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ABSTRACT

In this paper we compare the Tobit ML estimator with a
number of semi—parametric and bounded-influence estimators for
the censored regression model. The comparison is carried out on
the basis of an empirical example, in which we estimate Engel
curves using household budget data containing a significant
fraction of reported zero expenditure. The ML estimator appears
to be very sensitive to extreme observations and is way off in
some cases. Semi-parametric and bounded~influence estimators are
close to each other ahd look more reliable. However, bounded-
influence estimators appear to be more precise, and provide
diagnostic information that is uséful to identify sources of

model failures.






1. Introduction

Models of zero expenditure typically involve 1limited dependent
variables, and are usually estimated by ML under assumptions such as
normality and homoskedasticity. Unlike the linear regression model,
however, failures of these distributional assumptions imply
inconsistency of the M. estimates based on the misspecified
distribution, and the resulting asymptotic bias may be very large.

The purpose of this paper is to compare the Tobit ML estimator for
the censored regression model with two types of robust estimators. The
first type are semi-parametric estimators based on the method of
moments. Moments are chosen so as to guarantee consistency for a broad
class of distributions of the observations. We consider Powell’s (1984)
censored least absolute deviation estimator (CLAD-) and Powell’s (1986)
symnetrically censored least squares (SCLS) estimator.

The second type are optimal bounded-influence estimators of the type
discussed in Hampel et al. (1986) and Peracchi (1987). These estimators
cammot be improved upon simultaneously with respect to the criteria of
efficiency at the assumed parametric model and protection against the
bias that may arise because of local failures of the model assumptions.
This property is not shared by the Tobit ML estimator, nor by the
semi-parametric estimators that we consider. Optimal bounded-influence
estimators may be interpreted as weighted ML estimators, and differ with
respect to the choice of weight function.

The comparison between thé various estimators is carried out on the
bagis of an empirical example, in which we estimate Engel curves using

cross-section data from the Sudan. We address the following questions:



Is the normal Tobit model consistent with the data? Do robust estimators
lead to different conclusions than ML and why? What are the differences
between semi-parametric and bounded-influence estimtoi‘s? What
diagnostic information is provided by the various methods?

Our findings may be summarized as follows. The joint hypothesis of
normality and Tobit specification is often at odds with the data. ML
estimates tend to be very sensitive to extreme observations and may be
way off in some cases. Robust estimates are close to each other and look
more reliable. However, bounded-influence estimates appear to be more
precise than CLAD and SCLS. Finally, robust weights provide useful
information for identifying sources of model failures, in particular
outliers and leverage points.

The plan of the paper is as follows. Section 2 discusses several
models of zero expenditure. It also presents some. of the estimators and
tests used later in the empirical example. Section 3 introduces the
class of bounded-influence estimators for the Tobit model. Section 4

contains the empirical results. Section 5 summarizes the conclusions.



2. Models of zero expenditure

Limited dependent variable models are widely used to model the income-
expenditure relationship when household budget data contain a
siﬁnificant fraction of reported zero expenditures. In these cases it is
commonly assumed that observed or recorded demand y is a function of an
underlyipg latent va.riable y', which itself depends on a k-dimensional
vector of explanatory variables, including income and other household
characteristics. The conditional distribution of y' given x is assﬁned
to .be centered about some linear combination of the x’s. Thus the model
for yt takes the familiar regression form
x

- ?
(1) y-xﬂo+roo

where (Bo, oo) € Rk x R, are unknown parameters, and r is an

+
unobservable disturbance. Given the relationship between y and y', which
needs to be neither 1-1 nor continuous, and given a set of assumptions
on the Jjoint distribution of y' and x, estimation and inference about
the parameter of interest Bo is carried out on the basis of a sample of
N observations on z = (y, x’)’.

The truncated regression model arises when the relationship between y
and y° is only defined for y° > 0, in which case y = y'. One
interpretation of this model is that some or all the explanatory
variables are unobservable when demand is equal to zero. The censored
regression model arises when y = max (O, y'). Unlike the truncated

regression model, no information on the explanatory variables is lost

when demand is equal to zero. The censored regression model is widely



used, but there are two problems associated with it. The first is its
validity as a representation of demand behavior. The second, common to
all models involving limited dependent variables, is the lack of
robustness of the ML estimator based on the normality assumption. We
will consider these two problems in turn.

Cragg (1971) first pointed out that the censored (and truncated)
regression model may not be a valid representation of demand, because it
does not distinguish between the decision of purchasing a good and the
decision of how much to purchase., As an alternative he suggested
superimposing to it a binary censor. Thus y = 1(w" > 0) max (0, ¥),
where 1(A) is the indicator function of the event A, and w is a latent

variable with Pr [w' > 0] = n_, an unknown parameter which may differ

o
across households. One interpretation of this model is that observed
demand is zero either because the household genu.{nely does not consume
the good, or because for some reason (e.g. infrequency of purchase or
misreporting) a zero expenditure was récofded. The latter event occurs
with probability e The model reduces to censored regression when m =
1 for all housecholds. This restriction can easily be tested [see e.g.
Deaton and Irish (1984)].

In a second model suggested by Cragg the position of the two
‘hurdles' is reversed. First a binary censor w determines whether a
purchase is to be made. The amount purchased is then determined by a
truncated regression model. This is equivalent to replacing in the
previous model the censored value of y' with its truncated value. The
model reduces to censored regression when Pr [w > 0] = Pr [y' > 0].
This restriction can easily be tested [see e.g. Lin and Schmidt (1984)].

Both models of Cragg are versions of the Type 2 Tobit model of



Amemiya (1985) and are closely related to the "sample selectivity"
models of labour economics.

Table 1 gives the likelihood score function s(z,8) for all four
models under the assumption that errors in (1) are iid with a standard
normal distribution. For convenience model (1) is reparameterized by
putting a = B/0 and ¥y = 1/0. The score for a is always of the form
sa(z,e) = 1(z,0) x, where the conditional expectation of the ’'residual’
7(z,0) given x will not be zero in general unless the errors in (1) are
normal and homoskedastic. This implies that for all four models the ML
estimator of a based on the normality assumption will not be consistent
in general when the errors in (1) are non-normal or heteroskedastic.

