/a) — P(b/a)].

a
Table 3 gives results analogous to those in Table 1 of the previous
subsections that is, values of 6 and 7 in the interval (é, 1) which maximize

the respective noncentrality parameters are computed for a range of

contaminated Gaussian distributions. The optimal values of the weights for
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tests of symmetry behave gquite similarly to those for tests of
heteroskedasticitys in comparifon to Table 1, values of v for the ALS test in
Table 3 tend to be somewhat closer to %, and values of 8 for the RE test tend
to be slightly closer to 1, but the differences are typically minor. In
calculating the relative efficiencies of the RR and ALS test, the values

T = .94 and 8 = .87 were chosen by averaging the values in Tables 1! and 3, as
discussed above.

In the previous subsection, the ALS and RQ tests of homoskedasticity were
compared to tests based on a regression of an even function E(ai) of
preliminary least squares residuals on the regressors. Similar tests of
conditional symmetry can be caonstructed by regressing odd functions of
residuals -~ that is, functions of the form m(ai)sgn(ai), where 4{(-) is an
even function as above -- on xi. However, unlike the "residual regression”
tests for heteroskedasticity, the distribution theory for such tests for
asymmetry depends on the method of estimation in the "first-stage" regression.
For example, taking L(X) = {A|, regression of Q(ai)sgn(ai) E Gi an %, cannot
detect conditional asymmetry, since the least squares residuals are orthogonal
to the regressors by construction. Nevertheless,; for other odd functions of
the least squares residuals "residual regression”" test statistics for
asymmetry can be constructed, which have limiting noncentral chi-square
distributions under the sequence of local alternatives. Letting §g denote the

e o

second-stage coefficient estimates of i(ui)sgn(ui) on X.» it can be shown that

~

W& will satisfy the "asymptotic linearity" relationship
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n
— _ ._1 1— . _ ) i
(4.10) vn¥, =D [ = 121 x,5gn(e. ) -CR(E,) = [E 27 (e 01 1E, 12 }

+ & Coviid’(e.) ]y max{0, €.231 + 0 _(1)
s i i p

under the local alternatives considered here (and appropriate regularity

A

conditions). For the special case L(\) = AE, the corresponding vector WSR of
regression coefficients of the "signed squared residuals” on xi will have the

asymptotic distribution

~

(4.11) Jn ¥

2 -1
- g N[&S-Vartleis), ECe, (e | - 2Ele; 1)17-D ] )

Though the RE from the second-stage regression is not asymptotically chi-

N

squared (the denominator overestimates the variability of WSR under the null

and local alternative hypotheses), a Wald test of 65 = 0 (or WSS = 0, as

A

discussed above) can be constructed in a straigtforward fashion using WSR'

For this test, the scalar ng governing the local power is given explicitly as

s

- , 2 -1 _ 2 .2
Kop = + (B/W)ma(ml) ] -[ My (2/m)(m,) ] ,

(4.12) {

[ qu — {1&6/W)m m

31

for the contaminated Gaussian distributions, where
(4.13) o= m (s ¢) =1 — all —a¢’) for any integer j.
While a symmetry test analogous to the “absolute residual regression”

test for heteroskedasticity is not available {for the reasons given above),

another test for conditional asymmetry can be based on the difference between
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least squares and least absolute deviations estimates of BD. Under the null
hypothesis, the asymptotic distribution of this difference should be centered
at zero (since both the conditional mean and median of Yy will be xgﬁo if the
errors are conditionally symmetric about zero), but the difference can be

expected to differ from zero under the alternative of asymmetry.' The

asymptotic distribution of G(é) - b(%) is
il OSSN SR Y- {l _ -1 2, —1}
{4.14) vn {6(2) b(e)] N 5 SS E[!Sill, E{Ei [2f(0)1 sgn(ei)} D

under the local alternative hypothesis, where f(-) denotes the density
function of Ei; this can be obtained using the "asymptotic linearity"

relationship

(4.15) vn [S(é-) - (30] = Dfl-\/i- ir_z\lt.Ef(on"lsgn(ui)xi + o (1)
{(see, for example, Koenker and Bassett (1982)). Except for estimation of the
density function of € at zero, construction of a Wald-type test statistic for
the null hypothesis E(é) - 8(%) = 0 is straightforward, and f(0) might be
consistently estimated using, say, kernel-type estimation methods applied to
the residuals. The noncentrality parameter for this "median versus mean”
regression test of symmetry will be of the same general form as for the
foregoing tests, with

