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ABSTRACT

Consider the first-order autoregressive process Yy = O¥_1 e Yy o fixed

AN
constant, e, ~ i.i.d. (0,02) and let o be the least—squares estimator of o based on a

t
sample of size (T + 1) sampled at frequency h. Consider also the continuous time

Orhnstein—Uhlenbeck process dyt = Gytdt + csdwt where w, is a Weiner process and let

t
A 7AY
O be the continuous time maximum likelihood (conditional upon yo) estimator of 0

based upon a single path of data of length N. We first show that the exact distribution
of N(é\ ~ 0) is the same as the asymptotic distribution of T(& — o) as the sampling
interval converges to zero. This asymptotic distribution permits explicit consideration
of the effect of the initial condition ¥ upon the distribution of 0. We use this fact to

A
provide an approximation to the finite sample distribution of « for arbitrary fixed Yo

The moment—generating function of N(@ — 0) is derived and used to tabulate the
distribution and probability density function. We also derive the mean and
mean-—square error of 6 as well as the power function. In each case, the adequacy of
the approximation to the finite sample distribution of o is assessed for values of o in
the vicinity of one. The approximations are, in general, found to be excellent.

Key Words: Orhnstein—Uhlenbeck process, moment—generating function,
near—integrated processes, unit root, distribution theory.






1. INTRODUCTION

Consider the following first—order stochastic difference equation:

L)y =ay_q+e,

where Yo = b a fixed constant and the e, are independently and identically distributed

t
N(O,oz) variates. The unrestricted maximum likelihood estimate of o (conditional
upon the initial observation yO) based upon a sequence of observations of size T + 1,

{yt}g, is the least squares estimator
A _§T T 2 1
o= zt=1 ytyt—1(2t=l yt__l) .

A
The distribution of o has been extensively studied. One topic of concern has
been the adequacy of various asymptotic approximations to the finite sample
distribution.

Mann and Wald (1943) and Rubin (1950) showed that TV/2(a — o))(1 — o2y L
has a limiting N(0,1) distribution when lal < 1. White (1958) showed that when lal >

T, 2

1, the limiting distribution of lal ™ (0™ — 1)_1 (& — ) is Cauchy provided that Yo = 0.

A
White also considered the case-lal = 1 and showed that the limiting distribution of T(o
— o) can be expressed in terms of the ratio of two functionals of a Weiner process (see
also Phillips (1987)). In the latter case Rao (1976) obtained a computable expression.

The case of the unit root o = 1 has attracted a great deal of attention. The
critical values of the asymptotic distribution of T((l)\c — 1) have been derived by Dickey
(1976) by simulation methods. Evans and Savin (1981a) obtained tabulated values of
both the cumulative distribution function and the probability density function of the
limiting distribution of (T/ﬁ)(& — 1) by numerically integrating the limiting moment
generating function derived by White (1958). A variety of procedures have also been
suggested which permit a considerable weakening of the conditions imposed on the
innovation sequence {ct} while at the same time using the same critical values derived



in the earlier studies; see, for example, Dickey and Fuller (1979, 1981), Said and
Dickey (1984) and Phillips (1987a).

The major point which emerges from these studies is that the asymptotic
distributions have a discontinuity at one. Because the exact distribution of & is
continuous for all values of a, this suggests that the limiting distribution inadequately
approximates the finite sample distribution for o near the discontinuity point o0 = 1.
This inadequacy has been well-documented by Evans and Savin (1981b, 1984) and by
Phillips (1977) who also showed that Edgeworth expansions also perform poorly for o
less than but close to one.

Recently, a new class of models which specifically deal with the presence of a
root close to, but not necessarily equal to,one, have been studied. Phillips (1988)
introduced the concept of a near—integrated random process where the autoregressive
parameter is defined by:

(1.2) o =exp(c/T).

Here, the real-valued constant ¢ is a measure of the deviation from the unit root case.
The models (1.1) and (1.2) may also be described as having a root local to unity (see
Cavanagh (1986)): as the sample size increases, the autoregressive parameter
converges to unity. When c is negative, the process {yt} is said to be (locally)

stationary and when c is positive, it is said to be (locally) explosive. An expression for
the limiting distribution of T((I)\c - o) under (1.2) has been derived by Phillips (1988),
Cavanagh (1986) and Chan and Wei (1987), and the analysis has been extended to a
multivariate framework in Jeganathan (1987). This class of models has been quite
useful in studying various problems such as the power of tests of a unit root under local
alternatives (Phillips (1987b), Phillips and Perron (1988) and Perron (1986)), the
derivation of confidence intervals when o is near unity (Cavanagh (1986)) and the

calculation of the power of tests of a unit root with a continuum of observations
(Perron (1987)).

A
Tabulations of the limiting distribution of T(a —o) under (1.2) have been
obtained by Nabeya and Tanaka (1987), Cavanagh (1986) and Perron (1988) using
different procedures. These studies also provide some measures of the adequacy of this



A
limiting distribution to the finite sample distribution of & when « is in the vicinity of 1.
They show the approximation to be quite good in the case where Yo = 0.

A feature of substantial interest is that the limiting distribution of T((/)\c —t)
under the near—integrated process (1.2) is invariant to the value of the initial
observation Yo As thoroughly documented by Evans and Savin (1981b), the finite

A .
sample distribution of o is very sensitive to the value of Yo when o is near 1 even for

quite large sample sizes. Hence, the approximation provided by the 'near-integrated’
limiting distribution is adequate only in the special case where Yo = 0. When Yo * 0,

the approximation fails to capture the substantial effect a non—zero initial condition has
on the finite sample distribution.

The purpose of this paper is to present a rather different approach in deriving
an asymptotic approximation which permits the explicit consideration of the effects of
different initial conditions on the distribution of T(& — o). Instead of the usual
framework where the sample size increases to infinity keeping a fixed sampling
interval, we use the so—called continuous records asymptotic analysis where T is
increased to infinity keeping the span of the data fixed, i.e. by letting the sampling
interval converge to zero at the same rate as T increases to infinity. This method is

closely related to the exact distribution of estimators in continuous time.
Consider the following continuous time Orhnstein—Uhlenbeck diffusion process

(13) dy,=Oydt+oydw; y,=b,t>0.

W, is the standard Weiner process. The maximum likelihood estimator of ©,

conditional upon Yo = b, is
A N 2
b= My

where N is the span of the data. The discrete time representation of Y in (1.3) is given

by



(14)  yy = exp@h)y _pyp + U

2. 26h

where Uy~ N(O,Go(c ~ 1)/20) and h is the sampling interval. (1.4) is in the form

of (1.1) with a = exp(6h).

We derive the limiting distribution of T(& — o) under (1.4) as h - 0 and show

A
that it is identical to the exact distribution of N(8 — 6) under (1.3). Furthermore, this
distribution contains an explicit dependence upon the initial condition Yo and reduces

to the near—integrated asymptotic distribution in the special case where Yo = 0. These

distributional results are considered in Section 2 which also discusses some interesting
corollaries.

Section 3 derives the joint moment-generating function of (N_1 [ I(\)I ytdwt,
N_zfl(\)lytzdt). The expression obtained contains as a special case the limiting joint

moment—generating function derived by Phillips for the 'near—integrated' framework by
setting Yo = 0. The result of White (1958) and Evans and Savin (1981a) is a special

case obtained by setting Yo = Oand 6 =0.

Section 4 uses the results of Section 3 to derive and tabulate the cumulative
distribution and probability density function for selected combinations of the
parameters 0 and Yor and provides some measure of the adequacy of the approximation

A
to the discrete—time finite sample distribution of o.