For the truncated and censored regression model, this lack of
robustness of the normal ML estimator has been investigated in a few,
simple cases [see e.g. Hurd (1979), Arabmagar and Schmidt (1981) and
(1982), Goldberger (1983) and Kiefer and Skoog (1984)]. A general
finding is that the bias under non—nomlity or heteroskedasticity can
be very large, particularly if the scale paramet;er o] o is unknown and the
degree of censoring is high. The Tobit ML estimator is generally less
biased than the truncated regression estimator, which suggests that the
limit observations should be used when available. However, most studies
only consider the problem of estimating the mean of a population.
Further, they restrict attention to symmetric distributions and do not
investigate explicitly the relationship between the bias and the tail
behavior of the error distribution. This is unfortunate, because the
bias depends also on the distribution of the regressors, and is likely
to be more severe for non-symmetric or thick-tailed distributions. |

The normality assumption may be tested in various ways. One is to



nest the normal distribution in a larger parametric family and then
construct a score test of the restrictions implied by normality. For
example, the test of Bera, Jarque and Lee (1984) is based on the Pearson
family, but other choices of nesting family are posssible [see e.g. Ruud
(1984)]. Although designed against one specific alternative, tests of
this type have power against a number of misspecification alternatives.

A secqndr way is to construct general specification tests based on the
éomparison of two estimators that are both consistent at the assumed
model, but have different probability limits when t};e model is
misspecified. The various tests differ in the choice of what estimators
to compare. For example, Nelson (1981) compares a consistent estimator
of the covariance of x and y with the efficient estimator based on the
assumption of a normal censored regression (Tobit) model. Ruud (1984)
compares the Probit and Tobit ML estimators of «. Chesher , Lancaster and
Irish (1985) compare alternative estimators of the information matrix
for the Tobit model, as suggested by White (1982). All these tests can
be interpreted as conditional moment tests [Newey (1985)]. They are not
specifically designed to test normality and may lack power against
certain alternatives.

A third possibility is to use graphical methods based on some non-
parametric estiﬁntor of the error distribution, such as the Kaplan-Meier
estimator for the censored regression case [see e.g. Chesher, Lancaster
and Irish (1985)].

Estimators that are consistent under weak distributional assumptions
have been proposed for the truncated and censored regression models. In
this paper we will consider two semi-parametric estimators based on the

method of moments, where the particular choice of moments guarantees



consistency for a broad class of distributions. Interestingly, neither
estimator requires a knowledge of the scale parameter Oy which may help
explain their robustness properties. However, neither ésfimator is
consistent when the censored regression model is misspecified.

The censored least absolute deviation (CLAD) estimator [Powell
(1984)] is consistent and asymptotically normal provided that the
conditional error distribution has median zero (homoskedasticity is not

fequiréd), but estimating its AVM requires estimating the error demsity

at the origin. When it exists, the CLAD score function is given by
n(z,B) = 1(x’B > 0) sign (y -~ x’B) x.

The , symeetrically censored least squares (SCLS) estimator [Powell
(1986)] is consistent and asymptotically nonnai under the somewhat
stronger assumption that the conditional error distr_ib\ition is symmetric
about zero (again homoskedasticity is not required). When it exists, the

SCLS score function is given by
n(z,B) = 1(x’B > 0) [min (y, 2x’B) - x’B] x.

A version of this estimator is also available for the truncated
regression model. A test of the symmetry assumption has been proposed by
Newey (1987). Newey’s test compares the SCLS estimator with a more
efficient estimator under symmetry.

Monte Carlo evidence [Paarsch (1984), Powell (1986)] indicates that
both the CLAD and SCLS estimator may be very inefficient relative to the

ML estimator based on a correctly specified model. This raises the



question of whether too much informetion is ignored in order to attain
consistency under very general conditions. Furthermore, neither
estimator has a bounded influence function (IF), and therefore neither
estimators is bias-robust in the sense of Hampel (1974). It is therefore
interesting to compare them with some bounded-influence estimators for

the censored regression model.



3. Optimal bounded-influence estimators for the Tobit model

In this Section we assume that the distribution of the observations is
in a neighborhood of the normal censored regression (Tobit) model. This
information is exploited to construct ‘optimal bounded-influence’
estimators of 8, = (o, 7,)’. These estimators have minimum asymptotic
mean square error (MSE) among all estimators that are consistent at the
assumed model and have a bounded IF. This implies that optimal
bounded-influence estimators cannot be improved upon simultaneously with
respect to the criteria of efficiency at the assumed model and
protection against the bias that may arise because of local failures of
the model assumptions.

It can be shown [see e.g. Peracchi (1987)] that when the estimator’'s
sensitivity ([the sup-norm of its IF with respeét to some metric] is
~ bounded by a given constant c, and the sensitivity and the MSE are both
defined in the metric of a pd matrix B, an optimal bounded-influence

estimator @ of 60 may be based on the score function
(2) n(z,0) = w(z,0) [s(z,0) - a(8)]

where 8(z,68) is the Tobit likelihood score and w(z,0) is a scalar weight
function defined by

c
(3) w(z,0) = min { 1, .

IP(6)™" [s(2,0) - a(0)1ll

The various estimators differ with respect to the choice of the metric B



and the sensitivity bound c. The symmetric, pd matrix P(6) and the

vector a(8) are roots of the system of equations
(4) Ee w(z,0) [s(z,8) - a] =0
(5) Ee w(z,6) [s(z,0) - a] s(2,8)’ - P = 0,

where expectations are taken with respect to the assumed Tobit model. A
solution to (4)-(5) exists provided that c is large ehough [see Peracchi
{1987) for a necessary lower bound].

The optimal bounded-influence estimator é\my be ihterpreted as a
weighted ML estimator, where the weight function w(-,0) depends on the
matrix B. When B = IP, 6 is the Tobit analogue of the regression
estimator of Hampel (1978) and Krasker (1980). When B = AV(a,F‘e)'1 we
obtain the analogue of the regression estimator of Krasker and Welsch
(1982). Other choices of B will be discussed later. The vector a(@) is a
bias correction term that depends on the assuméd model Fe and ensures
that 5 is (Fisher) consistent for 9 at Fe. Geometrically, the likelihood
score for one observation is shrunk to satisfy the bounded-influence
constraint, and twisted to ensure consistency at the assumed model.

