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ABSTRACT

This paper analyses the power of various tests for the random walk
hypothesis against AR(l) alternatives when the sampling interval 1is
allowed to vary. The null and alternative hypotheses are set in terms of
the parameters of a continuous time model. The discrete time representa-
tions are derived and it is shown how they depend on the sampling
interval. The power 1s simulated for a grid of values of the number of
observations and the span of the data available (hence for wvarious
sampling intervals). Various test statistics are considered among the
following classes: a) test for a unit root on the original series and b)
tests for randomness 1in the differenced series. Among class (b), we
consider both parametric and nonparametric tests, the latter including
tests based on the rank of the first-differenced series. The paper
therefore not only provides information as to the relative power of these
tests but also about their properties when the sampling interval varies.

This work 1is an extension of Perron (1987) and Shiller and Perron
(1985).

Key Words: Monte Carlo experiment, hypothesis testing, continuous time

processes, test consistency.






1. INTRODUCTION

An iInteresting feature iIn time serles analysis is that a given
stochastic process can be parameterized in different ways corresponding
to different specifications of the sampling frequency. Indeed, an
infinity of combinations is theoretically possible by fixing different
values of the number of observations T, the span of the data avallable S
and the sampling frequency h. By definition, these parameters are
related as T = S/h.

Consider, for example, the following simple continuous time
Ornstein-Uhlenbeck process:
= - +
dyt yytdt cdwt
where w_ 1s the unit Weiner process. The discrete time representation of

t
the stochastic variable Ve is given by (see section 2):

Yht = Prihe-1 * Vhe
where Bh = exp(-vh) and h is the sampling interval., Suppose we wish to
test the null hypothesis of a random walk, i:e. y = 0 and hence Bh =1
for all h., Under the null hypothesis, the discrete time autoregressive
parameter Bh 1s‘independent of h. However, under the alternatilve
hypothesis that the process is stationary (y > 0), the autoregressive
parameter Bh depends on the specified sampling interval h for any fixed

value of the continuous time parameter vy.

The usual analysis concerning the power properties of various tests
of the random walk hypothesis does not explicitly take into account the
dependence of the power on the sampling Interval. The autoregressive
parameter 1is usually treated as fixed and the power analysed for various
sample sizes. Indeed, the usual consistency criterion considers a test
consistent 1f its power function converges to one as the sample size

converges to infinlty for any given fixed alternative Bh.

Yet, some interesting i1ssues cannot be raised within this
framework. TFor instance, does an Increase in the sample size lead to the

same Increase in power if it 1is achieved by keeping a fixed spam (i.e.,



reducing the sampling interval) or by increasing the span one for one
with the number of observations (i.e. keeping the sampling interval
fixed)? 1Is it possible to have higher power with fewer observations 1if
these observations are spread out over a longer period? 1Is 1t possible
that the power of some test statistics can actually be iIncreased by
simply deleting some observations (i.e. keeping the same span but with a

larger sampling interval)?

These questions and others can be answered by an analysis of the
power function of the test which explicitly takes into account the
dependence of the autoregressive parameter ﬁh on. the sampling interval h
and evaluates the power directly in terms of the fixed alternative value

of the continuous time parameter vy.

Similarly, asymptotic analysis can be used to shed some light on
the above issues. Indeed, one can consider the consistency property of a
test statistic for a given fixed alternative y(y > 0) as the sample size
increases to infinity allowing any path for the sampling interval. For
example, one could consider the consistency of a test statistic as the
sample size converges to infinity with a given fixed span S; i.e. when
the sampling intérval converges to zero at rate T, If a test I1is
inconsistent under this path for h, the sampling interval, oune could
expect low power, in finite samples, with a data set sampled frequently.
On the other hand, if a tesé is consistent allowing h to increase as the
sample size increases (i.e., allow the span S to increase faster than T),
then one could expect large power in a data set that extends over a long

horizon even with a relatively few number of obseratioms.

The aim of the paper 1s to analyse the power properties of various
tests of the random walk hypothesis against stationary alternatives in a
context which allows for different sampling intervals. Section 2
introduces the continuous time model and considers its properties in more
detail, The test statistlcs are presented in Section 3. We 1nclude
statistics that test for a unit root in the original data and statistilcs



that test for randomness in the first—-differenced serles. In the latter
class, we Include parametric as well as nonparametric statistics
(including some nonparametric rank statistics). Hence, a by-product of
our study 1s also a comparison of power among a wide number of statistics
from different classes (13 statistics are considered in all). The
simulation experiment to assess the power in finite samples 1s presented

in section 4 and the results are discussed in section 5.

Section 6 presents some theoretical results concerning the
consistency properties of the tests analysed when we allow an arbitrary
path for the sampling interval as the sample size increases. These
results draw heavily from the study of Perron (1987) which used methods
first introduced by Phillips (1987a, 1987b and 1988) in the context of
continuous asymptotic records for integrated serles and asymptotic
analyses of near-integrated series. Section 7 presents some concluding
comments and a mathematical appendix contains the proofs of the theorems

in section 6.

Some of the results obtained are as follows. First, the power
depends more importantly on the span of the data rather than the number
of observations pér se for all statistics considered. Tt 1s preferable
to have a large span of data even, in most cases, if this entails a
smaller number of observations avallable. Second, there 1s a notable
difference between tests usihg the original level of the serles and tests
based on testing for randomness in first-differenced data. In the latter
case, too many observations, for a given fixed span, may destroy the
power. It is shown, 1n particular, that as the number of observations
increases, keeping a fixed span, the power converges to the size of the
test, It may be the case that higher power can be obtained by deleting
observations while keeping the span fixed. This feature 1is not present
for the class of tests based on the original undifferenced series. 1In
that case, more observations always lead to. higher power though the
marginal contribution of each additional observation is quickly
declining.