Section 5 derives values for the bias and mean-squared error functions and
discusses their use in approximating the exact mean and variance of (/)\c. The issues of
power are discussed in Section 6 with special emphasis on the power of tests for a unit
root against alternatives close to one. Finally, Section 7 offers remarks about the
usefulness of our method to other frameworks. A mathematical appendix contains the

proofs of some theorems.

Throughout the paper, we provide a measure of the adequacy of the asymptotic

approximation to the finite sample counterpart. The various percentage points of the



distribution, the moments of the distribution and the power functions are considered in
turn. The results are quite striking, showing a very close approximation.

2. SOME DISTRIBUTIONAL RESULTS

We begin by restating our stochastic framework more formally. We consider
an observable process {yt, t > 0} defined on a probability space (Q, F, us). We denote

by {Ft’ t > 0} a non—decreasing family of sub-G-algebras of F such that y, is E
measurable. We denote by {Wt’ t > 0} the standard Weiner process; that is, a stochastic
process with independent increments defined on a probability space (€2, F, pw) with W

= 0 and where w(t) — w(s) is N(0, It —sl). w_is Ft measurable and the process wt(s) =

t
w(t + s) — w(t), (s 2 0), is independent of Ft for any fixed t 2 0. The measure ug is

induced by the following diffusion type process postulated for ¥
(2.1) dyt = Gytdt + (det » Yo = b, t > 0.

(2.1) is the standard Orhnstein—Uhlenbeck process. © and ¢ are unknown
parameters with —= < 8 < «» and ¢ > 0. The unique solution (ug measure) in the mean

squared sense to {yt} is given by (see, e.g., Arnold (1974)):
(22) y,=expOOb + & [ exp(6(t - s)dw.

The integral that appears in (2.2) is a stochastic integral. After Phillips (1988),
we adopt the following notation: Je(t) = (t) exp(O(t —- s))dws. The solution to A is

then written as:

(2.3) Y = exp(6)b + o Je(t).

Note that Je(t) ~ N(O,(ezet — 1)/20). Our concern is the estimation of the

unknown parameter 6 given a single sample path of observations {yt, 0 <t < N}, where



N is the span of the data. The analog to the least—squares procedure in continuous time
yields the following estimator:

@4y Bym = 1IN yay /I yvia

A
6(y) is also the unrestricted maximum likelihood estimator when b = 0 (see,
e.g., Liptser and Shiryayev (1978), 17.1.1). For simplicity of notation, we shall simply
A A
write 0 = BN(y) and analyze the distributional properties of the standardized estimator

N - 6).

The discrete—time representation of the process A is easily shown to be given

by:

(2.5) Yin = exp((':)h)y(t_l)h tug s Y9 = b,t=0

where Uy, ~ N(, 0_2(626h 1)/26) and h is the sampling interval. In this discrete-time

framework the goal is to estimate the unknown quantity o = exp(6h) given a sequence
of observations {yth’ t =20,1, 2, .., T} where T = N/h is the total number of
observations available (minus one given the initial condition yO). The least square

estimator (and maximum likelihood estimator conditional upon yO) is

A T T 2
26) oy =2 Y-/ Zr=1 Y(-1)h

A
We focus on the asymptotic distribution of T(och - (xh) as h - 0 given a fixed
span N. For simplicity, we consider a limiting sequence {h = hl’ h2, s hn} such that

T = N/h is integer—valued and we require that hn -0asn - oo,

The 'near—integrated’ framework analyzed by Phillips (1988), Nabeya and
Tanaka (1987), Perron (1988) and others specify the following process for ¥y

2.7 Vi =0y, 1 tep Yo = b,t20



A A
with e ~ N((),o‘2 ) and a = exp(c/T). Here, the statistic of interest is T(ot — ) where o

is the least—squares estimator of o in (2.7) and the asymptotic distributional results are
obtained letting T - ». Note the close relationship between the 'mear—integrated’
framework and the discrete—time representation of the Orhnstein—Uhlenbeck process.
The models are essentially the same if we interpret the parameter ¢ as 6N since one can
write o = exp(6h) = exp(ON/T).

The main result of this section ties together:

— the exact distribution of N(é — 0) given as sample path of observations {yt}I(\)I;
— the asymptotic distribution of T((,)\Lh — och) with the continuous records asymptotic;

— the (T - «) asymptotic distribution of T((I)\c — o) in the near-integrated framework.

Theorem 1

Let  A(e) =g explendw, + [§ T ©dw,
and  B(ye) = Y(exp(2e) — 1)/2c + yI explen] @dr + [} 1 @’dr,
where J C(r) = (r) ec(r-'s)dwS and W, the standard Weiner process defined on C(0,1).

1) Let {yt, t 2 0} be a continuous—time stochastic process generated by (2.1) and let 6

be the estimator of 6 defined by (2.4), then

A d
N(e - G) = A('Y,C)/B('Y,C) = Z(Y’C)

d

12 and ¢ = ON; and where = signifies equality in distribution.

with = b/oN!



ii) Let {yt, t = 0} be a continuous time stochastic process generated by (2.1) and let &h
be defined by (2.6) with {yth’ t=0, .., T} generated by (2.5), then as h - 0 with T - o
and N fixed:

T(@y, — o) - Z(c)

with, again, Y = b/oN1/2

distribution.

and ¢ = ON; and where - denotes weak convergence in

iii) Let {yt, t =1, .., T} be a stochastic process generated by (2.7) and & be the

least—squares estimator of o from that regression, then as T - oo:
A
T(o — o) = Z(0,c).
The proof of part (iii) is given in Phillips (1987b). The proof of part (ii) is

closely related to the proof of Theorem 3.1 in Phillips (1987b) and is presented in the
appendix.

To prove part (i), we consider a scale transformation from t € (O,N) to r € (0,1)

such that t + Nr =t. Then Je(t) =] (t) ee(ths)dwS ~ N(O,(e2et —1)/20) can be expressed

as Je(t) = Nl/ 2] C(r) where ¢ = ON. Using (2.3), we obtain the solution
— 1/2
2.8) Y, = exp(cr)b + oN Jc(r) , 0<r<1,

A
with initial condition Yo = b. Now, the normalized estimator of 6 can be expressed as:

A - —_
N® -6) = [/ y,dy, - 8/ gysdaN " [fyZag ™
2.9) = ofyy,dw [N [Fy2ag ™!

using (2.1). Consider first the numerator of (2.9). Using (2.8) and the fact that w(t) =
Nl/ 2w(r), we have:



J5y,dw, = [3fexp(enb + oN'/21 @1dNY2w)
(2.10) = NY2p]] exp(enydw,_ + Nof ) T (Ddw,.

The denominator of (2.9) can similarly be transformed as follows:
1Nyt = | Jfexpenb + NV2o1 @1%dNn

3/2

(2.11) = sz(exp(2c) —1)/2¢c + 2N""“cob I (1) exp(cr)JC(r)dr

2 2¢1 2
+ N7 IOJC(r) dr,

using the fact that | (1) exp(Zcr)dr = (exp(2¢) — 1)/2c. The result follows from (2.9) to
(2.11).

The theorem suggests several avenues of investigation. First, the small-h (or

- . - . - A .
continuous records) asymptotic distribution of T(onh - och) is the same as the exact

distribution of the normalized continuous time estimator N(@ — 0). This justifies
studying the distributional properties of N(ﬁ — 0) as an approximation to the exact
distribution of the discrete—time least-square estimator T(& — o). Since the stochastic
representation of the variable Z(y,c) is explicitly affected by the value of the initial

condition Yo = b, we can hope to capture the effects of different values of b on the

finite sample distribution of the discrete-time least-squares estimator . More precisely,
the distribution of the random variable Z(y,c) depends only upon two parameters,
namely ¢ = ON and y = b/O'NI/ 2. We shall therefore characterize the distributional
properties of N(@ —0), in latter sections, directly as functions of these two quantities.