2

s _ -1 2 _
(4.16) kg = (2 Tmpefmg - 2mm o+ (/@) (m_ )7

MM 1

for the contaminated Gaussian family, where mj is defined in (4.13) above.
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Table 4 gives the relative effiﬁiencies of the regression quantile,
asymmetric least squares,; and "median versus mean" tests of conditional
symmmetry of the error distribution, all relative to the "signed squared
residual" test, for the same range of error distributions investigated in
Table 2. In comparison with Table 2, it is clear that the performance of the
residual regression test of asymmetry is inferior to its heteroskedasticity
counterpart; it only dominates the ALS test in the two extreme cases (a = 0
and &« = .35 ¢ = 3), and then by very little. The relative performance of the
RQ test is also improved relative to the SRR test. For tests of symmetry, it
appears that the dependence of residual regression tests on the asymptotic
distribution of the first-stage estimator makes such tests much less
attractive, particularly to the extent that the loss function 0(+) is well
approximated by an absolute value function.

Comparison of the ALS to the RR test of symmetry reveals the same pattern
of relative performance as for the respective tests aof homoskedasticity. This
similarity can be more easily seen in Table S, which gives the relative
efficiency of the ALS to the R@ test directly for tests of both hypotheses.
This table shows that, errall, the relative performance of the tests depends
only on the nature of the underlying error distribution, and not on the
particular null hypothesis (homoskedasticity or conditional symmetry) of
interest. The general conclusions of section 4.2 —- that the ALS test is
preferred except for distributions with small probabilities of large
cantamination —— thus applies in this circumstance.

The most striking feature df Table 4 is the similarity of the last two
columns, which correspond to the ALS and "median versus mean" tests. While
the "median versus mean" test is typically more efficient than the ALS test,

the magnitude of this difference is no more than five percent throughout. As
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in the previous section, this result suggests that the local power of these
tests is governed by the precision to which the mean of Si can be estimated;
we conjecture that, as in the previous subsection, the "median versus mean”
noncentrality parameter is the limiting value of the ALS noncentrality
parameter as 1 * 1/2, though we have not verified it algebraically (which
would require 3 four-fold application of L’ngital’s rule), In practical
terms, the slight efficiency advantage of the "median versus mean" test would
be outweighed by the computational'burden of least absolute deviations

estimation, and, more importantly, by the need to estimate the density

function of the residuals to construct the Wald test statistic.
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3. Conclusians

From the results of the previous section, we conclude that tests of
homoskedasticity and conditional symmetry based upon asymmetric least squares
coefficient estimates are reasonably efficient over a wide range of error
.distributions, relative to the other test procedures considered. Furthermore,
the ALS coefficient estimators are of interest in their own right, as useful
summary statistics of the conditional distribution of Ys given X Rejection
of the null hypotheses of homoskedasticity and symmetry using the ALS
estimators with "optimal™ weights.indicates that the least squares coefficient
estimates do not adequately characterize the relafionship of the dependent
variable to the regressors; computation of 8(7) for other values of 71, say,

T = .83 and .73 or 7 = .13 and .89 (roughly corresponding to the BBrdlbbth or

t . . . .
23 h/75th percentiles for Gaussian errors), would give a more complete picture

of this relationship.
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Mathematical Appendix

Proof of Theorem t: Let Tg(p) = Stygm)(y—p}dF(y) and a(T) = (27-13/7(1-T).
As discussed by DeGroot (1970, p. 246), Tg{(p)} 1is a convex function of pu

{and is therefore continuous in u)} and satisfies

(A1) Te(u) 2 mep,  VimooTe(u) = 0, Vim, o [Te(u)=(n-p)d = 0,

Also, for T in (0,1), «(7T) satisfies
«(T) > -1, da(7)/dT = 1/(1-7)%2 > 0.

