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ABSTRACT

Bl-Newey, Whitney K.~-
BZ-Adaptive Estimation of Regression Models Via Moment. Restrictions.

C2-This paper considers adaptive estimation of regression models by
means of generalized method of moments estimators. Two models are
considered, that with an i.i.d. disturbance that is independent of the
regressors and that. with a conditionally symmetric but. (possiblyD
heteroskedastic disturbance. For both cases the paper develops
linearized estimators that are asymptotically efficient if the number
and variety of moment conditions is allowed to grow at an appropriate
rate with the sample size. In the general symmetric case no other
adaptive estimator has yet been proposed. Also, results of a small
Monte Carlo study indicate that in the independence case the small
sample performance of the generalized method of moments estimator can be

quite good vis—a-vis other estimators previously proposed.
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1. Introduction

Regression models are of fundamental importance in econometrics.
Methods of estimating and interpreting the parameters of such models
remain an important topic of research. Of particular relevance to this
study is recent work concerning efficient estimation of regression
parameters under weak distributional assumptions. Such estimators are
attractive in that they have efficiency properties that do not depend on
a particular parametric specification for the conditional distribution
of the dependent variable.

It is possible to estimate regression parameters under a variety of
semiparametric restrictions (i.e. restrictions involving both parametric
and nonparametric assumptions) concerning the conditional distribution
of the dependent variable given the regressors. One type of restriction
" involves an assumption that some location measure for the conditional
distribution, such as the mean or median, has a known functional form.
For the model where the only restriction imposed is that the conditional
mean has a Kknown functional form, Chamberlain ¢1987) has shown that,
maximum attainable efficiency is that of the Cheteroskedasticity
corrected) generalized least squares estimator. Caroll (1982), Newey
(19865, and Robinson (1987> have constructed estimators that are
asymptotically efficient in this model without further functional form
restrictions (i.e. concerning the form of heteroskedasticity). Newey
and Powell (1987a> carry out a similar that applie to the conditional
median case.

In this paper efficient estimation of linear regression parameters
will be considered in two kinds of models where the regression function
has a known functional form. The first kind has an i.i.d. disturbance
that. is independent of the regressors (referred to as the independence
case henceforth) and the second a dependent. variable symmetrically
distributed around the regression function conditionally on the

regressors (referred to as the symmetric case henceforth). These kinds




of models are important despite the fact that the restrictions imposed
are stronger than a single restriction concerning a location measure.
For instance, these models are less open to criticism that the
interpretation of the parameters depends crucially on the location
measure chosen.

Bickel (1982> and Manski (1984> have shown that in both the
independence and symmetric cases the maximum attainable efficiency for
the regression parameters (except for the constant in the independence
case) is that of the maximum likelihood estimator which could be
obtained if the actual C(unknown) functional form of the disturbance
distribution were used in forming the likelihood. Bickel ¢1982) and
Manski (1984> have constructed efficient estimators for the independence
case, and Manski (1984) for the symmetric case where the regressors have
a finite number of possible outcomes. These estimators involve
nonparametric estimation of the conditional score function (derivative
of the log density) of the disturbance.

In this paper a different approach is taken to efficient
estimation. This approach is based on the observation that in both t.he
independence and symmetric cases there are an infinite number of moment
restrictions that can be used in estimation. In the independence case
any function of the disturbance will be uncorrelated with any function
of the regressors and in the symmetric case any odd function of the
disturbance will be uncorrelated with any function of the regressors.
These moment restrictions can be used to form generalized method of
moments (GMM, Hansen (1982)) estimators of the regression parameters.
Efficiency gains from these types of estimators in the independence case
have been discussed by MaCurdy (1982>, Chamberlain (19843, and Newey
(1984>. Here it is shown that asymptotically efficient estimators can
be obtained from linearized GMM estimators by allowing the number and
variety of moments used in estimation to gTrow appropriately with the
sample size.

Efficient. GMM estimators appear to offer some advantages over




counterparts which involve direct., nonparametric estimation of score
functions. The most important advantage is that the GHMM method applies
in a straightforward way to the symmetric model, even when the
regressors are continuously distributed, a situation where no other
efficient estimator is currently known to exist. Also, it is straight-
forward to extend the estimators considered here to multivariate
regression models, although the extension has not. been worked out here.
The difficulty of handling these cases with the direct nonparametric
estimation approach has been noted by Manski <1984). In addition, the
GMM method provides a relatively transparent. and parsimonious way of
making use of information implied by the model to form efficient
estimators. 1In the Monte Carlo results given here the GMM estimator
performs very well relative to the nonparametric efficient estimator,
which may reflect the parsimony of the GMM estimator. Finally, GMM
estimators have a familiar form and may be more convenient to compute
than their nonparametric counterparts.

In Section 2 of the paper the independence case is discussed.
After presenting the form of the moment restrictions, the form of the
GMM estimator is discussed and a linearized version presented. The
estimator is interpreted as an approximation to the linearized maximum
likelihood estimator. This interpretation is then used in showing that
the estimator is asymptotically efficient when the number of moment
restrictions grows appropriately with the sample size. Section 3
carries out a similar analysis for the symmetric case. Section 4
presents the results of a small sampling experiment. Section 5 offers
some conclusions and discusses extensions of efficient. GMM estimators to
other models that are the topic of current and future research. The

proofs of the results are gathered in an Appendix.




2. Independence of the Regressors and Disturbance

One familiar and important regression model is that with a

disturbance which is independent of the regressors. Consider the model

€2.1> Yy = X 8o * &, t=1,2,...),

where Xy, 1s a k x 1 vector of regressors, ﬁo is a k x1 vector
of regression slopes, and the disturbance £¢, is i.i.d. and distributed
independently of the regressors. The independence of the disturbance
and regressors means that xt’ﬁo summarizes entirely the dependence of
any conditional location measure for Y, (e.g. conditional mean or
median) on the regressors. It is convenient in what follows to avoid
normalizing the location of the disturbance distribution, so it will be
assumed throughout this section that any constant in the regression is
absorbed by the disturbance.

The assumption that the disturbance is distributed independently of
the regressors yields many conditional moment restrictions that can be
used to estimate the slope coefficients ﬁo. Note that. independence of
€, and Xy implies that any function of € should be uncorrelated
with any function of X, This type of moment restriction can easily be
used to form a generalized method of moments (GMM) estimator. Consider
a sequence {ﬁi(s), ﬁé(s), ... . of differentiable functions that have
Tfinite second moment and let ﬁjo = E[ﬁj(st)]. For some positive
integer J, let © = (61’,02’)’ be a (k+]J> x 1 vector with 91 = {3
and 62 = (pl,...,uJ)’. Also, let

pJ(z,e) = mj(y—x 3 - “j’ <j=1,....,J>.

Independence of £y and X4, implies the conditional moment restriction

2.2 E[5j<zt’60)|xt] = E[ﬁj(at)lxtl - HJO = 0,

which in turn implies that §5<zt,90> will be uncorrelated with any
function of Xy Let 0z, = (Ei(z,e),...,ﬁj(z,e))’ and g(z,6) =
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0Cz,0) ® a(x> for some K x 1 vector adx) of functions of x such
that a(xt) has finite second moments. Equation (2.2) implies that

g(z,0) satisfies the population orthogonality condition

€2.3> ELECz,,03>1 = E{E[P(z,,0,] %, 1 ® alx, >} = 0.

A GMM estimator that makes use of this orthogonality condition can be

obtained by choosing ® to solve

(2.4 . mine ghce)’w o,

ngn

where Eh(e) = Ztglgizt,e)/n and Wn is a positive semi-definite
matrix.

To better understand the moment restrictions used by this type of
estimator, it is useful to consider some examples. Note that when
ﬁj(s) = Ej, the conditional moment restriction in equation (2.2) states
that the first J conditional raw moments of the disturbance do not
depend on the regressors. Thus, for this particular choice of p(z,0
the GMM estimator © is making use of constancy of the higher order
moments of the disturbance. This choice of moment restrictions to be
used in estimation of regression parameters has been considered by
MaCurdy (1982),

One drawback of an estimator that uses information concerning high
order raw moments of the disturbance is that it may be sensitive to the
thickness of the tails of the disturbance distribution. For example,
such an estimator will be sensitive to the existence of raw moments. An
alternative estimate that is less sensitive to thick—tailed distrib-
utions can be obtained by choosing ﬁj(s) = [ﬁb(s)]j for some bounded
function ﬁb(s), such as ﬁb(a) = g7/[1+]|e}l. Another estimate that
does not require existence of moments of the disturbance can be obtained
by choosing ﬁj(s) = w(s)sj, where w(ed is some weight function that
has the property that w(sdeJ is bounded for each J, such as w(eg) =

2

exp{-£“/2>. The relative merits of different. choices of moment

functions will be further considered in Section 4.
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There are several issues concerning the GMM estimator of equation
(2.4> that need to be addressed. One issue concerns the choice of the
matrix ¥, and the vector of functions a(x> which are used in the GMM
estimator. Theorem 3.2 of Hansen (1982> implies that the optimal choice
of the matrix Wn, in terms of minimizing the asymptotic covariance

matrix of é, is given by a consistent estimator of the inverse of
ZtgiE[E(zt,eo)Etzt,eo)’]/n =2 @ ZtgiE[a(xt)a(xt)’]/n,

where E = E[E(zt,eo)ﬁkzt,eo)’]. Furthermore, note that the estimator
® is formally identical to a nonlinear three—stage least squares
estimator of an equation system with residual vector atzt,e>, Thus,
Amemiya’s (1977> characterization of the optimal instruments for each

residual of such a system implies that the optimal instrument vector for
.th

the j element of 5<zt,9) is given by
(2» 5) E[aﬁj(zt,eo)/aelxt] = —CE[a-"-jcet)/68]°xt,, ej,),,
where eJ is the jth unit vector of dimension J. Since for each j

this expression consists of zeros and a nonsingular linear combination
of Xt = (1,x£)’, it follows that. Xt is an optimal choice of
instrumental variables for each element of E(zt,e). Thus, ad(x) =
1,x’3” is optimal.

A second issue concerns the fact that the estimate of 60 obtained
from solving equation (2.4) is not location and scale equivariant, in
the sense that the effect of a location and scale shift of the distur—
bance will involve more than a corresponding scale shift of ﬁ—ﬁo. This
unfortunate property of the GMM estimator can be fixed by basing the
estimates on moment functions that have been adjusted for location and
scale using preliminary estimates of location and scale parameters. Let
ﬁ be an initial location and scale equivariant estimate of ﬁo, such
as could be obtained by ordinary least squares (OLS> or least absoclute
deviations (LAD> with a constant included in the regression, and let Et

= yt—xiﬁ, (t=1,...,n> be the corresponding residuals. Let & be an
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estimate of some population location measure ) for £y, such as the
sample mean or median of Et' Let & be an estimate of some population
scale measure %y of £y, such as the sample standard deviation or
interquartile range of £,. Consider using ﬁj(s) = M. (Ce-aD/0> in

J

place of ﬁj(a) in the minimization problem (2.4)>. The resulting
estimator of 60 will be location and scale equivariant. Furthermore,
its asymptotic distribution will be identical to that obtained if mj(s)

= 55((8_00)/00) were used in place of ﬁj(s). The absence of effect of
the estimation of the location and scale parameters on the asymptotic
distribution of ﬁ results from the fact that the first order condition
for ﬁ involves the sample covariance between x and ﬁj((s—a)/o),

and the population covariance between these two quantities is zero for
all possible values of o and o.