A
Second, we obtain from Theorem 1 that the asymptotic distribution of T(o —
A
o) in the near—integrated case is a special case of the exact distribution of N(6 — 6)
obtained by setting Yo = b = 0. Hence, it appears that when b # 0, we can expect a

A . -
better approximation to the exact distribution of o using the continuous record
asymptotic rather than the near—integrated framework since in the latter case the effect

of b vanishes asymptotically.
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Several known distributional results can be obtained as special cases of the
A
exact distribution of N(8 — 6). First when b = 0 we have

A4 1 1. .2
N® -0) = Z(0,c) = | 0 Jc(r)dw(r)/f 03 @7dr

which is the asymptotic distribution of T(& — o) in the near—integrated case. Secondly,
when b = 0 = 0, we have:

NG - 8) = (112)w(1) — 1)/ [gwar)dr

which corresponds to the limiting distribution of T(& — o) in the unit root case where o
= 1, a result derived by Phillips (1987).

It is also straightforward to obtain different asymptotic results. Consider first
the behavior of N(® — 8) as N = w. If 6 < 0, we have ¢ - — and if 6 > 0, ¢ - 4,
Hence, the limiting distribution of N(@ — 0) as N - « depends upon the limiting
distribution of the various functionals in Z(y,c) as ¢ - t«. These are stated in the
following lemma.

Lemmal Let]J (r) = [TeCTS)4w  then
C 0 S
1) (—ZC)I(I)JC(I)Zdr — 1, as ¢ — —oo;

it) (2023 dw_+N©,1), asc

iii) (2C)26—2CJ (I)J c(r)2dr - n2, as C - 4o}

iv) 20l @%dw &, asc o 4w

3/26—2c f

v) (2¢) (l)cxp(cr)JC(r)dr 47, ascC -+

vi) 20)2e pexpendw_+ 1, asc -+
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where & and m are independent N(0,1) variates. Parts (i) through (iv) of Lemma 1 are
proved in Phillips (1987b) and the proof of parts (v) and (vi) are presented in the
appendix.

Using Lemma 1, it is straightforward to deduce the following results
A
concerning the asymptotic distribution of N(0 — 0) as N - e;

Corollary 1

i) If 6 < 0, then for any fixed Yo = b:

NY2@ — 8) 5 N(0~1/20), as N - a;

it) If 6 > 0, then for any fixed Yo = b:

N - 0)/20 - [dn + En/[d + 1%, as N 4
where 1 and & are independent N(0,1) variates and d = b(26) I 2/c5.

Remark: As a special case to part (ii), we have if Yo = b=0and 6>0:

ceN(Ié - 0)/20 - Cauchy, asN -,

Part (i) of Corollary 1 is a standard result in the literature, see, for example,
Brown and Hewitt (1975) and Basawa and Rao (1980). The above results provide a
simple alternative derivation. Part (ii) appears not to have been derived previously.
Note, however, that when Yo = b = 0, the limiting distribution of eeN(/é — 0)/20 is the

same as the limiting distribution of I‘a]T(ocz - 1)_1(& -~ a) whenjo}> 1 (see White
(1958)

It is also possible to study the behavior of N(B — 8) as b » ». It is a
straightforward consequence of Theorem 1 that N(@ —0) - 0 as b - ~. Hence, one can
expect the bias and variance of 6 to decrease as b increases. The same behavior should
hold concerning the discrete—time estimator &. These conjectures are verified in
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Section 5. It is also possible to obtain the following approximating distribution of N(lé -
6) for large vy (i.e. large b):

N(6 -0) ~ I (l)exp(cr)dwr['y(exp(Zc) - 1)/20]_1
Now | Lexp(er)dw(r) ~ N(0,(2€ — 1)/2¢) (see the appendix), hence,
0

N(® - 6) ~ N02c/%C - 1)).

Given that the distribution of N(@ — 0) approximates the distribution of T(&h -
och), we have the following approximation to the discrete-time estimator &h for large b

(or equivalently small ¢ asymptotic):

(2.12) T(@, - 0p) ~ N2/ (% — 1).

The approximation (2.12) generalizes a result derived by Phillips (1987) who
considered the unit root case. Indeed, by taking the limit of (2.12) as ¢ - 0, we have
A
T(och -1) ~ N(O,l/y2 ) which correspond to expression (27) in Phillips (1987).

As noted in Phillips (1987) for the unit root case, the usual (T - «) asymptotic
A
distribution obscures the dependence of the distribution of ¢ on the parameter yO/(s.

The same feature emerges in the (T - «) asymptotic distribution for the near—integrated
case. The (h » 0) asymptotic distribution highlights the effects of the initial condition
and may be a better guide to the finite sample behavior of T((’)\c — o) for values of o in
the vicinity of 1.

In order to use these distributional results as approximations to the finite
sample behavior, we need a method to compute the distribution function of the random
variable Z(y,c) or equivalently of N(6 — 0). To this effect, the next section derives a
computable expression for this distribution.
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3. THE EXACT DISTRIBUTION OF N(§ — 6)

Given that the exact distribution of N(@ — 6) depends only upon the parameters
¢ = ON and y = b/oN!/?
transformation t € (O,N) - r € (0,1) with t = Nr yields

, it is useful to transform the original model. The

N ~2(N_2
0¥dwy N “Jgyyat

N(® - 6) = oN"1J
120 1¢1.2
=oN /4] oY W, /N | oY dr

/2

where y_is defined by (2.8). Now, letx_=y_/oN'/% Then,

A 1 1.2
3.1) N@O-0)=] 0 % 4w, /1 o Xgdr
where

(3.2) X, = exp(cr)y + Jc(r).

The expression (3.2) is the solution X, of the following stochastic differential

equation:
3.3) dxr = cxrdr + dwr, Xy =" 0<r<1,

where ¢ = ON and y = b/GNl/ 2.

A
To study the exact distribution of N(® — 0), we derive the joint moment

generating function of (J (l)xrdwr, | éx%dr) given that X is a random variable in the
probability space (2, F, ug) generated according to the diffusion process (3.3). We

denote this joint moment generating function:

Mc,y(v,u) = E[exp(vf (l)xrdwr +uf (l)x%dr)]
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where the expectation is taken with respect to the measure ug = u)C(. The main result of

this section is an expression for Mc Y(v,u) which is contained in the following

b

theorem.
Theorem 2
er—(v+c) 12
Let l//c(v,u) =
L +v+cle™+ [A—(v+c)let
where A= (c2 + 2cv —2u) 172
then

M, (v.0) = ¥ (v.0) exp{~( P72V + ¢ = WL = exp(v + ¢ + S (va)).

Remark: when y = 0, Mc Y(v,u) = u/c(v,u) which is the joint moment generating

function of (JgT (dw,, |7 (%dr) derived by Phillips (1987b).

The proof of the theorem is inspired by the development in Lemma 17.3 of
Liptser and Shiryayev (1978). Denote by u)c( and Hy the measures corresponding to the

processes x¢ and x)” generated by the following stochastic differential equations:
c__..¢C c_
(34) dx L= cxrdr + dwr, X0 ="

A

A Ah _
= erdr + dwr, Xg = 7.