It follows that up-m is greater (smalier) than a(T)Tp(u) for p large
(small) enough, so that a solution to equation (2.7) exists by the
intermediate value theorem. Also, any such solution must be unigue because
the convexity of Tp(u) and (A.1) imply that for p’ > p, 0 > Tc(p')-Tp(u)
> =(u'-p) (i.e. Tg(u) is monotonic decreasing and has a "slope" of at
least -1).

The fact that u(T} 1is strictly monotonic increasing follows from
«{T) strictly monotonic increasing in T and Te(u) monontonic decreasing
in u. |

The fact that pa(7T) must lie in I follows from m an element of

I

gs and from Te(u) = G for p greater than any element of I., while if

£
# is less than any element of Ig then alT)T-(p) = alT){m-u) > (-1)(m-u)
= p-m. To see that p(T) 1is onto Ig, note first that p(l/2) = m. Also,
if u is an eiement of I and p > m, then Te(u) > 0, so that by
1im791a(1) = o0, u{T) =y for some T in (0,1), while if pu < m then
Te(uld > m-p, so that by «(0) = -1, p(7) = p for some T in (0,1).

To show the location and scale eguivariance of p{T), note that the

mean of Y is sm+t, and that by a change of variables TF(“) =
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TE(sp+t)/s. It follows that sp(T)+t satisfies
(A.2) (splT)+t)=(sm+t) = sa(T)T(p(T)) = a(TDTE(sp(T)+t),

which is the defining equation for g{T).

When F(y) 1is continuously differantiable Te(p) is a continuously
differentiable function of . Continuous differentiability of u{T) then
follaws from the implicit function theorem. Differentiating both sides of

equation (2.7) gives

{(A.3) BT ' ()T (u{T)) - a(TILL-F(u(T))Iu’' (1)

Lo’ (T)/a(T)Ipu{T)-m] - af{TIT1-F(u(T))iu’{1).

Equation (2.8) is obtained by solving for F(u(T)).

Proof of Theorem 2: It follows from y; symmetrically distributed around
Xi{Bg that wu; = y; - x{Bg 1is symmetrically distributed around zero. Let

§(T) = B(T) - By. Then from equation (2.9) we have

{(A.4) B(T)

Bo = (ECIT-1(u3<x{8CTI) Ixyx{ 13 TELIT-1 (uy<x18(T) ) Ixqu;]
= LEDII=T-1(ug2xf 80T I xgxf 3T EDI1-T=1 (uy2x{80T) ) Ixquy]

= (ECIL=T=1 (uy>x{80T3) g% 13T E I =T-1(uy>X 58 (T) ) Ix uy ]
= S{ELI1-T-1(-ug<x{-8(T))TIx;x{1371 «
ELI1-T=1(=uy<x{L=6(T)) Tix;(~u;)]

= —ECI1—T—1(ui<x%[—6(T))]Ixixgl}_lE[Il—T—l(ui<x{[—6(T))}ixiui],

where the third equality follows by continuity of the conditional distribution
of y; and the fifth by symmetry of the condtional distribution of u; about
zero. From this equation and equation (2.9) we see that -[A(T) - Bgi

solves the equation for B(l1-1T) - BO from which it follows that
(A.5) BU1-T) - By = -LB(T) - Bgl.
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The following lemma is useful for proving consistency of asymmetric least

squares estimators without regquiring the parameter space to be compact.

Lemma A: Let 647 bDe a paint in RY and @ an open set containing 6g. If
(A) Q,(8) converges to Q{@&) 1in probability uniformly on 8,

{B) Q(8) has a unique minimum on @ at 6y,

(Cy Qu(@) is convex in 86;

then for 6 = argmingaQ,(8),

(1) 5 exists with probability approaching ong;

>

(1) converges in probability to 6j.

Let C be a closed ball of finite radius that is a subset of & and that
contains 685 in its interior. Let B be the boundary of C. By
convergence in probability of Q.(8) to Q(8) pointwise on @&, Q(8) is
convex, and therefore continuous, on ®. It follows that mingQ(6) exists

and by assumption B that
{(A.6) 8 = mingQ(68) - Q(By) > 0.