A third issue concerns the computational burden of solving equation
(2.4>. This minimization problem is quite nonlinear in the regression
slopes 3, so that a one step alternative based on a version of
equation (2.4> where g(z,0) is linearized around an initial estimate
of the parameters will be much easier to solve. As in maximum
likelihood contexts such an estimator will have the same asymptotic
properties as an estimator obtained from solving equaiton (2.4> (e.g.
see Newey, 1985>. Note that an initial estimate 3 of the regression
slopes is readily available, e.g. from OLS or LAD. For each j an
initial estimator of ”jO = E[m.(et)] = E[ﬁj((et—ao)/oo)] can be

J
obtained as

€2.6> h. = zt21ﬁ3<5t>/n = Ztglﬁ.((yt—xt’ﬁ—&)/a)/n,

J J

where Et =Yy T xt’ﬁ. An initial estimate of 90 = (ﬁo’,ulo,...,uJo)’

is then given by & = (ﬁ’,ﬁi,...,ﬁj)’. Define the location and scale

ad justed function 53<Zt»9> = ﬁj(yt—xt’ﬁ) - uj.  Also, let ﬁjg<8> =

dﬁj(s)/de and ﬁj = Ztgiﬁjs(gt)/n. A first order expansion of

Bj(zt,e) around & gives




€2.7> P i<zy,0> = P <2y, + [6pj(zt,5)/66]’(6 - &

= mCgD - By - [mj8<8t>x£]<3—&> = g
=m(ED + mj8<st>x£ﬁ - M CEO%(B - M

~

mj(et) + ijéﬁ - ijéﬁ - My,

1’4

where the replacement of ﬁjs(gt) by ﬁj will not affect the
asymptotic properties of the linearized estimator because of the

independence of the regressors and the disturbance. Let

¥ = Ztgl[ﬁl(zt,é),...,Bj(zt,é)]’[51(zt,§),...,BJ(zt,é)]/n.

A linearized version of the optimal GMM estimator can now be obtained by
choosing a(xt) = Xt and Wn = 2_1 ® (X’X/n)_i, where x = (xl,...,xn)’,
e is an n x 1 vector of ones, and X = [e,X], and then replacing
Ej(zt,e) in the definition of Eh(e) with the location and scale

ad justed, linearized function m gD + ﬁjxiﬁ - ﬁjx£6 - uj. To be

specific, let W = <ﬁ1,...,ﬂj>’, Z = [ﬁ@x,IJ®e], where I is a

J-dimensional identity matrix. Stacking equation (2.7> then gives

(2.8> oo =~ Y - 2o,

where pC@) = <51<z1,e>,...,Biczn,e>,...,Bjczi,e>,...,BJ<zn,e>> and Y
= o(B&>+Z28. Replacing £,(0> with I; e X>’¢¥-Z20>-n in equation (2.4>
and solving then yields the linearized GMM (LGMMD estimator

2.9 6, = 23 lexcx 10 x> 1% (5 lexcx 01X Y.

This estimator is formally identical to a three—stage least squares
(3SLSY> estimator of a system with J equations, residuals ﬁj(Et) +
ﬁjxéﬁ - ﬁjx£6 - ¢y, (J=1,...,J>, instrumental variables X, for each
equation, linear cross—equation restrictions corresponding to the

elements of 3, and initial estimate of the system covariance matrix

obtained from the residuals Y - 28 = p(8. Thus, this linearized
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version of the GMM estimator has a familiar form, and can even be
computed using some standard software Ce.g. TSP).

In order to better understand the nature of this LGMM estimator it
is useful to compare the LGMM estimator of ﬁo with a corresponding
linearized maximum likelihood estimator C(LMLE> that. could be obtained if
the distribution of the disturbance were known up to location. Suppose
that, instead of having no knowledge concerning the form of the
distribution of the disturbance, an investigator knew that the unknown
density fd{(&> of £y took the form T(s—ag), where T(u> is a known
density function and ag is an unknown location parameter. The
likelihood of the tth observation would then be known to take the form
f(yt—a—xt’ﬁ). Lett sCu> = [(dTud>~/dul FCu> be the score corresponding
to this density function and ¥ = E[E(st—a:)zl be the information, and
let q = 2t21E[XtXt’]/n. In this notation the score for the parameters
b = Ca,3°>” and the t'M opservation is -X,5Cy,-X,’b>, and the

information matrix for a sample of size n is n¥Q Thus, for an

n
initial estimate B of b, the LMLE would be given by

"t - aa . =1 n ~ e~
2.10) bS = b CFQD Zt=1xts(at)/n,
where s(&> = 5(e-, Et =y X3, Q = X’X/n, and ¥ is an

estimate of ¥ C(e.g. ¥ = zt:1[§czt>]2/n>. Solving for the slope
coefficient LMLE {7 then yields

Y A — — A
2.11> Be = B - 31D x ~DFE O,
where X = Ztgixt/n and Qx = (Ztglxtxt’/n) - X(X>’. Also, solving

equation (2.9> for the LGMM estimator as of B, yields

2.12> Be =D - c§j6x>‘1zt21cxt—§>§J<Et)/n,
5 - 31 . T RV eyt 17
where ¥ = M’ M and s 5(&> y kS [, Ced Bys-oompCed=a1”,

Equations (2.11)> and (2.12> are remarkably similar. Assuming that the

same initial estimator 3 is used in both the only difference between
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these equations is that §j appears in place of ¥ and §J(6) in
place of SC(&> in the formula for the linearized GMM estimator.

The similarity of equations (2.11> and (2.12> leads to an
interpretation of the LGMM estimator as an implicit approximation to the
LMLE. This interpretation arises from interpreting —E[m.e(st)] as

J

the covariance between mJ(st) and the unknown disturbance score

s(at), where mj(e) = ﬁj(<$-a0)/00)’ s(g) = fs(a)/f(a), f{ed> 1is the
density of €¢, and the & subscript denotes the partial derivative
with respect to &£. To give this interpretation and state the other
results of this section it is useful to assume that the density f(st)

of €y 1is regular in the sense of Hajek and Sidak (1967>.

Assumption 2.1: The density f(g> of £y is absolutely continuous and
has Radon-Nikodym derivat.ive fs(s) such that. f(fsz/f)(s)da is

finite.

The following result is a consequence of this assumption:

Lemma 2.1: If Assumption 1 is satisfied and m(egd) is a function such
that. E[m(8+a)4] is bounded in a neighborhood of a*, then E[m(8t+a)]
is continuously differentiable on a neighborhood of o with
dE[m(st+a)]/da = —E[m(st+a)s(8t)].

¥hen the hypotheses of this Lemma are satisfied, mj(a) (j=1,...,J> are
differentiable, and the order of integration and differentiation can be
interchanged, then from the conclusion of this Lemma with o = 0 and
from E[s(at)] = 0 <(which is another consequence of Assumption 2.1;
Hajek and Sidak (1967, p.20)> it follows that for M =
E[(mig(st),...,mJC(st))’],

€2.13> M

—E{[mi(et),...,mJ(at)]’s(st)}

—E{[micat)”“’mJ(8t>]’S(8t)} + E{[ulo"ﬂ"”JO],S(st)}

—E[p(zt,

eo)s(et)],




where p(zt,e) = [m1(yt—xt’ﬁ) - pj,...,mJ(yt—xt’B> - uJ]’ and “jO =
E[mj(et)]. Therefore, -H is an estimate of E[p(zt,eb)s(st)].
Furthermore, the matrix £ is an estimate of ¥ = E[p(zt,90>p(zt,60)’],
so that d; = -1 is an estimate of the dj = Z—iE[p(zt,OO)s(st)],
which is the vector of least squares coefficients of the projection of
S(8t) on p(zt,eo). It follows that sJ(st) = p(zt,eo)’dJ is the
population projection of s(et) on p(zt,eo) and that ?J = M’Z_iM =
dJ’ZdJ = E[sj(st)zl is the variance of this projection. Consequently,
SJ(Et) = dJ’p(zt,eo) is an estimate of the minimum mean square error
projection of the actual, unknown score function on linear combinations
of the elements of p(zt,eo), and ?J is the estimated variance of this
minimum mean square error approximation. We now see that the LGMM
estimator is an approximation to the LMLE estimator involving implicit
estimated mean square error approximations to the unkown components of
the LMLE. A similar interpretation of the Cunlinearized) GMM estimator
can also be given.

This interpretation is very suggestive concerning the efficiency of
the LGMM estimator. It suggests that the better that linear combin-—
ations of the moment. functions can approximate the score in mean square
the closer the LGMM estimator will be to being as efficient as the LMLE.
Furthermore, if it is possible to approximate the score arbitrarily
well, in terms of mean square, by choosing the number of moment
functions, J, to be sufficiently large, it should be possible to
obtain a LGMM estimator of the slope coefficients that is as efficient
as the LMLE, i.e. is adaptive in the sense of Bickel (1982>, by letting
J grow with the sample size. As J grows the linearized optimal GMM
estimator should closely approximate the LMLE.

The possibility of adaptation via the LGMM estimator depends
crucially on a linear combination of a sufficient number of moment
functions providing an arbitrarily good approximation to the unknown
score, i.e. on limJ’“ﬂ{[s(st)—dj’p(zt,eo)lz} = 0. To understand

conditions under which such an approximation is available, consider the




special case that arises when ﬁj(s) = [ﬁb(a)]J. In this case the LGMM
estimator is using the constancy of the raw moments of ﬁb((s—ao)/oo).

Let. - mo(a) = ﬁb((e—ao)/oo).

Lemma 2.2: Suppose that Assumption 2.1 is satisfied and mo(a) is an
increasing, continuously differentiable function such that mog(s) > 0
for all £. Also suppose that for each positive integer Jj there is a
neighborhood N of zero such that Elsup,_yImy<e,~o0 (491  and
E[supdeNla{mo(st—a)}j/as|] are finite. If the moments of mo(st)

characterize the distribution of mo(st) then 0

. 4 s 2
llmj’mﬁ{[s(st) dJ p(zt,eo)] >.

One condition that is sufficient for moments of mO(St) to characterize
t.he distribution of mo(st) is that the moment generating function of
m0(£t) is well defined (e. g. see Billingsley (1979> p. 345)>. Thus, if
mo(s) is bounded and has a sufficiently well behaved derivative, the
hypotheses of this Lemma will be satisfied for all distributions of £y,
satisfying Assumption 2.1.

The mean square error approximation of‘the score by the sequence of
moment functions can be used as the basis of showing that the linearized
GMM estimator is adaptive when J is allowed to grow at an appropriate
rate with the sample size. To obtain an appropriate rate of growth for
J it is useful to impose further regularity conditions. For a matrix

A= la; ;1 let |A] = maxi,jlai

j |. Also let Xt = (1,xt’)’.