(3.5) dxr
The measures u}i and u?(” are equivalent (Liptser and Shiryayev (1978), Theorem 7.19)
and the density or Radon—Nikodym derivative dui/du?‘(‘ evaluated with the random

process x?” is given by:
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du’ 2 .2
—E o =exple - M fhaxk - M iy,

dp.it

Hence, denoting by Ec’ the expectation operator taken with respect to the measure ui,

we have:
M_ . (vu)=E Jex {vflx dw +uflx2dr}]
c,y clEXPIVI X AW, 0%r

= E[exp (v] (l)x(r:dwr +uf (1)()(;:)2(11' H

duc
= Blexp{v] (l)x}r"dwr +uf (l)(xi“)zdr)] : __; %

dux

= E[exp{v | (1)x7r“dwr +uf (l)(x)r“)zdr

2 2
#e=mpdax - =1 fedy?an
Using the fact that [ 1x)”dw =] 1x)‘dx)“ Al 1(x)‘)zdr with (3.5) and rearranging:
0'r 'r 0°r r 0M'r

M, ,(v:0) = Elexp((v + ¢ - 1) Lt + - ve - @ - By an.

Now, let A = (02 + 2¢cv ~ 2u)1/ 2 anda=v+c—A. Then, [u-vc - (027»2)/2] =0 and

MC,Y(v,u) = E[exp{ af éx’r‘dxi"}].

By Ito's lemma applied to the function (x’rt)z, we have | é(xi‘)dxr = (x71& - x?)‘ - 1)/2.

Hence,

M, () = Elexp(@2)((<})” - ()]
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(3.6) = exp(Ca/2)(¢* + D)Elexp(@/2)x )]
since x?‘)‘ = v, a fixed constant. Now, the solution to (3.5) is given by:
xyr“ = exp(Ar)y + | (r)e}”(r_s)dw o
= exp(Ar)y + 3, (1)
and, hence,
A_
X = exp(\)y + J?»(l)'

Now J, (1) ~ N(O(e** — 1)/2)) and therefore x is N(exp(y, (€2* — 1)/2). Let s% =
2\
(e

variate with non—centrality parameter q. Then

— 1)/2A and q = exp(L)y then (x)lL)Z/S2 is distributed as a non—central chi—squared

Elexp((22)(x))%)] = Elexp{ @/2)s>(c}/)%)]

= (1 —as2) Pexplag?2)(1 - asH ™)
and

/2

M, () = exp{(-a2)¢” + D)(1 - asD) " Pexp((aa’/2)(1 - asH 7).

2A

Upon substitution for s = (e
that

—1)/2A and a = v + ¢ — A, it is straightforward to verify

/2

Y, va) = (1 - as?)2exp(-al2).
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It follows

M, (1) = Y (vexp((-ay’/2) + (aq /2)(1 —as) ")
=y, exp((-ay*2)(1 —exp@h + a)y(vu))

which reduces to the expression in Theorem 1 upon substitution fora=v+c—A. 0O

The moment—generating function derived in Theorem 2 allows us to compute
the cumulative distribution function as well as other distributional quantities using
numerical integration. The next sections present the results of such computations.



18

4. THE COMPUTATION OF THE CD.F. AND P.D.F. OF N(f — 6)

Denote the joint characteristic function of ( (1)xrdwr, | éxfdr) by cfC ,Y(v,u).

Then,

“.1) cfc’,Y(v,u) = Mc,y(iv,iu)
= E[cxp(lvf X dw + 1uflx dr)]

The distribution function of N(G 0) can be obtained as follows. Let F (z) =
PIN(® — 8) < z] and recall that N(® — 6) = I 1 Aw /Jlx dr. Then by Theorem 1 of
Gurland (1948), we have

lim cf . (v, —vz)
1 1 c,Y

F (z)=_- g, -0 [ ’ dv
c,Yy 2 i El_H>° el<lvl<zr:2 v

2

- (vy —vz)
(4.2) =1_1 fAIMAG[ fe,y 1 dv
2 2n v

where AIMAG(-) denotes the imaginary part of the complex number. Further, the

density function is derived as follows:

£, (z)— F, (@)

dz
1 lim acfc’,Y(v,u)
wery 81_’0 jt-: <lvlkey—™—=— dv
21 1 2 du u=-vz
€400
2
4.3) = 1 | gReal[ch ,Y(v, —vz)(Al + A2/2)] dv
Tc 2

where AL = (/%2) ((1 - exp(iv + ¢ + MY, v, — iva)]?)
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+ (v + ¢~ Nexpliv + ¢ + Dy v, - iv) (A + A2)

and A2=-A"2+DID2

D1 = ?»_lc—x[k + (iv+c¢c)-1] + l_lex[l —(iv + ¢) +1]

D2 =[A+ (iv + c)]e,_?L +[A—(@v+ c)]e}”

% =(c2 + 2iv(c + 2) /2
and Real(-) denotes the real part of the complex number.

The expressions (4.2) and (4.3) can be numerically integrated to obtain values
for the cumulative distribution function and the probability density function. When

calculating these functions, we evaluate the integrals in the range (0 + €, V) where V is

an upper bound set such that the integrand evaluated at V is less than € (¢ was set at
1.0E-07 in each integration). The integrals are then evaluated in this range using the
subroutine DCADRE of the International Mathematical and Statistical Library (IMSL)
(the error criterion for this routine integration was also set at 1.0E-07). Special care,
however, must be applied to the integration since it involves the square root of a
complex valued function. The use of the principal value of the square root may not
ensure the continuity of the intergrand. We must therefore integrate over the Reiman
surface consisting here of two planes. The method used is described in more details in
the Appendix to Perron (1988).

Figures 1 through 3 present the cumulative distribution functions of N(lé - 0)
for ¢ = -5, 0 and 2 respectively. Each figure contains four curves corresponding to the
following values for y: 0, 0.5, 1.0 and 2.0. Figures 4 through 6 contain the
corresponding results for the probability density function. Each curve was constructed
by evaluating the c.d.f. (or p.d.f.) at 100 equidistant points in the relevant range.

Several striking features emerge from these graphs. First, the distributions are
sharply non—normal. Second, the shapes are significantly affected by changes in the
values of ¥ and c. The most important feature is that the distribution becomes more
closely centered and more concentrated near zero as y and c¢ increase. As c increases,
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the distribution becomes less skewed to the left and shows much less variability around
zero. A similar behavior occurs as 7y increases. Another interesting feature is the effect
of increasing 7y for different values of ¢. For a given change in v, the effect on the
shape of the distribution is more pronounced the larger ¢ is. In other words, the effects
of different values of y are smaller when 0 is smaller (i.e. "more stationary") or when N
is larger, provided 8 < 0. When 6 > 0, the effect of the initial condition is
considerable.

To summarize the main features of the various distributions, Table 1 presents

selected percentage points of the distribution of N(@ — 0) for various values of ¢ and v.

To assess the adequacy of the asymptotic approximation to the finite sample
distribution, we proceed as follows. We simulated the least—squares estimator of &
from an AR(1) model with N(0,1) errors. The number of replications was set at
20,000. We obtained the percentage points of the distribution of T(& — ) for selected
values of T, o and Yo = b. The correspondence between the exact distribution and the

asymptotic approximation is obtained by setting ¢ = Tln(a) (since o = exp(6N/T)) and
Y="b/T 172 since 0'2 = 1. Table 2 presents the results for T = 10, 25, 50 and 100 with c
= -5, 2,0 and 2 and y = 0.5, 1.0, 2.0. We omit the case where y = 0.0 since it was
thoroughly analysed in Nabeya and Tanaka (1987), Perron (1988) and Cavanagh
(1986). These studies found the approximation to be adequate for various values of c.
The approximation deteriorates as ¢ becomes smaller.

