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Abstract

We consider the linear regression model with censored
dependent variable, where the disturbance terms are restricted
only to have zero conditional median (or other prespecified
quantile) given the covariates and censoring point. For this
model, a lower bound for the asymptotic covariance matrix for
locally-regular estimators of the regression coefficients is
derived. We also show how an estimator which attains this
lower bound can be constructed. As a special case, our results
apply to the (uncensored) linear model.
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i. Introduction

We consider efficient estimation of the linear regression model

with Type I censoring. The observed dependent. variable Yy satisfies

1.1 Y= min{xt’ﬁ0 + £y, ut}, t=1, 2, ...,

where Xy is a px 1 vector of observed regressors, Bﬂ is a px1
vect.or of parameters, g is an unobserved disturbance term, uy is an
observed censoring point., and Zy = (yt,xt’,ut) is i.i.d..
Heuristically, the uncensored linear regression model can be obtained as
a special case where Uy = +xo for all t.

Attainable asymptotic efficiency for estimates of ﬁo when £ is
independent of Xy and uy has previously been considered by Cosslett
€1984> and Ritov <1984). Each has derived the semiparametric efficiency
bound for estimates of 3 in this environment. Also, Ritov (1984)
constructed an efficient est.imator when P =1 under Type II censoring,
that. is the case where the censoring point. is not always observed.

We depart from this previous work by weakening the hypothesis of
independence of £, and §t = (xt’,ut)’. ¥We will consider efficient
estimation of SG under the restriction that ey has median zero
conditional on the regressors and the censoring point. This environment
allows for dependence of the conditional distribution of £y on §t,
and in particular for heteroskedasticity, which can be an important
phenomenon in practice.

Powell’s (1984> censored least absolute deviations CLAD estimator
is Yh~consistent in this environment., under regularity conditions given

below. For a sample of size n the CLAD estimator 3 is defined as

1.2> B3 = argming p5 0 |y, - mintx, 3, u,>|,

for some set B of possible values for 60. The CLAD estimator will

also solve the asymptotic first—order condition
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1.3 thii(xt’ﬁ < ut)xtsgn(yt - xt’%) = opcvﬁ),

where 1(A> denotes the indicator function for the event A, 0p<o)
and Op(o) denote the usual order in probability relations, and
sgn(ed  is the sign function which is equal to 1 for £ > 0, O for
£ equal to zero, and -1 for & < 0. The asymptotic covariance

matrix of the CLAD estimator is given by (see Powell (1984)>>
= -1 » > P |
1.4 V1 = {E[thitxtxt’]} E[itxtxt ]{E[thitxtxt 1> =,

where ft = f(Ol%t) is the conditional density function of € at & =
0 and 1t = 1(xt’60 < ut}.

To motivate the efficiency results discussed below, it is useful to
embed the CLAD estimator within a larger class of est.imators, and
discuss efficiency within this class. A dlass of estimators that
includes the CLAD estimator as a special case is the class of welighted
CLAD estimators, with weights depending on §t‘ A weighted CLAD

est.imator ﬁw can be defined as

~

1.52 ﬁw = argminBeB Ztglwtlyt - min{xt’ﬁ, ut}!,

where ¥¢ 1s some nonnegative function W(§t) of the regressors and

the censoring point. This estimator has a corresponding asymptotic

Tirst order condition
1.63 zt211<xt’%W < ut)wtxtsgn(yt - Xt’ﬁw) = Dp(?ﬁ).

This equation is the same as equation (1.3> except that the variables
that. appear with the CLAD "residual"” 1(xt’6<ut)sgn(yt—xt’ﬁ) are the
weighted regressors WXy rather than Xy - The resulting asymptotic
covariance matrix of Ew is

€1.7> v, = {EIthltwtxtxt’]}_1E[1twt2xtxt’E{E[thitwtxtxt’]}"l.

It is straightforward to show that the choice or Wy that minimizes

—_—g e




this covariance matrix <{in the positive semi—definite sense) is W, o=

o

th = 2f(0|§t). The minimized covariance matrix is given by

1.8 v

2 . -1
{E[1t4ft tht ix .

There is potential efficiency gain from a weighted CLAD estimator versus
the unweighted estimator when the conditional density at zero, f(ﬂl%t),
is related to §t for xt’ﬁb < u .

In Section 2 it will be shown that, not only is V* the lower
bound for the asymptotic covariance matrices of weight.ed CLAD
estimators, but also it is the semiparametric efficiency bound when onliy
the conditional median restriction is imposed. An estimator that
attains this bound Cwith f(Ulﬁt) of unknown form) will be constructed
in Section 3. The efficient estimat.or makes use of a nonparametric
estimate of f(0|§t). Section 4 discusses some immediate extensions of

the results, and the proocfs are collected in Section 5.

2. The Semiparametric Efficiency Bound

We will consider semiparametric efficiency in the sense of Stein
(19567, as developed by Koshevnik and Levitt €1976>, Pfanzagl <1983>,
Begun, et al. {1983>, Bickel, et al. €1987>, and Chamberlain <1987).

Let ? be a set of distributions of a single observation Zy =
Cyt,xt’,ut) satisfying equation ¢1.1> such t.he £y has a conditional
median of zero. A regular parametric submodel is a subset, ?B of ¢
parametrized by 6 = (3°,n°> contained in an open set ®, where n
is a Euclidean parameter for the distribution of (st,xt’,ut), such
that the likelihood £<z|o> is continuously Hellinger differentiable
and has a nonsingular information matrix I(?O,e). An est.imator & of
3 is (locally> regular for a regular parametric submodel if, when

{zt}tg1 is i.i.d. with density {(zien) for each n with Gn = Q +
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0CL v, 1E(ﬁ~ﬁn) has a limiting distribution that does not depend on
the particular Sequence {en}nzi. Similarly, an estimator ﬁ is said
to be regular for a class Q@ of regular parametric submodels when 3
is regular for all ?B < Q. An efficiency bound for estimators that are

regular for Q ig given by the supremum V. = BUP, IHB(P ,92 {in the
i3 fQEQ R

positive semi-definite mat.rix sense) of the block of’ the inverse
information matrix corresponding to 3. A formal statement is that the
asymptotic distribution of any estimator that is regular for Q@ isg

equal to the distribution of ¥ + U, where ¥ ~ NCO,V,> and ¥ is

independent of ¥, as in Hajek i970)>, ’

Ve have found it convenient to work with parametric submodels of
a particular form. Let f(ai%) denote the conditional density of =
given §t = (xt’,ut). The parametric submodels we work with are those

corresponding to conditional densities of the form

(2.1 FCeX, 0 = FCe|XK1 + [vixd ’nlgle, %0},

where #n and v(x) are P x1 vectors and v(x> and qle, X satisfy

Assumption 2.1: v<(x) is bounded and qd&,%) is bounded and contin-
uously differentiable in £, with bounded derivative qECa,§), such

that

2.2 JqCe, XfCe | XDde = SegnCedqle, X (e |%0de = Q.

Equation <(2.2)> imposes the condition that f(al%,n} integrates to one
and has median zero for each . Boundedness of v(x> and gCe, X
implies that f(8]§,n) will be nonnegative for all 17 close encugh to
zeroc. Assumption 2.1 also imposes a smoothness condition on .