J
Assumption 2. 2: Xy 1is independentiy not. (necessarily> identically

distributed and ZtgiE[|xt|2+6]/n exists and is bounded for some & >

0. Also, Q = limn—a«;tgiE[xtxt,]/n exists and is nonsingular.

This is a standard type of regularity condition for the regressors that

allows for either fixed or random regressors.
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Assumption 2.3: The function ﬁb(s) is continuously differentiable.
Also, for any % > 0 and %y there exists a neighborhood N of
(ao,ag), measurable functions Bi(s) and Bz(s), and T > 0 such
that Elexp(rB;<g(>¥1 and EI[B,(z>%1+g,%>1 exist and for all ¢ and

Ca,0> < N,
2.14> suleﬁb((a—a)/o)l = ByCed, suleﬁbe((s—a)/a)l < Bz(s),

Iﬁbg((s-a)/a) - ﬁbSCCs—ao)/OO)l < Bz(e)l(a,o) - (Oto,oo)l°

The choice of moment functions and Assumption 2.3 can impose some
restrictions on the distribution of £y - For example, if ﬁb(s) = g
then Assumption 2.3 implies existence of the moment generating function
of €. Of course such a choice of moment function would not be
appropriate in general. It is possible to choose ﬁb(s) such that
Assumption 2.3 is satisfied for all distributions of €y by choosing
ﬁb(a) to be a bounded function with sufficiently well-behaved first
derivative. For example, the function ﬁb(s) = g/l1+]|e]] will satisfy
Assumption 2.3 for any distribution of €4 -

The following result gives a growth rate for J such that ﬁs is
adaptive. Note that the block of the inverse of the limit of the
average of the information matrix corresponding to 3 is (9Qx)_1

where (QX)-1 is the lower right k x k block of @ %.

Theorem 2.3: If Assumptions 2.1 - 2.3 are satisfied, Vﬁ(ﬁ—ﬁo),
Vﬁ(&—ao), and Vﬁ(a—oo) are bounded in probability, and J =
J(n> is chosen such that J(n) — « and J(n)zln(J(n))/ln(n) — 0,

then
~ - d —1 A A —1 p -1
2.15> Tﬁ(ﬁs ﬁo) —_— N(O,(?QX) J, (?JQX) —_— (9Qx) .

The growth rate for the number of moment functions that is
specified in this theorem is quite slow, being slower than the square

root. of the natural log of the sample size. One suspects that fraster




growth rates may also give asymptotic efficiency, although the task of
obtaining such rates has not been attempt.ed here.

The adaptive estimation result of Theorem 2.1 has attractive
features relative to some of the results that have been previously
presented in the literature. 1In particular, there is no sample
splitting or discretization of the parameter space (e.g. see Bickel
(1982 or Manski (1984)>. Also, the result allows for a fixed design
(i.e. nonrandom regressors), which appears not to have been allowed in
previous results,

Although local regularity of the estimator ﬁs for families of
regular likelihoods C(e.g. Bickel (1982)> has not been shown here, it is
expected that ﬁs will be locally regular, under additional regularity

conditions C(including local regularity of {3, &, and o). 1In

~ >~ p
particular, it is shown in the proof of Thecorem 2.3 that Yﬁ(ﬁs—ﬂ:) e

0, so that by the contiguity property of data generated from a sequence
of regular likelihoods (see Hajek and Sidak €1967>, Ch. 6> local
regularity of ﬁs will be a coreollary of local regularity of ﬁ:.

The adaptive estimation result of Theorem 2.3 is specific Lo moment
functions of the form ﬁj(s) = [ﬁb(e)lj. It is expected that this
result will extend to other types of moment functions, although this
extension has not been attempted here. Also, although only the linear
regression case has been discussed here, the extension to nonlinear
regression models is straightforward. This extension can be
accomplished by appropriate modifications of Assumption 2.2 and the

definition of the LGMM estimator.




3. Conditional Symmetry of the Disturbance

Another important regression model is that with a disturbance which
is symmetrically distributed around zero conditionally on the

regressors.  Consider the model

(3.1> ¥ = X ’bg + & (t=1,2,...>,

t’;

where Xt is a k x 1 vector of regressors that may include a
constant., b0 is a k x 1 vector of parameters, (Xt’,st) is i.i.d.,
and the disturbance £y, is symmetrically distributed around zero
conditionally on the regressors. In this model the symmetry of the
distribution of the disturbance implies that Xt’bo is the single
natural measure of the center of location of the conditional
distribution of the dependent. variable Y, Note that this model allows
for (conditional? heteroskedasticity, in that the conditional
distribution of L is allowed to depend on Xt'

The assumption that the disturbance is symmetrically distributed
vields many conditional moment restrictions that can be used in the
estimation of the regression coefficients bO‘ Conditional symmetry of
the disturbance implies that any odd function m(st) (i.e. m(~gd =
—m(g>> of the disturbance should be uncorrelated with any function of
the regressors. This type of moment restriction can be used to form a
GMM estimator. Consider a sequence {ﬁiCG), ﬁé(s), ...> of odd,
differentiable functions that have finite second moment.. For some
positive integer J, let gz = Cy, XD, 55(z,b) = ﬁj(y—X’b), and p(z,b>
= (Bi(z,b),...,ﬁj(z,b))’. Conditional symmetry of €¢ implies that for
90 = b0 the conditional moment restriction of equation (2.2) will be
satisfied, which in turn implies that Ej(z,bo) will be uncorrelated
with any function of Xt‘ It follows that equation €2.3> will be
satisfied for 60 = b0 and g(z,b> = 5(z,b> & a(X>, where adX) is a
K x 1 vector of functions of the regressors. A GMM estimator of b0

Can be based on the moment restrictions of equation (2.3> exactly as




discussed in Section 2.

As in Section 2 it is useful to consider an optimal, scale
ad justed, linearized version of the GMM estimator. In general the
construction of an optimal GMM estimator of the t.ype considered in
Sect.ion 2 is problematical in the symmetric case, because hetero-
skedasticity must be allowed for. For given choice of a(X> the
optimal weighting matrix wn is still as given in Section 2, but the
optimal form of a(Xt) now involves the unknown data generating
process. In particular, the optimal form of a(Xt) depends on
E[@B(zt,bo)/ablxt] = _XtE[mjacst)lxt]’ as well as on the unknown
conditional covariance matrix of E(Zt,bo), as discussed by Chamberlain
(1987>. An alternative strategy for efficient GMM estimation that will
be adopted in this section is to allow the number of components of adX)
to grow with the sample size with the idea of obtaining an estimator
that behaves in large samples like the one that uses an optimal choice
of adX>. The feasibility of this approach is suggested by
Chamberlain’s (1987) observations concerning the near optimality of a
GMM estimator with a large number of components in aCX).

Concerning adjustment for the location and scale of the GMM
est.imator, note that when Xt includes a constant variable the
estimator is already location equivariant. The GMM estimator can be
made scale equivariant by replacing rTlJ.(a) with rle(s) = ﬁj(s/a),
where o is an estimator of a population scale parameter oq- As in
Section 2 , the asymptotic distribution of the resulting GMM estimator
of b will be identical to that obtained if the population value of
the scale parameter was used in the formation of Ej(s>, i.e. to that
obtained if mj(a) = ﬁj(e/oo) were used in place of ﬁj(s). This lack
of effect from estimation of Oy occurs because émj(et/o)/ao =
—mja(st/o>st/(az) is an odd function of £y and so has conditional
expectation zero.

A scale adjusted, LGMM estimator that uses the optimal weighting

matrix can be obtained by linearizing as in Section 2. Define the scale




ad justed function Ej(zt,b) = ﬁj(yt—xt’b). Let B be an initial
estimator of b, and & = ¥¢ — X¢’b. A first order expansion of

Bj(zt’b) around b gives

(3.2> P<z,b> = pCzy, B> + [P <2y ,B>70D1"Cb - B>
= mj<8t) + mjg(st)xt’b - mje(ct)xt’b.

Let

(3.3> V= [Ztgiﬁ(zt,5)5<zt,5)’®a<Xt)a(Xt)’]/n.

A LGMM estimator with optimal weighting matrix can now be obtained by
choosing Wn = V_i, and replacing ﬁj(zt,e) in the definition of
En(e) with the scale adjusted, linearized function ﬁj(st) +
ﬁj8c5t>xt’5 - Ejeczt)xt’b. To be specific let 2 =
[618<51>x1,...,ﬁ18<2n>xn,...,ﬁJ8<21>x1,...,ﬁjeczn>xn]’,
¥ = <ﬁ1(§1>,...,ﬁ1<5n>,...mJ<51>,...,ﬁJ<§n>>’ + 2Zb, and X =
IJ®[a(X1),...a(Xn)]’. Then a LGMM estimator is given by
€3.4> by = 12°%V L2172 % v Hvo v,
This estimator is formally identical to a system version of White’s
(1982) two stage instrumental variables estimator which partially
corrects for heteroskedasticity of unknown form.

The LGMM estimator can be interpreted as an approximation to the
LMLE that could be obtained if the conditional distribution of the
disturbance were completely known. This interpretation is similar to
that. obtained in the independence case. Let fCe}|X> denote the
conditional density function of €y given Xt‘ Let s(g,X)> =
f8(8|X)/f(8|X) be the conditional score corresponding to this density
function. For =z = (X’,y> the score for b is then given by S8d(z,b) =
—Xs(y-X’b,X>, and the information matrix for a single observation by Q
= E[S(zt,bo)S(zt,bo)’] = E[s(st,xt)zxtxt’]. Thus, for an initial

est.imator b and the outer product estimate of the information matrix,




a LMLE can be obtained as
(3.5> BY =B + 13, SCz, ,Byscz, B>’ n1" 15,0, sCz, . Byn
. s t=15CZy,> t t=15C2» .

Also, let D = V1%°Z.n and é(zt,b) = ﬁ’[BCzt,b)ea(Xt)]. Note that
2°XVH%°2 = 02D VD = nz, P Sz, Br8cz, B>’ and 2 RVLHR(¥-2B> =
nD’ X’ ¥-2B6> = ztgiéczt,5>. Applying these definitions to equation
(3.4> yields

L = n a N2 IO -1< n 2 &
(3.6 b=>D0+ L2 -15C2 ,bdSCz ,b>’/n] 24 =15C2 , bdn.

From equations (3.5> and (3.6) it is apparent that the LMLE and the LGMM
estimator are identical when the same preliminary estimate B is used
to form each, except that the LGMM est.imator uses §(zt,b) in its
formation rather than S(zt,h). An interpretation of the LGMM estimator
as an approximation to the LMLE can therefore be obtained by
interpreting §(zt,b) as an approximation to S(zt,b>. Let p(z,b)> =
(mi(y—X’b),...,mj(y—X’b))’ = (ﬁi((y—X’b)/oo),...,ﬁj((y—X’b)/oO>)’,
g(z,b) = p(z,bdeadXd, and M) = (mis(a),...,mjg(s))’, and note that
9g(z,bd>/8b = —-M(y=-X’bd®Cal(X>X’)> and that X’2-n is an estimator of
—E[ag(zt,bo)/ab]. If the conclusion of Lemma 2.1 applies to the
conditional distribution of £¢ then it follows that E[M(at)|xt] =
_E[p(zt’bo)S(st’Xt)|XL]> so that X’Z/n also estimates
E[—E[p(zt,b0>s(st,xt)|Xt]®a(xt)xt’] = E[g(zt,bO)S(zt,bO)’], and D

will estimate

(3.7 D

» _1
—{E[g(zt,bo)g(zt,bo) 1> E[agczt,b0>/ab]

> -1 >
(ElgCz,bydgCz,by>’ 12 ELEINCE, ) |X, 18aCX, OX, *]

{E[g(zt,bo)g(zt,bo)’]}—1E[g(zt,b0)S(zt,b0)’],

which is the matrix of coefficients from the least squares projection of
each component of the score S(Zt’bo) on the components of g(zt,bo).