In our more general context, the approximation remains quite good especially
for values of T at 50 or 100. The approximation gets more accurate as 1) ¢ increases,
2) v increases and 3) if we consider the right tail rather than the left. It is also
relatively less accurate in the extreme tails. For example, consider the case with ¢ = 2,
v = 2 and the 5th percentage point. The asymptotic approximation is —0.3294 and the
exact values range from —0.338 for T = 10 to -0.325 for T = 100, showing a high
degree of accuracy even for a very small sample size.

On the other hand, when c is small, the convergence to the asymptotic value is
slower. For example, consider ¢ = -5, ¥y = 0.5 and the 5th percentage point. The
asymptotic critical value is —8.755 while the exact values range from -5.442 (T = 10)
to —8.314 (T = 100). However, even for small values of c, it gets more accurate as Y
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increases. For example, when ¢ = -5.0, ¥ = 2.0, the asymptotic critical value for the
95th percentage point is 1.7357 and the exact values range from 1.464 (T = 10) to
1.675 (T = 100).

Overall, the asymptotic distribution approximates rather well the major
changes in the distribution as ¢ and vy are varied and for sample sizes typically available
the approximation is rather good.
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5. THE BIAS AND MEAN-SQUARED ERROR OF 6

The moment—generating function derived in Section 3 can be used to derive
A
the moments of N(@ — 0). Using Mehta and Swamy's (1978) result, we have:

A A ahd (v,—u)
(5.1) N-Bias(d) = E[N(6 - 0)] = 0__ du
av v=0
and
2 - (v -u)
(5.2) N~*. .MSE(®) = E[N(® — e)] —f du
av v=0

where M (v u) = E[exp(vf X dw + uf 1x dr)]
is the joint moment-generating function of (f X dw I 1x dr) derived in Theorem 2.

Straightforward computations give the following results:

M_ _(v,u)
Y 71 =M _(0,u)[DH + [(DA/A) — (DB/B)] /2]
ov v=0 ¢y

where  DH = -2(1 - c/A)(1 — exp(c + My Ow]*)/2
+ (112)(c - MPexp(c + MY, O, -I*((1 +c/A) + DA/A ~DB/B)

A=20e°
=[A+ c]e_7M +[A - c]e%‘
DA = 2¢[c - A2

DB =(1- c)[e_x(c +A) + c}"(c - MIVA

A= + 2012
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and

@M, (v,-0) )
i = M, ,(0,-u) (DH + [(DA/A) - (DB/B)}/2]

av2 v=0

+ Mc Y(O,—u){DfZH + (D2A - D2B)/2}

where D2A = —202/7\.4
D2B = DBW 2/p2
= /B - (DB)"/B
D2W = ce M - 2) + o(c — 1) + c2AYAZ

+ ce"[?»(c -2 —clc-D+ 02/?»][)»2

and  D2H = DH(1 — o/A)/(c - A) + H[cZA3(c — 1) — 1/A3]

+[DH+ (1 - c/mzlz][(l + ¢/A) + DA/A -DB/B]
+H + (¢ - )Y22l1-c23 - 2c21% —DBW/B + (DB)/B2].

Figures 7 and 8 present, respectively, the normalized bias and mean—squared
A A
error of O (i.e. the first two moments of N(8 — 0)) as a function of ¢ = 6N for various

values of y = b/ch/ 2

. The conjectures discussed in Section 2 are verified. The bias
and mean—squared error are smaller (in absolute value) as ¢ increases. Furthermore,
both decrease (in absolute value) as 7y increases. An increase in 7y has a larger reduction
effect on both the bias and the mean squared error when c is small. But this is mainly

due to the fact that the bias and MSE are already quite small for large ¢ when y = 0.

Both the bias and MSE converge quite rapidly to zero as ¢ and/or 7 increase.
On the other hand, the bias appears to attain an upper limit (in absolute) value when ¢
-+ — for any fixed 7y and it approaches this limit fairly rapidly. The limit of the bias as
¢ -+ —= is a decreasing (in absolute value) function of .
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To assess the relevance of the asymptotic approximation to the exact moments
of (l)\t we consider applying our approximation to the experimental setting in Table III
of Evans and Savin (1981b) which presents the exact mean and variance of a
normalized estimator of &; a =0.90, 0.99, 1.00, 1.01 and 1.05, yolc =0,4,16and T =

25, 50, 100, 200 and 400. The normalization is defined as g(T)((I)\L — o) where

1,172

g(T) = [T(1 - a1

lal < 1;
T2 ol = 1;
e - a1

To approximate the moments of g(T)(& — o), we consider the correspondence
¢ = Tn(or) and y = y0/6T1/2 and use (5.1) and (5.2).

The results are presented in Tables 3 and 4 for the mean and the variance of
A
g(T)(a — o) respectively. The values in parentheses are taken from Table III of Evans
and Savin (1981b).

The approximation is, in general, very good and certainly captures most of the
changes in the distribution as «, yO/G and T are varied. As expected, the

approximation is better as o is closer to 1 and as T is larger. But it is also better as
y0/6 increases.

We can also compare our approximation to White's approximation when Yo =

0 and o < 1 (presented in Table III of Evans and Savin (1981b)). Our approximation is
better when o = 0.99 and slightly worse when o = 0.90. Our approximation, however,
has the advantage of capturing the effects of a non-zero initial condition.

Overall, our procedure appears to provide a very adequate approximation to
A - . . .
the exact moments of & when « is in the vicinity of one allowing the initial condition
yO/G to be an arbitrary fixed value.
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6. THE POWER FUNCTION

Using the statistic N(/é - GO), the results of Section 2 can also be used to

analyze the power function for tests of the null hypothesis

6.1) HO: 0= 90

A
against various alternatives. Denote by z* the value such that PO [N(@®© — 90) <z¥] =P.
0

Then, the power function of a one—sided test with size [} for testing 6 = 90 against 6 <

90 is given by
A A A
(6.2) Pe[N(G - 60) <z¥] = PG[N(B —-0) <z* +N(@O - 90)]
= PB[Z(y,c) <z¥+(c- cO)]

with ¢ = NO and ¢ = NBO. Expression (4.2) can be used to evaluate the power

function (6.2) for various values of ¢, ¥, o and significance level B.

Much attention has recently been given to testing the null hypothesis of a unit
root (@ = 1, 6 = 0). Letting 90 = (0 and using (6.2), the power function of a one—sided

A
test of the unit root hypothesis using the statistic N6 is given by

(6.3) Pe[N’é < z(’;] = Pg[N( - 6) < z; <]

= Pg[Z(1.c) < 7y —c]

*
which can be evaluated using (4.2). Here, Z is the critical value such that P[Z(y,0) <

*
zgl = B where B is the size of the test.
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Interestingly, (6.3) gives the local asymptotic power function of a test for a
A
unit root using the statistic T(ot — 1) (in discrete—time) where the sequence of local
alternatives is given by

o = exp(c/T)

and the asymptotic is derived as h - 0, i.e. using the continuous records asymptotic
instead of the usual (T - «) asymptotic. To elaborate, consider the following
derivation:

A *k A E
limP_[T(d—1) <z = 1im P_[T(0, — ) < 7 + T(c - 1)]
hao 0 o © 0

= P[Z(,c) <7y~ c]

since T(& — o) » Z(y,c) as h - 0 (Theorem 1) and T(c — 1) - ¢ as h - 0.

This framework generalizes the analysis of Phillips (1987b) who considers the
local asymptotic power in the usual (T - =) asymptotic context. Here, the continuous
records asymptotic (h - 0) permits explicit consideration of the effect of a non-zero
initial condition. Our results specialize to those of Phillips by setting ¥ = 0. Note
finally, that when vy = 0, the critical values z; correspond to those derived by Dickey

and Fuller (1979); see Fuller (1976).

