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EFFICIENT ESTIMATION AND IDENTIFICATION OF SIMULTANEOUS
EQUATION MODELS WITH COVARIANCE RESTRICTIONS

HEADNOTE

In this paper we consider estimation of simultaneous equations
models with covariance restrictions. We first consider FIML estimation
and extend Hausman's (1975) instrumental variables interpretation of the
FIML estimator to the covariance restrictions case. We show that, in
addition to the predetermined variables from the reduced form, FIML also
uses estimated residuals as instruments for the equations with which they
are uncorrelated.

A slight variation on the instrumental variables theme yields a
simple, efficient alternative to FIML. Here we augment the original
equation system by additional equations that are implied by the
covariance restrictions. We show that when these additional equations
are linearized around an initial consistent estimator and three-stage
least squares is performed on the original equation system together with
the linearized equations implied by the covariance restrictions, an
asymptotically efficient estimator is obtained:

We also present a relatively simple method of obtaining an initial
consistent estimator when the covariance restrictions are needed for
identification. This estimator also makes use of additional equations
that are implied by the covariance restrictions.

In the final section of the paper we consider identification from
the point of view of the moment restrictions that are implied by
instrument-residual orthogonality and the covariance restrictions. We
show that the assignment condition of Hausman and Taylor (1983) provides

necessary conditions for the identification of the structural parameters.



1. Introduction

In the pioneering research in econometrics done at the Cowles
Foundation, estimation techniques for simultaneous equations models were
studied extensively. Maximum 1ikelihood estimation methods were applied
to both the single equation case (LIML) and to the complete simultaneous
equations models (FIML). It is interesting to note that while questions
of identification were completely solved for the case of coefficient
restrictions, the problem of identification with covariance restrictions
remained. Further research by Fisher (1966), Rothenberg (1971), and Wegge
(1965) advanced our knowledge in this field. In a companion paper, Hausman
and Taylor (1983) give conditions in terms of the interaction of restrictions
on the disturbance covariance matrix and restrictions on the coefficients of
the endogenous variables for the identification problem. What is especially
interesting about their conditions is that covariance restrictions have the
interpretation that they provide additional instrumental variables for use
in estimation, which links them to the situation where only coefficient
restrictions are present.

For full information maximum 1likelihood (FIML), the Cowles Foundation
research considered the case of covariance restrictions when the covariance
matrix of the residuals is specified to be diagonal (Koopmans, Rubin, and
Leipnik (1950) ). The case of a diagonal covariance matrix is also analyzed
by Malinvaud (1970) and by Rothenberg (1973). But covariance restrictions
are a largely unexplored topic in simul taneous equations estimation, perhaps

because of a reluctance to specify a priori restrictions on the disturbance



covariances. ! However, an important contributory cause of this situation
may have been the lack of a simple, asymptotically efficient, estimation
procedure for the case of covariance restrictions. Rothenberg and Leenders
(1964), in their proof of the efficiency of the Zellner-Theil (1962) three
stage least squares (3SIS) estimator, showed that the presence of covariance
restrictions would make FIML asymptotically more efficient than 3BISs. Im
fact, imposing the covariance restrictions on the conventional 38LS estimator
does not improve its asymptotic efficiency. Thus efficient estimation seemed
to require FIML.2 The role of covariance restrictions in establishing
identification in the simultaneocus equations model was not fully understood,
nor did imposing such restrictions improve the asymptotic efficiency of the
most popular full information estimator. Perhaps these two reasons, more
than the lack of a priori disturbance covariance restrictions, may have led
to their infrequent use.

Since the identification results of Hausman and Taylor (1983) have
an instrumental variable interpretation, it is natural to think of using

instrumental variables as an approach to estimation when covariance

L or course, at a more fundamental level covariance restrictions are
required for any structural estimation in terms of the specification of
variables as exogenous or predetermined, c.f. Fisher (1966, Ch. 4).

2. Rothenberg and Leenders (1964) do propose a linearized maximum 1ikelihood
estimator which corresponds to one Newton step beginning from a consistent
estimate. As usual, this estimator is asymptotically equivalent to FIML.
Also, an important case in which covariance restrictions have been widely
used is that of a recursive specification in which FIML coincides with
ordinary least squares (0L3).



restrictions are present. Hausman (1975) gave an instrumental variables
interpretation of FIML when no covariance restrictions were present, which
we extend to the case with covariance restrictions. The interpretation
seems especially atiractive because we see that instead of using only the
predetermined variables from the reduced form as instrumental variables,
FIML also uses estimated residuals as instrumental varisbles for equations
with which they are uncorrelated. Thus more instrumental variables

are used to form the FIML estimator than in the case where covariance
restrictions are absent.

A slight variation on the instrumental variables theme yields a useful
alternative to FIML. Here we augment the 3SIS estimator by additional
equations which the covariance restrictions imply. That is, a zero
covariance restriction means that a pair of disturbances is uncorrelated, and
therefore that the product of the corresponding residuals can itself be used
in estimation as the residual of an additional equation. These additional
equations are nonlinear in the parameters but can be linearized at an initial
consistent estimator, and then 3SIS performed on the augmented équation
system. This estimator, which we call augmented three stage least squares
(A3S1S), is shown to be more efficient than the 35ILS estimator when effective
covariance restrictions are present and to be at least as efficient as FIML.
The A3SIS estimator thus provides a computationally convenient estimator
which is also asymptotically efficient. We also consider convenient methods
of using the extra equations which are implied by the covariance restrictions
to form an initial consistent estimator when the covariance restrictions are

necessary for identification.



In addition to the development of the A3SLS estimator, we also
reconsider the assignment condition for identification defined by Hausman
and Taylor (1983). We prove that the assignment condition which assigns
covariance restrictions to one of the two equations from which the
restriction arises provides a necessary cohdition for identification. A
corresponding rank condition provides a stronger necessary condition than
the generalizéd rank condition of Fisher (1966). These necessary conditions
apply equation by equation. We also give a necessary and sufficient
condition for local identification in terms of the structural parameters of

the entire system.



2. Estimation in a Two Equation Model

We begin with a simple two equation simultaneous equation model with a
diagonal covariance matrix, since many of the key results are straightforward

to derive in this context.3 The model specification we consider is

(2:1) 3y = Bo¥a t Tt

(2.2) Vo = BTy + YopZp + &

We assume that we have T observations so that each variable in equations
(2.1) and (2.2) represents a T x 1 vector. The stochastic assumptions are
E(eit|z1,z2) = 0 for i=t1,2, var(eit|z1,z2) G cov(a1t52tl z1,zz) =

%2 = 0-

Inspection of equations (2.1) and (2.2) shows that the order condition
is satisfied so that each equation is identified by coefficient restrictions
alone, so long as the rank condition does not fail. If the covariance
restriction is neglected, each equation is just-identified so that 38LS is
identical to 2SIS on each equation. Note that for each equation, 25LS uses
the instruments W, = (ZI%,zi), i#j, where Z = (z1,z2) and I% is the vector
of reduced form coefficients for the (other) included endogenous variables.Y

To see how FIML differs from the instrumental variables (IV) estimator,

we solve for the first order conditions of the 1likelihood function

3, Such a model night arise from a supply and a demand equation, where the
specification of a diagonal disturbance covariance matrix corresponds to the
assumption that the supply effect of demand shocks is fully captured by the
inclusion of price in the supply equation.

% of course, because of the condition of just identification, a numerically
identical result would be obtained if instruments W, = (z1,z2) were used.



under the assumption that the Ei's are normally distributed.® For the two

equation example, the likelihood function takes the form

(2.3) L =c¢ ——%—log ( o ) + T log J1-

1%2 BaBoy |

11 . 1 :
-7 [’&1‘1 (7%, 8) " (34-%, 8) + ?Z'Z'(yz‘xz‘sz) (y,-%,8,) ]

where ¢ is a constant and the Xi's and 5i's contains the right hand side
variables and unknown coefficients respectively, e.g., X, = (yz,z1) and
& = (B wy )

To solve for the FIML estimator, we find the first order conditions for

equation (2.1); results for the second equation are identical. The three

first order conditions are

T By 1

(2.4a) - + (v,-X,8)'y, = 0,
1=BoBy gy T1 71772

1 ' =

% Throughout the paper FIML will refer to the estimator which is obtained

by performing maximum 1likelihood under the assumption that the disturbances
are normally distributed. If they do not have a normal distribution, then
FIML will be a quasi (or pseudo) maximum likelihood estimator. Of course,
as is the case for linear simultaneous equation estimation with only
coefficient restrictions, the FIML estimator remains consistent when the
disturbances are not normally distributed.