2, THE NULL AND ALTERNATIVE HYPOTHESES

The simplest and most sensible way to approach the problem of
differential sampling Interval and its effect on the properties of test
statistics is to consider the general case of correlatlion in continuous
time records., This 1s a limiting case but it can be argued that, with
the increasing availability of frequent sampling of data In some areas of
economics, it may represent an Interesting approximation. We therefore
posit a process which occurs continuously. Our null hypothesis is that
the changes 1In the random variable of interest are independently and
identically distributed and the alternative is that the process is mean
reverting (i.e. the true process is one of correlation where the variable
tends to return to its mean value). These null and alternative
hypotheses are succinctly represented by the stochastic differential
equations:

H.: dy(t)

0

H,: dy(t)

where w(t) is a unit Welner process and y and o are constant. Under the

odw(t) t >0 , y(0) =0 (2.1)
-yy(t)dt + odw(t), — @ <t <o vy >0 (2.2)

il

null hypothesis y(0) 1s fixed at 0 while, since the alternative
hypothesis specify a stationary process, we can equlvalently specify H1
as holding for t > 0 with y(0) having the stationary distribution (see
below). The null hypothesis is, in fact, that y = 0.

These systems of stochastic diffentfal equations can be solved in
order to derive discrete time representations of the processes. Let h be
the sampling interval. Consider first the alternative hypothesis where
y(t) is simply an Ornstein-Uhlenbeck process having a unique solution of
the form (see e.g. Arnold, 1974, pp. 134-5):

_Yhty(O) + o fgte —Y(ht_s)dw(s) , t >0
Simple manipulations (see, for example, Arnold, p. 134) yield the

y(th) = e

following discrete time representation of the alternative hypothesis

(imposing stationarity):
H,: y(he) = e'Yhy(h(t-1)) + v(ht) t=1, 2, ... (2.3)



where y(0) ~ N(0,02/2y) and v(ht) ~ N(O, oz(l—exp(—th))/2Y). Under the

null hypothesis H the unique solution to the stochastic differential

O,
equation (2.1) is:

y(ht) = o fgtdw(s) = g fg(t—l)dw(s) + o fht

h(t-1)
Let u{th) = o IEEt_l)dw(s). From the properties of the Brownian motion

dw(s).

w(t), it 1s easy to deduce that Var(u(th)) = h02 (see Arnold, 1974 and
Bergstrom, 1984). Therefore, in discrete time, we have the following
null hypothesis:

Hy:  y(ht) = y(h(t-1)) + u(ht) t=1, 2, ... (2.4
where y(0) = 0 and u(ht) ~ N(0, hcz). If we let B, = exp(-vh) , the
alternative hypothesis has the form

By y(ht) = B y(h(e-1)) + v(ht) ,

-and a test of the null hypothesis that vy = 0 is equivalent In discrete
time to a test that Bh = 1, 1.e. the random walk hypothesls; the test

being carried out against an alternative that the process is a stationary

first-order autoregressive process.

Of course, In practice only a finite amount of data 1s available,
say T. In the following, we will denote by S the span of the data
available, where S = hT., Therefore, in discrete time, the index t 1Is in

the range t = 0, 1, ..., T = S/h,

Four of the tests we study deal directly with the sample series

(y(ne)T_o

y(h(t-1))(t=1,...,T). Indeed under the null hypothesis that Bh =1 (for

but the rest of them treat the series Ay(ht) = y(ht) =

all h) we have that Ay(ht) 1is a sequence of independent and identically
distributed random variables so that we can simply apply various tests of
randomness readily avallable 1In the 1literature. It 1s therefore of
interest to derive the null and alternative hypotheses in terms of the
sample of first-differences {Ay(ht)}$=1. In what follows, we will omit
the suffix h and simply write Ayt and Yer



Of course, under the null hypothesis Ayt = ut(t =1, veey T) where
utzis a sequence of 1id normal random variables with mean 0 and variance
ho~. Under the alternative hypothesls, the sequence of first differences
{Ayt} is an ARMA(1l,1) process with a moving average parameter on the unit
circle, 1.e.

Ae = Py + Ve T Ve h
Some algebra yilelds the following representation for the k order

autocorrelation of the sequence {Ayt}, Pyt
k-1
e = (DB = DB = (3)(exp(=yh) - 1) exp(-yh(k - 1)).

The autocorrelations are negative at all lags and have a maximum in

absolute value when k = 1. Note the fact that > 0 for all k as h + 0.

Pk
As h > =, we have Py »> -1 and pk +> 0 for all k¥ > 2. These observations

will be useful when interpreting the behavior of the power of the tests.

The framework considered here may seem overly restrictive with the
normality and independence assumptions for the error sequence and the
fact that no constant nor deterministic time trend are included. The
latter could be relaxed by using different statistics than the ones
presented in the next sections. Much the same conclusions regarding the
behavior of the fpower functions as the sampling frequency is changed
would remain. The present study 1s simply {llustrative of some
phenomena that occur in a more general context. The normality assumption
has been relaxed in Perron (1986) and the conclusions are basically the
same. Our study, however, cannot generalize to the case where additional
correlation 1s present in the errors since the test statistics based on
the sequence {Ayt} are indeed constructed for testing the null hypothesis
that Ayt is uncorrelated.



3. DESCRIPTION OF THE STATISTICS

In this section, we describe various test statistics which can be
used to test the random walk hypothesis. Thirteen test statistics are
described. Four of these tests are based upon the original series of
T + 1 observations Yogs vevs Vo3 namely the ordinary least square
estimator In a regression of Ve agalnst Yioq and its associlated
t-statistic, the locally best invarlant and maximal invariant tests. The
other tests are based upon the series of first differences
Ay, = Ve = Yeoy (t =1, «e., T). (See also Lepage and Zeidan (1981) and
Girard (1983) who analysed some of the statistics described here in a
different context.) In thils section, we pay special attention to the
asymptotic distribution of these tests and to the determination of the
appropriate critical values to be used in the simulation study. For

simplicity of notatlion, we suppress the dependence of the coefficients

and variables on the parameter h, the sampling interval.

A. Test statistics based upon the series {yt}g

1) Normalized OLS coefficient:

An obvious test statistic to consider is the ordinary least squares
estimates of the autoregressive parameter B, B, in a regression of Ve
agalinst Ye-1 (this 1s also the maximum likelihood estimator of B

conditional upon yo):

T T2
B = TtV 1/ Bem1Y -1

It is easy to verify that B is invariant with respect to 02, the variance
of the errors term. Therefore 1t can be used directly as a basils for
testing B = 1. It can be shown (see Fuller, 1976, lemma 8.5.1) that
é -1 = OP(T_l) so that T(B - 1) has a non-~degenerate asymptotic
distribution. This distribution has been tabulated using Monte Carlo
methods by Dickey (1976) and a table of values can be found in Fuller
(1976), Table 8.5.1, for certain values of T which, however, do not fit

our experiment. We obtained the required critical values by simulation



using 10 000 replications (see the methodology section) for all values of
T considered in this study.