Note that because the marginal distribution of §t does not depend
on {3, the efficiency bound is not affected by restricting attention
to parametric submodels for the conditional distribution of 4. Also,
the class of estimators that are regular for parametric submodels of the

form given in equation (2.1 may be larger than the class of estimators




that are regular for the class of all regular parametric submodels.
Thus, the result that V© is the efficiency bound for the class of
parametric submodels that take the form given in equation (2.1> may be a
strongenr efficiency result than the result that V* is the efficiency
bound for all regular parametric submodels. However, the class of
estimators that are regular for parametric submodels of this form may
not be as satisfactory on uniformity grounds as the class of estimators
that are regular for all parametric submodels.

In our work we have found that the convenience of the parametric
submodels of equation ¢2.1) outweighs uniformity concerns. Checking
that V™ is the efficiency bound for these parametric submodels is
quite straightforward. Also, we do not know whether our candidate for
an efficient estimator (discussed in the next section) is regular for
all regular parametric submodels, while it is easy to show that it is
regular for the restricted class of parametric submodels of equation
{2.1>. Further, the class of densities satisfying equation (2.1D>
appears to be quite flexible. Ve expect, but have not verified, that
the tangent space (e.g. Bickel, et al. <1987>) for this class equals the
tangent space for the class of all parametric submodels.

To guarantee that parametric submodels corresponding to conditional
densities of the form given in equation (2.1 are regular, and that the
efficiency bound exists, we will impose the following regularity

conditions:

Assumption 2.2: (st,xt’,ut) is i.i.d. with distribution that is
absolutely continuous with respect. to £ x 7, where < is Lebesgue
measure on R and 7, is the probability measure of §t’ The
conditional density (2% satisfies Ssgnledf(e |Xdde = 0 a.s. .
Also, f(a]%) is absolutely continuous in £, a.s. ., with
Radon—-Nikodym derivative f£(£l§) satisfying

f(1+HxH2)[fa(£|§)2/f(£|§)]d£dﬂx finite.

Throughout,, ratios are taken equal to zero when their denominators are
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Zero. Besides imposing an i.i.d. hypothesis and the conditional median
restriction this assumption specifies that the conditional density of
€y given §t is regular in the sense of Hajek and Sidak (1967)>.

The next two assumptions impose further regularity conditions on
the conditional density of &,. Let re, ¥ = rce|l72, r (e, % =
f Ceis2r 10121, Fem® = S_gf<el%>de, RCm,% = [1-Fm %1172,
and o = (3°,-1>",

Assumption 2.3: There is a neighborhood N c RP or o and a function
#C(£,%X> such that SUp g NT(E+X’S,%X) = 2(e,%>  and f<1+nxn2>y<a,§)2dadﬁx
is finite. Also, at all & in N, r{e+x’8|X> is Hellinger
differentiable in £ x 2y, with derivative r8(8+x’6,§)x. Furthermore,
r.(s,X> is continuous in & a.s. € x Py and  supg v C(e+x’8,%)] <

¥C(g,x>.

Assumption 2.4: R(m, %> is continuously differentiable in m a.s. f.
Also, there is a neighborhood N0 < RP or BO and a function 7(%)
such that f(1+HxH2)?(§)2dﬁk is finite and R(m,X> and its derivative

R, (m,X> satisfy sup3€N0|R<—§’m,§)[ < PR, sup6€N0|Rm<—§>a,§)| <

PR,

The following assumption restricts somewhat the allowed heterogeneity
for the conditional distribution of £¢- In particular, note that when
FC2 XD = £ 0(XDD/0(%> for some median zero density function fCgd
that is continuous and positive at = = 0 and a positive function
o(%¥>, then this assumption implies that o(X> is bounded and bounded

awvay Trom zero.

Assumption 2.5: For some > 0, v_i = f(a|§) =z ¥ for all &£ with

=<
le] = v, a.s. .

The following Assumption imposes a local identification condition for

the regression parameters.




Assumption 2.6: E[l(xt’ﬁo < ut)xtxt’] is nonsingular and Prnb(xt’ﬁo =
ut) = 0.

The result that the semiparametric efficiency bound for estimation
of By is V¥ = {E[l(xt’ﬁ0<ut)4f(ﬂ|§t)2xtxt’]}—1 can be motivated in
the following way. Note that V* is the inverse covariance matrix of
the "efficient score” s(z) = Zf(O|§)1(x’ﬂ0<u)sgn(y—x’ﬁo)x. In order to
understand the form of the efficient score (and the efficiency bound)
there are two important cases to consider, depending on the value of the
indicator 1(x’ﬁo<u).

When x’ﬁn z U, s(z) is zero. Because the condit.ional median
restriction does not restrict the shape of the lower half of the
distribution of vy, but only the relationship of the upper half to the
lower half, no "local" information relevant to asymptotic efficiency is
available when the censoring point. is to the left of the median.
(However, as discussed by Powell (1986b)>, all observations have “"global"”
information which is incorperated in the minimization problem for the
CLAD estimator.> In the mathematics this intuition translates to a
choice of qlg,%X) and v(x such that for X’BO z u the score (i.e,
derivative of the log-likelihood) for 17 is identical to the score for
3, i.e. so that the effect on the conditional distribution of Y, of a
shift in 3 cannot be distinguished from the effect of a change in n.
A choice which qualifies on these grounds, as well as satisfying the

essential integral condition of equation (2.2 is
€2.3ad gle,X) = —1¢e < —§’a0)f8(8|§}/f(a|§}
+ 1(—§’m0 <& = 0)f(—§’aul§)/[F(0|§)—F(—§’agl§)],

vi{x) = x, X’GO =y,

where f _(£[X) = afcs|X) e,
¥When X’BO < u, s(z) = Zf(ﬂiﬁ}sgn(y—x’ﬁa)x‘ Note that this is the

natural generalization to the uncensored (conditional median zero)
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regression model of the efficient score for the location C(mediand model,
which was given by Begun, et al. (1983>. Since the median of ¥y is
invariant to censoring for observations where the censoring point
occurs to the right of the median, the efficient score for such
observations is expected to be similar to the efficient score for the
uncensored regression model. Furthermore, the natural generalization
to regression models of the parametric submodel that attains the
efficiency bound, given by Begun, et al. (1983> for the location model,
should work for the censored regression model. This natural

generalization is

(2.3b) qgCe,%) = —f (e |/ fCe %> — 2fC0 |Xdsgnled, vixd> = x, X’ By < u.

Although the wv(x> and q<e,X> taken from equation ¢2.3) will not
satisfy the boundedness and smoothness assumptions of Assumption 2.1,
they can be approximated arbitrarily closely C(in an appropriate sense)
by functions that. do satisfy Assumption 2.1. This approximation of the

candidate for q(a,§) given in equation (2.3)> will give Vﬁ = V*.

Theorem 2.1: Let ¢ denote the class of regular parametric submodels
with conditional density for £y of the form given in equation (2.1),.
satisfying Assumption 2.1. Suppose that Assumptions 2.2 - 2.6 are

satisfied. Then

o 33 - > - 2 > -1 _ He

3. An Efficient Estimator

An efficient estimator will take the form

»

(3.1 B =g+ VELszom+ 0p (L YD,




where s(z) = 2f(0|§)1(x’ﬁﬂ<u)sgn(y—x’ﬁﬂ)x is the efficient score
discussed in Section 3 and V© = {E[s(zt)s<zt)’]}—1. To construct such
an estimator, we follow the approach proposed by Schick (1986)>. In this
approach, the sample is divided into two subsamples of (approximately)
equal size. In each of these Subsamples an estimate of the efficient
score is formed. The estimated score is then averaged over the other
subsample, and used in the construction of a one—step estimator based aon
an initial vA-consistent estimator of 60.