Figure 9 presents the power function of a one-sided 5 % size test that 8 = 0
against both positive and negative alternative values of ¢ = ON. Four curves are drawn
corresponding to values of y at 0, 0.5, 1.0 and 2.0. Several features emerge. First, as
expected from the studies of Evans and Savin (1981b) and others, the power is much
higher against explosive alternatives (c > 0). Secondly, the power function is
significantly influenced by different values of the startup condition y. Indeed, the
power increases as Y increases. There is an interesting analogy with the bias function
(see figure 7) in that changes in y have a larger effect on the power function for
stationary alternatives. This is due to the fact that when y = O the power function
against explosive alternatives is already quite high compared to the power function
under stationary alternatives.
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To assess the adequacy of our asymptotic power function in the context of
finite samples tests for a unit root against alternatives close to one, we considered the
experimental framework adopted in Evans and Savin (1981b). The exact power of tests
for a unit root against the alternatives a0 = 0.9, 0.95, 0.99, 1.01, 1.025 and 1.05 can be
found in their Table IV. For each value of a, they vary as the initial condition yolc =

0,2 and 4 and T = 25, 50, 100, 200, and 400. Our results are presented in Table 5
where, for ease of comparison, we have included in parentheses the exact values
derived by Evans and Savin (1981b). The correspondence between the finite sample
and asymptotic frameworks is again achieved by specifying ¢ = T In(a) and y =

yolo‘Tl/Z.

The results are quite striking. For almost all combinations of parameters the
approximation is indeed excellent. The worst fit occurs for a small sample size (T =
25) and large values of o (1.05). The conclusions reached by Evans and Savin (1981b)
are well—captured by the asymptotic approximations.
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7. CONCLUDING COMMENTS

This paper has considered an alternative asymptotic approximation to the
least—squares estimator of the parameter in a first-order autoregressive model with a
fixed initial condition. This approach is different in that we consider a framework
using the continuous records asymptotics (h - 0) instead of the usual (T - «) asymptotic
theory. The main advantage over the (T - ) near-integrated framework is that our
method allows explicit consideration of the effects of non—zero initial conditions.

The continuous record asymptotic distribution for the discrete—time estimator
is shown to be equivalent to the distribution of the continuous time estimator in an
Orhnstein-Uhlenbeck process. The exact distribution of this continuous time estimator
was derived. It was found to yield interesting theoretical results for continuous time
estimation. More importantly, it has proved to be a good approximation to the finite
sample distribution of the discrete—time least squares estimator.

This study indicates the usefulness of the continuous records asymptotic
distributional theory which can be used in other contexts. One such possible extension
is the possibility to approximate the finite sample distribution of the least-squares
estimator (I)\t when a random initial condition is specified. Indeed, equation (3.6) can be
used to derive the moment—generating function of N(lé — 0) with a random initial

condition as well. An extensive study of the case where the stochastic process {yt] is

stationary is presented in Perron (1988b).

Further possible extensions include the case where a fitted mean is included in
the regression. Here, the parameter affecting the shape of the distribution is a
normalization of the mean of the variables instead of the initial condition per se (see
Evans and Savin (1984)). Again, the analysis can distinguish between a fixed and
random initial condition. Such an analysis is presented in a companion paper, Perron
(1988c). It remains to be seen whether analogs to Theorem 2 can be obtained in the
context of more general models and different statistics such as the t-ratio.



MATHEMATICAL APPENDIX

Proof of Theorem 1, part (ii)

The proof of Theorem 1, part (ii) is closely related to the proof of Theorem 3.1
in Phillips (1987b). We consider a triangular array of random variables
n e . n
{{ym} t=1)n=1' For a given n, the sequence {ym}n=1

(2.5))

is generated by (see equation

(A.1) Yot = eXp(ehn)yn(t—l) U t=1, .., Tn

T
nt} t=1
oz(exp(28hn) - 1)/28). We have Tn = N/hn and Tn — oo, hn -0 asn- e,

where the innovation sequence {u is i.i.d. normal with mean O and variance

T
-1/2
Let the sequence {{am} ln}1 be defined by & = a(hn) / . where a(hn) =
T =
(exp(26hn) — 1)/26. Then {{em} 1“}1 is a triangular array of i.i.d. N(O,Gz) variates.

: -1 B .
Note that 11mhn_) 0hn a(hn) = 1. Now from (A.1), we have:

(A.2) Yot = %:lcxp((t —j)ehn) urlj + exp(tehn) Yo
= a(h )"/ 2%=1exp((t - 0h) & + exp(tBh,) v,

Now define the following partial sums Z__ = 27 . € . with Z , = 0 and the random
nt =1 Tnj n0 :

elements
12 -1 172 1 - )
XTn(r) = Tn c Z[an] = Tn ) an—l g 1)/Tn <r< _]/Tn
G=1, .., Tn)
172 -1
XT (D)= Tn 4] Z,r
n n
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then, (see Phillips (1987a)), XT (r) - w(r), a Weiner process on C[0,1].
n

To prove Theorem lwe shall derlve the limiting distribution of the following

T
quantities: a) yT ;' b) Z 1yt ; C) E and d) > n
t

y_u.
-1 nt—1"nt

A) Y *
n

T
12,172, -1/2 .
yTn =N / Tn / hn / Zhilexp((Tn ~J)6hn)unj + exp(Tn(:)hn)yO

i/T
1/2 (h )1/202 exp((1 —j/Tn)GN)f n dXop () + cxp(GN)yO
~1 G-1yT_
N2 12 )1/202 e exp((l ~ 9BN)AX.1(s) + exp(8N)y,
j=1 (J—
N2 1200 )26 Lexp((1 - 9ONIIX () + exp(@N)yg

“NY2o1 (1) + exp®N)y,  asn -

ok
B) Yig'
(=110
N~1/2T;1zy h -1/2 n3/22 2 exp((t ~ )Bh Ju,
I j=1
23250 oo )
n n eXp 0

t=1

= ca(h )% ”ZT‘lz 5 exp((t - j)h_ )J

n t=1j=1 G- WT P, ©
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T
1/2T;3/22

+h tilcxp(tehn)yo

T
= ca(h_ )1/2 n1/2Et 1% 1 I(H)/I‘ drf 0_11’) /Tncxp((t—— j)ehn)dXTn(s)

+h l/zTn3/2):t=1exp(t6hn)yO

YT T
= ca(h_ 12y n1/22t 12] II(t 1)/rf G-1T, exp((r - $)IN)AX. (s) dr
+h 1/2Tn3/2}: exp(i8h )y,

t=1

= ca(h )20 2] [ Eexp((-5)BN)dX 1. (5) dr
n

1/2 3/22 n
t=1

+h exp(t6hn)y0

1/2

= ca(h )20 2 (x @+ ON I exp((r—s)BN)dXT (s))dr

p
+ 23 o exp(i6h )y,

t=1

~1/2

and N T;lzynt - ol (I)Jc(r)dr ; yON‘3/2(exp(eN) ~1)/6  asn o

T
d-lan 2 -1 2
NTT Et=1y“ =NTT, 2{ l[fj_lexp((t PBhJu ; + exp(tbh )yo)



T
~1.-1 . 2
=N'T Etila(hn)(%zlexp((t— 8, e, )