If the Tobit nx_)del is correctly specified, the optimal bounded-
influence estimator 5 can be shown to be consistent and asymptotically
normal with AVM equal to P7" Q P27, where P = E_ 1(2,8,) s(z,6,)’ and
Qo = Eo n(z,eo) n(z,eo)’. ‘'The proof is a straightforward application of
results of Huber (1967) and Amemiya (1985).

When the assumption of iid normal errors in (1) is violated, 5 is

generally inconsistent. However, and this is the main reason for using
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5, if misspecification occurs because the assumed model is contaminated
with probability € by some other distribution, then the norm of the
asymptotic bias of 5 (in the metric of B) cannot exceed ec, provided
that € is small [see Hampel et al. (1986) for details]. A consistent
estimate of the AVM of 5 in the case of heteroskedasticity or non-
normality is given by f’u'l 6,‘ I‘;"‘d, where f’u = N1 En:1 (8/867) rp(zn,gu)
and @ = N1 E N n(z ,6,) n(z_,6,)".

Often the distribution of the regressors is unknown, and so the
vector a, = a(Go) and the pd matrix P0 = P(OO) have to be estimated
Jjointly with 90. One possibility is to solve the equation system

C
(6) N? £ min{ 1, [s(z_,0) - a] = 0

1P [s(2,,0) - allly

(1) N? T, B, v (r,0,a,P) [+ (r,8) - a] =0
(8) N! Z, {By v (r,6,8,P) [0 (r,0) - a] 4 (r,6)’} - P = 0,

where r is a random variable with a standard normal df. The function

: [I(r > x’a) r - 1(r £ -x’a) A(x’x)] x
A (r,s) = n n n n
n i(r > -x;a) (x‘:a +r) /7

correspords to the Tobit score, A(u) is the normal Mill’s ratio, and
w“(r,e,a,P) = min {1, ¢ / P~} [4n(r,9) - a]IIB}. Let n denote the vector
of p(p + 1)/2 distinct elements of the symmetric matrix P, and let ", =

N(OO) denote the corresponding population value. Stacking (6), (7) and
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the p(p + 1)/2 distinct equations of (8) together gives a system of 2p +

p(p + 1)/2 equations in the unknown vectors 6, a and n, namely

¥ 4
-1 o N _

(9) Nz ez ,m) =0,

where p = (6', a’, n’)’., Let u be an M-estimator defined as a root of
equation (9). It can be shown that g is consistent if the Tobit model is
correctly specified, and is asymptotically normal with AVM equal to U;1

-1

Vo Up » where U, = (3/0p’) E e(z,p)) and V, = E; ¢(2,1)) o(z,1))".

The AVM of i is generally not block-diagonal. Thus, unlike the linear
regression case, estimation of (a, =n) does affect the asymptotic
distributioh of 8. In particular, when the error distribution is
correctly specified, the AVM of 8 exceeds P;1 Q, P(’,-1 by the ped matrix

-1 ~ ~ - ]
Py' C(uy,Fy)  AV((a,m),F)) Cu,,F)’" P, where C(u,Fy) is the
expectation of the gradient of the score for 6 with respect to (a, n).

When the error distribution is misspecified, the AVM of 6 may still be

1 -1

estimated consistently by the pxp top-left sub-matrix of U"' v, U,

1 1 N

where U“ = N Znﬂ w(zn,u").

N , ~ S -
L. (9/8¢’) o(z ,p.) and Vy = N

o(z_,1)".

The computation of 5 may be quite expensive, but considerable
simplifications can be obtained by exploiting the arbitrariness of the
metric in which the norm of the IF is defined. Here we propose two
possibilities, The first is to choose B = P(G)z. Although not very
natural, this metric is convenient from the point of view of
computation, since it eliminates the need of solving for the matrix P at
each iteration. However, the resulting sensitivity measure is not
invariant under a reparameterization of the model. One choice that leads

to invariance is B = P(9) J(e)'1 P(6), where J(6) is the information
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matrix associated with the parametric model Fg. The resulting weight
function, which is also computationally simple, rescales the recentered
likelihood score whenever its norm, in the metric of the information
matrix, is greater than the given bound c. The estimators based on these
two choices of weight function are denoted by BI1 and BI2 respectively.
Table 2 summarizes the score function for each of the estimators that
we consider. BIO is the estimator based on a score of the form (2), with

a(@) given by (4) and with weight function given by
w(z,0) = min {1, ¢ / lIs(z,0)l}.

The BIO estimator is simplest to compute because w(z,8) does not depend
on a(@). It is easy to verify that the BI0 estimator is consistent at
the Tobit model, has a bounded IF and is asymptotically normal.
Therefore, it should provide good starting values for one-step versions
of the H-K and K-W estimators. The method of Bickel (1975) can be used
to show that these one-step estimators are asymptotically equivalent to

the fully iterated estimators.
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4, Empirical application

The data set that we are going to analyze is taken from the 1978-80
Household Income and Expenditure Survey of the Sudan [for a description
of the data see Deaton and Case (1985)]. It was chosen as an example of
the type of data that are often used by economists. The sources of
contamination may be several - misreporting by individual households,
coding and punching errors, data manipulation at the editing stage - but
the actual amount of contamination is unknown.

The original data set contains observations from different regions of
the Sudan. To keep the model as simple as possible, we only consider the
subset of 268 observations from the Nile region. We estimate Engel
curves for 3 commodities with a non-negligible fraction of reported zero
expenditures, namely clothing and footwear ('’ nlothing’ ), transport
services and repairs (’transport’), and tobacco products (’tobacco’).
The degree of censoring is differnt for the various commodities and is
equal to 8.2% for clothing, 23.9% for transport, and 31.7% for tobacco.