2) t-statistic on B:

Another natural statistic to consider is the t—statistic associated
with the previous regression

.~ _ (o T 2
tB = (B 1)( Zt=1yt_1

1~ ~9 -1 T 2 2
2 — -
Y?/0o where o = (T-1) Zt=1(yt Byt—l) .

The t-statistic is a consistent test of B =1, {i.e té = Op(l) (see
Fuller, 1976; Lemma 8.5.2). Percentage poin;s of the distribution of
té have been evaluated by Monte Carlo method by Dickey (1976) and the
values are tabulated in Table 8.5.2 in Fuller (1976). Since this table
does not Include exact values for the values of T which are of interest
to us, these were estimated by Monte Carlo method using 10,000

replications (see the methodology section).

3) Locally best invariant:

King (1981) derived the locally best invariant (LBI) test for the
hypothesis that 8 = 1 against B < 1, i.e. a one-sided test |see also
Dufour and King (1986)]. This test consists in rejecting the null

hypothesis for low values of d, where d is defined as:

2,.T 2
d = yT/Zt=1(yt - yt_l) .

Under the null hypothesis, we can write d in terms of the innovation
sequence {ut} as d = u'ss'u/u'u where s = (1""’1)2Tx1)’ yp = s'u and u’
= {ul, ceey uT}. The T X T matrix ss' is of rank 1 and therefore has T =
- 1 =zero eigenvalues and one non-zero elgenvalue taking the value T.
Therefore, we can also write d as d =T Ei/&'& where § = (51, ooy iT)'
and Ei ~ IN(0,1). Finally, we no;e that d4/T is of the form Xl/(X1 + XZ)
where X1 and X2 are Independent X varlates and thus d/T has a beta type
I distribution with parameters %, (T-1)/2. These critical values where
used in the simulation studies, and where obtained using the subroutine
MDBETI from the IMSL library.



4) Uniformly most powerful invariant:

Bhargava (1986) extended the work of Sargan and Bhargava (1983) to
provide uniformly most powerful invariant tests of the random walk
hypothesis. As with the previous test of King the resulting test
statistics are different for stationary and explosive alternatives. We
shall be concerned here with the former only. In the case studied here,
the statistic reduces to

T 2,.T 2 = _ -1,T
R=2 0 =y ) /5o, - D5 Y= (T+ 1) "5y,

It is a ratio of quadratic forms in normal random variables and
therefore the critical values can be evaluated with the Imhof routine.
Since the critical values tabulated by Bhargava are not for sample sizes
used in this study, we derived them independently using the Imhof routine
as programmed by Koerts and Abrahamse (1969). Note that Bhargava
provides the appropriate eigenvalues to be used as welights 1in this

routine.
B. Tests based on the series Ayt =V, " yt_l(t = 1ly0eey T)

We now conéider test statistics based upon the serles of first

(¢t =1, «aay T). As seen in the
T
T 0
random walk, the series {Ayt}1 is a random sequence, i.e. Ayl, vy AyT

differences, denoted Ayt = Ye = Ve

previous section, under the null hypothesis that the series {yt} is a

are mutually uncorrelated. We can therefore apply a variety of test

statistics to test this null hypothesis of randomness.
B-1. Parametric tests

5) The von Neumann ratio:

Von Neumann (1942) suggested as a statistic the ratio of successive

mean squared differences to the varilance:

T 2, T -— 2 - -1.T
V = (T/T-1) zt=2(Ayt—Ayt_1) /Zt=1(Ayt—Ay) where Ay= T 1AV,
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Under the null hypothesis, Von Neumann (1942) showed that with
normal errors, E(V) = 2T/(T - 1) and VAR(V) = 4/T. 1It is also shown that

(v - E(V))/ /Var(v) is asymptotically N(0,1). Since V is a ratio of
quadratic forms, its exact distribution can be computed using the Imhof
routine., This was done by Dufour and Perron (1985) for a wide range of
values of T and percentage points. For T up to 64, we take the critical
values from this study which also showed that the normal approximation is
indeed very good for T greater than 60. Therefore, for wvalues of T
greater than 64 we determine the critical values from the asymptotic

normal distribution,

6) First-order correlation coefficient:

Consider the first-order serial correlation coefficient defined

by:

_ 13T T 2
ro= (T/T-D)Z,_, by by, /%y Y-

Under the null hypothesis of randomness in the series {Ayt} and 1if
the Ayt's have a common probability density function with finite moments,
then Moran (1948) shows that E(r) = 0, However, to obtain an exact value
for the varilance, the common p.d.f. must be assumed normal, and Var(r)
= T(T - 1)—1(T + 2)_1. Anderson (1942) shows that, under normality of

the errors, |r - E(r) |//Var(r) 1s asymptotically N(0, 1). In this study,
we used the critical values derived from the asymptotic distribution.

B-2., Nonparametric tests

We mnow discuss a variety of nonparametric tests and their
distribution under the null hypothesis. A comment about the
determination of the critical values is in order. 1In this section, all

the test considered have the property that |J-E(J) |//Var(J) tends
asymptotically to a N(0,1) variable as T + =, under the null hypothesis.
For most statistics, the asymptotic approximation is very good even for
quite small values of T. Nevertheless, there may be a significant
discrepancy for values of T as small as 8, and even 16, studied in this
paper. The exact distribution have been tabuled in most cases for such

small sample sizes. However, due to the discreteness of the exact
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distribution we cannot get a critical value for which a test of size 0,05
can be constructed. A possible resolution of this problem would be to
use randomized test procedures which would create a test of exact size
0,05, Since the main concern of this paper 1s the behavior of the power
function as h tends to 0 with T increasing, it is not worthwhile to carry
such a procedure. We therefore use the asymptotic critical values for
all sample sizes. The effect on the size of the tests can be evaluated

and the estimated sizes are presented with the power results.
B-2a., Tests based on the level of the series {Ayt}

7) Turning points test:

We define the series Ayl, ooy AyT as having a turning point at t
Ayt+1. The
statistic of interest, say D, is simply the number of such turning points
present in the serles. That is,
D = Xi;; Yi where Yi 1 1f there is a turning point at {1
and Yi 0 otherwise.