Thus, when equation (3.7> holds §(zt,b) can be interpreted as an
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estimate of the minimum mean square error approximation to the score
S(zt,bﬂ) obtained by projecting the score on the space spanned by the
components of the moment function vector g(zt,bo). Consequently, if
linear combinations of products of functions of the regressors with odd
functions of the disturbance can provide an arbitrarily good mean square
error approximation to th(etlxt), it should be possible to obtain an
adaptive LGMM estimator by letting the number of components of a(X>
and p(z,b> grow with the sample size.

The following assumption is useful to guarantee that equation (3.7

and the other results given in this section hold:

Assumption 3.1: (Xt,’et) is i.i.d. and its distribution is

absoclutely continuous with respect. to the Cartesian product of the
probabilty measure for Xt and Lebesgue measure, and has C(conditional?
density f(g£|X>. For almost all Xt’ f(alxt) is absolutely
continuous and E[f[fs(s|Xt)2/f(alxt)]ds] exists. There is an interval
N and a positive constant ¢ such that inf8eNf(8|Xt) >z ¢ with

probability one.

The assumption that the conditional density is bounded away from zero on
some interval uniformly in Xt restricts somewhat the heterogeneity of
the conditional distribution of Eg, - For example, if f(sIXt) =
f(e/a(xt)) Tfor some positive function o(Xt) of Xt, then this
assumption implies that o(xt) is bounded and bounded away from zero.
Assumption 3.1 implies that f[fs(slxt)z/f(alxt)]da is finite with
probability one. Then, if with probability one there is a neighborhood
of zero on which E[mj(8t+“)4|xt] is bounded in <« and the order of
differentiat.ion and integration can be interchanged, the conclusion of

Lemma 2.1 implies that E[m.e(st)lxt] = —E[mj(st)s(et,xt)lxt] with

J
probability one and equation ¢3.7) will hold.

The nature of the implicit approximation of the LGMM estimator to
the LMLE is somewhat different in the symmetric case than the

independence case. Note that the approximation involves approximating




each element of the score for the regression parameters rather than Jjust
the score for the disturbance. More importantly, the approximation is a
multivariate one, involving not only the disturbance but also the
regressors. Thus, constructing an adaptive estimator will involve an
appropriate growth rate for the number of components of a(X> as well
as for the number of components of p(z,b>. To obtain such growth rates
it is useful to impose a restriction on the distribution of the
regressors and to be specific about the form of ad(X> and p<z,bd.

The form for G(z,b> cdnsidered in this section will be analogous
to that considered in Section 2, with @ (&> = [mgCe>12971 ) (=1, ..., >,
where ﬁb(s) is an odd, monotonic increasing function of . It will
also be assumed that ﬁb(s) satisfies the regularity conditions of
Assumption_Z.S, an assumption that will be made explicit in the
statement. of the theorem below.

The restriction that will be imposed on the distribution of the
regressors is that they consist of functions of discrete and continuous
components. Let Wit be a random variable with finite support. The
set. of possible realizations of Wit is meant to represent the set of
possible outcomes for the discrete components of the regressors. For
example, if the discrete components of Xt consist of two dummy
variables then LITY will have four possible outcomes. Let
Wor = (w%t,...,wél)’ be a &£ x 1 vector of continuously distributed

random variables which help determine the value of the regressors, and

let Wy = (wlt,WZt’)’.

Assumption 3.2: Xt = X(wt) for some measurable, one to one function
xCw>: REILRX and for some 6> 0 ELIX 1%*®1 is finite. Also, the
support of Wit is a finite set and for each element of this support
there is an open subset @(wit) of Rf such that on @(Wit) the
conditional distribution of Yot given Wit is absolutely continuous

with density function bounded away from zero.

The form of adX> that will be considered is analogous to the form




considered for p(z,b>. It will be assumed that ad(X> = ai(w1)®a2(w2),
where az(wz) is made up of products of powers of monotonic functions
aé(wﬁ), £=1,...,£, of the individual components of LR It will be

assumed that there are F such terms, i.e. that

= £ &, L £ b, Ve
where vtj’ L=1,...,%£,j=1,...,%, are all nonnegative integers.

Conditions under which such a choice of ad(X> can assist in providing
an arbitrarily good approximation to the likelihood score are analogous
to those for p(zt,bﬂ). First of all, for K large enough, ai(wit)
must span the possible realizations for LITR For example, if the
discrete components of Xt consist of two dummy variables it suffices
to let al(wlt) consist of a constant, each dummy variable, and the
product. of the two dummy variables. In addition, for each possible
value of LIRS the vector aZCWZt) must be able to form an arbitrarily
good mean square approximation to functions of Yot when K is large
enough. For this spanning condition to hold it is enough to assume that
the moment. generating function of each ag(wét) exists and that all
cross—products of all powers of each aé(wg) are eveﬁtually used (i.e.
for large enough K> as components of az(wz). Let. v, be the smallest
nonnegat.ive integer such that a2(w2) includes all terms of the form

v
n,% gcw‘:)] <

[ w
£=1"30 ¥,

for Zt:ivt v,
Assumption 3.3: For each <, a%;R—»R is a monotonic increasing,
continuously differentiable function with everywhere positive
derivative, such that for some <« > 0, E[exp{rlagtwét)l}] is finite.
Also, the vector adX> is chosen in such a way that for all K large
enough, a(Xt) = al(wit)®a2(w2t) such that E[al(wit)a1(w1t)’] is
nonsingular, the number of components of ai(w1t> is equal to the
number of elements in the support of LI and v, goes to inifinity

with K.




Note that if each ag is chosen to be a bounded function, then the
above condition that the moment generating function of ag(WZt) exists
is not restrictive.

Under these regularity conditions it is possible to give growth
rates for J and K as a function of n such that the LGMM estimator
is adaptive in the symmetric case considered here. Let ¥ denote the
smallest integer such that. thivéi < v*, =1,...,F d(i.e. largest

order of the components of az(w2t)).

Theorem 3.1: Suppose that Assumptions 2.3 and 3.1 - 3.3 are

sat.isfied, Vﬁ(B—bo) and #ﬁ(a—oo) are bounded in probability, and the
information matrix = E[tht’S(StIXt>2] is nonsingular. Irfr J= Jw
and K = K(n> are chosen such that Jn) 5 o, K(n) - ®, and

LI 2™ 1300% > 1% L 1n Jand o™ nd 1-1n¢nd - 0,  then

~ —— -~ ~ M vl — p ——
3.8> VA -byd> -9 Neo,@71>, 1% P &z, B8z, B> om17t 2, o1,

To interpret the specified growth rate for J(n> and K(n), note that
if terms are added to aZCWZt) by adding all terms of a given order
before increasing the order, then K and (v"‘)"3 are of the same order,
ice. %= 0. In this case J™%  and the dimension of gCz,b>
(which is J<K> are of the same order, so that (since 3£> 3 + £ - 1)
a growth rate for the total number of moment functions slightly slower
than the cube root of the natural log of sample size will suffice. The
drop in the growth rate from Theorem 2.3 to Theorem 3.1 results from the
use of incomplete order polynomial terms Ce.g. using only odd powers of
ﬁb(a)), but is probably not really necessary.

The remarks following Theorem 2.3 concerning the growth rate for
the number of moment functions, local regularity of the estimator, and

extensions of the result also apply to Theorem 3.1.




4. Sampling Experiments

To obtain information concerning the small sample performance of
the LGMM estimator, two sampling experiments were carried out. Atten-—
tion was restricted to the independence case to allow comparison with
the results for the nonparametric adaptive maximum likelihood CAMLD
estimator reported by Hsieh and Manski (1987)> (HM henceforth).

The first experiment involved the same model, sample size, and a
subset of the distributions considered by HM. The model was Yy, = ¢ *
Boxt + &y, where X¢, is a binomial random variable with Prob(xt = 02
= Proh(xt = 1) = 1,2, Gy = -1, and BO = 1. The distributions
considered were: A. Standard normal; B. Variance contaminated
mixture of normals with relative scale of nine, being .(1NC0,9> +
L9NCO,1-9>; C. Bimodal symmetric mixture of normals, being .5N(-3,1>
+ .5N(3,1>; D. Lognormal, being expCu> where u is distributed as
standard normal. VWhere necessary €y W¥as normalized to have mean zero
and variance one. The sample size was 50,

Computations were performed using GAUSS on a microcomputer. Table
One reports the root mean square error (RMSE) of several different
estimators of Bo for each of the four distributions, estimated from
2000 replications. The estimators considered were ordinary least
squares (OLS>, least absolute deviations C(LADY>, AML, and two different
LGMM estimators for choices of J (the number of moments used in
est.imation) between 2 and 7. One LGMNM estimator, referred to in the
tables as TRANSFORMED, used ﬁj(a) = [s/<1+|s|)]J and the other,
referred to as WEIGHTED, used ﬁj(s) = exp(—f:2
estimator of 60 used to form the AML and LGMM estimators was the OLS

~2>ed.  The initial

estimator. The location and scale parameters used in both the LGMM and
the AML estimators were the sample mean and standard deviation of the
OLS residuals. The trimming and smoothing parameters used in the AML
were fixed at. the values that minimize the RMSE of the AML for each of

"the four distributions. These values were obtained by HM. In their




2

notation these values were t1 = t2 =8 and t3 = exp(~(8>“/2>

throughout, and s = 2, .25, .25, and .10 respectively for the four
distributions.

Because of the location and scale ad justment the relative
magnitudes of the RMSE results in Table One are invariant to the choice
of % » BO, and the scale of the disturbance. Also, because of the
use of a symmetric (normal) kernel for the AML estimator and powers
of an odd function, weighted by an even function for the LGMM estimator,
the difference of each estimator and 80 is an odd function of the
disturbance realizations. Therefore, when the disturbance is
symmetrically distributed each estimator will be symmetrically
distributed around ﬂo, which occurs for each of the first three
distributions. The estimators also appear to be unbiased for all the
distributions. In calculations not reported here it was found that the
average deviation of the estimators from BO was typically two orders
of magnitude smaller than the RMSE.

Turning to the results reported in Table One, note that in the
normal case the RMSE of the LGMM estimator was estimated to be 8 — 12
percent larger than that of the OLS and AML estimators for the ma jority
of J values. However, in the nonnormal cases the RMSE of the AML
estimator was found to be 50-100 percent. larger than that of the LGMM
estimators in many cases. Furthermore, for most values of J the RMSE
of the LGMM estmators is smaller than that of the LAD estimator for all
the distributions. Thus, the LGMM estimator seems to perform quite well
relative to the other estimators in terms of its efficiency.

The performance of the LGMM estimators relative to the AML
estimator in the nonnormal cases is quite suprising, but may be due in
part to the more parsimonius score function estimate that is implicit in
the LGMM estimator. The LGHMM estimator involves an implicit approx-—-
imation of the score by a linear combination of J functions while the
AML estimator uses a kernel estimator of the unknown density function.

It should be noted that the performance of the AML estimator reported in




Table One is slightly worse than that reported in HM, which may be due
to the use here of the sample standard deviation of the OLS residuals
for scale adjusting the AML estimator.