We Vconsider a number of popular models of Engel curves for an
individual commodity i:

WL: w =a/(p) +b (p) Inx

@L:  w=a/(p) +Db(p) Inx +d (p) (Inx)°
LES: p,q, =a,(p) +b (p) x

QES: P,q, =a,(p) +b (p) x + di(é) x°

14



where W, is the budget share, P,q, is total expenditure on commodity i,
p is the vector of prices of all commodities and x is total outlay. WL
is the so-called Working-Leser form. QWL adds to WL the square of ln x.
LES and QES are the Engel curves corresponding respectively to the
linear and quadratic expenditure S};stem. All curves belong to the
general class of Engel curves considered by Gorman (1981), and are all
theory consistent in the sense that each of them can be derived by
Shephard’s Lemma from  some nice cost function. QWL a.nd QES may be
interpreted as second order approximations, based respectively on powers
of 1In x and of x, to an arbitrary Engel curve.

Demographic and area effects are introduced in the analysis by
expressing income in per capita terms, and by assuming that for each
model the intercept a depends linearly on a number of household
characteristics: household size, a household compésition effect (number
of household members less than 14 years old), and an area dummy (DRUR)
with a value of one for households living in rural areas and zero for
households living in urban areas. This amr@h mey be restrictive,
because demographic and area effects may affect the whole set of
parameters.

For each commodity and functional form we first consider a number of
tests for nornnlity and conditional symmetry of the error distribution
and for the Tobit specification. The normality assumption is tested
against the general Pearson family using the score test of Bera, Jarque
and Lee (1984). The specification tests of Nelson (1981) and Ruud (1984)
are also considered. The Tobit specification is tested against Cragg’s
(1971) first model using the score test of Deaton and Irish (1984), and

against Cragg’s second model using the score test of Lin and Schmidt
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(1984), The Jjoint hypothesis of conditional symmetry and Tobit
specification is tested as in Newey (1987).

The Deaton-Irish test essentially compares a consistent estimate of
Pr (y > 0) with the efficient estimate based on the Tobit model, namely

-

N? EnL ® , where ¢ = ¢(xn’au). The Lin-Schmidt test compares a

consistent estimate of E (xy | ¥y > 0) with the efficient estimte for

the Tobit model, namely N'' I ¥,

l(yn > 0) [xn’;“+ ;n/a’n] X s where ;n
= ¢(xn’;m). "I‘hus both tests are related to Nelson’s specification test,
and have power against a variety of alternatives, including
heteroskedasticity and non-normality.

All tests are based on the maintained hypothesis that Engel curves
are correctly specified. Therefore, they all have power against
misspecification arising from omitted variables or an incorrect
functional form. All score test statistics -a.re computed in an
asymptotically equivalent form as N times the uncentered R in the
regression of a column of ones on the 1likelihood score for the
unrestricted model (evaluated at the restricted estimates). Under the
null hypothesis, all test statistics except the Deaton-Irish statistic
have an asymptotic xz distribution. The number of degrees of freedom is
equal to 2 for the Bera-Jarque-Lee test, and to the number of regressors '
for all other fests. The Deaton-Irish statistic is the square root of
the score test statistic, with the same sign as the average score for w.
Thig statistic is asymptotically normal under the null hypothesis. As
noted by Deaton and Irish (1984), if the average score for n is negative
and significantly different from zero, this is evidence against both
Tobit and Cragg’s first model.

The various test statistics are presented in Table 4. The hypothesis

16



of a Tobit model is strongly rejected in all cases, except the WL form
for clothing. The results for the WL and LES forms are generally
consistent with those for QWL and QES. Nelson’s test tends .to reject
less than the others. This may be a consequencé of its low power, as
suggested by Ruud (1984). The Ruud and the Lin-Schmidt statistics are
very close and always lead to rejection. The Deaton-Irish statistic is
always positive, which indicates rejection of the Tobit model, but not
in the direction of Cragg’s first model. The conditional symmetry
hypothesis is almost always accepted. The exceptions are transport and
the LES form for clothing.

Misspecification may alsd be detected by less formal procedures.
Following Chesher, Lancaster and Irish (1985), we uée the Tobit ML
residuals to .compute the Kaplan-Meier estimate of the distribution
function of the errors. If the model is correctly specified the Kaplan-
Meier estimate is consistent, and therefore the plot of its invers_;e
normal transform against the ordered ML residuals should be close to a
45-degree line. In agreement with our earlier findings, there is some .
evidence for normality only in the case of the WL form for clothing
[Figures 1la,b]. However, even in this case, the Kaplan-Meier estimate
has somewhat fatter tails than normal. In the other cases, especially
the expenditure equations, the Kaplan-Meier estimate looks often like
the double-exponential distribution [see e.g. the case of the LES form
for clothing in Figures 1c,d], which makes the CLAD estimator an
interesting alternative to ML.

Thus, formal tests and graphical procedures all indicate that
misspecification is likely to be present in most of the camses that we

consider. However, it is hard to determine the exact nature of the
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misspecification, and in particular, whether it is due to failures of
the Tobit specification or simply to failures of t.he‘ normality
assumption. To what extent is this going to affect estimtiqn of the
parameter of interest, namely the income elasticity of demand?

Here we compare the results obtained for 8 different estimators: the
Tobit ML estimator, the 5 bounded-influence estimators discussed in
Section _3, and Powell’s CLAD and SCLS estimators. Details on the
computation are given in the Appendix. We also computed one-step
versions of the H-K (Hampel-Krasker type) and K-W (Krasker-Welsch t&pe)
estimators, starting at the BIO estimator, but somewhat surprisingly
they behaved rather poorly and therefore are not presented here.

Estimated standard errors for the ML estimator are consistent under
heteroskedasticity and non-normality. The AVM for bounded-influence
estimators was estimated in the two ways suggesied in Section 3. The
first estimate is consistent if we condition on the given set of
regressors, which is not unreasonable in the present context. The second
estimate is fully consistent but is difficult to compute, because of the
need of differentiating numerically a very complicated score function.
The computation is simplest in the BI1 case, because only the
recentering vector a, has to be estimated. For this estimator we present
unconditional t-ratios for the WL and LES case, along with the
conditional ones. No clear pattern emerges, and the results appeer to be
very sensitive to the choice of the displacement for numerical
differentiation and the ‘order of quadrature for numerical integration.
For this reason, in what follows we only report the conditional standard

errors.