T : )
<7t K 8) (5K, 6)) = 0.
11 011

(2.4¢) -

Rearranging equation (2.4c) yields the familiar solution for the variance,
qq= (1/T)(y1— X, 61)'(y1— X, 61). Equation (2.4b) has the usual OLS form
which is to be expected since z is an exogenous variable. We can solve
equation (2.4a) in a particular way, using the reduced form, to see the
precise role of the covariance restrictions in the model. After mul tiplying

equation (2.4a) by q,, we obtain

11

T BR.q Bo4 €

211 _ gy b1 &
—2 T g ey
-8, 8, R

(2.5) 0 =y!(y,-X,8) - -2t 1y
2 174 =B, By 1

2
et + RPN S e

where we substitute Yo = 211 + Vs to obtain the second equality and
vy = (B gte )/ (1-512321 ) to obtain the third. Without the covariance

restrictions, we would have the result

_ ¢ By 22
Ly — 2 - ’
L PLYRSELPYY

(2.6) (an)' g =0, I

which is the instrumental variables interpretation of FIML obtained by

| Hausman (1975). In equation (2.5) we have the extra term 52/(1—312B21 )y

so that the instrument in equation (2.5) is a linear combination of three
variables, 24y 2o and &) each of which is uncorrelated with & rather

than just Z4 and Zge What has happened is that FIML has used the covariance



restriction to add to the set of instrumental variables that are used to
estimate the ﬁarameters of equation (2.1). 1In addition to the predetermined
variables Z and zé, FIML also uses & as an instrumental variable. This
example makes it clear why 3SLS is not asymptotically efficient when
covariance restrictions are present. The additional instrumental variable
& is not utilized by the conventional 3SIS estimétor.

Two other important cases can be examined with our simple two equation
model. First, suppose that f%1 = 0. The specification is then triangular,
and given the diagonal covariance matrix, the model is recursive. Here,
the FIML instrument in equation (2.5) is ZI% + Vy = ¥, 80 that T is
predetermined and FIML becomes OLS as expected. The second case returns
to B # 0 but sets Yoo = 0. The first equation is no longer identified by
coefficient restrictions alone, but it is identified by the covariance'

restrictions because the FIML instruments are

(2.7) W, = (2 m,+ T:BE'B;’Z1 ).

Because of the addition of the residusl term in W1, the instrument matrix
has full column rank and the coefficients can be estimated.

In general, FIML needs to be iterated to solve the first order
conditions. To obtain a convenient and efficient alternative to FIML we
make use of the moment restrictions which are implied by the covariance
restrictions. The variables 2 and Z, can be used as instruments because
they are both uncorrelated with & and &ye In addition FIML can use €, as
an instrument for e, and e, as an instrument for g because E(€1t€2t) = 0.

We can account for this extra moment restriction by augmenting equations




(2.1) and (2.2) with the additional equation
(2.8) (34 - Xy 8)(py - Xp8) = ey,

where et has mean zero.
This additional equation is nonlinear in the parameters, but when an
A
initial consistent estimator & is available it can be linearized around the

initial estimate. A first order Taylor's expansion of equation (2.8)

A
around 6 gives
~ A A A A A
gyt = %140 6-8) - 5 Xp(6-8,) = ry,

A _ ~ .
where g+ it Xitéi and T, is equal to ey plus a second order term.
Collecting terms with unknown values of the parameters on the right-hand
side gives

~
€,

A A A A A A A
(29) 8%yt e St BiTayd T Kyt Koy T
The parameter vector & can now be estimated, while accounting for the
presence of covariance restrictions, by joint 3SIS estimation of equations
(2.1), (2.2), and (2.9), imposing the cross equation restrictions and using
a vector of ones as the instrument for the last equation.® We will refer to

this estimator as augmented 3SLS (A3SLS), since the original equation has

6. A consistent estimator of the joint covariance matrix of the disturbances
of the augmented equations system can be obtained in the usual way from the
residuals for equations (2.1), (2.2), and (2.9) with & = 8. Mlso, zq and

Zp can also be used as instruments for equation (2.9) without affecting the
efficiency of the estimator. See Section 4.
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been augmented by an equation which is generated by the covariance
restriction. It will be shown below that in general the A3SIS estimator
is asymptotically equivalent to FIML when the disturbances of the original
equation’ system are normally distributed and is also efficient relative to
FIML when the disturbances are nonnormal .

Direct use of the extra moment restrictions also yields a fruitful
approach to estimation when covariance restrictions are needed for
identification. For example, suppose that ¥55=0 in equation (2.2). Then
Zo is no longer useful as an instrument because it does not appear in the
reduced form. However, we can still obtain an estimator of the unknown
parameter vector (612, Y190 Q”) by utilizing the covariance restriction.

Consider an estimator & which is obtained as the solution to the threel

equations
(2.10a) 24 (.V1 - B12y2 - Y11Z1) =0,

(2‘1Ob) Z1 (yz - 621Y1) =0,

(2-100) (Y2 - 6213'1) (y1 = B12y2 - Y‘|‘|Z1) = 0.

The first two equations use the instrumental variable moment conditions that

Zy ¢ is orthogonal to & and o while the third equation uses the moment

condition E[Eﬁtsét]zo' This estimator is a generalized method of moments

(GMM, see Hansen (1982)) estimator which uses the moment condition implied by

the covariance restriction in addition to the usual instrumental variable
. orthogonality conditions. Generally the solution to such an equation will

require iteration because the product of two residuals is quadratic in the
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unknown parameters, although in this simple example, which has a recursive
structure and is thus covered by the results of Section 4.2 of Hausman and
Taylor (1983), iteration is not required. Note that the solution to equation
(2.10) can be obtained by first solving (2.10b) for 321 and then solving
equations (2.10a) and (2.10c) for §12 and fy\“, which amounts to first doing
2SIS on equation (2.2) using z, as an instrument, and then doing 2SIS on

equation (2.1) using Z4 and '5\2 = y2-§21y1 as instruments.
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3. FIML Estimation in the M-equation Case

We now turn to the general case where zero restrictions are present on
some elements of the covariance matrix, but the covariance matrix is not
necessarily assumed to be diagonal. We consider the standard linear
simultaneous equations model where all identities are assumed to have been

substituted out of the system of equations:

(3.1) YB + Zr=1U

where Y is the TxM matrix of jointly endogenous variables, Z is the TxK
matrix of predetermined variables, and U is the TxM matrix of the structural
disturbances of the system. The model has M equations and T observations.
It is assumed that B is nonsingular and that Z is of full rank. We assume
that plim (1/T) (2'U) = 0, and that the second order moment matrices of the
current predetermined and endogenous variables have nonsingular probabil ity
limits. Lastly, if lagged endogenous variables are included as predetermined
variables, the system is assumed to be stable.

The structural disturbances are assumed to be matually independent and

identically distributed as 2 nonsingular M-variate normal distribution:

(3.2) vecU ~N(0, Z(® Ip)

where I is positive definite.’ However, we allow for restrictions on the
elements of X of the form (§j= 0 for i#, which distinguishes this from
the case that Hausman (1975) examined. In deriving the first order

conditions for the likelihood function, we will only solve for the unknown

7. Here and elsewhere vec(.) denotes the usual column vectorization.
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elements of I rather than the complete matrix as is the usual case. Using

the results of Hausman and Taylor (1983) and Section 5, we assume that esch
equation in the model is identified by use of zero coefficient restrictions
on the elements of B and T and covariance restrictions on elements of Z.

We will make use of the reduced form specification,

(3.3)  Y=-zm ' +ust =gz o+ v,

The other form of the original system of equations which will be useful is
the so-called "stacked" form. We use the normalization rule B;j;= 1 for all i
and then rewrite each equation in regression form where only unknown

parameters appear on the right-hand side:

(3.4) vy = Xiéi *uy

where X, = [Yi,Zi], &' = [Bi"Yi']’ Y; is the Txr, matrix of included
endogenous variables, Zi is a szi matrix of included predetermined
variables, and Gi is the 9; = Ty + 84 dimensional vector of structural
coefficients for the ith equation. It will prove convenient to stack these

M equations into a system

(3.5) y=X8+u

where
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y1 X1. .0 51 1.11
y = . , X=diag[X1,...,XM]= "‘ , &= . , U = v
Ty SR S Uy

Note that &8 is the q = Eiqi dimensional vector of structural coefficients.