Formally, let ny = intdns2>, where int(s> denotes the largest.
integer less than or equal to, and let Ny = n = ng. Define the index
sets 11 =41, ..., nl} and I2 = {n1+1, -++., Ny of two subsamples.
Let ﬁl and ﬁz be preliminary estimators of B3 based on the
subsamples indexed by 11 and I2 respectively. Also, let éi(z)
and §2(z) be score functions that are estimated using the

corresponding subsamples, and let

171,

A*_
3.2> V1

- -~ ~ » _.1 PN _ — ,«‘ -~ >
[‘telzsi(zt)sl(zt) /n2] R Vz = [ztellsz(zt)sz(zt) /n1

Our candidate for an efficient. estimator will be of the form
(3.3 =L + 3>+ vy S,¢z,> + V.5 $,¢z,> 1-n
‘ Z 1 2 2 te11 277t i teIz 19t ‘

Preliminary estimators ﬁj, (Jj=1,2>, can be obtained as CLAD

estimators for the corresponding subsamples. That is, as

(3.4 ﬁj = argminﬁethtelyt — min{x, ’s3, w i, j=1, 2>,

vhere B denotes the relevant p—dimensional parameter space.

Given preliminary estimators the only remaining unknown component.
of the efficient score is the conditional density function f£C0][%D of
£ given X, evaluated at zero. For technical reasons we consider

estimation not of fCO[X>, but of

(3.5> g(xd = f<0;§>o1<x’ﬁo<u>anxu.




The remainder of the score function is bounded. To estimate the scalar
function g<(X) we use an estimation approach which combines kernel-type
estimation of density functions with nearest neighbor estimation of
conditional expectations. Specifically, the estimates éj(§,ﬁ) of
g(x> based on each subset Ij of observations and a value {3 for the

regression parameters will take the form
€3.62 §J<§,ﬁ>

= n > > -1 - > °
= zt=1wntj<X)°1(Xt 3 < ut)°cn al(xt’ﬁ Cp = Yy = Xy 33 thH,

where {cn} is a sequence of “"window widths" that tend to zero as n —

o, and W (X> are "kn—nearest neighbor" (kn—NN> weights which put

nt j
nonzero weiggt only on those observations with t < Ij t.hat have
distance between §t and X among the kn smallest (with an
appropriate tie-breaking ruled. The formal definition of these

weights is given in Stone €1977>, and is quite general in its conditions
on the "distance'” between it and X and its specification of the
tie—-breaking rule. For our purposes it will suffice that the weights bhe

of the uniform, triangular, or guadratic form proposed by Stone.

Specifically, we will impose the following condition on the weights:
Assumption 3.1: For some WO >0,
<3.7> wntj(X) =0 if t « Ij, 0 < wntj(X) = Wo/kn,

n -~ —
Te2qVne j <00 = 1.

Ve will also impose the following condition on the limiting behavior of

the window width ¢, and the number kn of nearest neighbors.

Assumption 3.2: As n —> w, the window width Ch and the number of
nearest neighbors kn satisfy
n3/4

Ch, = e, k. - o, kn/n e

n /(cnkn} - 0,




The first three conditions of Assumption 3.2 are standard for kernel and
nearest neighbor estimation methods. The fourth condition implies a
high degree of smoothing of the corresponding estimators. For example,
if Cy = cﬂon-y and kn = kDoné for some positive Cp and kO’ then
& must be in the interval (374,1> and 7 in the interval o,
&—=3-4>. Thus, this condition means that the number of nearest neighbors
must be large relative to the sample size, and the window width must
shrink slowly with n.

The estimates of g(i) can be used to form an estimates of the
efficient score as follows. Let EJ, (Jj=1,2>, be the preliminary CLAD

estimators defined in equation (3.4>. For éj(§,8) satisfying equation

(3.6> let

0. . =A.~N.a ,N. ] — ’N.O/ j= 9
3.8> SJ(Z) gJ(x,BJ) 1(x BJ < ulesgnly X ﬁJ) x7/llxl,  C3=1,2D>,

where 1/0ixll is well defined as long as the regression includes a
constant.. Let ??, (j=1,2>, be obtained from equation (3.2> using the
score estimates given in equation (3.8). Our candidate ﬁ for an
efficient estimator is then as given by equation (3.3>.

To characterize the asymptotic distribution of 3 it is useful
to strengthen somewhat the conditions we impose on the distribution of

(st, xt’)v

Assumption 3. 3: The conditional density f(ai%) is bounded and
Lipshitz uniformly in X. That is, there are positive constants fo

and My such that fCe|% < £y and [flg | - e, IR | < Moleg—2,1.

With some additional notation and moment conditions the density bound
fD and the Lipshitz constant MO can be allowed to vary with the

regressors, but are assumed constant. here for simplicity.

Assumption 3.4: For some positive constants KU and Yy E[1(|§1’3| <

H§LH6)(1 + thuz)] =< Koé for HB"ﬁOH = vy, j&f = Yy




The following condition is useful in showing Vﬁ¥consistency of ﬁj.

Assumption 3.5: The parameter space B is compact and contains 60 in

its interior.

Theorem 3.1: Suppose that Assumptions 2.1 - 2.6 and 3.1 - 3.5 are

satisfTied. Then

3.8 WCB-6y> -4 Neo, v, PF = (¢

- p
+ V2 —, v
and % is locally regular for the class Q of parametric submodels

derfined in the statement of Theorem 1

4. Extensions

Two immediate extensions of the results of Sections 2 and 3 are
available. The first is the extension to the linear regression model
without censoring. By ignoring terms that involve censoring (i.e.
treating the censoring point Uy as if it were equal to  +owd it follows
immediately from the calculations done in the proof of Theorem Z.1 that
the efficient score fopr the linear model with a conditional median zero
disturbance is s(zt) = 2f(0|§t)osgn(yt—xt’30)oxt, with
corresponding semiparametric efficiency bound VB = {E[s(zt)s(zt>’]}“1.
Similar to the discussion in in the introduction, this efficiency bound
can be interpreted as the covariance matrix of an optimally weighted
least absolute deviations CLADD estimator, where the weighting accounts
for the fact that the conditional density function f(D]%t) depends on
Xg - Furthermore, an asymptotically efficient estimator, involving
nonparametric estimation of f(0|§t), can be constructed by following
the procedure coutlined in Section 3 while omitting terms involving
1<x’3 < u> in the construction of E.(x,ﬁ) and using LAD estimators as

J
the initial estimators of 3. The proof of Theorem 3.1 applies to this




case,
The second extension of the results is to the case where the D
conditional quantile of ¢ is zero, i.e. F(Gl§t) = T, where 7T is
not necessarily equal to 1.2 Cand there is no loss of generality in
assuming a value of zero for the quantile as long as Xy includes a
constant). Noting that this imposes the restriction
f(r—l(s(ﬂ))f(ai%)ds = 0, the proof of Theorem 1 can easily be modified
to show that the efficient score is given by s(z) =
[r(1~r)]_1/2of(0|§)o1(x’60 <welr - 1Cy-x’3; < 031 with efficiency
bound Vﬁ = {E[s(zt)s(zt)’]}_l. An asymptotically efficient estimator
can be constructed by following the procedure outlined in Section 3
while replacing sgniy-x’3> with [T(l-T)]_l/ZO[T - 1(y—x’80 < 031 and
using for initial estimates Powell’s (1986a> censored regression

quantiles.




3. Proofs of Theocrems

We first establish some notation and terminology. For any measure
2 let LZ(“) denote the Hilbert space of functions that are square
integrable with respect to 4, and let Ilolilu = f(o)zdu denote its
norm. H-continuity of functions of and © = (3°,13°>’ will mean
continuity in @ for the norm HoHH. Similarly, H—differentiability
will mean Frechet differentiability in Lz(p).