For the CLAD covariance estimates we consider different window
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widths for the non-parametric estimator of the error density at the
origin. The estimates are very sensitive to the degree of smoothing. We
report results for three choices, corresponding respectively to setting
c, = 0.5, 1.0 and 2.0 in equation (5.5) of Powell (1984).

Table 6 presents estimates of the income elasticity of demand
evaluated at the median income. First consider the WL and LES forms. In
the case of clothing estimates do not change much between models and
estimation techniques, and are rather precise. In the case of transport
the differences between ML and all other estimates tend to be large.
Semi-parametric and bounded-influence estimates are generally close
(with the exception of the H-K estimator, perhaps because of the
numerical problems encountered in this case), but bounded-influence
estimates tend to be more precise. In the case of tobacco again we find
large differences between ML and all other esti.matérs, but all estimates
are very unprecise.

In the QWL case, estimated elasticities are close to the ones for the
WL and LES forms. In the QES case, however, ML estimates just blow up.
For all goods ML estimates are at least twice as big as for the other
specifications. The SCLS estimates are not reported because of
divergence of the algorithm. The other estimates are also larger than
for all previous specifications, but the increase is much less
pronounced.

Our results are illustrated in Figure 2, that compares the shape of
estimated Engel curves for transpoﬂ: in the case of a median household
with 7 household members, 4 adults and 3 children, living in a rural
area. The differences between ML and the other estimates are also very

big in the case of tobacco, but are smaller in the case of clothing.
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Specification tests based on the difference between ML and bounded-
influence estimates satisfy the conditions for powerful tests [see e.g.
Ruud (1984)], nam_ely a large difference between estimators under the
alternative model, and a relatively efficient alternative estimator to
ML. On the other hand, tests based on the difference between the ML and

the CLAD or SCLS es;c.imator satisfy the first but not the second
conditions and therefore should be less powerful.

The specification test statistics are presented in Table 7. The test
statistics are computed as NI times the uncentered R® in the regression
of a column of ones on the likelihood score and the influence function
for the subset of regression parameters, both evaluated at the ML
estimates. Under the null hypothesis- of correct specification these
statistic have an asymptotic xz distribution with the number of degrees
of freedom equal to the number of regression Wters. We find this
artificial regression form more convenient than Hausman (1978) original
form, because the covariance matrix for the difference between the two
contrasts, even when constrained to be psd, ‘ as suggested in Newey
(1985), is typically singular.

Equality of the regression coefficients is typically rejected for
clothing and transport, but not for tobacco. In the case of CLAD and
SCLS rejection occurs less frequently, essentially because of the larger
standard errors of these estimates. Interestingly, equality of the whole
parameter vector is almost always rejected in the case of bounded-
influence estimators. This partly reflects the fact that ML estimates of
the scale parameter are usually larger and less precise than bounded-
influence estimates.

Can we detect what are the influential data points in the sample? One
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possibility is to use diagnostic methods of the type proposed by
Belsely, Kuh and Welsch (1980) and Cook and Weisberg (1982) for the
linear model. These methods are all based on deleting a subset of
observation at a time and then comparing the resulting estimates with
the ones based on the full sample. A subset of observations is deemed to
be influential if this difference is large. Usually only methods based
on the deletion of single observations are applied, because of the
combinatorial problems arising with multiple deletion. However, even
single' deletion methods may be quite expensive for non-linear
estima.tom, in particular when the number of obeervations is high.
Moreover, it is not clear what is the best way of summarizing all the
information contained in the differences.

Another possibility is to examine, for a given estimator, the norm of
the IF for each observation. An influential observﬁtion is one for which
the norm of the IF is big. In large samples, this is equivalent to
deleting one observation at a time and then computing the norm of the
difference in the estimates with respect to the full sample [see e.g.
Efron (1982)].

Neither method is entirely satisfactory for detecting outliers. On
the one hand, it is well known that single deletion methods may fail to
reveal the patﬁern of multiple outliers [see e.g. Atkinson (1986)]. On
the other hand, outliers may not be detected by methods that are based
on estimators that are not robust.

As an example, consider the relationship between log per-capita
income and budget share on transport. To each point in the scatter we
superimpose the norm of the IF of the Tobit ML estimator, the IF being

evaluated at the ML estimates [Figure 3] Two very influential points are
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clearly revealed. However, the norm of the IF is not very large for the
points in the cluster on the top-right of the scatter. These points
correspond to households with an unusually high expendituré share on
transport (15% or more). It is their presence that explains why ML
estimates of elasticity are so large, especially in the QES case.

As an alternative to the previous methods we recommend using the
weights from bounded-influence estimation. An influential observation is
now one which receives a small weight. The weights are jointly computed
with the robust parameter estimates and no a.dditionarlr calculation is
required. They are easy to interpret given the weighted ML nature of
bounded-influence estimators, and summarize all the information on the
influence of one observation in a single scalar number in the interval
[0,1]. Figure 4 is a graphical illustration of the use of the robust
weights. The scatter of the log per capita incomé and the budget share
on transport is presented again, this time with the robust weights
superimposed. Notice that the two very influential observations of
Figure 3 are heavily downweighted, but so are now the points in the.
cluster on the top-right of the scatter. The various estimators differ
in the weight assigned to each of these observations. The H-K estimator
downweights more the former set of points, while the other bounded-

influence estimators downweight more the latter.
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5. Conclusions

This study shows that estimated Engel curves may differ significantly
depending on the choice of estimation technique. This does not surprise,
given the systematic rejection of the assumptions of normal errors and
- Tobit specification. What may surprise, however, is the extent to which
ML may differ from the other estimates as an effect of a few extreme
observations.

We found that semi-parametric and bounded-influence estimates tend to
be close to each other, but the latter appear to be more precise and
lead to tests that appear to be more powerful. It would be interesting
to verify these indications with a full scale Monte Carlo study.