Likewise, we stack the reduced form equations

(3.6) y=20+v

where 7 = [%@Z] and 1l = vec(I) is the vector of reduced form
coefficients.
The log likelihood function arises from the model specification in

equation (3.1) and the distribution assumption of equation (3.2):

(3.7) L(B,T,5) = ¢ - 92-1 log det(3) + T log | det (B) |

- S trfy T(B + 2D (¥B + 2D) ]

where the constant ¢ is disregarded in maximization procedures. We now
calculate the first order necessary conditions for a maximum by matrix
differentiation. The procedures used and the conditions derived are the same

as in Hausman (1975, p. 730). To reduce confusion, we emphasize that we only

differentiate with respect to unknown parameters, and we use the symbol 2 4o
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remind the reader of this fact.® Thus the number of equations in each block
of the first order conditions equals the number of unknown parameters; e.g.,
the number of equations in (3.8a) below equals the number of unknown

parameters in B rather than MZ. The first order conditions for & are

(5.8a) %» :2(8)7 - yv'(B+ 2D o,
(5.80) '21—11 :— z2'(yB + zD Y %o,

In particular, note that we cannot postmul tiply equation (3.8b), or later,
the transformed versions of equation (3.8a), to eliminate 2-1, as & simple
two equation example will easily convince the reader. |

To state the first order condition for the unrestricted & paramete?s,
let 6?'be a M(M+1)/2 dimensional column vector of the distinct elements of z,
g = (G qreeesGygreesrGprees Goreees Gg)'s and let R' be the Mx(M+1)H/2
matrix such that vec(I) = R'd? (see Richard (1975) ). Noting that for a
symmetric, positive definite matrix A, dndet(A)/dvech = vec(A-1),
dtr(U'UA)/ vecA = vec(U'U), and avec(A-1)/6vécA N A-1, we obtain the

vector first order condition

8. An alternative procedure is to use Lagrange Multiplier relationships of

the type 0 = q; = (yi - X8 ) (yj -Xj éj) for known elements of I, but the
approach adoptea in the paper seems more straightforward. We are grateful
to an anonymous referee and Paul Ruud for pointing out an error in the FIML

derivation in a previous draft.
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(3.9) - (vec [Tz - (¥YB+zD)'(¥B+z D) ])' 2'1@ s1gr B

Consider equation (3.8a). Using the identities ZZ-1=I, Y=ZIFV, and

V=(YB+ZI)B”' we obtain
(3.10) (87" @a-(vBvzD) ' (1842 1) -(z1) " (vBezD) ]~ 2 o

Equation (3.9) characterizes TZ -(YB+ZT)'(YB+ZTI) in the zero covariance
restrictions case, while from equation (3.10) we see that it is precisely the
presence of this term which causes the instrumental variables for Y to differ
from ZIl. We can use equations (3.9) and (3.10) %o obtain an instrumental
variable interpretation for FIML with covariance restrictions.

Suppose there are a total of L distinct covariance restrictions and let
S be a sz L selection matrix of rank L such that the‘covariance restrictions
are given by S'vec(I) = 0.° The FIML residuals can be added to the list of
instrumental variables by allowing W=[Z:(IM.§Q[USj]to be the T x MK+L matrix
of instrumental variables, where U = YB+ZT. ©Note that each column of S
corresponds to exactly one covariance restriction Gij =0 for i #j. The
column of S which corresponds to (ﬁj = 0 will either select u, as an
instrument for equation j or uj as an instrument for equation i. In the two
equation example of Section 2 withvcﬁ2= 0, S is either (0,1,0,0)' or
(0,0,1,0). Then, for example, if

S5 = (071 7070)'9

5. S is not unique because of symmetry of I.
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and u, is selected as an instrument for equation 1.. Also let E; =

[(B"1)i, Oi], Wwhere Oi is a M x Ss null matrix which corresponds to the s
included exogenous variables and (B-1)i is the matrix of columns of B~
corresponding to the TS included right-hand side endogenous variables, and
let § = diag(ﬁ;,...,ﬁ&). Let P be the M? dimensional permutation matrix such
that PvecA = vecA' for any M dimensional square matrix A. Let Di = [Hi, Ii]’
where I& is the columns of Il corresponding to the included right hand side
endogenous variables and Ii is the selection matrix such that Zi = ZIi’ and
let § = diag (D{,...,Dlv'I ).

Theorem 3.1: For H' = [§¥ '@ L, §(IM® D(I+P)S[S'z@® x(I+P)S ]‘1 ], the FIML

estimator 8 satisfies
(3.11) s= (W) vy,

Equation (3.11) demonstrates the essential difference for FIML estimation
which arises between the case of no covariance constraints and the present
situation. We see that in addition to the usual instrumental variables 7, we
have the extra instrumental wvariables (IM © U)S which are uncorrelated
structural residuals. Thus FIML uses the covariance restrictions to form a
better instrumental variables estimator.l0

We now calculate the asymptotic Cramer-Rao bound for the estimator.
Under our assumptions, we have a linear structural model for an i.n.i.d.
specification. We do not verify regularity conditions here since they

have been given for this model before, e.g., Koopmans and Hood (1953) or

10, When 1 is restricted to be diagonal, FIML can be given the IV
interpretation discussed in Hausman and Taylor (1983).
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Rothenberg (1973). 11 Let Gbe the [M(M+1)/2]-L dimensional vector of
* ~ .
unrestricted elements of o and let S be the ([M(M+1)/2]-L) x M(M+1)/2 matrix

~ e ® ,
such that o= Se. Also, let Q = plim(Z2'Z/T).

Theorem 3.2: If the structure disturbances are normally distributed then the
information matrix for the unknown parameter vectors & and o is given by
BPE" + plim . (5@ 1)x §(>:'1@I )R'S"
- T T M
(3.12) J3(8,0) = ’
SR( 5! ® IM)J'a"' % s“R(z‘1® s Hrg
Further, the inverse of the Cramer-Rao bound for & is, for
F=Rr(r'g rHr',
66 '-1 Y -1 g’} g '1 ' -1 1 RRE -'1
(3.13) (37970 = 5(7 @D + 28(57 @I R'[F - §(SFS") "8 r
1 !
(7 @ 1,)8".

The first term in equation (3.13) is the inverse of the 3SIS asymptotic
covariance matrix. Since the second term is positive semi-definite, 3SIS
is asymptotically inefficient relative to FIML, in the presence of covariance
restrictions.

Further insight into the efficiency gain from imposing the covariance
restrictions can be obtained by examining the diagonal covariance matrix
case. Let Pij be the ijth M-dimensional square block of P, i,j=1,...,M, and

let P* be the M° x M matrix P* = B JRNS J LN

11, The most straightforward approach to regularity conditions is to use

the reduced form. The reduced form has a classical mul tivariate least
squares specification subject to nonlinear parameter restrictions. Since the
likelihood function is identical for either the structural or reduced form
specification, the more convenient form can be used for the specific problem
being considered.
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Corollary 3.3: If the structural disturbances are normally distributed and

the covariance matrix is diagonal the information matrix for & and o is given

by

ooy N S ~ o =1
BPE' + plim 5 X (I QIp)X  EBP*:

(3‘14‘) J(é, G, gy, ) = -
1 Yt 1 oxr g 15 g1

Further, the inverse of the Cramer-Rao lower bound for & is
66 -1 — 7 -1 ay oY -1 %1\ R
(3.15) (I°9)7" = B(F' ®Q)D" + B(P + ' ® % - 2p*¥p*" )" .

The first term in equation (3.15) is the inverse of the 3SILS asymptotic
covariance matrix. By comparing the first term with the second term we can
easily see that the larger is the covariance matrix ¥ of the disturbance
vector Ut relative to the second moment matrix Q of the predetermined
variables from the reduced form, the larger is the efficiency gain which can
be obtained by imposing the covariance restrictions. For example, if % is
multiplied by a scalar which is larger than one then the second term is
unaffected while the first term decreases. In other words, the efficiency‘
gain from imposing covariance restrictions will be relatively large where the
population r-squared for the reduced form equations is relatively small, as

might be the case in cross-section data.
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4. Instrumental Variables in the M-Equation Case

A convenient and efficient alternative to FIML can be obtained by
utilizing the extra moment conditions which follow from the covariance
restrictions. In the absence of covariance restrictions conventional
instrumental variable estimators, such as 2SLS and 3SLS, make use of the
fact that the instrumental variables are orthogonal to the disturbances.

The covariance restrictions add moment conditions which can also be used in
estimation. Let 5 be a selection matrix with S'vec =0, as introduced in
Section 3, and let & = S'vec(Ut'Ut), where Ut ig the tth row of U. Then the
covariance restrictions imply that the Lx!1 vector ey has mean zero
conditional on Zt’ We can account for these additional moment restrictions

by augmenting the original M equations with the L additional equations

(4‘1) S'[(yt-xté) @ (yt—Xté)] = et, (t=1""’T)!
where Vi = (y1t, ceny yMt)v and Xt = diag[X1t, cee, XMt].