In defining the likelihood it is useful to work with the
transformed dependent variable § =¥ — u. Then for a given parametric
conditional density f(s|§,n) and for each 2 and 17 the distribution
of Z = (¥,%’>° is absolutely continuous with respect to =% x Py
where ¢ is the sum of a point mass at zero and Lebesgue measure on
(-®,0> and £ is the probability measure of §t‘ The density of 2

is given by

5.1> 218, = 15 = 0o11 - FC-X’al%, 1 + 1<% < OFy-X"al%,n,

where o = (3’°,-1>’, Fcm|X,n = S_Mece %, mae.

Lemma 5.1: I Assumptions 3.1-3.6 are satislied then f(%le)i/z is
H-continuously H-differentiable in a neighborhood or 60 = (60’,0)’, in
Loz,  Also, if s3> is any vector such that E[Hs(%t)nz] is finite
then s(%){(%lﬁﬂ,n}i/z is H~continuous at Mo~

Proof: To prove the first. conclusion it suffices to prove H~cont.inuous
H-differentiability of RC(-%’e,%,1) in Ly(a>  and  fletx’s(%, 172
in L,{&xn > respectively, where R(m,X,p) = [1-Fcm|%, 1172 =
[fﬁT(e|§,n)d£]1/2. For notational convenience, suppress the x
argument. in v. Let Nn be an open ball around zero such that

inf N [1+<v’ P qgle, %D 1 b >0 a.s. £€xs,, and restrict attention to
e n X

N, and drop the a.s. qualifier henceforth. Then, f=|%,m = bfCe %D
and by boundedness f(z|%,n) < Bf(=|X> for some B > 0.

Consider first R(~§’a,§,n). Continuous differentiability of
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R(m,%,n) in m and 1 when FCm|x> < 1 follows immediately from the
chain rule and I“:f(£|§)q(a,§)da finite for all m. The derivative is
given by ~[22<m,§,n>]'i<me;§,n>,v>f_$;<s|§>q(a,§)da)’. Consider a

point  (iW,X,7 such that FCmix) = 1, and sequences {Vi}i:i’ {ni}igi’

with m; — M and #n; — 7. Note that by FCm|Z> =1 for m > @ and

i
Assumption 2.4, R(m,X) is differentiable at @ with derivative zero.

Then

5.2 0 < RCmy, X, /¢ m =W |+, ~FI> < B 2Rem, , %0/ im, -] — o.
1 1 1 1 1 1

Thus, R(m,§,n) is differentiable in m and n, with derivative Zero,
at. (W,X,7». To check continuity of the derivative at a point with
FCx) = 1, consider sequences as before, and without loss of

generality (w.1l.g.> suppose that F(mii§) <1 for all i. Then
-~ — - ~ -—1 ~
5.3 |5R(mi,x,ni)/am| = I[ZR(vi,x,ni)] f(milx,ni)l
< [B/<b1/2>1|[2&<mi,§)]“1f<mi|§)| = [B/<b1/2>lsﬁm<mi,§>| - 0

by continuity of Rm(m,§) and Rm<ﬁ,§) = 0. Furthermore, for some

positive constant (,
o d — m 1 Ll bl
5.4 H@R(mi,x,ni)/anu = IZR(mi,x,ni}l 1Hv’f_;f(s[x)q(s,x)dau

= IZR(mi,i,ni>]"1n—v’fﬁ FCe|%qCe, Xdell
i
_ T Ty 1y oy >y1172
< [2bRCm; , 3017 supCiivil |qCe, ¥ 1300 £ea|ode < GL1-FCm; 1% — 0.
1

Thus R(-%’e,%,m172 jg continuously differentiable in 3 and 5. To
show H—continuous H~differentiability it suffices (by a mean—-value
expansion argument and the dominated convergence theorem <DCATY)> to show
that the derivative is dominated by an element of Lz(ﬂkD. This
dominance follows from Assumption 2.4 and the same calculation used in
the above pair of equations. For example, H@F(—%’a,%,n)l/z/anu <
CRC-%’e, %3172 (as in equation (5.4)> vyields dominance of

leFPc-%"a, %, 1 2 a0 by .

....15....




Next., we consider Fle+x’S|%x, 2. For the moment let © = &2 ,7%>.

Also, let

(5.5 r(&) = rle+x’8,% = rlevx’s|%172,

dié,n) = [1+(v’n)q(s+x’6,§)]1/2, r.(&8 = r_(e+x’5,%),
z £

d_C8, 1 = 3dCs, n) /8 [4{1+(v’n)q<£+x’6,§)}]_1/2(v’n)qﬁ(a+x’6,§),

CRD [4<1+Cy I qla+x’ 8, %3171 2qcerx 5, v,

d, adCs, D #n

?
r(O = r(&AS, D), 10 = [r (5dCs,m + rc&d 5, Ix,

rn(e) r{&d _«(&, ),

n
rg(ed = (ré(e)’,rn(e)’)’,

where dependence on £ and x hag been suppressed for notational

-

convenience. Note that by Assumptions 2.2 and 2.3 and by construction

r{é&>, r8(6), dds, n, d8(6,n), and dn(é,n) are each continuous at,

S, 10 a.s. {Xﬂx, so that ré(é,n) and rn(é,n) are also continuous

a.e. éxnx.

Assumption 2.3 that ré(é,n) and rn(é,nD are each dominated by sguare

Furthermore, it follows from the dominance conditions of

integrable functions. For example, on N x Nﬂ’ Hrn(é,n>n =

&> b Zsupiivace, o1l £ Gp<e, B for some constant, G, It follows
from DCT that ré(é,n) and rn<6,n) are mean-sguare continucus. To
show H~differentiability, for the moment. suppress the subscript on

”°“’Cxpx, and leta ei = ((Si,,ni})’ b (3,,5,), = 6 Where w. legv 61 = 6

and n; = 1. Then by d(&é,n> continuocusly differentiable in n and
H-continuity of rn(e) a mean value expansion of r(éi,ni) around i

vields, for the mean value ﬁi = ﬁi(a,§),

(5.6 <8, > ~ rCs,, - (8 (= /119, -8l

H[rn(éi,ni) - rn(a)]’(ni—n)n/uei~6n
slm#ﬁpﬁ?-—rﬁﬁﬂlﬁ 0.
Similarly, a mean value expansion of d(éi,ﬁ) around & vyields




3.7 Hr(éi)d(éi,ﬁD - r(éi)d(a,ﬁ) - r(33d6(3,ﬁ)x’(6i~3)H/Hei—aﬂ

H[r(éi)da(éi,n) - r(E)dg(E,ﬁ)]X’(éi—B)H/Hei—GH

1A

IErCs;5d (8,1 - (A &, MIxl - 0,

by continuity and dominance of r(é)d8(6,n)x. Finally, it follows from
the H—differentiability of r(& and dd(&,n) bounded that

3.8> Hr(éi)d(ﬁ,ﬁ) - r(&HdE, P ~ rs(g)d(a,ﬁ)x’(éi~3)H/Hei—gﬂ

=< BHP(613 - r{&> -~ r£(3)x’(6i—3)ﬂ/ﬂéi—5H — 0.

The first conclusion of the lemma now follows from equations (5.6) -
(5.8> and the triangle inequality.

The second conclusion follows by R{m, n) and f(s|§ n)i/z
continous at Mg = 0, [1- F(-%° aolx n)]1/2 < B1/2L1—F<—x Sy |x)]1/2
ree 1%, m172 < B1 20 1%172)  and the DOT.