T
2N yah ) 2E ™ exp0h )3 exp((t - j)6h_ e

t=1 j=1

11T 2
+N T, Et_lexp(2t8hn)y0

=0 h a(h )T Z (Ef exp((t - J)Gh )J dXp (S))2
=1 )/T

+20h- Lamy /2T n3/2

T,
yoL " exp(t6h )% exp((t —j)6h_ o dXp ()
t=1 i=1 G- 1>/rn n

L-1n 2
+N T, Ztﬂlexp(ZtGhn)yO

T, UT, irt
= th ath )L " | SO exp((r — s)ON)dX . o)
n

t=1 @1/, j=1 G-1)T,

yT, T
+20hach )Ny 02 | exp(rON)dr] ™
t=1 j=1 (1)/T G—1/T

exp((r — s)GN)dXT (s)
n

T
+NTT, Zt_lexp(Ztehn)yO

= o*h~Ta(h )| Jdr(pexp((c - s)BN)dXTn(s))Z

1/2 —1/2

+20h7" a(h ) Yol éexp(rGN)dXT s)
n
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lo—lin 2
+N T Etnlexp(ZtBhn)yO

= o’htach ) (l)(XTn(r) + N/ (r)exp((r-s)GN)XTn(s)ds)zdr

+20h -1/2

a(h )1/2 nl/zyof(l)cxp(reN)(XT (0)+ ONJ(r)exp((r—s)BN)XT (s)ds)dr
n n

+ N“lT“lzT“ exp(2t6h )yZ
“n 1 p Y0

o2 1Ly @2dr + 20y N2 [ Lexpro)) (d)dr + yAN"2(exp(26N) — 1)/26
o’e 0 0 ¢ 0
asn = o

D)): 1ntlnt

Note that by squaring (A.1) we obtain

2
Yot = exp(26h )ynt 1+ Zexp(ehn)ym_lunt +u

2 2 2 2
Yot " Ynt-17 (cxp(ZGh ) 1)ynt—l * 2C)(p(ehn)ynt—lunt *upp

summing both sides over t=1, ..., Tn’ we get

2 2 2 2
yTn -¥g = (exp(26hn) - I)Zym_1 + 2<3xp(6hn)2ym_1um + Zum



and

-1 2
yp —
n

1.2

NSy = (1/2)exp(-6h )N N"yg

nt—lunt

11 2 ~1«. 2
- Tn(exp(29hn) - 1N Tn Zynt—l -N Zum].

e 2 1 2 1 le2 2
Now, N Eum—N a(h)}:am—hn a(T Eem—»(s , and

NTIEy, g = AT + N Zexp@N)yg)? ~ y/N - 20N[y] - o)
where = o%[J 02 + 20y N2 Sexpee)] (r)dr + YN A(exp(26N) — 126

Using the fact that:

A 1T —1—1<0 2 -1
Tn(an N OLn) =N Z‘1ynt—lunt{1\I Tn zlynt—l}

T (0 - o)~ (1/2)[(aT (1) + N~/

xp(@N)yg)” - yyN — 20N - o2y
=[] g1 (dw_+ (yo/oNA)exp(e)] (1) — 2c] Sexp(en) (mdrl/
[/ 7 @%dr + @yyoNH) [ fexpen @ar

+ (yy /NG exp(2¢) — 1)/2c].

- What remains to be shown is that in the numerator exp(c)Jc(l) - 2¢f (l)exp(cr)Jc(r)dr =
/ (l)exp(cr)dwr. Now, from the proof of Lemma 1 below: | (l)exp(c:r)dwr ~ N(O,(exp(2c) —
1)/2c). Hence, we must show that exp(c)Jc(l) - ZCJ(I)exp(cr)JC(r)dr ~ N(O,(exp(2c) —
1)/2c).
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Note that Jc(l) ~ N(0,(exp(2c) — 1)/2c) and J (l)cxp(rc)Jc(r)dr ~ N(O,(exp(4¢c) — 1
- 4cexp(20))/803). Therefore [exp(c)IC(l) - 2¢f (l)exp(rc)lc(r)dr] is Gaussian with mean
0 and varance given by expo)Varl] (D] +  4c”Var[f (l)exp(rc)lc(r)dr] -
2E[I (1) qexp(re)]_(@)di].

Now,  E[J (1)) jexp(e)]_()dr]
= [ {expe)ELT (D] _()1dr
= f(l)exp(rc)[exp((rﬂ)c) —exp((1-r)c)]/2c dr

= exp(c)[exp(2c) — 1 - 2c]/(2¢)%.

Therefore [exp(c)]c(l) —2¢] éexp(rc)]c(r)dr] has variance given by (exp(2c) — 1)/2c.

Proof of Lemma 1

To prove part (v), we first note that w(s) is Gaussian with mean zero and variance s,

then Jc(r) and | (l)exp(rc)lc(r)dr are also Gaussian with mean zero for any ¢. Now Jc(r)

~ N(O,(exp(2rc) — 1)/2c) and using the fact that E(w(s)w(t)) = min (1,s), simple

calculations yield

E[J (] ()] = [exp((r+k)c) — exp((M-m)c))/2c

where M = max (r,k) and m = min (r,k). This result can be used to show that

J3expe)]_(©dr ~ NOw)

where v = (exp(4c) — 1 —~4c exp(2c))/803.

Part (v) follows by noting that (2¢) exp(—4c)v = 1 as ¢ - +.



36

To prove part (vi), note that [jexp(erdw_ = exp(c)] jexp(-c(1 — N)dw_ — exp(e)]_(1).
Now, J_(1) ~ N(O.(exp(-2¢) — 1)/(-20)), hence Jjexp(cr)dw,_ ~ N(O.(exp(2e) — 1)/2).
The result follows by noting that  (26)"Zexp(-c)fgexp(erdw_ =
20)2exp(—c) - N(O,(exp(2c) — 1)/2¢) = N(O,(1 ~ exp(~2¢))) - N(0,1) as ¢ = +o.
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Table 1
A
Selected Percentage Points of the Distribution of N(0 — 0)