This study also demonstrates the feasibility of bounded-influence
estimation outside the context of the linear regfession model. In our
view, using bounded-influence estimators in applied work offers several
advantages. First, it ensures protection against influential
observations and local failures of parametric assumptions. Second, the
difference with respect to ML estimates provides the basis for
specification tests that have power against a variety of alternatives.
‘Third, as diagnostics for outliers and influential observations, robust
weights appear to be do better than the usual data deletion procedures.
The price one has to pay by using these estimators is a loss of
efficiency with respect to ML if the assumed model is indeed correct.
However, and this is yet another advantage, the investigator can choose

the efficiency loss that he/she is willing to tolerate.
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Appendix

The computation of bounded-influence estimates proceeds as follows:

~

- (0) _
_Gm_a.nda = 0.

1. Start with 0

(1) (0),-1/2

2. Choose A“) = Ip for the BIO and BIl estimators, A = J(O )

for the BI2 estimator, A‘*’ = P(8'°?)"! for the H-K estimator and

(1) (0}

A'Y = qe!?)-1/2 (0)

) for the K-W estimator [P(6 ) is the solution to

(11) for a given a'?’, and Q(6) is defined in Proposition 1].

3. Given A“r), compute a'l) ag
o -1
a(”=[2nE¢min{1, }]
1A 1o (r,0'?) - b1y
. c - (o)
x En E¢ min { 1, 4n(r,9 )

(1)

1A 1o (r,0'”) - 1y

where b‘?’ is equal to 0 for the BIl1 estimator and is equal to am)
otherwise. The normal integrals are evaluated numerically by using

the Gauss-Legendre subroutine in Quandt (1986).

(1)

4. Given A(”, a(” and b’ ', compute o't by solving

c L
Z min{ 1, } [s(zn,O) -a

1a'V sz _,6) - 14

1)

] =0.

This is done by using the Newton-Raphson algorithm NEWRAP in GQOPT.

(2)

5. Given 9“), compute A(Z), a ", b(Z)and 82 ag in Step 2 to 4, and

iterate. Convergence of this algorithm is not guaranteed.
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The sensitivity bound c is chosen so as to obtain an average weight
of about 95%. When ¢ = ® all bounded-influence estimators that we
consider are the same as the ML estimator, with an average weight equal
to unity. Thus, our choice of the sensitivity bound may be interpreted
as resulting in an efficiency loss of about 5% when the Tobit model is
indeed correct. The % of downweighted observations varies depending on
the specification and, to a lesser extent, the type of estimator.
Typically is between 10 and 15% for the WL and QWL forms, and is
somewhat lower for LES and QES. In the latter case, however, the value
of the minimum weight is much smaller, which indicates the presence of
highly influential observations.

The convergence criterion requires the maximal change in any of the
parameter estimates to be less than 10 7. Convergence is typically
attained after 5 to 10 iterations of the outer l§op. We had numerical
préblems with the H-K estimator, in particular for the QWL and QES
specifications, and we do not report results for these two cases. For
the other bounded-influence estimators, sometim.es the algorithm cycled
between two values very close to each other. In these cases convergence
was always reached by weakening the tolerance to 10-3.

The CLAD estimates are computed by iteratively reweighted LS with
weight function given by w(y,x,B) = 1(x’B) min{l? - x’BI'i, 5'1}, where
€ is positive and small. The SCLS estimates are computed by the
iterative LS algorithm mentioned in Powell (1986). The convergence
criterion requires the maximal change in any of the parameter estimates
to be less than 10~ °. CLAD estimates typically need more iterations to
converge. In a few cases the limit of 100 iterations was reached without

convergence,

25



Amemiya, T. (1985), Advanced Econametrics, Harvard University Press,
Cambridge, Mass.

Arabmazar and Schmidt (1981) "Further evidence on the robustness of the

Tobit estimator to heteroskedasticity", Journal of EBconometrics, 17,
253-258.

Arabmazar and Schmidt (1982), "An investigation of the robustness of the
Tobit estimator to non-normality", Econometrica, 50, 1055-1063.

Atkinson, A.C. (1986), "Masking unmasked", Biometrika, 73, 533-541.

Belsley, D.A., Kuh, E. and Welsch, R.E. (1980), Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity, Wiley, New
York.

Bera, A.K., Jarque, C.M. and Lee, L.F. (1984), "Testing for the
normality assumption in limited dependent variable models",
International Econamic Review, 25, 563-578.

Bickel, P.J. (1975), "One-step Huber estimates in the linear model",
Journal of the American Statistical Association, 70, 428-434,

Chesher, A., Lancaster, T., and Irish, M. (1985), "On detecting the
failure of distributional assumptions", Discussion Paper 85/165,
Department of Economics, University of Bristol.

Cragg (1972), "Some statistical models for limited dependent variables
with applications to the demand for durable goods", Fconometrica, 39,
829-844.

Deaton, A. and Irish, M. (1984), "Statistical models for zero

expenditures in houseld budgets", Journal of Public Economics, 23,
59-80.

Efron, B. (1982), The Jackknife, the Bootstrap and Other Resampling
Plans, SIAM, Philadelphia.

Goldberger, A. (1983), "Abnormal selection bias"”, in S. Karlin, T.
Amemiya, and L.A. Goodman (eds.), Studies in Econometrics, Time

26



Series and Multivariate Statistics, Academic Press, New York.

Gorman (1980), "Some Engel curves", in A.S. Deaton (ed.), Essays in
Theory and Measurement of Consumer Behavior, Cambridge University
Press, Cambridge, U.K.

Hempel, F.R. (1974), "The influence curve and its role in robust
estimation", Journal of the American Statistical Association, 69,
383-393.

Hampel, F.R. (1978), "Optimally bounding the gross-error- sensitivity
and the influence of position in factor space", Proceedings of the
ASA Statistical Computing Section, ASA, Washington, D.C.

Hampel, F.R., Ronchetti, E., Rousseeuw, P.J., and Stahel, W.A. (1986),
Robust Statistics: The Approach Based on Influence Functions, Wiley,
New York.

Hausman, J.A. (1978), "Specification tests in econometrics",
Econometrica, 46, 1251-1272.

Huber, P.J. (1967), "The behavior of maximum likelihood estimates under
non-standard conditions", Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1, 221-33.