By uniform convergence in probability of Q,(6) to Q(6) on B it faollows
that plim[maxclon(e)*O(e)I] = 0. Therefore, by equation (A.6), with

probability approaching one

(A.7) minBQn(G) > Qn(eo)-

By construction of C and B8, for any & not in € there exists 6 in B
~ :
and 0 < A < 1 such that 6 = X8 + (1-A)8,, sO that by convexity of

Q,(e, equation (A.7) implies
L ~ »
(A.8) Q,(8) > fa,(8) - Q (6g) 37N + Q,(6q) > Qn(8g7.
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It follows that the minimum of @,(8) on RY exists and lies in C with
A
probability approaching one. Convergence of 6 to 8g follows from the

arbitrary choice of C as a closed ball containing g in its interior.

Proof of Theorem 3: Note that pr(x) is differentiable and convex in X\, so0

that pT(yi—x{ﬁ) is differentiable and convex in g, with gi(ﬁ) = apT(yi—
XiBY/OR = -2x3¢,(y;-xiB). Note that for some constants d and d°,
(A.9)  1gi(B)I ¢ 1zg12(d + d 181,

sa that by Assumption 3 g;(B) is uniformly dominated by an integrable
function on a neighborhood of any 8. It follows that R(B,7T) is

differentiable in B8 with

(A.10) aR(B,T)/ 3B

it

~2E0x; (T(, Tp(y=x{BIF (yIx;, 7g)dy

+ (1—T)S§gﬂ(y—x{BJf(yixi,zo)dy}].

Hote that E_“(y—a)f(ylx,zo)dy is continuously differentiable in «, with
derivative —S_af(ylx,vojdy, which is uniformiy dominated by 1. It

follows that @8R(B,T)/3B is continuously differentiable, with

(A.11) 32R(B,T)/5R3R"

2E£xix§{fgx?3f(y!xi,ao)dy + (1—r)§§&ﬁf(ylxi,3o)dy}3.

[{]

QEExix{iT—l(yi<x§B)tl.

Let &8 = min{7,1-7}, and note that PT-10y <x4iB)1 > 8. It follows that
BER(ﬁ,T)laﬁaﬁ’-SE[xixgi is positive semi-definits. For any £ in R a

~
second order mean value expansion of R(f,T) around f gives
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~

(A.12)  R(B,T) - R(B,T) = [BR(E,T)/31"(B-B) + (A-F)'C82R(H,T)/3B3R" T(B-F)

~r N ~ ;\/2
[3R(B, TI/3RY (B-B) + 6mpif-BI~,

v

where f is the mean value and m, is the minimum eigenvalue of Elx;x{l,
which is positive by Assumption 4. By dividing through eguation (A.12) oy
iB—gl2 we see that for fixed F, R(B,T) > R(ﬁit) for lﬁ-gi big enough.
That is, R(B,T) > R(g,T) putside some closed ball centered at E. It
follows from continuity that R(8,T) has a minimum B(T) inside this ball,
and since R{B(T),T) < R(E,T), that A(t) 1is a global minimum. By dif-
ferentiability, B(T) satisfies R(B(T)Y, T)/8B = ELgy(B(TH)1 = 0, which
can be salved to abtain equation (2.9). The fact that (7)) 1is a unique
global minimum of R(B,T) follows from (A.12) with E = B(1), so that
B(T) is the unique solution of E[gi(ﬁ)] = 0 by convexity of R{8,T).
To obtain the asymptotic distribution result we consider first the case

with m =1, and for notational convenience the j subscript is

suppressed. Nate that there exist constants d and d’ such that

(A.13)  Hpglyy=xiB)1 < lyy=xjB1% < 1z 1%’ + dip1?).

Uniform convergence iﬁ probability of R_(8,T)/n 1o R{g,T) on any bounded
open set Containing B(T) follows from Assumptions 2 and 3 by Lemma Al of
Newey (1985). Then plim g(r) = B({T) faollows by Lemma A and B(T) the
unigue minimum of R(8,7T), which was shown above.