The value of J that gives the smallest RMSE for the LGMM
estimator is J = 3 throughout Table One. The RMSE seems to rise
sharply as J is decreased below 3 and more gradually as J rises
above 3. The rise in the RMSE for J below 3 is particularly
pronounced for the bimodal, symmetric mixture of normals. This result
probably occurs because the score function for this density is shaped
like a cubic polynomial and so is not very well approximated by mi(a)
alone {in the symmetric case mZ(a), which is an even power of an odd
function, will be of no help in forming a mean square error approx—
imation to the score). This result also suggests that the outstanding
performance of the LGMM estimator in the nonnormal cases may be due in
part to the simple nature of the score functions for the distributions
considered here, which appear to be approximated reasonably well by a
linear combination of the first three moment. functions. The LGMM
estimator may perform less well for distributions with more complicated
score functions (e.g. a trimodal mixture of normals). Of course, the
AML will also probably work less well in small samples when the score
function has a more complicated shape.

As a function of J the RMSE of the WEIGHTED LGMM estimator has a
lower but. sharper minimum than the RMSE of the TRANSFORMED LGMM
estimator. The best value of J gives a slightly lower RMSE for the
WEIGHTED estimator but the RMSE rises more sharply as J departs from
its best value. The relative insensitivity to J of the TRANSFORMED
estimator is probably preferable to the slightly better RMSE performance
of the best WEIGHTED estimator. For this reason attention will be
restricted to the TRANSFORMED estimator in the second experiment.

Table Two reports the ratio of root mean square of the estimated
standard errors to the RMSE for the LGMM estimators for the same cases

considered in Table One. The estimated standard errors are taken from




the formula given in the conclusion of Theorem 2.3. For J =3 +the
ratio is within five percent of one in all the nonnormal cases and
within 12 percent in the normal case. However, this ratio rapidly
departs from one as J increases. Also, the ratio seems to be closer to
one for the TRANSFORMED estimator in most cases.

To obtain some idea of how to choose J as a function of the
sample size in small to medium size samples an additional experiment. was
performed. The model considered was Y, = ¢ t (310x,(,1 + Bzoxtz + o5y,
where X¢1 is a binomial random variable with Prc:b(xt’1 = 0> = Pr-c'b(xt'1
= 1> = 12, X2 is uniformly distributed on <(0,1>, %41 and X¢ 2
are independent, Oy = -1, and 610 = 320 = 1. A case with two
regressors was considered in order that the experimental model might
correspond more closely to situations that arise in practice. The
distribution of £y considered was the variance contaminated mixture
normals considered in the first experiment (distribution BY>. The sample
sizes considered were 50, 100, and 200.

Table Three reports ratios of the RMSE for the TRANSFORMED LGMM
est.imator (ﬁj(a) = [6/(1+|8|)]j) to the RMSE of the OLS estimator in
the second experiment. Suprisingly, the RMSE of the LGMM estimator is
minimized at J = 3 for all the sample sizes considered here. Note
that the RMSE as a function of J does flatten out rapidly as the
sample size increases. The loss inﬂefficiency which results from moving
from J =3 to J =7 is only a few percentage points in the 100
observations case and still less in the 200 observations case.

Table Four reports ratios of the root mean square of the estimated
standard errors to actual RMSE in the second experiment. This ratio is
within five percent of one for J up to 4 for a sample size of 50,
for J up to 6 for a sample size of 100, and for J up to 7 for
a sample size of 200,

In summary, in the examples considered here the LGMM estimators
perform well relative to the AML in terms of efficiency. All of the

efficiency gain available from the LGMM estimator is obtained for J =3




for the distributions considered here, which have simply behaved score
functions. Standard error estimates approximate the actual variability
of the estimates reascnably well in small samples for J = 3, and the
performance for larger J improves substantially as the sample size
increases.

The extreme sensitivity of the efficiency of the LGMM estimator to
choosing J 1less than three in the bimodal mixture of normals case
shows that the efficiency of the LGMM estimator can be very sensitive to
the choice of J. Thus, it is important to havg available a method of
choosing J in particular applications. Choosing J so that the
estimated standard error from the asymptotic formula is minimized will
not work, because this estimated standard error declines as J
increases. One method would be to choose J to minimize standard
errors estimated by the bootstrap. A similar method of choosing the
trimming and smoothing parameters for the AML has been considered by HM.
Note that this method would be particularly simple for LGMM estimators
since the choice involves the single, integer valued variable J-.
Assesing the small sample performance of LGMM estimators which use the
bootstrap to choose J is beyond the scope of this paper but is an

interesting topic for further study.
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5. Conclusion

An adaptive estimator based on moment conditions has been presented
for the regression model with a disturbance distributed independently of
the regressors. Also, it has been demonstrated that this estimator can
perform very well in small samples. In addition, an adaptive estimator
has been presented for the regression model with a symmetric, hetero-
skedastic disturbance with (possibly) continuously distributed regres—
sors, a model where no other adaptive estimator is currently known to
exist.

Estimators arising from moment conditions offer a promising avenue
of approach to efficient estimation in other environments. In Newey
(1987b)> it is shown that the interpretation of GMM estimators as
approximations to efficient estimators holds quite generally. This
interpretation and the asymptotic theory developed here can be used to
obtain efficient estimators for models with conditional moment
restrictions (Newey (1987ad>, nonlinear simultaneous equations models
with independent or conditionally symmetric disturbances (Newey
(1987b>>, and censored or truncated regression models with conditionally
symmetric latent disturbances (Newey and Powell (1987h>>. This method
should also prove useful for constructing efficient instrumental
variables estimators in time series models (e.g. Hansen (1985)). oOf
course, the availability of such estimators is limited to models where
moment. conditions based on known functions of the data and parameters
can be specified, which is not the general case by any means (e.g. no
such functions are known to exist for the binary choice model).

Nevertheless, this class of models includes many interesting cases.




APPENDIX

Some Lemmas will first be stated and their proofs sketched. More
detailed, handwritten proofs of some of the results are available upon
request from the author. Throughout the appendix C will denote a
generic positive constant. that does not depend on the variable indices

and need not be the same in different uses.

Lemma Al1: Suppose that w = (wl,...,w£)’ is a &£ x 1 vector of random
variables such that on some open set © c R£ ¥ 1is absolutely

continuous with density bounded away from zero. Also suppose that

aé:k—;R, (£=1,...,#£, are increasing, continuously differentiable
functions with everywhere nonzero derivatives. Let u = (u1,...,u£)’,

PeCuyd = (l,u,, ..., Cupd®’, pw = PyCu d@ece@pCugd, and aj(wd =

(aé(wl),...,agkwf))’. Then there is a constant ¢ independent. of v

such that for v large enough,

—Cv£*1
CA. 1D det{E[p(aO(w))p(ao(w))’]} > p R
and for any subvector p*(u) of p(u)
L+2
CA.2> det{E[p*(aO(W))p*(ao(w))’]} > 7OV

Proof: Assume without loss of generality w.1l.g.2 that @ = @1 X oeco X
@£ for open intervals @L’ Let ¥ be a £x1 vector and ¢ =
diag[¢1,...,¢2] a £ x £ diagonal matrix with ¢£ ? 0 such that
{¢a0(w) + ¥ We ¥ contains U = (0,1)X0-.%xC0,1). By the components
of a0(w) monotonic and continuously differentiable, the change of
variables u = ¢ao(w)+w yvields a random vector u that has an
absolutely continuous distribution with density bounded away from zero
on U. By this change of variables it follows that
E[p(ao(w))p(aOCWD)’] > ¢, where ¢ is a lower bound for the density
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of u on U, I = fUp(¢—1(u—w))p(¢_1(u—w))’du, and the inequality

denotes the positive semi—definite partial order. Note that for Zé =
J‘(1)p£<CuC—y/{)/¢£>p£<‘<u[wé>/¢£>’duc we have I = 5 ®--.@f, Note also
that [(uﬁfwc)/¢£]J is a jth order polynomial with a coefficient of
¢£—j for uij, so that there is a lower triangular matrix LL with

jth diagonal element ij = ¢£fj+1 which does not depend on u, such

= = 1 > =
that. pé((ué—wﬁ)/¢£) = cht(uc). Thus, 2{ = Lc[fopé(u)pt(u) du£]L£
Hv+1L£’, where H

th
Lé v+l .
element of the Hilbert matrix is 1.Ci+j-1>>. Let H™ 1 = [H1J] denote

is the Hilbert matrix of order »+1 <(the 1ij

its inverse. By repeated application of the formula det(B) =
det(B,,>~/det(B%%> for the determinant of a partitioned matrix B =

[B; 1, ¢i,j=1,2> and its inverse (B1J1, and by CH,p %44 =1, it

follows that detCH = 1/[ﬂV+1HJJ]. The closed form expression for

1 i=2
the elements of the inverse Hilbert matrix given by Gregory and Karney

(1969, p. 34> then yields

y = gotl 241201114 113> 112

det.(H =
v+l J=2 [Co+jdt12

2 2
z L) 1/1Ga+112 2 11c2mt¥Ty 2 787

. 2 2
+ - -—
Also, note that det(L, = I ¢, e g™ 2 7% 1hus,

—C2 Q2

b1’ =V det(Hv+1) = v for large enough

v. By the formula for the determinant of a Kronecker product it. follows

£-1 2 1 £41
that det<s> = I% rdetcz,1¥ >V £ @7 Equation

det(s,> = det(LL)zdet(H

> (W >
(A.1> then follows from the fact that for two matrices A and B, A=z
B implies detdA> > det(B).

Next., note that. |Z£| < supue(ﬂ,i)lpt((u—wt)/¢c)lz <
(1+¢£—1)v<1+|w£|)2v < vcv, so that by the extremum characterization of
the largest eigenvalue, maxC,c=1C’Z£§ < (v+1)|2£|, and the fact that

the determinant is equal to the product of the eigenvalues, it follows

that the smallest. eigenvalue of Zc is no smaller than

2 _ 2
det(Z /T 15,117 2 P 110177 » @ 4150, note that the
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eigenvalues of a Kronecker product consist of products of the
eigenvalues of the component matrices, so that the smallest eigenvalue

iy 2 1y,
of % is no smaller than (v Gy )£ = v Gv . Therefore, by the extremum

characterization of the smallest eigenvalue, the smallest eigenvalue of
E[p*(ao(w))p*(ao(w))’] is bounded below by the smallest eigenvalue of
E[p(ao(w))p(ao(w))’], which is bounded below by the smallest eigenvalue

2
of <¢Z, which is bounded below by v—Cv . Then eq. (A.2)> follows from

equality of the determinant and the product of the eigenvalues and the

dimension of E[p*(ao(w))p*(ao(w))’] bounded above by v£, which gives

—Cvz £

det{E[p*(ao(w))p*<ao(w))’]} = (v for v big enocugh.

Let Op(an) and op(an) denote the usual order in probability

notation.

Lemma A2: Consider a sequence of {h (z)} 1 of measurable functions

and a sequence {zt}t=1 of independent random variables. For each

integer 1 let htI = (hi(zt),...,hl(zt))’. For some 1 < o £ 2 and
+

{B(I)}Iga let Ziiisupn{ZtglE[lhi(zt)l1 ®1/m> = OCBCIY>. Then

1/7C1L+e n - 1/7C1L+e
CA. 3D |Z 1E(htI)/nl = O (BCID >, |2t=1ht1/nl = Op(B(I) >,
and for © <1 (o = 1) and any sequence a, — o (an = 1D
- ; - =1+ 171+
CA. 4D 'Zt—l[htI E(htID]/nl = Op(ann BCID >,

Proof: Eq. (A.3> follows by the definition of BC(I)> and the Holder and
Markov inequalities. For © =1 eq. (A.4> follows by Chebyshev’s
inequality, and for © < 1 eq. (A.5> follows by the Chebyshev and
Holder inequalities and the truncation argument. used to prove Markov’s

law of large numbers.