Hurd, M. (1979), "Estimation in truncated samples when there is
heteroskedasticity", Journal of Econometrics, 11, 247-258.

Kiefer, N. and Skoog, G. (1984), "Local asymptotic specification error
analysis", Econometrica, 873-885.

Krasker, W.S. (1980), "Estimation in linear regression models with
disparate data points”, Econometrica, 48, 1333-1346.

Krasker, W.S. and Welsch, R.E. (1982), "Efficient bounded-influence
regression estimation", Journal of the American Statistical
Association, 77, 595-604.

Lin, T.F. and Schmidt, P. (1984), "A test of the Tobit specification
against an alternative suggested by Cragg", Review of Economics and
Statistics, 66, 174-177.

Nelson, F.D. (1981), "A test for misspecification in the censored normal
model"”, Econometrica, 49, 1317-1329.

27



Newey, W.K. (1985), "Maximm likelihood specification testing and
conditional moment tests", Econametrica, 53, 1047-1069.

Newey, W.K. (1987), "Specification tests for distributional assumptions
in the Tobit model", Journal of Econometrics, 34, 125-145.

Paarsch, H.J. (1984), A Monte Carlo comparison of estimators for
censored regression models", Journal of Econometrics, 24, 197-213.

Peracchi, F. (1987), Bounded Influence Methods in Econometrics with an
Application to the Censored Regression Model, Ph.D. Thesis, Princeton

University.

Powell, J.L. (1984), "Least absolute deviations estimation for  the
censored regression model", Journal of Econometrics, 25, 303-325.

Powell, J.L. (1986), "Symmetrically trimmed least squares estimation for
Tobit models", FEconometrica, 54, 1435-1460.

Quandt, R.E. (1986), "Econometrics of disequilibrium", Princeton
University, mimeo. '

Ruud, P.A. (1984), "Tests of specification in econometrics", Econametric
ReV.ieWS, 3, 211-242-

White, H. (1982), "Maximmm-likelihood estimation of misspecified
models", Econometrica, 48, 817-838. '

28



Table 1

Normal likelihood score (r = yy - x'a).

sa(z,e)

37(2,9)

sa(z,e)

sr(z,e)

sa(z,e)

su(z,e)

sv(z,e)

sa(z,e)

s”(z,a)

sy(z,e)

1. Truncated regression model

P(x'ax)
{y > 0) r - X
[ ®(x’) ]

1y > 0) [%-ry] :

2. Censored regression model

P(x’a)
Hy>0) r-1(y=0) ——— | x
[ 1 - ®(x’x) ]

1(y > 0) [-.i--ry]

3. Cragg’s 1st model

n P(x’a)
Hy>0)r - 1(y = 0) x
1 -n &(x'x)
1 ¢(x’a)
1y > 0) 3 - 1(y = 0)
1 -n &(x’ax)

[y

1(y > 0) [ = - ] .

4, Cragg’s 2nd model

-d

P (x’x)
Wy >0) | r - X
[ ¢(x'x) ]
Uy > 0) 3 - 1y = 0) 1=

1(y>0)[%-ry].
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Table 2

Bounded-influence estimators for the censored regression model.

All bounded-influence estimators that we consider are based on a score

function v of the form

C

n(2,0) = min{ 1, } [s(z,8) - a(6)]

la(@) [s(z,8) - b(6)]ll

where:
Estimator b{(8) A(9) Metric on the IF
BIO 0 I -
P
BI1 a(8) I P(6)?
BI2 a(@) J(0)" Y% pe) 56)° ! po)
H-K (Hampel-Krasker) a(@) p(o)! 1
K-W (Krasker-Welsch) a(®) Q@)% pe) qo) ! po)

Note: The px1l vector a(@) and the pxp matrix P(0) are solutions to
equations (11)-(12) in the text, and Q(0) = EG n(z,08) n(z,8)’.
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Table 3

Definition and summary statistics for the variables in the data set.

SHXCLOTH:
SHXTRANS:

% sha.re of total exp. on clothing and footwear.
% share of total exp. on transport services and repairs.

SHXTOBAC: % share of total exp. on tobacco products.
XCLOTH : household expenditure on clothing and footwear.
XTRANS : household expenditure on transport services and repairs.
XTOBAC : household expenditure on tobacco products.
LXPC ! log of total expenditure per household member.
LXPCSQ : square of LXPC.
XrC : total expenditure per household member.
XPCSQ : square of XPC.
HHSIZE : number of household members.
~ LT14 ! household members less than 14 years old.
Variable Min Max Median MAD (1)
SHXCLOTH 0.00 22.35 4.0 92.24
SHXTRANS 0.00 30.43 0.97 0.97
SHXTOBAC 0.00 12.27 0.52 0.52
XCLOTH 0.00 52.63 4.00 2.73
XTRANS 0.00 73.53 0.94 0.94
XTOBAC 0.00 19.44 0.34 0.34
LXPC 7.97 11.68 9.41 0.31
LXPCSQ 63.45 136.48 88.54 5.77
XPC 2.88 118.46 12.20 3.73
XPCSQ 8.29 14032.43  148.89 84.30
HHSIZE 2 16 7 2
LT14 0 9 3 S |

(1) Median absolute deviation from the median.
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Table 4

Tests for normality, symmetry and Tobit specification.

Nelson BJL L-S D-1 Newey

Ruud
Clothing
WL 14.1v
LES 93.2
QWL 15.9p
QES 99.0
Transport
WL 110.3
LES 161.5
QWL 118.9
QES 171.5
Tobacco
WL 48.9
LES 70.7
QWL 50.2
QES 75.5

4,01a 4.22a 14.1b 1.68a 6.88a
71.5 36.6 94.6 4.06 19.6
7.21a 4.78a 16.0b 1.69a 8.73a
127.0 20.2 100.6 0.95a 9.14a

40.6 60.8 111.8 10.2 16.4
80.7 37.8 162.5 12.7 12.0p
61.0 59.6 119.4 10.6 15.5
184.3 70.0 178.0 11.9 e

11.1b 45.8 49.0 6.74 6.39a
23.8 61.5 71.1 7.22 6.84a
17.3 46.7 50.2 6.80 3.94a
82.0 54.5 77.4 6.37 c

a: Asymptotic p-value greater then .05.
b: Asymptotic p~value between .01 and .05.

c: Not available.
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Table §
T-ratios of the BI1 estimates. A: Conditional on the given set of
regressors. B! Unconditional, 20-point Gauss-Legendre integration.
C: Unconditional, 40-point Gauss-Legendre integration.