tet E (-1

n EC-17,]. By arguments like those above for R(B,T), it
follows that E [p (y;-x{B)]1 is twice continuously differentiable in 8 for

large enough n, with

(A.14) 2 (8) = 3E Lp (y;=x{B)1/38 = E Lg;(B)1,

an,(B)/3B = 3%E Lp (y;~x{B)1/8BBR" = 2E.Ixyx{IT-1(y;<x{f)1]1,

39



8y continuity of prly;~x3B8) in B, continuity of f(yix,y} in 7, Assum-
ption 2, and the dominated convergence theorem Eqlpr(yy-%x4{B)] converges
uniformiy to Elpr{y;-xiB)1 on any compact neighborhood N of A(T). It
follows that there is a sequence Bn(T) that minimizes En[pT(yi—xgﬁjl an

N such that lim A.(T) = (1), and that for large enough n,
(A.15) 0 = A(Br(T)) = ELg; (B (T,

Also, by continuity of f(yix,¥) in ¥, Assumption 3, and the dominated

convergence theorem, aA, (B)/38 converges uniformly on N to

aZR(ﬁ,T)ISBaﬁ'. By timg, (T) B(T) and azR(B(T),T)/BBBB’ nonsingular,

there are positive constants d and d’ such that for n large enough,
(A.16) 1B = Br(T)l < d 3 [on,(B)/3BI > d’[B - B (TII.

~ . ~ g
Now let u(z;,B,d) = 5“P1§L515d|91(3)'91(3"' By g (ANd=¢grON 2 IA-RIL,
( ~ Y . 2
(A.17) Wiz, B,d) < supyFpg g2 ixg Hix{(B-g1 < Zplxyl©d.
Then by Assumption 3,

(A.18) Eplulzy,B,d)1 2 pamM,

Elulzy,8,d)%1 < plam’,

where M

Slxlza(z)g(x)dpz and M’ = Slxl4a(z)g(x)dpz. From eguations

(A.15}, (A.16), and (A.18) it follows that Assumptions (N-1) - (N-4) of Huber
A

(1965) are satisfied uniformly in n. Also, by plimB(T) = 8(T) and VimB, (T)

N
= (1), plim(B(T)-B,(T)) = O. Then Theorem 3 of Huber (1965) gives

A
(A.19) 232195 (Br(T)I/¥n + Jonp(B(T)) = o,(1).

ra)
A mean value expansion of. An(8(T)} around B(T) gives



* A
(A.20) [83 (A(T))/8BIVNIB(TI-BCTIT = ~ym> 194 (B (T )/ + 0,(1),

where é(T) is the mean value. Uniform convergence of ahn(B)/aﬁ and
continuity of azR(ﬁ,T)/aﬁaB’ imply plimakn(é(T))/SB = 2W, which is
nonsingular. Also, it can be shown as in the proof of Lemma 2.1 of Newey
(1985) that Ziglgi(ﬂn(r))/Jn converges in distribution to N({0,4V), The

conclusion then follows from the fact that
{(A.21) 1imn¢m[—Jnkn(ﬁ(T))3 = 2G8,

which can be shown from a mean value expansion argument as in the proof of
Lemma 2.1 of Newey (1985). The case with m > 1 follows similarly,

L]
Proof of Theorem 4: HNote that for any positive € and I(x,e} =

[x’B(TY-eix], x'B(T)y+eix]].

(A.22)  EpfClug(DigelxDixd = §roo o ftyix oy € o ya(@idy = a 00,

By the monotone convergence theorem and the fact that with probability one
al{z) 1is integrable in vy with respect to Lebesgue measure, ag(x) converges
to zero with €, and this convergence is monotone by construction. Note that
Fal N A

wi (T differs from w;(7) only if X 'B(T) £ ¥y < X;'B(T) or X3 'BLT) 2 ¥y

ra)
< xy'B(TY, s0O that

(A.23) Wi (D-wi (D1 < 12011 10U (D1 € Ix{TACTI=ALTIT)

< 12T-11-1Cug (T 1 < plxgLIB(D=B(TID) .