The following two Lemmas will be used to show Vﬁ = V*. Define ?R to
be the parametric submodel corresponding to £(Z|©> such that € lies
in an open set contained in ([N+{60}]mN0}an that contains 60. Let
T = (rp’,r,’>’ denote the L, H-derivative of £5[e>172 4t 0,

Lemma 5.2: Suppose that there is p e Lz(ﬁ> such that for all ?Re Q,
fprn’dﬁ = 0. Also suppose there exists a sequence ?g € Q and a
sequence AJ of conformable constant matrices such that
I(rﬁ~AJr%—p)’(PB—AJP%~p)dﬁ - 0, Then Jpp’dp =
inf?EEQ,Af(rﬁ—Arn)CrB—Arn)’du.

Proof: The hypotheses imply that f(Pﬁ'A Ny )(PG—A )’dﬁ converges to
Spp’dit. Therefore it suffices to show that for any ?R < Q@ and

conformable A, A’LSpp’ dpgla < A’ [f(rB-Arn)(rﬁ—Arn> ditla.  Let o =
Ao, rS = A PB, a = A’A, and aj = A AJ. Note that




. w2 — < — 2y - - . J + . J - Iz
5.9 A [f(rﬁ Arn>'r6 Arn) dada Hri‘,3 aJrn aJrn arnl
—_— . j 2 -+ . -j_ 2 + i — . j . J — Y
Hr3 aJr It HaJr ar_ |l 2J"(rl,3 aJrn)(aJrn arn)dp,

where the ﬁ subscript has been suppressed for notational convenience.
Since lim(HFﬁ—ajr%HZ) = 1BI% = A’ [spp’dIA by hypothesis and
liminfcnajrg - arnnz) is ncnnegativé, it suffices to show that f(Fb -

pd o > ) : J
aJrn)(aJrn arn)du converges to zero. By orthogonality of po and rn

and the Cauchy-Schwartz inequality it follows that

Ty~ ardcarddii] = |51CF, - a.rd - m>ca.cdydn
3.10> II(PB aJrn)(aJrn)dpl |I(r3 aJrn p)(aJrn dpt

= .'j—-_o .J-‘
= Hrﬁ aJrn oll HaJrnH

Since boundedness of Hajrgn follows from convergence of ajrg to

= . hi . 4 _J' “])-v
PB o, it follows from this inequality that J‘(rl‘,3 aJrn)(aJrn dp
converges Lo zero. A similar argument. can then be used to show that
FCF—a e Ca .rdHd .

rﬁ aJrn)(aJrn)du converges Lo zero
Lemma 5. 3: Suppose s(2) is a vector such that the components of
s(%){(%lﬁu,n)i/z are elements of Lz(ﬁ) for n in a neighborhood of
o and are H-continuous at g - It fs(%){(%iﬁﬂ,n)dﬁ = for all

n in a neighborhood of 1n, then fs(%){(%ieg>1/2rn’dﬁ = 0,

Proof: Consider an element g of =(2), and let £ = {(Elﬁn,n)

and {0 = {(EIGO). Consider a vector A with Hatllh = 1., For vj > Q

such that .vj - 0  let nj = Ty + vjl. Note that by H-different-—

iability and the Cauchy-Schwartz and triangle inequalities,

1.2 1.2 172 172 - ~
5,1 . + . - - 4 . v .-
< 1> If[s{(nJ) s{D ][{(nJ) fo rn (nJ g2 1du| HnJ g !
12 A2 172 -2
< . + . -y e - sl .-
(HS{(nJ) il HSJG H)H{(nJ) fo rn (nJ nO)H HnJ nOH

— 0.




where the last line follows by Hs{(n)ifzu continuous C(and therefore

bounded>. It follows from this equation and H-continuity of sf(n)i/z,
that
(5.12 o = [fsf(nj)dﬁ - fs{adﬁ]/vj

{fs[{(nj>1/2+;é/2][;cnj>1/2—{3/2—rn’<nj—n0>]dﬁ/nnj—n0n}

+ {fs{;(nj>1/2+;01/2]rn’dﬁ}x - 24rsf5 e safoa.

L]

The conclusion follows from the arbitrary choice of 2.

The following Lemma is useful for verifying that the glg,%) given in
equation (2.3) can be approximated by a function satisfying Assumpt.ion

2.1. For the moment let # be the probability measure of (at,ﬁt’>.

Lemma 5.4: If Assumption 3.1 is satisfied, then the functions
gCs,x%x> that are bounded and continuocusly differentiable in & with
bounded derivative are dense in the subgset M of Lz(p) satisfying

ElqCe,%)|X]1 = 0 and Elsgn(zdqls, %) |X]1 = 0.

Proof: Let pﬁ(s) = g/l1+}|=|1, and note that pOCE) is a bounded,
continuously differentiable function with bounded derivative. For a
positive integer J, let pj(ed = <1, pyCed, pe<erZ, ..., pgCe>d i,
Note that if dJ(ﬁ) is a J x 1 vector of bounded functions of ®
then qJ(s,§) = dJ(§>’pJ(s) %¥ill be bounded and continucusly
differentiable in & with bounded derivative. Therefore, the result
will be proved if for any q(a,%) = M we can construct bounded vectors
dJ<§) such that qJ(a,§> e M and limJ_eqpt{q(a,ﬁ) - qJ<a,§>}2] = 0.
Let. H(x> denote the Hilbert space of measurable functions m(sd
such that EIm(=>?|%] exists and is finite at X, with inner product
<mgImy> = Elmy(edm,Ced [X1.  Similarly let Ny(X> denote the linear
span of the components of Pj(&> and let N2(§) = {m(ed mCed> « HCXD,
Eimced |x1 = Elsgn(edm(ed |x] = 0¥. Consider q(£?§) < M. Note that

EfqCe, %2 |%1, E[Hpj(s)ﬂz|§], ElsgnC2>?|%1 and are finite a.s., so that




q(s,§), the elements orf pJ(a) and sgn{e> are each in HCX) a.s.

Let qJ(s Xy = aj(x) pJCE) and sgnJ(s X) = dJ(x)’pJ(a) denote the
projection on Ni(x) of* qg<le, X2 and sened resgpectively, and let
qJ(a,x) = CJ(X)’(i sgnJ(s §)) denote the projection of qJ(£ X) on 1
and SgnJ(s,§). Also, let qI(g X) = dT(X) pJ(a) denote the projection
of qle,%X> on Nl(x)mNZCX) _

The fact that each vector of functions of X can be chosen t.o be
measurable follows in a straightforward way. For example, aj(§) can
be computed as {E[pJ(a)pJ(s)’lx]} 1E[pJ(s)q(s x)lx] where p?(a) is
the largest subvector of pJ(E) with nonsingular conditional second
moment matrix at x. Measurability of aj(§) then follows from
measurability of the conditional gecond moment. matrices, continuity of
the matrix inverse function where it is nonsingular, and the fact that
the composition of p?(a) is determined by which determinants C(which
are continuous functions) of submatrices of the conditional second
moment matrix of pJ(s) is zero. Also, it is straightforward to show
that each conditional projection is square integrable. For example, by
construction siqce,3>-gCe, %32%rCe [%0de < seace, %3>%PCe|%0de  a.e. so
that by §Ce, %2 < 2¢0q¢e, %o -qCs, %12 + q<e, %2y it follows that
g e, x)zf(slx)ds < 45q¢e, %2 |%0de  a.e., so that E[ﬁj(s,§)2] =
I[Iqj(s,x} f(a]x)da]dﬁ exists,

Now, note that from the fact. that Ni(x)mNz(x) grows with J <Cand
the positive integers are countable so that one can consider a.s.
statements that apply for all J> El{gCe,x> - q?(8,§)}2|§] is
monotonically decreasing in J a.s.. Also, it is a simple exercise in

projection theory to show that
<5.13> El{qle, %> - q?(e,§3}2|§]
= El€aCe, % - §,¢, 032X + E[aj(£,§)2|§].