1% 2.5 % 5% 10 % 90 % 95 % 97.5% 99 %
c=-50
v=0.0 -16.7378 -13.1743 -10.4633 -1.7242 2.4561 3.0637 3.5239 4.0342
=0.5 -13.8955 -10.9832 -8.7550 -6.4899 2.2695 2.8257 3.2413 3.6788
=1.0 -9.5405 —7.6095 -6.1140 —4.5703 1.9279 2.4017 2.7578 3.1215
=2.0 -4.8739 -3.9531 -3.2206 -2.4413 1.3836 1.7357 2.0123 2.3035
c=-20
v=0.0 -15.0342 ~11.6602 -9.1377 -6.6406 1.4622 1.926%* 2.3095 2.7849
=0.5 -12.2749 -9.5498 -7.5038 -5.4726 1.3047 1.6839 2.005%* 2.3921
= 1.0 -8.1023 -6.3512 -5.0258 -3.6952- 1.0808 1.3688 1.5996 1.8594
=20 -3.8162 —3.0438 -2.4456 -1.8281 0.7943 0.9940 1.1599 1.3310
c=-1.0
v=0.0 -14.3901 -11.0813 -8.6182 -6.2072 1.1752 1.5887 1.9502 2.4005
=0.5 -11.6484 -8.9854 -7.0027 -5.0566 1.007* 1.3498 1.6426 2.0031
=1.0 -7.5197 -5.8323 -4.5689 -3.3203 0.8076 1.056* 1.2535 1.4819
=20 -3.3477 —2.6348 -2.0925 —1.5445 0.5908 0.7512 0.8784 1.012%
c=0.0
v=0.0 -13.6919 -10.4399 -8.0383 -5.7133 0.9280 1.2854 1.6122 2.0325
=0.5 -10.9570 -8.3535 -6.4315 -4.5709 0.7643 1.0481 1.3042 1.6338
=10 -6.8480 -5.2202 -4.0196 -2.8568 0.5876 0.7780 0.9384 1.1302
=20 -2.7392 -2.0886 -1.6093 -1.1454 0.4116 0.5271 0.6211 0.7260
c=1.0
v=0.0 -12.9229 -9.7183 -1.3710 -5.1243 0.7101 1.0079 1.2966 1.6832
=0.5 -10.1753 -1.6177 -5.7469 -3.9627 0.5544 0.7771 0.9932 1.2871
=10 -6.0273 -4.4386 -3.2793 -2.1696 0.4017 0.5366 0.6571 0.8093
=20 -1.7104 -1.1842 -0.8640 -0.5948 0.2610 0.3360 0.3994 0.4725
c=20
v=0.0 -12.0557 -8.8762 -6.5587 —4.3431 0.5191 0.7585 1.0067 1.3550
=0.5 -9.2554 -6.7080 -4.8444 -3.0206 0.3756 0.5401 0.7143 0.9680
=10 -4.8763 -3.1253 —-1.7404 -0.8782 0.2493 0.3357 0.4182 0.5294
=20 -0.5897 -0.4307 -0.3294 -0.2374 0.1466 0.1896 0.2272 0.2712
c=35.0
v=0.0 —7.8066 -3.0640 -1.0714 -0.3734 0.1316 0.2212 0.3410 0.5473
=0.5 —2.2400 -0.5435 -0.2103 -0.0969 0.0611 0.0974 0.1505 0.2571
=1.0 -0.0826 -0.0579 -0.0438 -0.0315 0.0283 0.0385 0.0491 0.0650
=20 -0.0275 -0.0225 -0.0186 -0.0142 0.0137 0.0177 0.0214 0.0259

A . . .
Note: The integral (4.2) which evaluates P[N(0 — 0) < z] is undefined for z = —c and the numerical integration
is accordingly ill-behaved for values of z around —c. The * entry indicates where such a situation
occurs. While all digits reported are accurate for the other entries, in these cases the accuracy is not as
precise.
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Table 2
A
Selected Percentage Points of the Distribution of T(a — o)
Y =0y 1 te€ Y 0= T2y, & = exp(c/T)
1 % 2.5 % 5% 10 % 90 % 95 % 97.5% 99 %
c=-5.0
v=0.5
T=10 -1.750 —6.555 -5.442 -4.225 2.065 2.556 2.962 3.436
T=25 -10.539 -8.711 ~7.123 -5.421 2.165 2.722 3.143 3.578
T=50 -12.061 -9.530 —1.840 -5.935 2.213 2.772 3.206 3.646
T=100 -13.305 —-10.487 -8.314 -6.266 2.212 2.771 3.193 3.614
v=1.0
T=10 —5.642 —4.756 -3.941 -3.050 - 1.693 2.079 2.395 2.713
T=25 —7.407 -6.053 -5.002 -3.874 1.815 2.260 2.610 2.930
T=50 —8.488 -6.930 -5.616 -4.228 1.862 2.335 2.677 3.038
T=100 -8.969 —7.193 -5.956 -4.464 1.869 2.341 2.713 3.056
v=2.0
T=10 -3.282 —2.708 —2.245 -1.727 1.167 1.464 1.694 1.939
T=25 -4.048 -3.308 —2.708 -2.099 1.278 1.594 1.869 2.152
T=50 —4.462 —-3.683 -3.031 -2.317 1.323 1.656 1.943 2.232
T=100 —4.696 -3.831 -3.117 —2.385 1.333 1.675 1.956 2.251
c=-2.0
v=0.5
T=10 —7.854 -6.626 -5.414 -4.196 1.336 1.748 2.123 2.564
T=25 -10.132 -8.183 —6.585 -4.939 1.315 1.700 2.047 2.474
T=50 -10.951 -8.626 -6.962 -5.217 1.321 1.708 2.053 2.472
T=100 -11.691 -9.215 -7.319 -5.398 1.291 1.671 1.996 2.375
v=1.0
T=10 -5.583 -4.572 -3.712 -2.882 1.049 1.337 1.568 1.847
T=25 —6.757 -5.350 —4.362 -3.299 1.064 1.349 1.587 1.850
T=50 ~7.518 —6.045 —4.751 -3.580 1.075 1.363 1.592 1.872
T=100 -1.732 -6.225 —4.935 -3.678 1.068 1.349 1.573 1.836
v=2.0
T=10 -3.015 —2.449 -1.967 -1.507 0.756 0.939 1.097 1.262
T=25 -3.402 -2.698 -2.211 ~1.672 0.773 0.978 1.138 1.303
T=50 -3.620 -2.913 -2.382 -1.789 0.785 0.983 1.152 1.326
T=100 -3.779 -2.991 -2.437 -1.834 0.785 0.986 1.138 1.316
c=0.0
v=0.5
T=10 —7.892 -6.392 -5.230 -3.897 0.864 1.188 1.508 1.915
T=25 -9.589 ~1.578 -5.8917 -4.347 0.791 1.098 1.372 1.765
T=50 -9.954 -1.873 -6.128 —4.454 0.797 1.092 1.348 1.688
T=100 -10.457 -8.159 -6.417 —4.587 0.772 1.052 1.313 1.608
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1% 2.5 % 5 % 10 % 90 % 95 % 971.5% 99 %
v=1.0
T=10 -5.253 -4.209 -3.364 —2.469 0.634 0.843 1.001 1.221
T=25 -5.892 —4.638 -3.677 ~2.653 0.597 0.793 0.961 1.167
T=50 —6.557 -5.128 -3.995 -2.788 0.598 0.798 0.955 1.156
T=100 -6.629 -5.178 -4.063 -2.891 0.588 0.777 0.935 1.125
v=2.0
T=10 —2.433 -1.873 -1.462 -1.057 0.430 0.549 0.648 0.758
T=25 —2.589 -1.996 -1.569 -1.102 0.417 0.531 0.630 0.737
T=50 -2.715 ~2.055 -1.582 -1.131 0.416 0.534 0.629 0.738
T=100 —2.721 -2.107 -1.613 -1.151 0411 0.527 0.617 0.718
c=2.0
v=0.5
T=10 —7.598 -5.796 —4.461 —2.832 0.459 0.655 0.867 1.163
T=25 -8.423 —-6.302 —4.686 —2.962 0.406 0.583 0.770 1.054
T=50 —8.953 —6.493 —4.751 -3.016 0.401 0.565 0.745 1.008
T=100 -9.207 -6.595 —4.801 -3.000 0.377 0.550 0.718 0.957
v=1.0
T=10 -4.359 -2.564 -1.421 -0.788 0.290 0.386 0.481 0.611
T=25 -4.306 -2.870 -1.617 -0.833 0.263 0.356 0.445 0.558
T=50 -4.703 -3.036 ~1.676 -0.860 0.262 0.348 0.432 0.543
T=100 -5.037 -3.163 -1.735 -0.887 0.252 0.340 0.418 0.526
v=2.0
T=10 -0.562 -0.437 -0.338 -0.247 0.165 0.214 0.257 0.311
T=25 -0.585 —0.432 -0.334 -0.241 0.154 0.200 0.237 0.288
T=50 -0.596 —0.445 -0.335 -0.242 0.151 0.196 0.235 0.279
T=100 —0.597 -0.424 -0.325 —0.238 0.149 0.192 0.226 0.272
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Figure 5

PROBABILITY DENSITY FUNCTIONS
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Figure 6

PROBABILITY DENSITY FUNCTIONS
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