~
By plim B(T) = B(T), equation (A.30) implies that for any e > 0, with

probability approaching one,

. . b Yy e ? _ = 0 ¢ e se ! t
lA.24) Ib i(’f))\i}(i/n a1-=1wi\’f);<1;\1/nu

41



< 20 kg 12 10U (D fgelng 1970 € EDIxg [2a (%507 + €,

where the second inequality follows from Markov’'s inequality for large n

with probabiiity approaching one. Note that E[lxilzae(xi)] + € converges to
zero with € by the monotone convergence theorem, so that the term in
egquation (A.24) that precedes the inequalities converges in probability to
Zero. Suppressing the j subscript‘for notational convenience, the triangle

inequality gives

)
{A.25) W - W]

{A

(S0 W (Thxsxi/n = 0w (Toxsxi/nl + 15D w. (T)Ke %270 — W
i=1"4 174 i=1"%1 i “i=1"4 iy '

A
Consistency of W then follows from Lemma Al of Newey (1985) applied to the
A
second term in (A.25). To show consistency of ij, note that there exist

constants d, d’ and d’‘ such that

N ? e ! —_ ! 4 ’ 2 4 2
(A.26) (X3390 (y;—xiB)ggly -xib)l 2 z;07(d + d7{B]° + d’’(bl“].
The result then follows as in the proof of Theorem 2.2 of Newey (1985),.

Praoaof of Theorem 5: The noncentral chi~square limiting distribution of T

A
will follow immmediately from the asymptotic normality of & and the
consistency of the covariance matrix estimator. Let f(g) and F{c) be the

p.d.f. and c.d.f. of €;. Also let § = (-1/2, 1/2). Then for ¢ in §,

(A.27; L1/¢1+a)1f(u/{1+9)) < 2f(u/{l+a}) < 2D/01+{u/{l+g)}{°*91

< 2D/01 + (2u/s31%+d7,

Furthermore, by X3 having compact support there is an open set [ in R2P
containing zero such that for (ry’, #g°)" in T, XKi¥p + 1(£4>0)x37%, 1s an
element of § with probability one. It follows that the domination condition
of Assumption 3 is satisfied with a(z) = 2D/[1 + |12(y-x'B4)/31°*91. cCon-

tinuity of f(ylx,¥} in y and ¥ follows from continuity of f(g).
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It remains to check the remainder of Assumption 4 and verify ths particu-
lar formula for the noncentrality parameter that is given. Note that in

general the noncentrality pargmeter would be equal to
{(A.28) (Hwles) thw lvw ln 171w lgs.

In this case u; is independent of x; when ¥ = ¥5 =0, so that xiB(7T) =

W(T) + xiBg, Wy = d(Ty)D, and Vj = o4, D, where u(T) is the Tth

weighted mean of €., It follows that wilvw™tl = ¢ @©D. Also note that

{A.29) d(T) = (1-T)F(u(T)) + TO1-F{u(T))I,
and that ELx ¢, (uy (1))l = E[xiEEwi(T)ui(T)lxi,all, where for up{(7) > 0,

(A.30)  ECwi(Du (T ixy,91 = (1-1){ _Jtcu-p()yroy 1t usayddu

+ =D Rt u-pen) 7oy 1 (u/oy )du

p

+ Tgp?’,f)[(u-p(’f))/oip]f(u/qi ydu

p
(1-Tyo f Qefterde + (1-Tyoy  [HET)Fimerierae

H

! 0
+ 0y Ty re, EF0)IE - (- [ gt (e)ae

- (-DpD R T terde - D Py 0, fledE,

where Tin 1 + x;zh and “ip = 1 + x{ah + xgzs. We now find that

Efwi(r)ui(T)lxi,zl is differentiable in ¥ on T, with
(A.31) ELw; (T)u; (T 1x;,03/87 = d(T)(u(T),viT))’ C)xi,
which is obviously dominated by an integrable function, so that

(A.32)  BEDx;¢¢(uj(T))101/87 = ELx 8ELwy(T)uy(T)Ix;,0175°1

= d(T)(p(T),v(T)) @®D.

A similar calculation shows that equation (A.32) also holds for the case with



u(T) < 0. Consequently, the differentiability hypothesis of Assumption 2 is

satisfied with

, “1a - ¢, RPN
(A.33) (WJ) GJ = (r‘(TJ)JU(LJ))@IpJ

so that the result follows from (A.28),

Proof of Corollary 1: The result follows upon application of the usual

results for matrix inversion and arithmetic involving Kronecker praoducts.