These additional equations are nonlinear (quadratic) in the parameters.
When an initial consistent estimator 3 of the parameter vector § is
available this nonlinearity can be eliminated by linearizing the extra
equations around 8. Using the fact that for an M-dimensional square matrix
A it is the case that vec(A') = Pvec(A), and using avec(U%(yt-Xté)')/aé =
a((yt-Xt 5) @Ut')/ 08 = X, ®Ut' we can calculate the first-order Taylor's
expansion of equation k of (4.1) around g,

A

(4.2) ey * sk'(I+P)(Xt®Gt')3= sk'(I+P)(xt®ﬁt')6 +r

kt®

A
where I is an-M2 dimensional identity matrix, S, is the kth column of S, Ut'

k
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5 o "0, @0, i 1t 1 d ord
—yt-Xté, etk—sk(tt)’rkt is equal to e, plus a second order
term, and terms with 6 are collected on the right-hand side. Let

A

A t AN 1 A RN '
Vo = Cpye * S (TR)(E, @ U468, woey By + 5. (I+R) (X @ T ') 6)

be the Tx1 vector of observations on the left-hand side variable of equation

(4.2) and let

X, = [(x,* @61)(1+P)sk, ceey (Xg! @ﬁT)(1+p)sk]-

be the Txq matrix of right-hand side variables of equation (4.2). We can

then write the observations for the linearized equation (4.2) as

(4.3) Vo = xaké * T, (k=1,...,L),

where rk = (rk1,...,rkT)'. An estimator of & which accounts for the
presence of covariance restrictions can now be obtained by joint 3SLS
estimation of the L equations (4.3) and the original equation system (3.5),
using a vector of ones as the instrumental variable for equation (4.3),
which estimator we will refer to as augmented 3SIS (A3SIS).

To obtain the AZSLS estimator it is convenient to stack the additional
equations (4.3) which follow from the covariance restrictions with the
observations for the original equation system to form an augmented equation

system. Let y, = (7' T.4'y oee, yaL')' be the (M+L)T dimensional vector of

at
observations on the left-hand side variables and XA = [X', Xa1""" XaL']'
the (M+L)Txq matrix of observations on the right-hand side variables of both

equations (3.5) and (4.3). Then we can write the augmented equation system

which adds the L equations (4.3) to the original equation system (3.5) as
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(4.4) ¥ = X8+,

where r is equal to (u', Toq's sees T

aL')"

To form the A3SIS estimator we use Z as instrumental variables for each
of the original equations of the augmented system and a Tx1 vector of ones,
which we will denote by a, for each of the additional equations. The
corresponding (M+L)Tx(MK+L) matrix of instrumental variables for the
augmented equation system will be ZA = diag[IM® z, IL® a]. We also
estimate the covariance matrix of the augmented system Q =
E[(Ut,et')'(Ut,et')] using the estimator Q = (1/T)2t31(ﬁt,gt')'(ﬁt,gt’)
which can be formed from the residuals of the linearized system evaluated

A A
at &8 The A3SIS estimator §A can then be obtained as

(4.5) 5 = & (T ryx, y (!

A A ®IT)yA1

Z.7

£ =z - ozx
where A A( A A) ZA A

The form of the A35IS estimator differs from that of a standard 3SIS
estimator in two respects. The first is that there are cross-equation
restrictions in the augmented equation system. The parameters which enter
the original equation system also enter the additional equations which arise
from the covariance restrictions. The seéond way A35IS is different is that
different instruments are used for different equations, so that ZA does not
have a Kronecker product form. This second difference can be eliminated when
Athe matrix of instrumental variables Z includes a column of ones, as will be

assumed below and as is usually the case in applications, by using all the
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columns of Z as instrumental variables for the last L equations of the
augmented equation system. The resulting estimator, say 3A, then has the

more familiar 3SLS form
Y v A1 [ =1, -1 v (A1 ' L
(4.52) & = (x(C ®@2z(z'2)" 2z %, ) X (G ®@a(z'z) 'z )y, .

This alternative estimator may be easier to compute, since some standard 3SLS
computer programs can be used. Although SA and Ei will generally not be
numerically equal, they will be asymptotically equivalent under our
conditions, as we show below.

We have derived the AZSIS estimator by linearizing the extra equations
which arise from the covariance restrictions. We could have proceeded by
linearizing the FIML first order conditions (i.e. by obtaining the
Rothenberg and Leenders (1964) linearized MLE) but the resulting estimator
would be more complicated than the A33LS estimator because of the presence
of the parameters of the disturbance covariance matrix for the original
system. The A3SLS estimator has the advantage that it has a familiar form
and, at least when the entire matrix % is used as the instrumental variables
for the additional equations, can be implemented by using existing software
(e.g. TSP). Furthermore, as will be shown below, the A3SIS estimator will
often be efficient relative to FIML when Ut is nonnormal.

An initial consistent estimator of & is required to form the A3SIS
estimator. When the covariance restrictions are not needed for
identification, then an IV estimator such as 2SIS or 3SLS will suffice.

When covariance restrictions are necessary for identification, we must take

a different approach. Direct use of the moment restrictions also provides



24
a useful approach to obtaining an initial estimator of 8. Let
g1p( 8 = (I, ®2)'w/T, g,n(8) = S'vec(U'V)/T,
gp(® = (gp( 8", gop(8)' )

Note that gT(é) is a MK+L dimensional vector of sample moments which has
expectation zero when & is equal to the true parameter value. It is formed
of the usual MK dimensional vector of products of instrumental variables

and residuals plus an additional L dimensional vector formed as the sample
average of the vector of residuals ey for the additional equations which
arise from the covariance restriction. A GMM estimator 3w.which utilizes the
covariance restrictions can now be obtained by minimizing a quadratic form in

the moment functions gT(é), i.e. by solving

(4.6) mianT( 6)'¥IgT( 8),

where D is a subset of RY and ‘I{I, is a positive semi-definite matrix.
A similar estimation method has recently been suggested by Rothenberg (1983),
who motivates the GMM method as a modified minimum distance approach.

The minimization problem (4.6) is quartic in the parameters of & and
may therefore not be very difficult to solve in many circumstances. To
minimize the computational complexity of this estimator we have not included

products of ey with components of Zt’ other than that with 2 =1, in the

t1
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vector of moment functions. !? The computational complexity of BW can be
further reduced by choosing Y'P = diag[Iq,O]. This choice is one which
minimizes the role of the vector of quadratic functions gZT(é) in the
minimization problem (4.6) and thus may simplify the computation of SW'
For this choice of ﬂr the minimization problem (4.6) is using just enough
covariance restrictions to give just-identification.

Some insight concerning the nature of the A3S1S estimator can be
obtained by considering whether A3S51LS, like FIML, has an interpretation as
an instrumental variables estimator for the original equation system, where
residuals are used as instruments in addition to predetermined variables.
Residuals can be added to the list of instrumental variables by allowing
% = [Z, Gﬁ@)i}b ] to be the T x (MK+L) matrix of instrumental variables for
the original equation system. A3SIS then has an instrumental variables
interpretation if and only if there is a (MK+L) x q linear combination

A

*
matrix H such that §A satisfies

”~

(4,7) A = (H*'W'X)—1H*'W'y.

Such an H*will generally not exist if 5%2 # 0, where we partition Q and Q

12, Wnen E[étUt] # 0, these other cross-products of ey With components of Zy
would need to be included in the moment vector if the optimal GMM estimator
(see Hansen (1982)) is to be as efficient as A3SIS. Al though Z4q4 =1 is the
only instrumental variable :used for each of the additional equations, the
linear combination of the instrumental variables of all the equations which
mul tiplies each component of et in the A3SIS estimator may include all of the
components of Z, when E(etUt) # 0.
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comformably with (Ut’ eé). When 2%2 # 0, the transformed instrumental
variables (&4@D]ﬁjﬂA will lead to all the columns of Z, and not just a,
being used as instruments for the additional equations. When all the columns
of Z are used as instruments for the additional equations gA is implicitly
using the information that all the predetermined variables are uncorrelated
with products of disturbances that correspond to covariance restrictions, and
not only the information that such disturbance products have expectation
Zero. If';%Z is constrained to be equal to zero, which would be the actual
value of qu if & had a distribution that is symmetric around zero (e.g.
normal ), then an instrumental variables interpretation of E’A can be
obtained.

To obtain an instrumental variables interpretation of A3SLS we need to
be specific about what estimator of § is used to form the residval matrix G.

~

We will assume that the initial estimator & satisfies
(4.8)  fgy(8) =0

for some (MK+L)xq linear combination matrix H. TFor example if A" is equal to
[X'ZKIM C)(Z'Z)_1), 0], then equation (4.8) gives the normal equations for
the vector of 2SIS estimators. More generally, equation (4.8) can be thought
of as the first order condition for the GMM estimator of equation (4.6), with
i = %6&1‘( g)/azs_.

~

Theorem 4.1: If & satisifies equation (4.8) and A'W'X is nonsingular, and

A

S%Z = 0, then there exists a (MK+L)xq linear combination matrix H* such that




27

equation (4.7) is satisfied. The matrix H* is given in the appendix. 13
To obtain the asymptotic properties of the A3SIS estimator it is
convenient to assume that certain regularity conditions are satisfied.