If T > 4, we have E(D) = 2(T = 2)/3 and VAR(D) = (16T - 29)/90 (see
Kendall and Stuart, 1976). It can also be shown that this test {is
equivalent to a test based upon the number of runs (see Mood, 1940) a
version of which was studied in Shiller and Perron (1985). The turning

point test 1is more powerful against cyclical alternative than for trend

<
if Ayt_1 > Ayt and Ayt Ayt+1 or 1if Ayt_l < Ayt and Ayt >

it

alternative for which it has very low power (see Lepage and Zeidan,
1981). Also, Knoke (1977) showed that the asymptotic relative efficiency
of D with respect to r, the correlation coefficient, 1is 0.19 for

alternatives which are first—order autoregressive in the Ay's.

8) Wald-Wolfowitz statistic:

Wald and Wolfowitz (1943) proposed the following transformation of
the serial correlation coefficient
T
R = 2t=2 AytAyt_l + AylAyT -
which is designed especlally to test against serial behavior. They show
that
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(s2-s )/(T - 1)

(T - DTS, - s, )+ [T - 1(T - 2) 7!
151 - 4s?s, + 45 8.+ 2 - 25, ] - (T - D72s? - 5,7

173
1
where S, = I _; Ayt. Under some regularity conditions |R-E(R) ]/|VAR(R)]*

is asymptotically normal.

It

E(R)

Var(R)

T

B-2b. Tests based on the ranks of {Ayt}¥

9) Rank correlation coefficient:

If we apply the ordinary correlation coefficient to the ranks of
the seriles Ayt, we can define the following rank correlation coefficient,

where {Rt} is the serles of ranks associated with the series {Ayt}.

r, = (T/T - 1) ZT_ (R, - R)(R —‘E)/ZT_ (R, - R)“.
Since Tt 1Rt = Zt=1t = T(T + 1)/2 and Zt=lRt = Xt=1t = T(T + 1)

(2T + 1)/6, using e 1s equilvalent to using the statistic
K = 2,_,(R, = R)(R,_, - &) where & = (T + 1)/2.
t-1

t=2
Knoke (1977) studied the statistic K and its power against autocorrelated
alternatives. WNow it can be shown that E(K) = - (Tz—l)/12 and Var(kK) =

(T + l)T2 (T - 3)(5T + 6)/720. Knoke also showed that the asymptotic
relative efficlency of K with respect to the ordinary correlation

coefficient is 0.91 for first-order autoregressive alternatives.

10) Rank version of von Neumann ratio:

Bartel (1982) studied the rank verslon of the Von Neumann ratio
given by

. _ T _ 258 =2

G Temp Ry ~ R _DT/E R -R)

- -1 T 2
where R = T Tt 1R = (T + 1)/2. Since the denominator is equal to T(T

- 1)/12, using G' is equivalent to using:
_ T _ 2
G = 2Ry = Rey)™s 9
Under HO’ Bartel obtained E(G) = T(T” = 1)/6 and Var(G) = T(T + 1)(T - 2)

(5T2 - 2T - 9)/180. The asymptotic normal approximation is adequate for

N > 25. Bartel also concluded that the power of G compared favorably

agalnst first-order correlated alternatives.
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C. Tests based on the ranks of AytAyt+1

Dufour (1981) introduced a family of linear rank test statistics to
test the independence of a sequence of random varlables under the'
assumption that the marginal probability density function of the series
is symmetric with zero median but without requiring the assumption that
the serles 1is identically distributed. These tests are aimed against

alternatives of serial dependence.

Dufour motivates the statistics by noting that under the symmetry
and independence assumptions, we have med(AytAyt+k) =0 (t =1, ¢«e., T=k)
where med (¢) refers to the median. If there 1s positive serial

dependence (at lag k) med(AytAy ) > 0 and with negative serial

t+k

dependence med(AytAy ) < 0. The following tests are therefore aimed at

t+k
testing the null hypothesis that med (AytAyt+k) = (0 against the
alternative hypothesis that med (AytAyt+k) ¥ 0, with t =1, ... T-k and
k an integer (1 < k < T)., The family of rank statistics 1s described as
follows:
_ oIk +
S = Zpap W(Zp) ap  (Ry) ‘
where 7 = AytAyt+k » R, = rank of thI and u(Zt) =1 1f Zt >0 and 0
otherwise., Tt 1Is shown that the mean and variance of Sk under HO
T T 2 '
= 1 =
given by E(Sk) ,(Z)Zt=1aT(t) and Var(Sk) (1/4)Zt=laT(t). Furthermore,

the distribution of Sk is symmetric about E(Sk) and approximately normal

are

under some regularity conditions.

The choice of the function aT(t) defines the particular statistics.
In this study, we will analyse tEree statistics Eefined by 1) a1§t) = 1;
ii) aT(t) = t and iii) aT(t) = ¢ 1((1 + t(T + 1) 1)/2), where ¢ = 1is the
inverse of the N(0,1) c.d.f.

11) Sign test:

If we let aT(t) =1 for all t (¢t =1, ... T), we have:
(1) _ [Tk )
k e=1 W47 -
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( )

In this case, is the number of non—negative values in the sequence
i.e. the statistic of the sign test applied to
is Bin(T~k, 1/2)

Zys oo zT_k,

Zl’ oo ZT—k' Under HO’ the exact distribution of S

where Bin(+) 1s the binomial distribution.

k

(1)

If we let k =1, S1 is(t%f number of times consecutive Ayt's have
1

the same sign. Thus T - S is the total number of runs 1in the

l b
sequence u(Ayl) cee (AyT) We approximate the distribution using the
1
asymftotic normality property with E(S( )) = (T-1)/2 and
1

Var(S (T-1)/4.