FOOTNOTES

1. This research was supported by NSF grants SES-8309292 at M.I.T. and SES-
8410249 at Princeton University. We are grateful for helpful comments
provided by A. Bera, G. Chamberlain, A. Goldberger, J. Hausman, J. Heckman, R.
Koenker, C. Manski, R. Quandt, two anonymous referees, and participants at
several workshops. A. Goldberger provided the calculaticons used in Figure 1
below. An earlier version of this paper was presented at the Winter 1983

North American meetings of the Econometric Society.

2. An alternative equation for H(7), which was suggested to us by A.

Goldberger, is

-1

/{1 — 1) = [ I (R{T)—y)dF(y) ] . [ J (y—H{7))dF (y) .
(o, H(T)) (H(T), @)

By comparing this egquation to the analogous relation for
quantiles,8/(1 — 8) = F{(q(8))/{1 — F(1(8))), it is esasy to see that expectiles
are determined by tail expectatipns in the same way that quantiles are

determined by the distribution function.

3. Alternative terminology for H{7) has been suggested, including "gravile,"
"heftile," and "loadile" (by A. Goldberger, motivated by the interpretation of
expectation as a center of gravity), as well as "projectile” (by G.

Chamberlain, motivated by the fact that R{7) solves a least squares problem).

4, Roger Koenker has informed us that this error was also pointed out to him

by Alistair Hall of Warwick University.
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Figure 1
Plot of Quantile (n(H)) and Expectile (p(7)) Functions

for the Standard Normal Distribution
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Optimal Values of Regression Quantile (Expectile)

Weights for Tests of Homoskedasticity

Relative
Scale ¢

Cantamination
Percentage «

.09

.10

.13

IEO

.23

.30

.33

.40

43

.30

.72

.91

.70

.89

.88

.88

.87

l87

.87

.87

Table 1

I

(.78)
(.73)
(.70)
(.67)
{.668)
(.&66)
(.66)
(.66)
(.86)

(.66)

.70

.88

.87

.84

.83

.82

.81

.80

97

{ft]

(.61)
(.52)
(.31)
(.31)
(.31
(.31)
{.31)
(.31)
(.31)

{.32)

The last entry in the table (.97) is correct.

.90

.87

.83

.83

.82

.80

.79

.77

197

.97

|

(.31)

{.51)

(.51

(.31)

(.51)

(.391)

(.51)

(.91)

{(.51)

(.31

.89

.87

-84

.82

.79

.77

» 76

97

For large values

|

(.91)
(.31)
(.51)
{.31)
(.31)
(.31)
{.51)
(.31)
{.91)

*
(.97)

of a,

the

noncentrality scalar KCS is bimaodal as a function of 7, with relative maxima

at v =

.31 and v = .97. For the most extreme values of « and ¢ tabulated, the

global maximum occurs at the latter value.
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Table 2
Local Efficiencies of Tests for Heteroskedasticity, Relative to

Squared Residual Regression Test

Relative Contamination Regression Asymmetric Absolute Residual
Scale ¢« Proportion « Quantile Least Squares Regression
1 - .99 .88 .88
e .0125 .68 .98 .98
.025 .74 1.06 1.06
.05 .84 1.17 1.16
.10 .94 1.23 1.25
.15 .96 1.26 1.26
.20 .93 1.24 1.24
.23 .89 1.20 1.20
.30 .83 1.17 1.17
.40 .74 1.10 1.09
.30 .66 1.03 1.03

3 0125 1.15 1.54 1.54
.023 . 1.50 1.85 1.85
.05 1.83 2.04 2.04
.10 1.87 1.90 1.90
.13 1.65 1.69 1.69
.20 1.39 1.91 1.51
.23 1.13 1.37 1.37
.30 : .94 1.26 1.26
40 . b4 1.11 1.11
.90 .49 1.02 1.02
4 .0125 2.28 2.70 2.70
.02835 3.02 3.08 3.08
.05 3.36 2.89 2.89
.10 ’ 2.84 2.21 2.21
.15 2.17 1.77 1.78
.20 1.61 1.30 1.50
.23 1.18 1.32 1.32
.30 v .89 1.20 1.20
.40 .43 1.04 1.04
.30 .34 .95 .99
5 .0125 4,21 4.29 4,29
. 083 5.18 4,28 4,28
.05 5.04 3.38 3.39
.10 3.62 2.23 2.24
.15 2.49 1.70 1.70
.20 1,69 1.41 1.41
.23 1.12 1.23 1.23
.30 .71 1.11 1.11
40 .29 .97 .97
.30 .28 .90 .20
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Table 3