Let |x| = maxilxi| for x = (x1,...,xn).

Assumption 4.1: The observations (Ut, Zt) are independently not identically

distributed such that there exists Y, M > 0 such that
Bllu 1" <, 5[12, 14 < m, (3=1,2,...)

This assumption could be relaxed to allow dependent observations as long as

the disturbance vectors for different observations are independent.

Assumption 4.2: For all t, Ut has constant conditional raw moments up to the
fourth order which do not depend on t. Also, Zt1 =1, E[Ut] = Q, E[et] = 0,
plim Z'Z/T = Q, and the probability limits of averages of all products up to

the fourth order of elements of Zt and Ut exist.

Besides specifying that the instrumental variables include a vector of ones,
this assumption rules out heteroskedasticity in either the original equation

system or the additional equations which arise from the covariance

13, It can be shown that H* is the optimal choice of a linear combination
matrix to use when using residuals as instrumental variables for the original
equation system when Sq2 = 0. The formula in equation (4.7) was analyzed in
an earlier version of this paper.
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restrictions, as well as specifying that the disturbance vector Ut has mean

zero and that the covariance restrictions are satisfied. Let

[p]
|

, =S (I+P)(1, @ D) B,

= [F, Gé]'.

[p]
|

Assumption 4.3: The matrices Q and Q are nonsingular, and the matrix G

has rank q.

As will be discussed in Section 5, rank(@) = q is a condition for local
identification of & under covariance restrictions. Let SA be the

(M+L)X x (MK+L) selection matrix such that Z, = (IM+L® z)sA, and let

ve = (o'sy (Tl Q)s,e )

The following result gives the asymptotic distribution of the A3SLS

estimator.

Theorem 4.2: If Assumptions 4.1-4.3 are satisfied and the initial estimator

F . ~
6 is such that /(6 68) is bounded in probability then

A d
/1( 8y~ 5 -+ N(0,V*)
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and plim [/I( SA- ?S'A) ] = 0. Purthermore, plim [T (iA( §'1® IT)fiA )'1 ]

plin 1 (%, (7'g Z(Z'Z)'1Z')XA BN

This resul't says that V* is the asymptotic covariance matrix of SA’ that the
other version Ei of A351S is asymptotically equivalent to sA, and that the

usual estimator for the asymptotic covariance matrix of each of these
estimators is consistent. The hypothesis that (56-8) is bounded in
probability will be satisfied if 8 is asymptotically normal. If the
covariance restirictions are not needed for identification then both the 25IS
and 35L3S estimators will satisfy this hypothesis; while if the covariance
restrictions are necessary for identification then the GMM estimator
discussed above can be used as an initial estimator when forming A3SIS.
The verification that the GMM estimator is asymptotically normal when & is
identified and Assumptions 4.1-4.3 are satisfied is routine, so we omit this
verification.

The important question concerning the asymptotic properties of the A3SIS
estimator is its asymptotic efficiency. The following result says that the
A3SIS estimator is asymptotically efficient when the disturbance vector Ut is

normally distributed.

Theorem 4.3: If Assumptions 4.1 - 4.3 are satisfied and the distribution of
Uy conditional on Z, is normal then JT(SA - SFIML) converges in probability

to zero.

This result has a straightforward explanation. From the instrumental

variables interpretation of FIML given in Section 3 we can see that FIML
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uses the fact that Z is orthogonal to the disturbances and that & and Eﬁ
are orthogonal for (ﬁj = 0. This information is exactly that which is used
to form the augmented equation system and the A3SIS estimator. Furthermore,
as stated in the following result, the A3SIS estimator is asymptotically
equivalent to the best nonlinear 3SLS (BNL3SLS) estimator for the augmented
equation system and is therefore efficient in the class of nonlinear
instrumental variable estimators for the augmented equation system. Let SB
be a BNL3SLS estimator (Amemiya (1977)) for the augmented equation system
consisting of equations (3.5) and (4.1). 1%

A

Theorem 4.4: If Assumptions 4.1 - 4.3 are satisfied then Jf(aA - GB)

converges in probability té Zero.

The asymptotic efficiency of the A3SIS can now be seen %o result from the
fact that both FIML and A3SIS use the same information, i.e. are members of
the same class of estimators, and A3SIS is asymptotically efficient in this
class.

Theorem 4.4 also sheds some light on the comparison of FIML and A3SLS
estimators when the disturbances of the original equation system do not have
a multivariate normal distribution. The efficiency of A3SIS in the class of
instrumental variable estimators for the augmented equation system does not
depend in any way on normality because we have not imposed any particular
form for the covariance matrix of the augmented equation system. If the
disturbance vector of the original equation system is normally distributed
then third raw moments of the disturbances are zero and fourth raw moments

consist of products of second raw moments, and the covariance matrix of the

1% A BNL3SLS estimator is derived in the appendix.
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disturbance vector of the augmented equation system is given byls

g 0
% = 0s'[(z® D(1+P)]s |-

FIML imposes this special form for Q and as a result may be asymptotically
inefficient relative to A3SILS if Ut is nonnormal. FIML also iﬁposes the
special form of Q when forming sfandard error estimates from the inverse
information matrix formula so that the usual standard error formulae for
gFIML may be wrong if U, ?s nonnormal . 16

To conclude our discussion of estimation, it is useful to note that
the results of this section do not apply only to the case of zero covariance
restrictions: All of the above results, including asymptotic efficiency

of A3SIS apply without modification to the case of linear homogenous

restrictions S'vec(Z) = 0, where S need not be a selection matrix.

15, See Henderson and Searle (1979) for the expression for Q@Z'

16, Similar points about the consequences of nonnormal ity for the properties
of FIML when covariance restrictions are present have been made by others in
the context of panel data, e.g., Chamberlain (1982).
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5. Identification

It is well known that covariance restrictions can help to identify the
parameters of a simul taneous equations system (see the references in Hsiao
(1983)). Hausman and Taylor(1983) have recently provided necessary and
sufficient conditions for identification of a single equation of a
simultaneous system using covariance restrictions, and have suggested a
possible interpretation of identification of a simultaneous system which
is stated in terms of an assignment of residuvals as instruments. In this
section we show that such an assignment condition provides useful conditions
for identification.

The asymptotic covariance matrix V¥ of A3SLS is well defined only if
rank(G) = g, so that this condition is a natural one to consider when
analyzing the identification of & from the conditional moment restrictions
E(UtIZt) =0, E(S'vec(U%Ut)lzt) = 0. We can relate this condition to
familiar identification conditions for the structural parameters of a
simul taneous equations system. As discussed by Rothenberg (1971)
nonsingularity of the information matrix is a necessary and sufficient
condition for first order local identification at any regulaf point of the
information matrix.17 Nonsingularity of the information matrix for the
normal disturbance case is equivalent to the matrix G having full column
rank, as stated in the following result.

Lemma 5.1: If Q and ¥ are nonsingular then the information matrix J is

nonsingular if and only if rank(G) = q.

17, A regular point of the information matrix is one where the information
matrix has constant rank in a neighborhood of the point. The set of such
points has measure one, Rothemberg (1971). Also, see Sargan (1983) for a
discussion of the relationship between identification and first order
identification.
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Thus the rank of G plays a crucial role in determining the identification of
the structural parameters of a simultaneous equations system.

The matrix G has an interesting structure. The first MK rows form a
matrix Gi = D" which is familiar from the analysis of identification via
coefficient restrictions. The covariance restrictions play a role in
determining the rank of G through the matrix of the last L rows G2 =
S'(I+P)(IM ® D8 = S'(I+P)plim(IM'@DU)'X/T. Let 25 denote the jth row of I.
The kth row of G2, corresponding to the covariance restriction cij= 0, has
zero for each element except for the elements corresponding to éi’ where
ZEE;= plim(uj'Xi/T) appears, and the elements corresponding to éj’ where

Ziﬁg = plim(ui'Xj/T) appears. Thus the kth row of G, contains both the

2
covariance of uj with the right-hand side variables for equation i and the
covariance of uy with the right-hand side variables for equation j. We can
exploit this structure to obtain necessary conditions for identification
which are stated in terms of using residuals as instruments.

An assignment of residuals as instruments is a choice for each
covariance restriction cij = 0 to either assign u; as an instrument for
equation j gz_uj as an instrument for equation i, but not both. Since for
each covariance restriction there are two distinct ways of assigning a
residual as an instrument there are 2L possible distinct assignments. For
each assignment of residuals as instruments, which we will index by
p = 1,...,2L, let Upi be the (possibly nonexistent) matrix of observations
on the disturbances assigned to equation i. Let wpi = [Z, Upi] be the

resulting matrix of instrumental variables for equation i and

Cpi = plim(WPi'Xi/T) the population cross-product matrix of instrumental



34

variables and right-hand side variables for equation i.