Clothing Transport Tobacco
WL  LES WL  LES WL  LES

CNST

A 3.41 5.47 4.92 5.77 2.47 .207

B .589  10.3 11.8 .956 .420 .127

o 3.53 1.45 .674 22.0 .436  .767
INCOMEa

A 4.23 17.75 5.29 6.23 2.12  .425

B .719  13.8 12.7 .966 .364  .231

c 8.10 2.19 .754 25.0 .369 .624
HHSIZE

A 1.50 4.99 2.93 5.42 1.11  2.90

B 1.07 17.6 5.75 3.80 2.52 6.22

o 1.47 .844 2.77  11.3 2.15 6.13
LT14

A 1.24 .055 .374  .118 1.91 1.95

B 1.37 .184 .859  .107 1.16 17.63

c .437  .028 .094  ,207 4,76 2.74
DRUR

A 1.03  .222 2.41 2.29 1.80 2.40

B 1.21  .656 5.45 2.00 2.43 6.86

a: LXPC for WL and XPC for LES.
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Table 6
Income elasticity of demand evaluated at the median
(standard errors in parentheses).

Clothing

Transport

Tobacco

WL LES QWL QES

WL LES QWL QES

WL LES QWL QES

Tob

BIO

BI1

BI2

H-K

K-W

it 1.61

(.122)

1.54
(.127)

1.54
(.128)

1.58 -

(.117)

1.63
(.118)

1.59
(.119)

1.55
(.127)

1.61
(.082)
(.115)
(.113)

1.23
(.475)

1.60
(.207)

1.60
(.207)

1.62
(.199)

1.54
(.318)

1.71
(.186)

.948
(.368)

1.39
(.710)
(.227)
(.170)

1.71 2.64
(2.48) (.362)

1.62 2.08
(2.18) (.186)

1.62
(2.31)

2.08
(.186)

1.62
(3.33)

2.00
(.486)

1.63
(3.70)

2.09
(.763)

1.66
(.124)

3.25
(.531)

1.61
(.099)
(.109)
(.114)

2.11
(.319)
(.484)
(.573)

5.85
(.745)

3.10
(.383)

3.09
(.394)

2.97
(.317)

4.51.
(.569)

3.20
(.347)

3.68
{.895)

3.13
{.532)
(.420)
(.502)

6'73
(2.67)

3.63
(.582)

3.63
(.582)

2.60
(.394)

6.99
(2.95)

3.30
(.459)

2.38
(1.40)

2.97
(2.41)
(3.95)
(1.85)

5.70
(26.7)

3.46
(21.2)
3.47
(22.8)

3.06
(12.5)

3.21
(12.7)

3.21
(.561)

3.14
(2.17)
(.429)
(.645)

13.24
(1.77)

4.60
(.377)

4.29
(.379)

3.09
(1.53)

4.19
(1.09)

b

4.69
(.915)
(.943)

(1.42)

.620
(.660)

-.025
(.484)

-0027
(.484)

-.022
(.471)

.375
(.544)

.031
(.495)

-1-42
(.853)

.170
(.716)
(.628)
(.794)

1.12  .593

3.27

(.815) (13.4)( 1.67)

.253 =~.073
(.581) (10.2)

.254 ~.079
(.583) (10.2)

-.026 -.119
(.267) (9.80)

.817 a
(.877)

.314  .022
(.654) (10.5)

-.084 -3.38
(1.30) (3.05)

0.010 .245
(1.52) (.741)
(2.01) (.504)
(.309) (.667)

1.42
(2.16)

1.42
(2.15)

.276
(1.41)

1‘59
(2.14)

b

.655
(.690)
(.982)
(.942)

a: Not computed.
b: Algorithm failed to converge.
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Table 7

Specification tests on the regression parameters.

BIO BI1 BI2 H-K K-W SCLS CLAD

Clothing

WL 20.0 19.3 18.3 3.82a 15.8 2.02a 1.55a

LES 98.8 98.9 111.9 19.5 105.1 7.14a 19.8

QWL 7.86a 7.81a 20.4 c. 16.7 1.03a 3.64a

QES 30.1 30.1 56.4 c 44,7 27.7 18.9
Transport

WL 253.9 257.0 228.4 24.5 123.1 23.6 20.7

LES 171.2  175.4 164.5 100.0 86.2 38.4 13.9b

QWL 101.3 120.1 203.6 c 43.5 32.3 21.9

QES 16.2p 17.0 56.6 c 13.0p 54.4 32.1
Tobacco

WL 7.19a 7.51a 8.98a 16.8 13.0p  16.9 15.2

LES 7.58a 7.69a 2.61a 24.8 8.13a 26.7 30.8

QWL 19.4 19.8 14.3b c 12.0a  18.7 15.6b

QES 20.0 20.2 1.02a c 7.90a 27.7 21.8

a: Asymptotic p-value greater than .05.
b: Asymptotic p-value between .01 and .05.

c: Not available.
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B17 WEIGHTS SUPERIMPOSED. WORKING-LESER FORM

Figure 4a

PLOT OF TRANSPORT SHARE VS, LOG PER<CAPITA OUTLAY
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Figure 4b
PLOT OF TRANSPORT SHARE VS. LOG PER~CAPITA OUTLAY
B8i2 WEIGHTS SUPERIMPOSED. WORKING-LESER FORM
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Figure 4c

PLOT OF TRANSPORT SHARE VS. LOG PER-CAPITA OUTLAY
H-K WE!GHTS SUPERIMPOSED. WORKING-LESER FORM
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Figure 4d
PLOT OF TRANSPORT SHARE VS. LOG PER~CAPITA OUTLAY
K=W WEIGHTS SUPERIMPOSED. WORKING=LESER FORM
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