Lemma A3: Let {hi(z,y)}il1 be a sequence of functions and
{zt}tgi a sequence of random variables where 3 is a Euclidean vector.

Suppose that there is a neighborhood T of %o and a sequence of
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measurable functions {(iCZ)}izl such that for all » in T the
Lipschitz condition Ihi(zt’7) - hi(zt,yo)l < Ci(zt)ly—yol holds for
all i with probability one. Let {;tn}tgi n:a be a triangular array
. ~ - —-=
of random variables such that SuPlStSnthn 70| Op(n > for some e >
n -
0. Then for any {BC(I2>} such that. Zi=1supn{2t=1E[(i(zt)]/n} =
OCBCI>>, it follows that for htI(7) = (hl(zt,y),...,hI(zt,y))’,
n ~ - - -
CA.5D |2t=1[hLI(7tn) htI(yo)]/nl Op(n BCIDD.
Proof: By € > 0 we have plimn—;m[suPlstsn‘;tn—yﬂ|] = 0, so that
with probability approaching one ;tn lies in I’ for all t £ n. Note
. I
t.hat Zi=1
condition then gives

thici(zt)/n = OPCB(I)) by Markov’s inequality. The Lipshitz

n ~ _ I n ~ -
CA. 60 'zt=1[ht1(7tn) htI(yo)]/n| = zi=1'zt=1[hti<7Ln) hti(70)]/“l

I n ~ ~ I n
= 23 Z= 82 P2 I/n = supy 124~ 70 12121 T2 81 (24,0

= oy = -
Op(n )Op(B(I)) Op(n BCI>>.

Lemma A4: Let h = (vec(H)’,hz’)’ be a (J2+J) x 1 vector, where H
isa JxJ matrix and h2 is a J x 1 vector. Consider a random

~

vector hn and a nonrandom vector hn such that En = (vec(ﬁn)’,ﬁzn’)’
and hn = (vec(Hn>’,h2n’>’. For J = J(n2? a function of the sample
size n suppose that for sequences of positive constants {an} and

{bn} that are bounded away from zero,

CA. 7D th = O(an), th, - h | = O(bn), b = OCan).

l’ll n

Also suppose that Hn is nonsingular for all n and that for some
sequence {dn} of positive constants 1/det(Hn) = O(dn). Finally,
suppose that <{J(n2>}> is chosen so that for some sequence of constants

J_l -
{cn} such that Cp, = ™, (J!)J(cnan) dnbn o(1>. Then

A o=1p =1 _ 2.3 J-1
CA.8a> B TThy - H T'hy | = o ccd J1>%5%c a 337 a b o>

P
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-1 = J-1 i 1 = J-1
CA. 8bD IHn thI o(dnJ!(cnan) an), |Hn h2n| = op(dnJ!(cnan) an).

Proof: Let P index the possible permutations of the integers from 1
to J. Then for (H)kt denoting the k,{ph element of H it follows

from the definition of the determinant. that

CA. 9D |det<ﬁn> = detCH D |

J ¢ -qnq.J
= PpMym Hdyep, 1ecp, > T3=1 Hndkep, jpecp, o |

1A

Zp[Jmax{lﬁnl,lHnl}J"llﬁn—Hnll < <J3>J[|ﬁn|J‘1+|hn|J‘1]|ﬁn—hn|

J-1 >J-1 = J-1
(It Jlodlapa >y + oCCepan >y 10 (b > 0pCJtICe a 29 b >,

p

where the first equality follows from (A. 7> via the fact that Ihnl =
opCagc > and |Bn| < lﬁn—hnl + |h | = op<ayc, >, which implies
Iﬁn/(ancn)l < ll'ﬁn/(ancn)lJ_1 with probability approaching one, which
. . . ho(J-1 J-1 J=1 _ J-1

in turn implies lhnl op((ancn) > and Ihnl o((ancn) J.
From CA.9> and the hypotheses it follows that O(dn)ldet(ﬁn)—det(ﬂn)l =

J-1 =
op(dnJ!J(cnan) bn) op(l), so that
CA. 10D 1/det(ﬁn) = 1/[det(Hn) + det(ﬁn) - det(Hn)] =

O(dn)/[l + OCdn){det(Hn) - det(Hn)}] = 0(dn)/[1 + op(l)] = Op(dn).

It follows from €q. C(A.10> and calculations similar to those for eq.

CA.9> applied to the cofactor formula for the inverse of a matrix that
-1, _ _ J-1 q 1, = _ J-1

CA. 11D IHn | = oC(J 1)!(cnan) dn), 'Hn | op((J 1)!(cnan) dn).

Eq. CA.8b)> now follows from eqs. CA.7) and (A.11>. Also, since

a -1 _ o -1 8 ~1yen o -1
)i H ™ ICH, ">, - H O ™1 <

< 7% " h

- -1, 2 3 - J-1 2
n HnHHn | = op(J L<Jg 1)!(cnan) d, 1 b >,
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eq. C(A.8b> also follows from eq. CA.7D.

Lemma A5: If =0 E[|x |°*®*1,n is bounded and YA(f3-3,> is bounded in

probability then maxy ¢ 1%’ (B-B,>| = 0,(n" S for e = &/12C2+&1.

Proof: By the Boole and Markov inequalities
Problmax, . . 1%, |#(n1 2% 5 sy o 5 P Problix, | = qnl7(2+8),
+ + —-(2+ +
< T DEL % 12%1/007% 001 < €2 P5 B ELx 1241,

0 (nl/(2+6)).

so that, maxistSnlxtl = The conclusion then follows from

p
- -172
IB-Bg1 = 0, Cn > and  maxy 1% "(B-ByO | < Clﬁ-ﬁolmaxlstSnlxtl.
Proof of Lemma 2.1: By the translation invariance of Lebesgue measure,
E[m(st+a)] = fmCuwyfCu~addu. A consequence of Assumption 2.1 is that

fCu~ad172 is differentiable in «, in the mean square sense (Hajek and
Sidak (1967>>. It follows from this fact, the moment condition in the
hypotheses of this result, and some straightforward but tedious
calculation that SmCudfCu-cddu is contin- uously differentiable with
derivative -smCudsCu-cdfCu~oddu so that the conclusion follows from

the translation invariance of Lebesgue measure.

Proof of Lemma 2.2: Note that the hypotheses of Lemma 2.1 are satisfied
by the dominance condition for mj(st+a). Also, mj(st+a) is contin-
uously differentiable at o = 0 with probability one, so that by the
dominance condition for its derivative the order of differentiation and
integration can be interchanged (e.g. Corollary 5.9 of Bartle C1966>).
The conclusion of Lemma 2.1 then yields M = —E[pczt’90)3(£t>]’ so that
dJ’p(zt,eo) is the least squares projection of s(st) on p(zt,eo).
Theorem 4.3 of Freud (1971) states that the raw moments of u = mo(at)

- characterize its distribution (if and) only if the nonnegative

integer powers of U, to form a basis for the Hilbert space of

measurable functions of u, that have finite squared expectation.
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Therefore, since E[(mal(ut))2 2] is finite there exists a

1 = E[s(st)
triangular array {Ejj}jsg such that E[<sCigiCuyd> - ZjioEJJutj}zl =
El{sCg;> - ZJQOEJJmo(a)J}ZJ - 0 as J - ». Also, since Els(g 21 =0
it follows that the least squares projection of s(st) on (1, mo(at),

- [mo(st)]J) equals the least. squares projection of s(ct) on
p(zt,eo). Therefore, the conclusion follows from

-d.’ 27 = mi - s .J ¢ Jy2
E[{S(Et) dJ p(zt,eo)} ]l = mlncu’.",CJE[{s(at) 2j=0cj[m0(8t)] B |

-sJz Jy2
< EldsCed = ¥ 24C 5 5Img(e 21241,

Proof of Theorem 2.1: A mean value expansion of Ztgl(xt-§)§J(Et)

around 30 gives
CA.12D UGN
= [I, - < 1820, ™ (x,-%0%, A0, /n Y1VRECB-BO
k J7¥x t=1"%¢ t 93 % 0
~ A—i n ——A
+ AT PQ,TIE D (xy ~RIS (a8 XA

— >N 2 A n > A n > — Te=>
where Xt = (1,xt 27, Q = Zt=1XtXt n, Qx = (Zt=1xtxt nd X(X’D,

# denotes the mean value, and ﬁt = (ﬁie(yt—xt’ﬁ),...,ﬁjs(yt—xt’ﬁ))’.

By the weak law of large numbers, 0 converges in probability to Q_ =

X X

limn_émfﬁtglE(xtxt’)/n — E(EX?’Y. By nonsingularity of Q, Qx is

nonsingular and plim(@x_i) = Qx_l. Also, for Ax = [-%,I,]1 note that

plim(ﬁx) Ax = [—limn mﬁ(i),lk], so that by the Liapunov central limit
_ _ d

theorem, =, I (x, -X>sCe /7R = [-X, I 15,2 X, sCe >/ 7R 4, A NCO, 5Q) =

N(O,?Qx), Therefore by eq. (A.12> and 1ﬁ(ﬁ—ﬁ0> bounded in probability

-

is suffices to show that

P

CA.13ad 93-;9,
CA.13b s 0 -x0x, ’d M il
.13bD =1 (XXX dJ ¢n — A,
A P
CA.13c) Ztgi(xt—x)[sJ(ﬁt)—s(st)]/Vﬁ — 0.
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Eq. (A.13> will be shown to hold by proving several more primitive

results. Note that vJ[m|J Cj!> < explvr|m|l, so that

CA.14) ImJ < Cjtdexplrm]1-¢xdy < cCjtr2expivim|l.

Eq. CA.14> and Assumption 2.3 then imply that the hypotheses of Lemma
2.2 are satisfied. Then for SJ(Et) = dJ,p(zt’GO) and Qn =
ZtglE[XtXt’]/n, it. follows from Assumption 2.2, independence of the
observat.ions and Xt . and €4, and E[Xt{sJ(ct)—s(ct)}] = 0, that

n - n - >
CA. 15> E[(zt=1xt{sj<8t) s(at)}/VE)(Zt=1Xt{sJ(st) s(st)}/Vﬁ) ]
= El{s (s >-s(g>3%1Q - 0.
The Markov inequality then implies that

n - - = A n - =
CA. 162> 5,4 (xy i){sJ(st) sCe 23770 = szt=1xt{SJ(8t> sC&y 2>/ op(i).

Next, note that for any positive constants C and < it follows

from the specification of the growth rate for J = J(n) that

2 _
Inf J%9 071 = ¢J21ned - elnnd = 1nCnd<CrJ21nC > 1nCnd] - ¥ — —w, S0
GJ2 -<
CA.17D 399707 o 0.