(A detailed proof of this equality is available from the authors upon

request.> By p0(8) monotonic, continuously differentiable with




everywhere nonzero derivative, and bounded, the sequence {po(a)J}jza

is a basis for HCX> a.e. {e.g. see Lemma 2 of Newey (1987D>),

Therefore,
— . e - — ~ 2 e
5.14> g = 11mJ_+“ﬁ[{q(8,x) qJ(a,x)} {x1
- -] — b 2 o~
= llmJ_*“ﬁ[{sgn(s) sgnJ(a,x)} Ix1,
a.e.. Also, by Assumption 2.5 the conditional second moment matrix of
(1,sgnled)> is nonsingular a.s.. It is then a simple exercise in

projection theory to show that it follows from equation (5.14> and t.he
fact. that 1 is the projection of 1 on N1(§), that. the projection of
Ej(s,%) on (1,sgnJ(s,§)> converges in HCX> to the projection of
qle, XD (1,sgnled> a.s., which is zero by q(a,%) < M. Therefore,
limJ_eaﬁ[aJ(s,§)zi§] =0 a.s.. Thus, by equations ¢(5.13> and (5.14),
timgy | El<qCe, %> - q?(a,§3}2|§] =0 a.s., so that by the monotone

convergence theorem limJ mﬁ[{q(£,§) - q?(a,§)}2] = Q.

-
For each D > 0 and J let q3(£,§) = qﬁ(s,%) for HdJ(§)H < D
and qg(a,§) = 0 otherwise. Note that by construction q?(s,%) e M
and by the choice of pJ(s), qg(s,§> is bounded and cont.inuously
differentiable in £ with bounded derivative. Also, Qq§<8,§)l =
1q§<s,§>| and 1imB_9mg3<a,§> = q?(s,%) so that by the dominated
convergence theorem for each J there is DC(J> such that
E[{qg(J)(a,i) - q?(a,%)}zl < 17J. The conclusion then follows by

D>
a7

taking qJ<e,§> = Ce,%).

Proof of Theorem 2.1: For each parametric submodel ?R s @ the
information matrix I(?R,SO) is given by

5.45> I(?R,eo) = 4Irere’du.

which is well defined by Lemma 5.1. By hypothesis the information

matrix is nonsingular, so that for each ?R e Q, IﬁB(?R,eo) is well

defined, and can be calculated as




33¢ = - — san—l
5.162 I (?R,eﬂ> [4.!”(1‘(3 Arn}(rﬁ Arn) dpl —,

A = [frnrn’dﬁ]—ifrnrﬁ’dﬁ.
Let s(z2) = 2f(0|§)1(§’ao<ﬂ)sgn(§—§’a0)x and p(Z> = s<§>;<2|eﬂ)1/2.

To complete the proof, by Lemmas 5.1 ~ 5.3 it suffices to show that for
each Pp « Q, JIsZLZ|B3,,mdit = 0 in a neighborhood of 1n,, and that

there exists ?R and A such that HrﬁwAr is arbitrarily close

n Pl
to zero, where loll) = [sCe>”Cordfil 2,
We will first show fs(E){(ElﬁD,n)dﬁ = 0 in a neighborhocod of Ng-

Note that sgn(?—%’ao) =1 for §’m0 <0 and ¥ = 0, so that
€5.17> fs<E>;<E|30,n)d§ = fXQf(0|§)01(§’a0<0) >

< 1—F(—§’aﬂl§,n) + f_“sgn<§~§’ao>f<§—§>a0|§,n>d§ Yodpy,

§
o0

= fxOf(D|§)01(§’ao<0)o{f_zﬁign(&)f(sI§,n)d£}odﬂ& =0,

where the last equality follows by Assumptions 2.1 and 2.2.
We now show that there exists ?R <« Q and A such that

Hp—(rﬁ~Arn)Hp is arbitrarily small. Let v = x for Ilxll < D and

v = 0 otherwise, for some positive constant D. Let pv and rg be

the vectors obtained by replacing the vector component x of p  and

r3, respectively, by v. Note that lp=p¥~Cr - B)Hé < 2(“p”2+HrBH2),

so that. by the DCT and limD_éa}(vﬁx) = 0 everywhere,

. Y oV 2 . - Z2 240 =
¢5.18> 11mD_9®np o (rﬁ 8)” = lemD_éafl(v#x)(HpH +HrBH 2dp o,

p =
Also, for fixed D it follows by Prob(§t’ao = 0 =0 that for w» > O
and 1v = 1C0 < §’d0 < 3, limv_éﬂlv =0 a.e, ﬁ. Then by HPEH =
HrBH and HpVH = llpll, the triangle inequality, and DCT

- \'4 v . v
C3.19> llmbhegﬂlv(p Tl = llmv—aﬂcnivp i

v =4
p p + ”1vrﬁnp) Q.

&

For v > 0 consider the function




(5.20> q,(e,%> = 1(§’a0 = pX{-1¢e < ~§’aﬂ)[fa(a|§)/f(sl§)}
+ 1(—§’ag < g =< 0>r<—§’a01%)/[Fcai§>—F<~§’aG|§>3}
+ 1(§’a0 < D}{w[f€(8|§)/f(si§}] - 2FC0 |XDsignledy,

By Assumption 3.1 it follows as in Ha jek and Sidak <1967 that for any

measurable function v(x), E[fa(sl§)/fCai§)l§] = 0 and
<5.21> Ef1¢s < v(%)){f£<a|§>/fca|§>}|§] = £OvOR) XD

= -E[1Ce > v(§)>{f8(si§)/f(al§)}|§].

Finiteness of ELf(v(X>[%>%1 then follows from Assumption 3.1 and C(the
conditional) Holders inequality (which implies f(v(§)l§)2 <

E[{r8<a|§>/f<s|§>}2;§]>. Also, by Assumption 2.5,
2

1(§’a02v)/[F(0|§)«F(—§’aoi§)] is bounded. Therefore Elq,(s,%%] is
finite. Also, note that
(5.22) Elq,(g,%) X1 = 1(§’a0 > X{~El[1Ce < —§’m0)[f8(a|§)/f(£|§)]l§]

+ E[i(—i’ao < & < 0)|§]af(—§’aﬂ|x)/[F(0|§)~F(~§’a0|§)]}
+ 1(§’a0 < OXX-ELf (2 |X>/TCe XD [X] ~ 2FC0|XDElsgnlad [X13

=0,

5.23> E[sgn(a)qp(s,x)lx} = 1C§’a0 z prel}
+ 1(§’a0 < 0){~E[sgn(a)fs(a|x)/f(g|x>lx] ~ 20C0 x>
= 1(§’a0 < 0)a{E[1(£<O)f${a|x)/f<s|x)Ix] -

E[1Ce>0F (e |xd/FCe|x) |x] - 2FC0|x>} = 0.