12) Wilcoxon signed-rank test:

(2) _ (Z )R which is the sum of
the ranks of the non—negative Zt . This test statistic is assoclated

If we let a (t) = t, we get Sy

with the Wilcoxon signed-rank test for symmetry about zero when applied

to Zl’ eeey Z. The exact distribution of S under H. is the same as the

T K 0
null distribution of the Wilcoxon test statistic. 1In this study, we let
k = 1 and it can be verified that in this case E(S( >) = T(T - 1)/4 and

var(s\?)) = o(r - (21 - 1) /20,

13) Van der Waerden test statistic:

If we let aT(t) = ¢—1((1 + t(T + 1)—1)/2) where ¢-1 is the inverse
of the cumulative distribution function of a N(0, 1) random variable,
then we get the analog of the Van der Waerden (1952) test statistic:

s$3) - Moo+ rEe + DTH2) .
Under HO'

s =L s /b« T2
and  var(s)) = 51 i s /e 0T
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4, METHODOLOGY FOR THE SIMULATIONS

All simulations were carried out on a CDC Cyber 915 at the
Université de Montréal. The N(0,1) random deviates were obtained from
the subroutine GGNML of the Internationa% Mathematical and Statistical
Library (IMSL). The critical values for B and t? were obtained using 10
000 replications. The starting value y(0) was set at 0. From the
ordered sequence (using the subroutine VSRTA) the 5.0 percentage point
was taken. Hence, all tests considered here are one-tailed 5 7 size
tests agalnst stationary alternatives. The power estimates were obtained
using 2 000 replications. Hence the standard error of any entry in the
Tables is v P(1 - P)/2 000 if P is the true power, which gilves a maximum
standard error of 0,0112 (when P = 1),

Since the tests statistics are invariant to the value of 02, we let
2
o = 1/h under the null hypothesis and P = 2y/(1 - exp(-2vh)) under the

alternative hypothesis. This implies that u,, and Vhe are N(0, 1) (in

(2.3) and (2.4)) and y(0) 1s N(0, (1 - exp(-2yh))" 1) in (2.3). The
experiment was performed for an alternative hypothesis specified as y =
0.2 and the following grid of values for both the span S and the number
of observations T: 8, 16, 32, 64, 128, 256, 512. The power against
alternatives other than vy = 0.2 can be obtained from the tables. Since
Bh = exp(-Yh), one can read the power of a test against the alternative

that y = 0.2*2j by reading j rows down,

The row "inf" gives the power of a test in the limiting case where
the span tends to infinity. Since Bh = exp(-yS/T), we have B > 0 as
S » « and the values reported in 'row inf' are simply the powers of a
test that 8 = 1 against an alternative that B = 0. The row "C.V." lists
the critical values used under the null hypothesis of a unit root. Note
that under HO’ the distributions of the statistics are invariant with
respect to h, the sampling interval; hence for a given value of T, the
same critical values apply across values of S, the span. Finally, the
row labelled 'size' gives the estimated exact size of the test obtained
using again 2 000 replications by simulating the model under the null
hypothesis of a random walk. The standard error of each entry 1s, in
this case, 0.005.
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5. ANALYSIS OF THE RESULTS

Table I presents the results concerning the normalized
least-squares coefficient in a first—order autoregression using the level
of the series {yt}. The results are similar to those obtained in Shiller
and Perron (1985) which considers the coefficient in a regression that
includes a constant term. Here the power is slightly higher since some
variability is excluded due to the fact that the mean of the series is
not estimated. To summarize, with a small span the power is low and does
not significantly iIncrease as T increases. As the span increases, the
power increases significantly. For any given span, the power appears to
converge to a limit between 0 and 1, this 1limit increasing with the span.
The results for the t-statistic (Table II) are similar except for the
fact that the power 1s somewhat higher (this 1s contrary to the results
obtained when a constant is included in the regression, see Shiller and
Perron (1985)).

Table IIT presents the results concerning the locally best
lnvariant test statistic proposed by King. As expected from a locally
best Invariant test the power for small spans (which correspond to higher
frequencies for a given T and therefore alternatives closer to the null)
1s higher than for most other tests. This 1is verified for span of 8 and
16 units. Nevertheless the power remains rather low. For spans greater
than 16 the power of King's test gets comparatively worse than the power
of the previous two tests. As is the case for the statistics analysed
previously, the power increases in both directions 1l.e. as T increases
and as S increases. The power seems to level to some limit as T
increases for a given span. This limit is lower than for the previous

two tests for spans greater than 16,

Table IV presents the results concerning the uniformly most
powerful invariant test proposed by Bhargava. The results are very
similar to the ones with the OLS coefficient and its t-statistic with the
power marginally greater for low spans and marginally smaller for large
spans. Bhargava's test appears to provide an interesting alternative to

the serial correlation coefficient.
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The tests analysed so far are the only ones for which the power
does not eventually decrease as T increases with a given fixed span. It
1s noteworthy that all the following tests interestingly share this

feature,

Table V presents the results for the von Neumann test. Compared to
the other tests the power is much lower, e.g., 0.11 for a span as large
as 64 and any value of T. For a given span the power increases until T =
64 and then decreases significantly. Note that the test is significantly
biased for low values of T and S. Although not shown here, it was found
that the powers for a left-sided test (the explosive side) are
significantly different from 0 for spans up to 64 indicating that for
these values the test does not discriminate the direction of the
alternative (see Perron (1986)). The results for the first—order
correlation coefficlent of the first-differences are presented in Table
VI. The same comments apply as for the von Neumanﬁ statistic. The power
here is maximized when T = 32 for all values of S except when S = 512 for

which it is maximized at T = 64.

The turning point test (Table VII) has very low power, a maximum of
0.224 1is obtainedbfor S =512 and T = 64 but does not appear to be biased
for any pairs of values of T and S. It 1s clear in this case that the
power tends to the size of the test as T increases for any given fixed
span. Here the power 1Is maximized at a value of T between 8 and 32
depending on the magnitude of the span. The Wald-Wolfowitz test
statistic (Table VIII) and the rank correlation coefficient (Table IX)
are appreciably more powerful and do not appear biased. Again the power
eventually decreases as T 1increases for a given fixed span and is
maximized at T = 32 or 64. The same comments apply to the rank version
of the Von Neumann ratio proposed by Bartel (Table X).

The test statistics based on the ranks of the series {AytAy are

e-1)
presented in Table XI (sign test), Table XII (Wilcoxon signed-rank test)
and Table XIII (Van der Waerden test statistic). These tests have very

low power up to a span of 64 units for all values of T. The power 1is
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notliceably higher for larger spans. It 1s maximized at T = 32 for any
given fixed span except for a span of 512 where it 1is maximized at T =
64. Again the power seems to converge towards the size of the test as T

increases for any fixed value of S.