Next, let » be a three dimensional vector with Yo = (0,00,00)’
and ;tn = (xt’(ﬁ—ﬁo),&,a). By the hypotheses of Theorem 2.3,
Assumption 2.2, and Lemma A5 we have maxL£nl§tn—70| = op(n~€) for e« =
&712¢C2+48631. For &£ =y - x’ﬁo and I = 4J+1 let hI(s,y) be the
vector with components ﬁb((a—yi—yz)/73)j, ¢j=0,...,2]>,
FLMGCCa=py =¥ /74291,y , Cj=1,...,]>, and Ol CCampy =750 75> 1 oy,
(j=1,...,J>. By Assumption 2.3 and eq. (A.14>, it is straightforward to
show that. the hypotheses of Lemma A3 are satisfied with Zy = £y, B{I>
= J%, and < = 6/12¢2+6>1. For example by Assumption 2.3 and eq.
(A. 14> it follows by a mean value expansion that, for an open convex set
I' such that. (71+72,73) « N implies » « T and 73 bounded away

from zero, and for any Jj < 2],
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CA.18) | WyCCempy =70 750 - mo(s)Jl
= JIMyCCempy~7d 75037y a3y -0 /P50 /34 | -

[Cog+ry=agd + Cempy =953 Crg=0y> /74|

A

031<s>5JBz<a>c|71| *+ lry=eg | + CCle|+6D |yg=0og D

1A

CB; (&>2IB, (o> |2 [+Q1 [7-7, |

1A

ciB, <> + B ce32c1+121201 12741,
1 2 0
4] 2
CA.19> EIB e >™1 < cca>1>2ErexprB (e >0,

where without loss of generality Bi(s) and Bz(a) are taken to be

bounded below by 1. Similarly, it is also the case that

CA. 20D s. 1

24 CGJ
1=1E[(h1(8t’70>)i] = 0CJ™),

so that the hypotheses of Lemma A2 are satisfied with &y = 2y, hi(zt)
= (hI(st,yO))i, and © = 2. Then by e < 172, +the conclusions of
Lemmas A2 and A3 and the triangle inequality yield

CA.21a> I8 hiCey, % O/n] ~ ElhyCe,, 7011 = 0,<n <5,

CA.21b>  |EfhiCs,,7921] = 0cJC>, 1Z, 2 hCey , ¥y On] = Op(JCJ).

For hy = zt:1h1<st,?tn>/n and hy = ELhyCg,7y0) let h = hy ® hy
and  h, = hy ® hy. Note that |h ~h | < [Chy-hpdehp| + |hpeCh-hyd| <
Clhgl+Ihp 11 1Rp~h| = [Op(JCJ)+0(JCJ)lop(n_EJGJ) = 0p(n—eJCJ), and
similarly that |h_| = 0¢(J%)> and 1h 1 = Op(JCJ). Furthermore,

note that the elements of ¥ and M consist of components of ﬁn and
differences of components of ﬁn so that

CA.22a> | - 3| = Op(n_eJCJ), - M| = Op(n-GJCJ)

cA.22b> =) = 03>, My = 0%, 13 = opcij), iy = Op(JCJ).
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Note that by Assumption 2.1 the density fd(g) is continuous so that
there is an interval on which it is bounded away from zero. Then by
Lemma A1, eq. C(A.1)>, and detd(B) = det(Bli)/det(Bzz), it follows that
for PCed = 1,...,d@u<exd>,

2
CA.23>  det(E> = det(E[P(£dP(£>’1> 2 ] GJ~,

By egs. C(A.17>, C(A.22>, and C(A.23) the hypotheses of Lemma A4 are

g . a - £ . = = = 1GJ =
satisfied with H, =%, h, =8, H =%, h, =H4, a =%, b =

n Z2n n

- 2
n"<3%9, ¢ =7, and d, = J97, so that
. 2 _ _ _ 2
CA.24a) 1d;-d | = op((JCJ 315233339571 ;0 <5005 = op<n <7CI%
2 2
= CGJ .1 = CJ
CA.24b = = .
A ) |dJ| 0CJ >, |dJ| OPCJ >
= _ M = 2
It follows from eq. C(A.15) Cand (Qn)11 = 1> that dJ M E[sJ(st) 1
— ¥, so0 that eq. (A.13ad follows from eqs. <CA.17), CA. 22D, and CA.24).
Next, let p be as defined above and let %, = (xt’(ﬁ—ﬁo),&,a),
where ﬁ is the mean value from (A.13b>. For £ =y - x’BO let
MCe,9D = d(ﬁb((a—?1—72)/73)1,...,ﬁb((e—yi—yz)/y3)J)’/d£, s0 that ﬁt =
Mcst’;tn) and M = E[M(at,yb)]. For z = (g,x’)’ and I = J[(k+1)2]
let hI(z,?) = [M(e,y)—ﬂ]@[vec(xtxt’)]. As in the discussion of egs.
(A.18)> and C(A.19> it is straightforward to check that the hypotheses of
Lemma A3 are satisfied for e = &/(2¢(2+8>> and BCI> = J%J. By Also,

it is the case that by independence of X¢ and €y >

I n 1+5-2
CA. 25> Zi=1supn{zt=1E[I(hI(zt,?O))iI I/n3

= 0cJ% a1 + sup <5, B ELIx, 125103 = 0%,

so that. the hypotheses of Lemma AZ are satisfied for htI = h(zt,yo), ©
= 6-2, and BCD = 0J%>. Let h =50 h <z ,% >/n, and note that
that E[hl(zt’70>] = 0. Then by the conclusion of Lemma A2, with a, =
né/(2(2+6)), and the conclusion of Lemma A3 it follows from the

triangle inequality that for e = &/(2(2+58))




= 0_cn~ €545,

CA. 265 Ib | b

Note that Ztgi[(ﬁt—ﬂ)®(xt—§)xt’]/n is a linear combination of the
elements of ﬁn’ with linear combination coefficients consisting of
elements of Zx = 0p(1). Also note that plim[ztgi(xt—i)xt’/n] = Q, and
that. for any random variable ¢ it is the case that Ztgl(xt—i)@ = 0..
Eq. C(A.13b> then follows from eqs. C(A.262, C(A.24D>, C(A:22>, CA.17>, and

(A.13ad by

n - a3 oW -
CA, 27D |Zt=1(xt—x)xt dJ Mt/n 9QX|

IA

|(3J®Ik)’Ztgl[(ﬁt—n)a(xt—i)xt’]/n| + |(aJ’M)Zt21(xt—§)xt’/n - FQ|

A

2
GJ —<=CJ
VISR e R

+ |aJ’M—aJ>ﬁ||zt:1<xt—§>xt’/n| + |§Jzt:1(xt-§>xt’/n - FQ |

IA

2 2
~=,GJ + CGJ - ;0] =
op(n J D Op(J )op(n Jo o+ op(i) op(l).

For the remainder of the proof let v = Ca,007, Y0 = (ao,oo)’,

and 7 = (&,0)’. Let mls,7d = (ﬁb((s—a)/c)l,...,ﬁb((e—a)/o)J)’ and
MCe,73 = dme,d/3y. A mean value expansion around (ao,oo)’ then
gives

CA. 28D Ztgi(xt—i)éj(st)/1ﬁ = ztglcxt—§>[aj’m<st,%>]/VE

Zt21<xt~§>aj’m<et,70>/15 + {zt21(xt—§>aj’ncet,%)/n}#ﬁ(%—y0>

n e
Zt=1(xt—x)dJ p(Zt,eo)/Yﬁ

* €Ty (xR MCey , PI-EIMCey, 250 12/030 (1.

where the mean value ; is such that. 15(;—70) is bounded in
probability. For I = 2JCk+1) let hI(Zt’7) = vec[M(s,y)—E[M(at,?o)] ®
X. Then it follows in a straightforward way that the hypotheses of
Lemmas A2 and A3 are satisfied with o = 1, ;tn = ;, e = 172, and
BCI> = ¢J%.  nNoting that Syoq [MCey , 22-EIMCe, , 75> TaCx, ~%>/n  consists




entirely of components that. are linear combinations of Ax with
Ztgth(zt,;)/n, it follows from the conclusions of Lemmas A2 and A3 and
eq. C(A.24b> that

CA. 29> |ZL:1(xt—§)aJ’[M(at,;)-E[M(st,yo)]/nl

N o 2 -
< J1d510 <1 12 2 bz, oo = op<JCJ >o_cn"17250)5 = 0, <1,

p

Also, by the fact that [EIC(E D pCz,0,08K WD oz, ,0 08X, /¥’ 1| =
IZeQ, | < IE11Q, ] = 0¢J%50¢1>, it follows from the Markov inequality
that |Zt21p(zt,60)®xt/1ﬁ| = Op(JCJ). Similarly to eq. (A.29) we have

CA. 30D |Zt21(xt~§){aj’p(zt,eo) — 55Ce 3 /7h|

< Jkl(aj—dJ)®Ik||Zt:1p(zt,60)®(xt—§)/13|
= o (n_EJCJZDO g% = o (n_EJCJZD = o (1)
P P o p7

where eq. C(A,24ad> has been used. Eq. (A.13c) now follows from the
triangle inequality and eqgs. (A.30), C(A.29), C(A.28), and (A.16)D.

Proof of Theorem 3.1: Let &<Cb) = Ztgiaﬁ(zt,b)/ébea(xt)/n, and note
that %.3,8Cz,B>8¢z ,B>’/n = -D’BB> and orz, 2 8¢z, ,bd>/nl1s0b =
D’8(b>. A mean value expansion of £,0 8¢z,,B>/n around b, then

gives, with probability approaching one,
(A.31> VACb~byd = I, - [ﬁ’@(E)]_1ﬁ’§(ﬁ)}15(5—b0)
~ ~ —1 n 4
- D781 g 1 8¢z, byd /A,
where b denotes the mean value. By the Lindberg-Levy central limit
theorem Zt:1S(zt,b0)/VE —g—e NCO,Q>. Also, VE(E—bO) is bounded in
probability. Then by inspection of eq. (A.31)> it is apparent that it

suffices to show that for any b such that VH(B;DO) is bounded in
probability,




A ~e p
CA.32a) D’6B — 0,
CA.32bD =2 [& b p
. t=1[5C2,by>=SCz; ,by> 17 — 0.

Let G = E[ag(zt,bo)/ab]. Eq. (A.14> and Assumption 2.3 imply
that E[mj(£t+a)4lxt] < ElB; <z >*%I*1 1y 1 with probability one
(w.p.1>, so that the hypotheses of Lemma 2.1 are satisfied for the
conditional distribution of ey w.p.1. (Henceforth the w.p.1 qualifier
will be dropped.> Also, mj(at+a) is continuously differentiable in a
neighborhood Na of zero and by Assumption 2.3 and eq. C(A.14D

E[supN |mj(at+a)||xt] is finite. Then by the conclusion of Lemma 2.1
o

and interchange of order of differentiation and integration it follows
t.hat. E[mjs(8t>lxt] = —E[mj(at)s(atlxt)lxt], so that G =
—E[g(zt,bO)S(zt,bo)’]. Let. V = E[g(zt,bo)g(zt,bO)’] and D = —V—lG,
and note that the columns of D are the coefficients of the linear
projection of each component of S(Zt’bo) on g(zt,bo). For 7 =

(a, 0>’ and g = (0,00)’, let. ple,p> =
(ﬁb((e—a)/o),...,[ﬁb((s—a)/o)]zj+1). Also, let p2(8) =
(1,[ﬁb(s/ao)]2,...,[ﬁb(a/oo)lzj), pced = <p<e,yo>’,pz<s>’)>; and
g*(zt) = p*(8t)®a(xt). Note that by conditional symmetry pz(st)®a(xt)
is orthogonal to both S(Zt’bﬂ) and g(zt,b), so that the linear
projection of S(zt’b0> on g*(zt) equals the linear projection of

S(Zt’bo) on g(zt,bo). Let S(Zt’bﬂ) = D’g(zt,bOD. Then to show that

CA. 33> 1imJ,K—aap[{sczt’bﬂ)_sczt’bo)},{S(zt’bO)—S(zt’bO)}] =0,

it suffices to show that there exists a triangular array of 2JK x k
matrices of constants eJK such that EJK’g*(zt) converges in mean
square to S(zt’b0>’ Af'ter the change of variables u = (mo(st),
agCws >, ..., agw%, 3>’ the terms in CoCEy, 7907, PyCEL> ") Bay Wy )
become multivariate polynomial terms, with lowest order equal to

min{2J+1,v,>. It follows from Assumptions 2.3 and 3.2 and Theorem 3 of
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Gallant (1980> that such functions form a basis for the Hilbert space of
square integrable functions of (st,WZt’)’. Thus, since
E[lS(zt,b0)|2]w1t=w1] is finite for each of the points of support Wy
of W;¢, for each such w, there exists aJchi) such that
EJK(wi)’[p*(at)®a2(w2t)] converges in conditional Con Wig = wi) mean
square to S(zt,bo). Also, w.l.g. al(wlt) can be take to be a vector
of' dummy variables, each of which is equal to one when Wit is equal to
one of its support points and zero otherwise. The existence of the
specified GJK then follows from the conditional mean square error
convergence for each Wit and stacking 5JK<W1>’[P*<SL>®azCqu>]
appropriately.