Theorem 5.2 If rank(G) = q then there exists an assignment p such that

(5.1) rank(Cpi) = q,, (i=1,...,M).

This result means that for a regular point a necessary condition for first
order identification is that there is an assignment of residuals as
instruments such that population cross-product matrix of instrumental
variables and right hand side variables has full column rank for each

equation. Note that if rank(Cp.) =qy there must be at least a5

i
instrumental variables for the ith equation. We can thus obtain an order
condition for residuals assigned as instruments. Let a; = max (0, qi-K) be
the number of instrumental variables which are required for the ith equation

in addition to Z to have the same number of instrumental variables as right-

hand side variables;

Corollary 5.3: If rank(G) = q then there exists an assignment p such
that at least a; residuals are assigned as instruments to equation i,

1= 1,...,M.

This order condition says that there must exist an assignment of residuals
as instruments so that there are enough instruments to estimate each
equation. We can use Hall's Theorem on the existence of a system of
distinct representatives, in a similiar fashion to the use of this theorem

.by Geraci (1976), to obtain an algorithm for determining whether or not such
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an assignment of residuals as instruments exists. Let Ri be the set of
indices k of distinct covariance restrictions such that the kth covariance
restriction is (&j=o for some j#. Note that Ri is just the set of indices

of distinct covariance restrictions which involve equation i.

Theorem 5.4: There exists an assignment of residuals as instruments such

that for each i=1,...,M at least a; residuals are assigned as instruments to

equation i if and only if for each subset J of {1,...,M}, U Ri contains at
ied

least Z a. elements.
. i
ig

So far, each of the identification results of this section have been
stated in terms of the number and variety of instruments for each equation;
see Koopmans et. al. (1950). It is well known (see Fisher (1966) pp. 52-56)
that when only coefficient restrictions are present the condition that
plim(Z'Xi/T) have rank q; can be translated into a more transparent
condition on the structural parameters A = [B',F']'. When covariance
restrictions are present we can also state a rank condition which is
equivalent to plim(Wpi'Xi/T) having rank q;. For an assignment p, let
;pi be the rows of I corresponding to residuals which are assigned as
instrumental variables to the ith equation. Let ¢; be the (M-1-qi)x(M+K)
selection matrix such that the exclusion restrictions on the ith equation can

be written as diAi = 0, where Ai is the ith column of A.

Lemma 5.5: TFor a particular assignment p and an equation i, the rank of

C equals q; if and only if

pi
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(5.2) rank[A'da',E%i'] =M-1.

When this result is combined with Theorem 5.2 we can see that Theorem 5.2 is
a stronge; necessary condition than Fisher's (1966, Theorem 4.6.2)
Generalized Rank Condition, which says that a necessary condition for
identification of the ith equation is that the rank of [A'¢i',E;'] is M-1,
where 3; is all the rows 2;j of I such that c§j=0. Theoren 5.2 strengthens
this necessary condition by requiring that the rank condition only hold for
those rows of I corresponding to residuals which are assigned té equation i.

So far we have only presented necessary conditions for identification.
We can also give a sufficient condition for local identification which

includes the recursive case of Proposition 9 of Hausman and Taylor (1983).

Theorem 5.6: If for a subset of covariance restrictions there is exactly
one assignment p of residuals as instruments such that rank(Cpi) =4

(i=1,...,M), then rank(G) = q.

We do not know whether the existence of an assignment p such that the rank
condition (5.1) is satisfied is sufficient for local identification when
there is more than one such assignment condition. We have not been able to
prove that the assignment condition is sufficient in general or to construct
a counter example.

The previous results have the virtue that they can be checked on an
equation by equation basis. It is possible to give a necessary and
sufficient condition for local identification in terms of the structural

.parameters, although this result involves the restrictions on all the
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equations and is not readily interpretable in terms of instrumental

variables.

Theorem 5.7: The matrix G has full column rank if and only if

(5.3) rank(diag[ ¢, .-, 48 1[Iy @ A", (I, @ D(T+P)]") = M(m-1).

This result is a special case of the necessary and sufficient conditions
for local identification given by Rothenberg (1971) and Wegge (1965), since
G having full column rank is equivalent to the information matrix being
nonsingular.

The identification results of this section are local in nature. The
question of global identification with general zero covariance restrictions
is more difficult because the moment functions gT(é) are nonlinear
(quadratic) in the parameters. In fact Bekker and Pollock (1984) have
recently given an example of a system of simultaneous equations subject to
exclusion and zero covariance restrictions which is locally but not
globally identified. Thus the problem of global identification remains
somewhat problematical in the general exclusion and zero covariance

restriction case without further restrictions on the parameter space.



MATHEMATICAL APPENDIX

Some properties of the percutation metrix T aré uselul for deriving zine
information matrix. ¥rom Henderson ané Searle (1979) we know +na* ¥ is
symmetric, o= P, ané for any l-dimensional sguare matrices A ancé B
P(A® B)=(B® A)P. Let R ' be the M_Z x (M+(M+1)/2) matrix obtained from R'
by replacing the rows of R' corresponding to %j’ i#, by 1/2 times the
corresponding row of R' and by leaving the rows of R' corresponding to S
unchanged (see Richerd (1575)). Then PR' = R', PR ' = R ' 2R'R = I + P,

R'® R = E(z® DR ' and R = I.

Proof of Theorem 3.1: Let S be the matrix defiﬁed immediately preceding
Theorem 3.2 in the text. Let S*' be e L x M(M+1)/2 selection matrix such
that the covariance restricfions are given by O = S*' ¢* = S*'R vecI. Let

L' = SR @ r' ané B = @ X 'S*. Tote that L' has ramk M(M+1)/2-1 and B
has rank L. Also by $'S* = 0, 4'B = §'RR 'S* = 0. Purther, I-P hes rark
M(¥-1)/2 and (I-P)a = T '@ 1 (1-P)r'S = 0. Similerly (I-P)B = 0. It
follows thet C = [I-P,A]" has renk M°-1, and that the columns of B are &
basis for the nullspacé of C. Lety = vec(TZ;U'U). By symmetry (I-P)y=0
while L'y = O follows by equation.(3-9). It follows that Y = Bx for some I x
! vector x. By the definition of S*, S*'R y = -S*'R'vec(U'U). Substituting
for ¥ and solving gives x = - (S*'E  Z@® B 'S* ) 'S*'R vec(U'U). Solving for

-

T, end noting thet S'(I+P) = 2X%'R for any S as discussed above, we obteain

(£1) vee(TZ- T'D) = - @ L (I+P)S[S' 2@ NI+P)S 'S 'vec(U'U).
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(A.2)  vec[( B) N1z vro) ! ]

1y ® )7 ][ @ 1, Fee(T5-U'D)

1]

Iy ® ()" I, ® XI+P)S [8' 5@ H(I+P)s T stvec(u'n).

Selecting from equations (3.9) and (3.8) according to the unrestricted

elements of [B, '] as in Hausman (1975), and using vec(U'U) = (I®@U)'u,

gives
(A.3) H'W'u = 0.

Proof of Theorem 3.2: An expression for the-information matrix which ignores
symnetry of I and the covariance restrictions on X is given in Hausman
(1983), where the notation is identical to that used here except that P is
there denoted by E. Equation (3.12) then follows by vec(Z) = R' § & and the
chain rule, using R(IM® z)P(IM@ DR' = R(Z® Z)PR' = R(Z® ZI)R' and (I+P)R'

= 2R'. To obtain the expression for the Cramer-Rao bound note that

(A.4) 8 @ 1R (G P R(E 1,)8

o =1 T 1 -1 '
B ®@LR'R (2z® DR 'R(Z @ I,)8

~

55 @ () (2@ (1) (F' @ 1)

1
2

B8 + By @ DE'.
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We can also compute

(A.5)  pinx' (£ @I K/ = BT @A) + (' @ D

i

Using equation (A.5) to obtain the upper-left block of the information matrix
and adding and subtracting equation (A.4) to the partitional inverse formula

yields equation (3.13).

Proof of Corollary 3.3: When the covariance matrix is restricted to be
diagonal we compute R'S" = d:‘Lag(e1 ,...,eM) = P* yhere e; is the ith unit
vector. Also, L ® 51 is a diagonai matrix, with element (cii)-z in the
ith position of the ith block, so that the lower right block of the
information matrix is as given in equation (3.14). To obtain the upper right

1 . -1 -1
block, note that I @® I, = diag [( 011) IM""’(GIVHV[) IM], so that

(2'1 @IM)P* = diag [( 011)'1e1,...,( c{vm)'1eM] = p*y!. The form of the

Cramer-Rao bound now follows from the partitioned inverse formula.