Optimal Values of Regression RQuantile (Expectile)

Weights for Tests of Symmetry

Relative
Scale g 2 3 4 3
Contamination
Percentage «
.05 .93 (.62) .92 (.91) .21 (.31) .21
.10 .22 (.37) .20 (.31) .89 (.31) .88 (
.13 .71 (.54) .89 (.51) .87 (.31) .86 (
.20 .21 (.92) .87 (.31) .85 (.31 .84 (
.29 .90 (.52) .86 (.51) .83 (.31 .82 (.
.30 .90 (.32) .84 (.351) .82 (.31 .80 (.
.35 | .89 (.52} .83 (.31) .80 (.51) .78 (.
.40 .89 (.32) .82 (.51) .79 (.31) .77 (.
243 .89 (.352) .81 (.51) .27 (.51) .97 (.
.50 .89 (.52) .97 (.31) .27 (.31) .97 (.,
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Jable 4
Local Efficiencies of Tests for Asydmetry, Relative to

Squared Residual Regression Test

Relative Contamination Regression Asymmetric "Median vs.

Scale g Proportion « Quantile Least Squares Mean"
1 - .73 .97 .96
e 0125 .96 1.85 1.24
.025 1.12 1.45 1.44

.05 1.33 1.71 1.70

.10 1.48 1.88 1.88

.15 1.47 1.87 1.87

.20 1.40 1.80 1.80

.23 1.31 1.71 1.71

.30 1.21 1.62 1.62

.40 1.04 1.45 1.46

.30 .91 1.32 1.32

3 .0125 2.32 2.91 2.89
.0285 3.03 3.64 3.64

.03 3.40 3.83 3.88

.10 3.04 3.85 3.30

.13 2.49 2.67 2.73

.20 2.02 2.26 2.31

.23 1.64 1.94 2.00

.30 1.32 1.74 1.78

.40 .88 1.43 1.49

.50 .63 1.28 1.31

4 .01235 3.37 6.23 6.24
.085 6.25 6.39 6.66

.03 5.77 3.40 9.52

.10 4,13 3.53 3.63

.15 2.98 2.38 2.69

.20 2.17 2.05 2.14

.25 1.57 1.73 1.81

.30 .12 1.351 1.58

.40 .36 1.25 1.30

.30 .40 1.11 1.15

S .0125 9.73 10.20 10.30
.023 .74 8.77 8.97

.05 7.64 5.80 6.01

.10 4.74 v 3.25 3.40

.13 3.16 2.26 .38

.20 2.14 1.77 1.86

.23 1.40 1.48 1.36

.30 .87 1.29 1.36

40 .32 1.07 1.13

.30 .29 .26 1.0t
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Table 5
Relative Efficiency of the Asymmetric Least Squares to Regression

Quantiles Test of Homoskedasticity and Symmetry

Relative Cantamination
Scale ¢« Propertion « Homoskedasticity Symmetry
1 - 1.49 1.32
2 , .0123 1.45 1.31
.023 1.42 1.30
.05 1.38 1.29
.10 1.33 1.27
.13 1.32 1.27
.20 1.33 1.29
.29 1.35 1.31
.30 1.39 1.34
40 1.48 1.40
.30 1.97 1.46
3 .0123 1.34 1.25
.025 1.24 1.20
.03 1.11 1.13
.10 1.02 1.07
.13 1.03 1.07
.20 1.09 1.11
.20 1.19 1.31
.30 1.34 1.31
.40 1.72 1.65
.90 2.06 1.96
4 .0123 1.18 1.16
. 025 1.02 1.06
.09 .86 .94
.10 .78 .83
.13 .82 .87
.20 .93 .95
.23 1.12 1.10
.30 1.41 1.36
.40 2.31 2.24
.30 2.83 2.81
S .0123 1.02 1.05
. 025 .83 .90
.03 .67 .76
.10 .62 .48
.19 .68 .72
.20 .83 .83
.23 1.10 1.09
.30 1.57 1.49
40 3.32 3.33
.50 3.24 3.29
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