Several interesting features emerge from this simulation
experiment. TFirst, one can compare the various tests In terms of thelr
power properties. Among the class of non—-parametric tests analysed, the
Wald-Wolfowitz statistic performs best, closely followed by the Wilcoxon
signed~rank test and the Van der Waerden statistic. The Wald-Wolfowitz
statistic seems almost as good as the parametric test based on the
first-order correlation coefficient of the first-differences and better
than the Von Neumann ratio. However, the best tests are those based on
the original series {yt}: the normalized least squares coefficient in a

first—-order autoregression and its t-statistic and Bhargava's test.

However, the most Interesting feature emerging from the simulation
experiment is the behavior of the power function of the tests as the
sampling Interval is varied. The common pattern is that all tests of the
random walk based on a test of randomness in the first—-differenced series
have a power that'eventually declines as the sampling interval decreases.
Furthermore, the evidence for low spans suggests that the limit of the
power as the sampling interval converges to zero is the size of the test,
On the other hand, tests based on the original serles {yt} have power
that increases as more observations are added keeping a fixed span,
though the power tends to level off as the sampling interval converges to

Zero.

This power property has interesting implications. First, when the
power function converges to the size of the test as the sampling interval
converges to zero, more observations are not necessarily better and too
many may yield useless tests if they are concentrated in a data set with
a small span. Indeed, it may be the case that higher power can be

achieved by throwing away observations 1f the span 1is kept fixed, for
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example, by going from monthly to quarterly observations. Secondly, for
test statistics having this property, there appears to be an optimal
sampling interval (for any given fixed span) that maximizes the power of
the test. This number of observations appears, from the simulation
results, to be relatively small, This 1s not the case when considering
tests based on the original serles {yt}. Here more observations are
always better, though the marginal contribution of each addition is
marginal if the span 1s fixed.

The feature that 1is common to both classes of tests is that the
power is much more influenced by the span of the data than by the number
of observations per se. While each increases in T, the sample size, has
at most a marginally declining effect, the power appears to converge
rapldly to one if both the span and the number of observations are

increased.

In the notation of Perron (1987), the results suggested by the
experiments are that tests based on the original series {yt} are
consistent as long as the span increases with the sample size and this at
any positive rate. Equivalently, they are consistent as long as the
sampling interval‘does not converge to zero at a rate greater or equal to
T (recall that T = S/h). On the other hand, tests of the random walk
based on a test of randomness on the first—-differences of the data are
consistent only if the spanrincreases with T at a higher rate. From the
arguments presented in the next section, this rate is T%, i.e. the span

1
must increase at least at rate T’ for the tests to be consistent. These

empirical results are justified theoretically in the next section.

It must be stressed that the conclusions reached apply to the
particular setting considered, 1i.e. testing the random walk hypothesis
agalnst an alternative that the process is stationary. The properties
described above may not hold against other altérnatives such as a random
walk with correlated residuals. However, the results appear to be robust
to other specifications concerning the distribution of the errors (see
Perron (1986), chap. 1).
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6. A THEORETICAL ANALYSIS OF THE CONSISTENCY PROPERTY

The results described in Perron (1987) can be used to analyse the
consistency properties of the tests described here. The presentation is
informal and more details on the method can be found in that paper. For
ease of presentation, we analyse the speclal case where the initial
observation 1s set at 0, i.e. y(0) = 0. The same conclusions follow
letting y(0) have an arbitrary pre-specified distribution including the

one described in Section 2.

To analyse the limiting distribution of the statistics, we consider
the process (2.3) embedded in a triangular array which allows the
sampling iInterval h and the sample size T to be related as T increases.
Each variable iIs then indexed by, say, n such that Tn = Sn/hn' We

require Tn > « and hn >0 as n >« We can then define a triangular
Tn }m

array of random variables {{ynt}t=l n=1"

For a given n, the sequence

n
{ynt}t=1 1s generated by

y t""‘l, .-n,T (6.1)

B exp(-yhn)y n

+
nt nt-1 unt

where the innovation sequence {u is 1.1.d. normal with mean 0 and

} n
2 nt’'t=1
variance o (1 - exp(—2yhn))/2y, and y(0) = 0.

The following 1lemma, proved in Perron (1987), describes the
limiting distribution of the sample moment of {ynt} as Tn + @ with the
span S fixed for all n. The proof uses methods originally introduced in
a serles of papers by Phillips concerning continuous records asymptotic

and near—integrated systems |see Phillips (1987a, 1987b, 1988)].

Lemma 1: 1If {{ynt}ln}T is a triangular array of random variables defined
by (6.1) and y(0) = 0, then as n + « and h >0 with §, =S for all n:

1
7
a) yTn + S oJc(l)

T

b) h oz " > 5372

1
n”1 Ynt chJc(r)dr
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T
n 2 2 2.1 2
c) hnzt=1ynt » 8" g foJc(r) dr
Tn 21
d) Zt=1ynt—1unt > S¢ foJc(r)dw(r)
T
n 2 2
&) TeogUpe > SO
where Jc(r) = fge(r—s)cdw(s) and ¢ = yS.

The statistics described iIn Section 3 can be written in terms of the
triangular array of random variables defined by (6.1). These depend only
on the sample moments defined in Lemma 1. The results in Lemma 1 can be
used directly to derive the limiting distribution of these statistics
both under the null (y = 0) and alternative (y > 0) hypotheses. The
statistics are now indexed by the subscript n to emphasize that they are

analysed under the triangular array of random varlables defined by
(6.1).

Theorem 1: If {{ynt}ln}T is a triangular array of random variables
defined by (6.1) and y(0) = 0, then as n + « and hn > 0 with S fixed:

a) Tn(gn - 1) > ¢ + {féjc(r)zdr}-l{féjc(r)dw(r)}

- 1
bty > Lo+ (oI T g @ an L 0 ar ]

2
c) dn > Jc(l)
O TR > AT (0 ar - (féqc(r)dr)z]‘l
where ¢ = yS and Jc(r) = fge(r's)cdw(s).

As a corrolary to Theorem 1, we can obtain the limiting
distribution of the various statistics under the null hypothesis of a
random walk. To do this, we simply let vy = 0 and hence ¢ = 0 and Jc(r) =

w(r).
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Corrolary 1l: If {{ynt}ln}T is a triangular array of random varfables
defined by (6.1) with y = 0 and y(0) = 0, then as n > « and hn + 0 with S
fixed:

a) Tn(én -1) » [féw(r)zdr]—lféw(r)dw(r)
= g ?ar Ly )? - 1)

Mt o e e wm? - b

n

O d_ > w(1)?
& TR > | fou(r) dr - (Jgw(ryan)® ™.