Proof of Theorem 4.1: Note that 912 = 0 implies

L (T'@1,) = X} aisg [F@2(2'2) 2", TLO o) ]

1 * 1]
Xp2 )y Indy

. n R 7
where ¥, = diag [2-1 ® (Z'Z)"1 , Sgé(a' oc)-1 ] Also, _z
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so that for 2 = IM@Z

(A.6) z,'x, = [x'Z, X'(IM@G)(I+P)S ]’

A

(KW + [0,%' (T @ V)Bs] )

I}

A, 0] A A A _ ~A,
WX+ [S'P(IM@ U)'X(H'W'X)_1H'W'X} AW X
where

0]

A= 1 + ~ N
$'P(I, @ V) 'X(A'w'x)™" &

MK+L

T N N ~
Also note that U%@U% = vec(U'U) = (IM ®U)'u, so that gT(cS) = W'(y-X8),
t=1

and equation (4.8) implies 8 = (IrI"W'X)"1 A'W'y. It follows that

(A7) 7y, = G'% (X9 (L@ V) + X (L, @ V(I+P) B )

(v'E, 7' (L@ + y'VEX'WA) ' x' (1, @ 1))

0 ~ =K'y

= W'y + ~ ~ ~ —1N
S'P(IM@U)'X(H'W'X) H'W'y

The conclusion then follows with

%' - [ o~
(A.8) H XA ZA‘I/’T"A.
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A
Proof of Theorem 4.2: By Jf(g-& bounded in probability we have plimé=6.

Then Markov's weak law of large numbers and the uniform boundedness of 4+y

T T
moments of the data imply plim[ ) gtgt'/T - 3 eteé/T] = 0.
t=1 t-1

Markov's weak law of large numbers and the uniform boundedness of fourth

T
order moments of the disturbance also imply plim( ) erer/T) = E(etet') =
t=1

T
Q- It follows that plimQ,, = plim(tz1 etet'/T) = Q,,, and similarly that

plim® = @

In an analogous fashion it follows that for k = 1,...,L,

T A
(A.9) plim(Z'Xak/T) plim| 21 z,‘cs}'c(I+P)(Xt® U;c)/T]
t=

T
lim t_; E [Z%SIL(I+P)E(Xt® U,'cizt) ]/

T
[1imt=21 B(2,)/T By (I+P)(L, ® D)

= Qe Gy

where ey is the first K-dimensional unit vector and ng is the kth row of G2.

Also note that plim Z2'X/T = (IM®Q)]3". Defining 'z”A = Iy, @ Z, it follows

that
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(A.10) plim(ZAXA/T) = §,s,¢,

) = ! A = 2} = A
where Q) = L, - ® Q. Then by plim(Z ZA/T) Q, and 2, = Z,5,, we have

(A.11) Plin(2,X,/7) = 5,45, 6, plinm (2,2, /1) = 5,Q,8

ATATA’

and

(A.12) plim (2, (5"@ InK,/T]= plim[SA(IM+L® z) (§'1@ Ip)X,/T]

. v ra=1 ~ ' -1
Plinfs, (0@ I )ZAXA/T] =8, (@ ®Qjs,c.
It follows from (A.11) and (A.12) that

(8.13) plinfr & (F'®1)x, )" ] = plin( 12,2207 "2 (8 Ip)x, /1)

t L] 1 AL -1 ' —1 —1 —
(6'(5,8,5,)(s,8,) S,(F@Q)s,6) = v*
and that

- 1 (] _1 — ' ] —1 —_ L]
(A.14) pllm[XAZA (zAzA) ]=¢ (SAQASA)(SAQASA) =g,

. A Ay, AL A A
Next, using (Xt®ﬁt)(5_ 5) = (Ut..Ut) ®Ut = vec [Ut(Ut-Ut)] and

Pvec(A) = vec(A') we obtain, for k = 1,...,L,



44

A

T A A
(8.15) 2" (7 Xy OV A = t_; Z (e 4y S (T+P) (X, @ UL) (8-8) )/ /T

=]

A

T ~N ~ A A ~
= [t=21 Ziepy /T ]+ t=§1 ZiSyvec [UU-ULU+(Uyp-Uy ) "U+UL (U, -U,) I/ /T

T T - N
=173 Ziey/ M)+ _Z z,'csl'{vec[(Ut-Ut)'(Ut-Ut)]/ﬁ

H

~

Zieq/ ]+ [t=21 23Sy X, (uy-uy) )/T]ﬁ(g-é),

|
[ mmms ¥
Nl

t

where the second term after the last equality converges in probability to
zero by +I( g—é) bounded in probability. By the Liapunov central limit

theorem the first term after the last equality is bounded in probability,
as is Z'ui/ff_, for i =1,...,M Let v= (u

"eH""’eT1’""e1L""’eTL)"
Then by (A.13), (A.14), and (A.15) we obtain

(A-16)  (5-9 = {3(0 @ 1pxy1 ) XSO 1) (5,x, 00/

V*XAZA(ZAZA)_1SL(Im+1Q z)*'( Q_1® IT)(yA-XAes)/,/'Ir + op(1 )

]

V'S ( 9'1@ L)%, v/ /T + op(1 )s

where op(1) denotes a term that converges in probability to zero. The

asymptotic distribution result for 6A now follows from

d
(A'17) Z:\ V/VT +N(Or Q@ Q)’
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which is implied by the Liapunov central limit theorem, and from (A.16).

To show that plim [ /T( GA—EA) ] = 0, note that

(KZ (67 (2'2) )iz, x5, (@ (2o JZ} (7 4-%48)/ /T

H

(a.18) I(8-9)

@'5;8,(F '@ a5, e's;8, ('@ T v + o,(1)

[}

-1 ~ i
- % t 1] t

V*G sA(sz @IK)ZAV/JB + op(1),
where the second equality uses (A.10). The conclusion follows by subtracting

equation (A.18) from (A.16).

The remainder of the conclusions of Theorem (4.2) follow from (A.10) and

(A.11), as in the proof of (A.12). We omit details.

Proof of Theorem 4.3: From the instrumental variables interpretation of
Sy, 81ven in equation (3.11) and the fact that W'u = gT(é) we see that

§FIML satisfies the normal equation
(A.19) 0 = H'W'(y-X8) = H'gp(6)

where H' is defined in Theorem 3.1 and plim H' = §' = [ﬁYZT1GDIK),

65 [s' (2@ 9 (1+p)s]™1 . Note that
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(A.20) plim agT(éAFIML)/aé plim[-x'(IM® zZ)/T, -x'(IM@U)(I+P)S/T]'

- (1,0 Q), 8(1,® 2)(1+p)s ]'

where the last equality uses the fact that SAQASA = dlag[IﬁQ(Q, IL]. Then,

using the usual mean value expansion argument, (A.19) gives
o - -1
A. -8) = (H' ! +
(A.21) A yp,=8) = (H' @p( Sy )/08)  H' gp(6) 0,(1)
= (H'S}Q,S G)‘1 HZV WA + o0 (1)
FATNHN A %y
— 1t -1 R -1 et ~1 15
= (¢ S, (G ®I)s,s,Q,5,¢) ¢ 8, (G @ I)s, 8,2y v/ /T + op(1)
tat -1 -1 (PR =1 g} ¥
= (@8, (G@Qs,6) ¢'s, (& @L)Z, v/ /T + o, (1),
where we define § EEdiag[Z,‘S'[(Zég L) (I+P)]S ] and we have used the facts
iTe Tat 1 L] 1 LI ' -1 . .
i =¢ sA(qI@ IK)sA and SA(%®IKEASA = SA(QN@IK) to obtain the third
and fourth equalities. Now, when Ut has a multivariate normal distribution,
Q= Q (see Henderson and Searle (1979) ). The conclusion then follows by

subtracting equation (A.21) from (A.16).

Proof of Theorem 4.4: Let G, = D" so that G = [G{,Gé]’ with
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G, = S'(I+P)(I, ® DB'. Note that
(A.22) E[&I{;/éélzt ]=-E (xtlzt)= —(IM®Zt P = - (I ®z, )

and

(A.23) E[oe,/28]2, ] = B [5"(1+P) (X, ® U}) |z, ]

1}

Gy = -, @2:)(1,@ ey ),

where e, denotes the first K dimensional unit vector. Equation (A.22) gives
the form of the optimal instruments for the original equations and (A.23)
gives the form of the optimal instruments for the additional equations
implied by the covariance restrictions; see Amemiya (1977). Stacking these
two sets of instruments together it follows that ZASAG is the matrix of
optimal instrumental variables for the augmented equations system. Let
etk(é) = 8. [(yt-Xté)@ (yt—XtcS)] and let W §) = ((y-—X<‘3)',e11 (éS),...,eT1 (s8),
...,e1L(<S),...,eTL(8) )'! be the vector of residuals for the augmented equation

system. A BNL3SIS estimator <SB can be obtained by solving

A

(A.24) 0= @', 2 (@I, )v(g) = o's; (FlO T )2 (AB)

The calculations leading up to equation (4.2) in the text show that

dU 8)/ 368 = —XA( 8), where the 8 argument indicates that the residual vector

y-X6 is used in place of y-X§& in the formation of XA( 5). Consistency of 6}3

can bte shown in the usual way, so that the usual mean value expansion and
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e}

solving for (SB gives

]

(A.25) E(EB-a) (@'s 5 Q—1®IK)§AXA( 8 /T )-1G'SA(Q-1® T JZRw/ /T + o (1)

[ ~1 ]
VEG's, (@ L )iy v/ /T + op(1),

A
where the equality follows from plim [ZXXA( 8)/T] = Q’ASAG as in the proof of

(A.10). The conclusion follows by subtracting (A.25) from (A.16).