Then by Lemma 5.4 there is a bounded function ﬁv(s,XD that is
continuously differentiable in & with bounded derivative and satisfies

IaVCE,x)f(alx)de = 0 and fsgn(&)av(a,x)f(aix)ds = 0, such that




E[{qv(s,x)—ﬁv(s,x>}2] is arbitrarily small. Straightforward
calculation shows that the corresponding derivative F; off the root

likelihood with respect to np  at 60 is given by

C5.24) B = Cvo2dXI1Gy = 0> [1~FC-%"0, |%217172¢ . §,Ce, B0 [%0del
-~X7
0

+ 1CY < 03, (F-%"ap, DIFCH-%" o, 301723
v 0 Q

For given v define

<5.25)> rr o= (v 204I1CY = 0)[1—F(—§’agl§)]—1/2f ® 4., XFe XD de]

~

n —
XOlO

* 1 < 0q,5-R 0, DIG-X 0y 11725

By (the conditional) Holders inequality,

~Y_ W
5.26> Hrn rnﬂp

< (D/Z)E[{1—F(—§>a01§>}‘1<J had (ap(8,§)—qv(8,§))f(8|§)da}2]

~

—
XOlO

+ (DF2XELl1Ce < —§’a0)(av(s,x)—qv(s,x))zl.

(D/Z)E[{1~F(—§’aa|§)}{E[§p(8,x)—qv(s,x)Ia > -§’a0, %1327
* D/2XEM1Ce < -X’ o), (e, x0-q (=, 0321
= (Dr2OELCL-FC-%’ oy |RYELCE, (8, x0~q, (=, x032 [& > ~X’og, %11

+ (D/23E[l1Ce < —§’aﬂ)(ﬁv(s,x)—qv(e,x))z]

<D/2IELL{, (&, x0-q, (s, x03213,

Next., note that.

5.27> ST g, e Rode
—X’Otn

= 1<§’a0 = v)of<—§’ael§)




+ 1(§’ag < 0>o{f<—§’a0|§> - 2f(0|§)[1~F(—§’aOI§)]},

Therefore, PE - Pg - pv= 1vo(r§ - pv), 80 that there is a constant ©
such that
~p 2 2 V__ ¥ w2 ~p 2
. o A < -0 - + ~r. - 1= + | H >
3.28> Hri3 rn pllp = G{llp p Crﬁ |G)H ll]c‘t,3 rn fol lp rn p

CCllo=p¥~Cr - 3>u2 + 11,(rfp V)HZ + u%n-rnng}

and the conclusion follow by eqs (5.18), (3.19>, and (5.26D.

Before proving Theorem 3.1 we will first prove some preliminary
Lemmas. Let g(z .30 = Zf(ﬂlx) 1(x’ o < 0eosgndy = x°ox and sj(z,ﬁ) =
gJ(x 3r1(x° oM sgnly—-x’Hx lxll. Also, for a parametric density of the
form given in (2.1> term "under local drift" will refer to the
environment where Et’ t £ n, are i.i.d. with density ;<%|en> and

O, = (BO’,O)’.

Lemma 5.5: If Assumptions 2.1-2.6 and 3.1-3.5 are satisfied then ﬁj

is locally regular for Q. Furthermore, under local drift, for any 3

n
= (35 *+ op(1/v'ﬁ‘>,
~ ML, - ~ . N
3.29> Ztelj[s(zt,ﬁ) - s(zt,ﬂn) + (VD 1(3—ﬁn)]/Vﬁ = op(i), Cj=1,2>.
Proof: In the absence of local drift d(i,e, Gn = (PO for all n>,

pllm(ﬁ D o= BO follows exactly as in Powell’s (1984> treatment of the
CLAD estlmator By Lemma 5.1 and nonsingularity of the information
matrix the model is locally regular in the sense of Hajek (1970), so
that pllm(ﬁ ) = 30 under local drift follows by contiguity. Also, it
follows exactly as in Powell (1984> that the asymptotic first-order
condition of equation <1.3) is satisfied.

By Assumption 2.4 and qe, XD bounded, f(el%,n) iz bounded and
bounded away from zero in a neighborhood of g = 0, wuniformly in X%

and n close enough to ng = 0. Also, by Assumpt.ion 3.3, q(s,§)




bounded, and qCs&,%> Lipshitz in ¢ uniformly in X <Cwhich follows
from continuous differentiability in & with bounded derivatived, it
follows that f(g|X,n) is Lipshitz in €, wuniformly in X and n
close enough to Mg = 0. It then follows as in Powell (1984> that
conditions N-1 ~ N-4 of Lemma 3 of Huber (1967> are satisfied uniformly

in Gn, for

(5.30> w(Z,3 = 1(x’3 < wWsgnly - X’ 3.

Note also, that by q<s,%> bounded,
5.31> v, = CEL2EC0 %y, mp 21Cx  By<uy dx,x, 71371

E[i(xt’80<ut)xtxt’]o{E[Zf(Oi§t,nn)1(xt’ﬁo<ut}xtxt’]}~1 - V.

It then follows from n/nj - 2, as in Powell €1984>, that

<5.32) VRCE =B, = CYRZRDYR =6, 4, nNco, 2v,>.

Next., note that by 2f(0|§) bounded and bounded away from zero, it
follows (as before for w(%,ﬁ) in equation (5.30)> that conditions N-1 -
N—-4 of Lemma 3 of Huber C1967) are satisfied uniformly in en for
w(E,G) = 2of(0|§)o1(x’6 < Wsgndy - x’Ax. Equation (5.29> then follows
from the conclusion of Huber’s (1967> Lemma 3 and an argument similar to

that for equation ¢5.31).

befine Xn = (xi,a..,xn).

Lemma 5. 6: Suppose that Assumptions 2.1-2.6 and 3.1-3.5 are satisfied
and suppose the absence of local drift. Then for any positive constant
D, fE[sup”B_Bo”ED/Vﬁ{éj(§,6) - g(§)}2]dﬁx - 0, <j=1,2>.
Proof: VWrite §j<§,ﬁ> - g(X> = AJCX, B+ A2(§) + A4(XD, where
(3.33> A, = §j<§,ﬁ) - gj(§,30),

A, (XD = §J<§,60> -~ ztglwntjc§)1<§t’aa<o>fco|§t>nxtu,




Agx> = ztgiwntj<§>{1(%t’aﬂ<u>f<0;§t>nxtu - 1(§’a0<0)f(0|§)ﬂxn},

It follows immediately from E[g(§)2] finite and Proposition 1 of Stone
C1977> that JSE[ALCZ1da, - 0.
Note that wntj(x) = wﬂ/kn, and for all Hﬁ—ﬁoﬂ = D-vh,

(3.34> [1(§t’a<0)1(xt’B—Cn<yt<xt’ﬁ) - 1(§t;“0<0)1(xt}ﬂﬁ"cn<yt<xt,ﬁﬂ)i

s

< 1(|§t’a0| < Mg o lIB=34 11

i

+ 1(|8t| < ”XL”°”3“30”) + 1<|Et+cnl = HXtHOHﬁ—GOH) = {t’

1(i§t’a0| < lixg il =D/

A

+ 1<|8ti < letlloD/ﬁ) + 1(‘£t+cn' < thllol)/ﬁ) = 'ﬁtn’

so that for n large enough (by fC0|X> bounded and Assumption 3.4,
¢5.35) Elsu A CX, 321 = n2cv, k. >2¢72Eix, e, 1
: Plip=pg <D v <X, = 07%n? ©p "t
2 2 - 372 2., 2 =
= zwﬂ[n/(cnkn)] {ZfOE[thH 1 + Kyp3DsvRH = 0Cn 25" k 93> = od1),

. . o . . ~ e 2
Since this equation holds uniformly in x, E[SUPHB~GOH£D/TEA1(X’B) ]