Next, it follows from eq. (A.33>, Jnd) - o, K — o,
independence of the observations, and E[S(zt,bo)] = E[S(zt,bo)] = 0
that E[{Ztgi[S(zt,bo)—S(zt,bo)]/Vﬁ}’{Ztgi[S(zt,bO)—S(zt,bO)]/Yﬁ}] -
E[{S(zt,bo)—S(zt,bo)}’{S(zt,bo)—S(zt,bO)}] — 0, so that

n - -
CA. 34D 24=1[8C2y ,by>-SCz, ,by>1/70 = 0,C(1).

Next, it follows by eq. (A.33> that

CA. 353> -D’G = D’VD = E[S(zt,bo)S(zt,bo)’] - E[S(zt’bO)S(zt’bO),] = Q.

Let £ = y-X’b,, =z = (£,X’>’, %tn = cxt’cﬁ-b0>,8>’, and 7, = <0,0,>.
Also, for I = JKk + J2K2, 1let hyCz, 7> =
(vec[p(a,y)p(s,y)’@a(X)a(X)’]’, vecldple, 2 3c@a(XdX?172° and hI(Zt)

= hI(zt,yo). It is straightforward to use Assumptions 2.3, 3.2, and 3.3
to verify that the hypotheses of Lemmas A2 and A3 are satisfied with o
=672, e = &/(2(2+8)) and, for r = Jv*, B(I> = rGr' Then by the
conclusion of Lemmas A2 and A3, with a, = né/[2(2+6)], it follows that.

for e = &/1202+821,
CA.36) [LV,8¢b>1 - 1v,61] = ICZtglh(zt,§tn)/n) - ElhCz, 7,01}

= opcn'ercr>, ILV,61] = 0CpCTry,
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Similarly, for any B such that Vﬁ(E—bo) = Op(i), by choosing ;tn =
(X{’Cb-by>,0>’ one obtains

CA. 37> [GCh-6] < |(Zt:1h(zt,;tn)/n) - E[hCz, 7401 = Op(n—ercr).

By Assumption 3.1 there is a bounded interval N and a positive

constant < such that.
CA. 38> Z(Xt) = E[p(et’70)p(8t’?0>,lxt] = chp(s,yo)p(a,yo)’ds = Z,

and by eq. C(A.2) of Lemma A1, applied to the uniform distribution on N

_ 3 3
with £ =1, det(Z> > 2J+1> W2J*" », 1=CJ” £ 7 large enough.
Also, note that the components of aZCWZt) make up a subset of the

components of (1,...,[aé(wét)lv*)’®ooo®(1,...,[a§(w§£)]v*)’, so that

by eq. (A.2> of Lemma Al it follows that for each support point wy of
e, =G E42

LITR det{E[az(wzt)aZCWZt)’|w1t=w1]} =z v ) . Also, let W1

denote the number of points of support for Wit and let
{"1(1>’°*"W1(W1’} be the support.  Assuming a1(w1t) is a vector of
dummy variables as specified above, E[a(Xt)a(Xt)’] is a block diagonal
matrix with it'h diagonal block given by E[az(WZL)aZCWZt),|w1t=w1(i)]
° Prob(w1t=w1(i)). Since the determinant of a block diagonal matrix is

the product of the determinants of the diagonal blocks,

e —C(v*)f*z
det(E[a(Xt)a(Xt)’]) = v . Furthermore, by eq. C(A.38>

CA. 39> vV = E[Z(Xt) ® a(Xt)a(Xt)’] zZ 2 ® E[a(Xt)a(Xt)’].

It follows from a(Xt) having no more than (Cv*)£ components and

det(2> < 1 for large enough J +that

*, £
CA.40>  det<V> > det(®> %’ >"det(Eracx>acX,>71>J

3, % £ de, B+2
- J—CJ v (v*>—C(v >

I, a3t

Next.,, note that for any positive constants C and e it follows

from the specification of the growth rate for J(n)> and K<Cn> that




a3, E1 g
Inln~Se™ S T Ty o ter S T ey AIncnd - <1 o, SO

a3,k =1
CA. 41> n~Sp~CGrTe - 0.

Then it follows from egs. CA. 36>, (A. 40>, CA.41> and Lemma A4 with a

_ 3, s -1
= G b =n splr €, =T, and d = O , that
) _ 3, s £~
CA.42) ID-D| = o cn S O™ oy
3, sk, -1 ) 3, s, P11
ID| = op(rcr N AR 1B = op<rCr ™y,

Eq. C(A.32a> now follows from egs. CA.33), (A.38>, (A.41>, and C(A.42)>.
Next, note that §(zt,b0) - ﬁ’[p(st,o,a)Qa(Xt)], so that a mean

value expansion of Ztgip<st,0,5)®a(xt) around 0 vields

n ”~
CA. 43D Z421 8¢z, ,byd ~ SCz,,by> 1,70
= B-D>’5, 1 gz, by A + ﬁ’{ztgl[6p(st,0,5)/ao]®a(xt)/n}15(5—oo).

It is also the case that E[lg(zt,bo)lzl = O(rcr), so that by Lemma A2,
E[g(zt,bo)] = 0, and eq. C(A.41),

CA. 44D I(ﬁ—D)’Ztgig(zt,bo)/Vﬁl < JKlﬁ—DlVﬁthglg(zt,bo)/n|

_ 3 k. p1
= JKo,(n SpCrodv ™S )Op(vﬁ)cp(rcr/VE) = 0, (1>.

Let » =0, 23=05, %,=6 2z =(8X’>, I=JK, and hy(z,> =
[3pCe,0,0)8010a(XD. It is straightforward to use Assumptions 2.3, 3.2,

and 3.3 to verify that the hypotheses of Lemmas A2 and A3 are satisfied
for htI = hI<Zt’7O)’ =1, and e = 1,2. Furthermore,since ﬁj(s/o)
is an odd function of &£ for each o, aﬁj(e/o)/ao is an odd funct.ion
of £ for each o, implying E[hI(zt’70)] = 0. It then follows from
the conclusions of Lemmas A2 and Lemma A3, and eqs. C(A.41> and <A.42)

that there is an e > 0 such that




CA.

Eq.

45> Iﬁ’{ztgi[ép(st,0,3)/60]®a(Xt)/n}Yﬁ(5—00)|

IA

CA. 32b>

JK|ﬁ||zt21h1<zt,;>/n|15|5—ao|

3, ok -1
O T T (nmSeCTy0 <1

“p P P

now follows from egs. C(A.43>,

= op(i).

CA. 44O,

CA. 45>,

and CA.34).
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TABLE 1: ROOT MEAN SQUARE ERROR, VWITH
ONE REGRESSOR AND SAMPLE SIZE 50

A. NORMAL DISTRIBUTION

J OLS AML LAD 2 3 4 5 o] 7
TRANSFORMED .28 .28 .35 .30 .29 .30 .31 .31 .31
WEIGHTED .36 .31 .32 .31 .32 .31

VARIANCE-CONTAMINATED NORMAL DISTRIBUTION

J OLS AML LAD 2 3 4 5 o] 7
TRANSFORMED .29 .19 .13 .13 .12 .12 .13 .14 .16
WEIGHTED .11 .12 .12 .13 .13 .19

C. BIMODAL SYMMETRIC MIXTURE OF NORMAL DISTRIBUTIONS

J OLS AML LAD 2 3 4 3 6 7
TRANSFORMED .29 .18 .84 .38 .10 .11 .11 .13 .16
WEIGHTED . 65 .10 .11 .11 .13 AT

D. LOGNORMAL DISTRIBUTION

J OLS AML LAD 2 3 4 5 o T
TRANSFORMED .28 .19 .16 .12 .09 .09 .11 .13 .19
WEIGHTED .11 .09 .09 .15 .18 .22
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TABLE 2: RATIO OF ROOT MEAN SQAURE OF ESTIMATED STANDARD
ERRORS TO ACTUAL ROOT MEAN SQUARE ERROR,
WITH ONE REGRESSOR AND SAMPLE SIZE 50.

A. NORMAL DISTRIBUTION

J 2 3 4 3 6 7
TRANSFORMED .97 .88 .78 .72 .65 .37
WEIGHTED .95 . 88 .82 .73 .66 .37

B. VARTANCE-CONTAMINATED NORMAL DISTRIBUTION

J 2 3 4 3 o 4
TRANSFORMED 1.02 1.02 .95 .84 .72 . 60
WEIGHTED 1.02 .94 .87 et .66 .45

C. BIMODAL SYMMETRIC MIXTURE OF NORMAL DISTRIBUTIONS

J 2 3 4 3 G T
TRANSFORMED .93 1.03 .95 .86 .73 .33
WEIGHTED .96 1.04 .96 .83 .74 .45

D. LOGNORMAL DISTRIBUTION

J 2 3 4 3 6 7
TRANSFORMED 1.03 1.04 .97 .75 .49 .34
WEIGHTED 1.05 1.04 .23 .52 .40 .26




TABLE 3: RATIO OF ROOT MEAN SQUARE ERRORS OF TRANSFORMED
LGMM AND OLS ESTIMATORS, FOR VARIANGCE
CONTAMINATED NORMAL AND TWO REGRESSORS.

n J =2 3 4 5 6 7
50 By .49 .42 .43 .45 .49 .53
By .50 .42 .44 .47 .50 .55
100 By .48 .40 .41 41 .42 .43
B, .48 .39 .40 .41 .41 .42
200 B4 .47 .38 .38 .38 .39 .30
B, .48 .39 .39 .39 .30 .39

TABLE 4: RATIO OF ROOT MEAN SQ RE OF ESTIMATED
STANDARD ERRORS TO ACTUAL ROOT MEAN SQUARE ERROR,
FOR TRANSFORMED LGMM ESTIMATOR WITH TWO REGRESSORS.

n J =2 3 4 5 6 7
50 34 1.03 1.03 .97 .88 .78 .65
Bz 1.00 1.05 .96 .86 77 .64
100 34 1.03 1.04 1.02 .99 .94 .88
35 1.02 1.05 1.02 .99 .95 . 88
200 (31 1.05 1.07 1.06 1.04 1.03 .99
e .99 1.02 1.01 .99 .98 .95