It can be shown that the results of Corrolary 1 apply under any
path for the sampling interval (see Perron (1987)). The same is not true
for the limiting distribution under the alternative as given in Theorem
1. A few interesting results emerge from Theorem 1 and Corrolary 1.
First, the limiting distributions of the statistics are non-degenerate
and finite as h > 0 keeping a fixed span. This proves the conjecture
from the Monte Carlo experiment to the effect that the power function of
tests based on the original series {yt} have a non-degenerate limiting
power function as h » 0. That is, the power does not converge to 1 but
to some value which depends on the span. Some exact values were obtained

for the statistic T(8 - 1) in Perron (1987).

One can also easily obtain the limiting power function as both the
sampling interval and the span converge to zero. Since ¢ = yS, the
limiting distribution of the étatistics as S > 0 are obtained by taking
the 1imit as ¢ > 0. This implies that the limiting distributions under
the alternative are the same as the limiting distributions under the null
(see Corrolary 1); hence, the power function converges to the size of the
tests as § > 0 with T » =, i.e. when the sampling interval converges to

zero at a rate faster than T.
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Arguments similar to those given in Perron (1987) can be used to
show that the statistics considered in Theorem 1 all converge to -«,
under the alternative, if S > « as T » =, Hence, if the span 1is
increasing (at whatever rate) with the sample size, the test statistics
are consistent. This confirms the conjecture from the Monte Carlo

study.

When considering tests of the random walk hypothesis based on a
test of randomness on the first-differenced data, a different approach
must be taken. We shall, however, not be as precise as above, Our
argument is based on the results of Theorem 2 below which shows that for
a well-defined class of test statistics, we obtain consistency 1f and
only if the span is increasing at a rate greater than T%. This class of
statistics has a root T convergence rate and satisfies the so-called
Pitman's conditions for a non~degenerate local asymptotic power function
with contiguous alternatives that approach the null at a rate T%. Our
claim is that the tests presented here that use the first-differenced
data satisfy those conditions. To be more precise, we would have to
verify on a case-by-case basis whether or not they apply. For the
moment, this 1s a conjecture except for the statistics based on the
first-order correlation coefficient where it was formally shown in Perron

(1987) that the conditions were satisfied.

Theorem 2: Let Jn be a test statistic based on the first Tn observations
sampled at intervals of length hn’ and let the critical region be Jn >
Kn. Suppose that:

> = >
a) 1im P(Jn xn) a >0,

n>o
b) there exist functions p(8) and o(9) such that
-1
J = u(6,. + 8T ?)
1 -1
limPETrzl L 9 o <ylo, + o1 g=©(y)
ne 0(60 + 6Tn2)

for every real y, where ®(y) is the distribution function of
N(0,1).



- 24 -

c) u(8) has a derivative pﬁ(eo) at 0 = 60, which is positive and o(8)
is continuous at 90.

Then Jn 1s a consistent test of the random walk hypothesis against

stationary alternatives 1f and only if hn = O(Ti) for any a < %,

The conditions of Theorem 2 are usually referred to as Pitman's
conditions. They are related to the concept of the Pitman efficiency
which considers the 1local asymptotic power of test statistics under
contiguous alternatives of the form 90 + 6T;% (for details see, e.g., Rao
(1973), section 7.a.7).

The proof of the theorem is presented in the appendix. To get some
intuition about the result, note first that we can write 8 =B =

n
exp (- yhn) and therefore Gn =0 + T 26 where 6 T (exp(—yh ) - 1) and

OO = 1, Given condition (b)oof the theorem, the statistic Jn has a
non-degenerate limiting distribution against local alternatives that
approach the null value at a rate of T‘. If the alternative value
approaches the null at a rate lower than T the power function converges
to 1. However, if it approaches the null at a rate faster than T% the
power converges to the size of the test. When the sampling interval is
varied, the value of the autoregressive parameter changes. When the
sampling interval decreases, Bn converges to 1 at a rate which depends on
the rate at which h the sampling interval converges to 0 relative to the
sample size. For instance, 1f the span of the data 1is fixed, the
sampling interval converges to 0 at the same rate as the sample size
converges to iInfinity. Hence, in this case we expect the test to be
inconsistent. This 1s proved formaly in Theorem 2, 1In general, test
statistics which satisfy the conditions of Theorem 2 will be consistent
tests of the random walk hypothesis against stationary alternatives only

1f the sampling interval does not decrease at a rate greater or equal to
1

TZ
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0f course, in order for this theorem to explain the empirical
findings suggested by the Monte Carlo experiments, it must be the case
that the statistics analysed satisfy the conditions of Theorem 2. This
was shown to be the case for the first—order autocorrelation coefficient
applied to the first-differenced series in Perron (1987). For the other
statistics, It remains a plausible conjecture which should be verified on
a case-by-case basis, However, 1t must be understood that a great many
statistics satisfy those conditions. Most test statistics are usually
asymptotically normal with a root T convergence rate. If this holds
uniformly in a neighborhood of the null hypothesis, then condition (b)
will be satisfied. Indeed, see Rao (1973, p. 468), a sufficient

condition for (b) to hold is that
1 Jn - U(e)

%igp T G <Yl9 = O(y) (6.2)
uniformly in 6 for 90 <0 < 60 + n where n 1Is any positive number. Any
test that satisfies (6.2) and conditions (a) and (e¢) will behave
according to the results in Theorem 2. The conjecture, not verified
explicitly here, 1s that the statistics based on the first-differences of

the data considered in this study satisfy these conditions.
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7. CONCLUSIONS

This paper has presented an extended analysis of the behavior of
the power function for a wide class of tests of the random walk

hypothesis against statlonary first-order autoregressive alternatives.

Several features that emerged are worth mentioning., First, the
power depends more Iimportantly on the span of the data rather than the
number of observations per se for all statistics considered. It is
preferable to have a large span of data even, in most cases, if this
entails a smaller number of observatlions available. Second, there 1s a
notable difference between tests using the original level of the series
and tests based on testing for randomness in first—differenced data. In
the 1latter case too many observations, for a given fixed span, may
destroy the power. It was shown, in particular, that as the number 6f
observations increases keeping a fixed span, the power converges to the
size of the test. It may be the case that higher power can be obtained
by deleting observations while keeping the span fixed. This feature is
not present for the class of tests based on the original undifferenced
series. In that case, more observations always lead to higher power
though the marginal contribution of each additional observation is
quickly declining. Finally, when comparing the power of the various
tests, our results suggest that the Dickey-Fuller type procedure and

Barghava's test stand out as the preferred tests.