Proof of Lemma 5.1: Nonsingularity of X and Q implies that SA(Q{;@ QbA is
nonsingular, where the terms in this expression are defined in the proofs of
Theorems 4.2 and 4.3. When rank(G) = q the asymptotic equivalence of gFIML
and SA implies that the information matrix is equal to G'S'A(Q;@Q)SAG.
It can also be shown by some matrix algebra, which is available upon request
from the authors, that this equality continues to hold when rank(G) < q. The
conclusion then follows by SA(Q;@ Q )SA positive definite.

Because rank(G) = q if and only if there is a nonsingular é-dimensional
submatrix of G we can assume without loss of generality that G is square,
which simplifies the identification proofs. The following Lemma will prove

useful. Let § = SA@’ASAG and, for a particular assignment, P let @'P =

diag[Cp1 yeon ,cpM].
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Lemma A: TFor some 2L—tuple of positive integers (11,...,2

ZL)

oL
aet(8) = T (-1) Paet(§).
p=1 P

Proof: Let the rows of G2 be denoted by Spr k=1,...,L. Each k corresponds

to a restrictrion (ﬁj

= 0 for some i#j. TFurther, each S is a sum of two 1xq
> ] .
vectors, Siei + Skj where 814 has pllm(ujxi/T) for the subvector corresponding
to 51 and zeros for all other subvectors and skj has plim(ui'Xj/T) for the
subvector corresponding to 65 and zeros for all other subvectors. We can
identify 81 i with an assignment of residual j to equation i and skj with an

asgignment of residual i to equation j. We have

(I, ® F
G Tsy |
Spi ¥ S J

where we drop k subscript on i and j for notational convenience. For each of

the 2L distinct assignments, indexed by p, let

~

(p]
|

(Iy ® QY

s
iy

where 5; is the Lxq matrix which has its kth row Ski if uj is assigned to

equation i or skj if uy is assigned to equation j. The determinant of a

matrix is a linear function of any particular row of the matrix. It follows

that if L =1
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(A.26) det(6) = det(@;) + det(@é).

L
2
Then induction on L gives det(G) = Z det(@;)
. p=1

Now consider @; for each p. The matrix (%M(D(Qyﬁ' is block diagonal, where
the column partition corresponds to éifor i=1,...,M, and the ith diagonal
block is plim Z'Xi/T. Further the kth row of §§ consists of zeros except for
the subvector corresponding to 6iwhere plim(uj'Xi/T) appears. Then by
interchanging pairs of rows of Gb, we can obtain Cb from G;. That is, C§=
Ep@b, where Ep is a product of matrices which interchange a pair of rows of

G;- Note that Ep satisfies EP'EP=I, so that det(Ep) = (-1) xp for RP equal

]

to 1 or 2. It follows that det(@i) (-1)2p det(C%). Then since for each

oL oL
p, det(E) = ‘(_1)% aet(E)), det(c) - p=z1 aet(8)) = p=21 ()% p aet(C,)

Proof of Theorem 5.2: If rank(G) = q then by Lemma A rank(ﬁi) = q for some
p. Since Gb is block diagonal, with diagonal blocks Cpi,(i=1,...,M), we have
M

Z rank:@
i=1

pi) = q. Each Cpi has a5 columns so that rank (Cpi) <q;, and

consequently rank(Cpi) = qi,(i=1,...,M).

Proof of Theorem 5.4: Hall's Theorem (see Geraci (1976) ) states that, for a
set S, a collection of subsets S1""’SN has an associated N-tuple

(s1,...,sN) of distinct elements of S with s; €8, (i=1,...,N), if and only
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if for each n=1,...,N the union of every n subsets Si contains n distinct

elements of S. For each i such that a; > 0 1let ﬁ; be an a; tuple consisting
~ M ~s ~o
of a, copies of R, and let R be the z a. tuple (R ,...,RM). Note that each
i i j=1 1 1

distinct k contained in a copy of Ri corresponds to a residual u'j assigned as
an instrumental variable to equation i, where the kth covariance restriction

is (ﬁj = 0. Therefore, an assignment of residuals such that for each i at
least a; residuals are assigned to each equation corresponds to a vector

M

@1,...,SN), with N = .21 a;, of distinct elements of {1,...,L} such that
i=

each copy of Ri has at least one corresponding element Sy It follows
immediately from

Hall's Theorem that such an assignment will exist if and only for each

M
n=1%,..., Z a; the union of any n components of R contains at least n
i=1

distinct elements. We will refer to this condition as condition R, and
will show that it is equivalent to the condition given in the theorem.
Suppose that condition R is true. For any particular subset J, consider
choosing . EI a; components of ﬁiequal to all the a; copies of Ri for i e J.
1
Then the union of these components of R is just the union of Ri for all
i €J, and by condition R must have Z a; distinct elements. Now suppose
ied
that the condition given in the statement of the theorem is true. Consider
the union of n components of R. Since all of the components of R are Ri

sets, there is a subsét J such that this union is equal to the union of Ri

for i e J, which must have at least z ay distinct elements by the condition
ied
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from the theorem. Furthermore, since for each i & J there are exactly ay

copies of Ri among the components of ﬁ; 2 ai > n.
ied

Proof of Lemma 5.5: Ve drop the p subscript for notational convenience. We
also assume i=1. Note that the first column of 21 consists entirely of
zeros, since to qualify as an instrument for the first equation a disturbance

uy must satisfy E(u1uj) =gy = 0. Let e, be an M dimensional unit vector

with a one in the first position and zeros elsewhere. Then ¢1Ae1 = 0 and the
covariance restrictions imply Fe1 = O where F = (A'¢',Z1')'. Note that rank

(FB"1) = rank(F). Also FB'1B1= 1?e1 = 0 where 131 is the first column of B, so

that the first‘column of F is a linear combination of the other columns of F
by B11= 1. Let I} be the rows of I' corresponding to the excluded

predetermined variables. Then dﬁAB-1 = [E1',(B')'1IH']' where B, is an

(M—1-r1)xM matrix for which each row has a one in the position corresponding
to a distinct excluded endogenous variable and zeros elsewhere. Let (B_1)1

be the columns of B'1 corresponding to included right-hand side endogenous
. ,

variables. Note that FB™ '= I,
%

Then row reduction of FB-1 using the rows of E1, and the fact that the first

-k

B-1
B-1

column of FB"1 is a linear combination of the other columns imply

-1 L (3—1)1
(A.27) rank(FB™') = rank ) (]3-1)1 + M-1-r,.
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Now consider C1. Note that for any j#, plim uj'X1/T = [Zﬁ(B—1)1,O1], where

O1 is a lxs1 vector of zeros and 25 is the jth row of %. By C1 non-gingular

, ~ 0 D '
(A.28) rank(C1) = rank ([g I ] [plim (uj X1/T) )

o L r (870, I
rank [21 (B-1)1 01}= rank [2‘ (B 1)1 01 ]

By column reduction, using the columns of [I1' 01']', equation (A.28)

implies

-1
IH(B )1

(A.29) rank(C,) = rank [21(13-_ 1)1 ]+ s,

Then equations (A.27) and (A.29) imply M-1-rank(F) = q1-rank(C1), from which

the conclusion of the proposition follows.

Proof of Theorem 5.6: Note that for any assignment p with rank(CPi) < gy for
some i it follows that det(@é) = 0. Then the conclusion follows from Lemma
A1, since the determinant of G is nonzero because exactly one of the

determinants det(@;) is nongzero.

Proof of Theorem 5.7: This proof follows closely the proof of Lemma 5.5.

Let ¥ = diag(qﬁ,...,%, S') e (I, @4, (I, ® D(p+1))".
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Post-multiplication of E"vby IM ® B-1 and row reduction using Ei’ i=1,...,M as

in the proof of Lemma 5.5 gives

M M
(A.30) rank F“(IM @B ) = rank(@) - Zsi + M2M- Zri = (rank(G)-q) + M°- M.
i=1 i=1
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