— 0.
Next., note that
(5.362 IECA,CXO IR 1]
< Ztgiwntj(§)1(§t’a0<ﬂ)oﬂxtuoI[Frob(—cn<ﬂt<ﬂi§t)/cn} = FCOR, |
< Mocnztglwntjc§>anxtu,
and
5.37> Vard<a, (x> (X >

— n ~ 2 _2 - ~ -~ o o~
= T2 Vit <0y 12 evartaac Cn<EL<O1% >/ 31 C0 %) IR 1
< Wk D205, B iix, 1IPET1¢~c_ <&, <0 |3 > 1% 1¢a %>y

= 0" n t=1""1 n -t t. h n
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= Qigrk 0%z Bk 1% e

Therefore, by E{thuz} finite and Proposition 1 of Stone (1977,
Cwhich imply IE[{Ztglwntjcﬁ)othn}zldﬁk = 00103,

- ~L2 — o2
5.38> IE[Az(xb ]dﬂ& = IE[E[Az(a} 'anldﬁk

‘\: far) ‘\02‘\-
fE[Var(Az(x)an) + E(Az(x) IXn)]dﬁx

< Wk O2nECx, 12180 + M.2c 2rE[¢s DY RO elix, 132 1dp,
0" "n t. 0" n 0 n t=1"ntj t b4

. 2 2y o
0(n/(kn Cplo * O(Cn > = odiDd,

The conclusion then follows from (ai+az+a3)2 = 3(a12+a22+a32).

Lemma 5.7: Suppose that Assumptions 2.1-2.6 and 3.1-3.5 are satisfied

and suppose the absence of local drift. Then

5. It =1 D[S . .y - R.O1/v7 = j = )
5,39> Zt=11(t¢IJ)[SJ(Zt,ﬁJ) S(zt,ﬁd)] %71 Op(i), CJ 1, 2>

Proof: VWithout loss of generality consider j = 2. Note first that. for
xt’B < u and W = ¥ it is the case that gy + xt’ﬁﬂ > U, so that
1 = sgn(yt - xt’B) = sgn(ut - xt’ﬁ) = sgn(at + xt’ﬁo - xt’ﬁ). Thus,

5.40> 1(xt’8<ut)osgn(yt~xt’ﬁ) = 1(xt’ﬁ<ut)osgn(st+xt’ﬁo—xt’6),

Then, by Isgn(ed~sgnle+yd | =< 2°:1Cle]l = |7]> and E[sgn(at)|§t] = 0,
for any A « RP with AN =1,

(5.41> |E[1’zt211Ctexl>[§z<zt,§2)—s<zt,32>1/15|12]|

IvﬁE[{gz(xi,ﬁz)—g(xl)}o(h’xi/ﬂxlH)01(§1’a2<0) >

E[sgn(s1+x1’60—x1’ﬁ2) - sgn(si)lxi,lzl | IZ]|

1A

ZTﬁE[|g(x1,ﬁz)~g(x1)loE[1(lall = Hxlﬂoﬂﬁzwﬁoﬂ)lxi,lzl | I,1

2

< 4fOE[|g(x1,%2>—g<x1>|nx1u|1211ﬁuﬁz—ﬁnu




< {f[éz(x,éz)—gcx>]2dﬂx}oop(1>,

where the last inequality follows by the Cauchy-Schwartz inequality.
and Yfi-consistency of ﬁz. Similarly,
(5.42> Var[h’ztgli(tell)[§2<zt,%2)-s(zt,ﬁz)]/vﬁ|12]

< Sleyix, Byd-gxd1%dn .
Also, for any < > 0 there exists D such that Prob(nﬁzwﬁou > D/ <
€ Tfor all n large enough, while by the conclusion of Lemma 5.6,
5.43> 1(nﬁz—gonsD/VE)af[g2<x,ﬁz)-g<x>]2dﬂx

B y_ 2 =
< fsupuﬁ_ﬁuugn/vﬁ[gz(x,ﬁz) g{x>1 dﬂx = op(l).

2

so that by the arbitrary choice of =, f[gz(x,ﬁz)—g(x)] dﬁx = o (1),

|8
The conclusion then follows from equations (5.41> and <5.42> and the

arbitrary choice of 2A.

Lemma 5.8: Suppose that Assumptions 2.1-2.6 and 3.1-3.5 are satisfied

and suppose the absence of local drift. Then
ok e
3.4 . = + .
5.44> VJ A op(l)
Proof: VWithout loss of generality consider j = 2. Let ?2 =

zt211<te12>s<zt,§z)s<zt,ﬁz)’/ni. It. follows immediately from the proof
of Lemma 5.7 and that for any A with Al = 1,

(5.45> EL A’ V) - VORI, s Ef|[A’§2<z1,ﬁz>12—[xfs<z1,ﬁz>12||IZJ
< E[{lh’éz(zl,ﬁz)|+|h’s(zl,ﬁz)l}|l’§2(z1,§2)—k’s(zl,§2)||12]
< 2E[|A>§2<zl,§2)|2+|1’sczi,ﬁ2>|2|12]oE[{A’§2<z1,§2>—1’s<z1,§2>}2112]

= Op(i)op(l) = op(i),
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so that ?g -~ ?2 = op(l). It also follows from arguments previously

used that QZ - V¥ = op(1>, giving the conclusion.

Proof of Theorem 2: Lemma 5.5 gives (Vf+?§)/2 = op(l). Also, it

follows similarly to equation (5.41> that. in the absence of local drift,

n s - .

Therefore, by Lemmas 5.7 and 3.8 it follows that in the absence of drift
(5.47> (935, 18,¢z,> + V™. 3 (2. 5178
’ 2*teIT2% %, 1%5teI51 %, n
e Ve & Ve —

and by contiguity this equation continues to hold when local drift is

present.. It then follows from Lemma 3.5 that under local drift,

(5.48) YRCB-B,> = vﬁzjﬁircﬁj—an>/2 + ?§2t211<t£IJD§J(zt>/n]

- 2 - . o n o
= Vnzj=1[(BJ ﬁn)/z + v Zt=11(t€Ij)s(Zt,GJ)/n] + Dp(l)
¢
= V5 05€z, 3,0 V0
+ YRCB =B [1~Cnymd T + YRCB,=B,2[1~Cng /nd1 + 0, 1)
= V¥, Do DAVE + o (1)
Let En[°] denote the expectation taken at en‘ Note that by
Assumption 3.3 and qCe,%) and v(x) bounded, f(0|§,nn) is bounded

uniformly in X and n. Then by Assumption 2.3 and f(ali,nn) having

conditional median Zero, En[s(zi,ﬁn)] = 0. Furthermore,
: . —1
(5.49> llmD_ﬁmguanntl(Hs(zt,ﬁn>H >D)oHs(zt,ﬁn)H 1

= limD_eaﬁ[i(thH >D)0thH2] =,

Let. Vﬁ = {En[s(zt,Bn)s(zt,ﬁn)’]}—1. It follows as in the proof of
Lemma 5.8 that En[s(zt,ﬂn}s(zt,ﬁn)’] - En[s(zt)s(zt)’] = o(1)>, while




Enis(zt)s(zt)’] - E[s(zt)s(zt)’] follows by boundedness of w(xD and
g(s,%> and the dominated convergence theorem, implying Vﬁ - v = ol1>.

Then by (5.49) it is possible to apply the central limit theorem to

conclude that in the presence of local drift,
- — Mol A2 R R -1 12 ®. 12 n _,
(5.50> M3 ﬁn) = (V) [v (Vn) 1 {(Vn) thls(zt,ﬁn)/vﬁ} + op(1)

d
4, (v*:»i/ZNca,Ip> = NCO, V™,
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