These results relate interestingly to the concept of consistency of
a testing procedure. The usual consistency criterion states that a test
is consistent 1if the power function converges to one as the number of
observations Increases to infinity for any given fixed alternative. The
requirement of a fixed alternative has led, in a time series context, to
analyse the asymptotic behavior with a fixed sampling interval as T
increases. However, one can view the fixed aiternative in terms of the

parameters of the continuous time model and, in this case, there 1s no
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need to consider the sampling Interval fixed as the sample size
increases. As shown here (and detailed in Perron (1987)), a richer set
of properties concerning the behavior of the power function can be
obtained by considering a continuum of consistency criteria indexed by
the possible paths of the sampling interval as T increases. What has
been shown here is that tests of the random walk hypothesis (y = 0) based
on the original serles are consistent against a fixed mean-reverting
alternative (y < 0) 1if and only 1f the sampling interval does not
decrease at a rate faster or equal to T; or, equivalently, if and only if
the span 1s increasing as the sample size increases. On the other hand,
tests based on the differenced series are consistent if and only if the
span Increases at least at rate T%. Therefore in a well-defined sense,
the former class of tests can be said to dominate the latter since they

are consistent over a wider range of possible paths for the sampling

interval.

The Monte Carlo experiment showed how these consistency properties
are valuable in providing Information on the behavior of the power of the
tests iIn finite samples. Of course, the results presented here need not
carry over to different models. Nevertheless they show that in a time
serlies context the notion that more observations 1s desirable clearly
depends not only on the statistics and the null and alternative
hypotheses considered but also on the time iInterval between each

observation,
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APPENDIX

Proof of Theorem 1

Part (a) 1is proved in Perron (1987). To prove part (b), the

t-statistic should be written as:

. N TR S
tﬁn - Tn(Bn - 1)(hns % ynt—l) /Tnoh'
Now
T
"2 _ Jn _ a 2
ucn B Zl (ynt Bnynt—l)
T T T
n 2 - n ~ 2 n 2
=1 Une ~ 2(Bn Bn)zl UtYne-1 F (Bn Bn) Z1 Ynt-1°

Noting that h;l(Bn - Bn) = 0(1) (see Perron (1987)) and using Lemma 1, we
have Tnci > SGZ as n > @ and hn > 0 with S fixed. Hence

“ 1 1 2.1~1 21 2 3 2,4

ty > le+ fOJc(r)dw(r){foJc(r) ar} " ]. |so foJc(r) dr |2 (sd”)

n
which proves part (b) upon simplification.

To prove part (c), we first note that
T .
2 n 2
d, = yTn/zl (ynt ynt—l) *
The denominator can be written as:
Tn 2 _ 2 Th 2 T Tn
Z1 (ynt -y 1) = (Bn -1 El Ynt-1 + 2(Bn - 1)21 Ynt-lunt+ Z1 Unt®

nt—- t

-1 -1 _
Since h_ (Bn - 1) = hn (exp( Yhn) 1) » -y as hn + 0, the first two terms
vanish asymptotically and

Ta 2 )
Zy (ynt -y 1) > So”, (A.1)

Finally
2 2 2 2
dn > S¢ Jc(l) /80" = Jc(l)

nt-

using Lemma 1., To prove part (d), Tan should be written as:
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Tn 2, -1 Tn = 2
Tan = Zt=1(ynt - ynt—l) /Tn Zt=0(ynt - Yn)
T T T
n n 2 2 -1 n 2
- SZ (y Yat- 1) /Lh Z Yat (Zl ynt) J + o(1)
2 2

¥

[S o fOJc(r) dr - S o] (féJc(r)dr)z]

= [foJc(r) dr - (féJc(r)dr)z]-l using (A.1) and Lemma 1.

Proof of Theorem 2

The proof is closely related to the development in Rao (1973),

0~ 1 since under the null
hypothesis y = 0. Hence, under the alternative Hypothesis we can write ©

-1
= 0y + (exp(-Yh ) - 1) = 0, *+ 5 T, ? where 6 T (exp( Yh ) = 1), Now

denote the power function of J by P (9 + 6 T ) under the alternative

section 7.a.7. Here 0 = Bn = exp(-yhn) and ©

hypothesis that 6 = 6, + 6nTn2. By definition, we have:
-1 -1
2 = > + 2
P (6g+ 8T 1) =Pl3 >A | 0, + 6T "]
-1

J - p(6, + 8T %)
= P Ti n 0 I_Iln 2 Ti g
2 2
0(60 + 6n'1‘n ) o( 60 + 6nTn )

-l
— 2
Xn u(eo + 6nTn )

-4
6 + &, T

-1
— \ + 2
xn “(eo 6nTn )

® (-T

) + e (5) (A2)

=

=T
2

0(60 + 6nTn )

using condition (b), where the convergence is uniform in y, although not

in §_. Here € (6) ~» 0 as n > =, Substituting 6 = 0 we have
" " = w(8y) "

Pn(eO) o(~ T —-3?5—7———) + E (0). (A.3)

Taking the 1limit of both sides of (A.3) and noting that lim Pn(eo) = q
1 nre
using condition (a), we have a = 1lim @(—T;(Kn - u(eo))/c(eo)) which shows
n->o
that —Ti(k - u(G ))/0(9 ) = a+ n with n, 0 as n > ©» and « = ®(a).

Therefore Ay = -T, 2(a + o )0(6 ) + u(e ). Hence, the argument of % in
(A.2) has the following 11mit:

1 -1 -l
-Tz(x - u(e + 6 T, z))/c:(e + 6nT )
-l
2

= =8 lu(8y + 6 T = (8, Y178, + (a + m)o(6,) /ae, + 6 17F)
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it

L—anu-(eo) + a 0(60)]/0(90) + el

-_ 1 ]
a 6nu (80)/0(90) + e
where s& >0 as n > », Hence
-1
2 — - '
Hm P (0, + 8 T *) = ®lin(a = & p'(8,)/0(8,)) ].
n-> n->®
1
- m2 - - . = a
Now, 6n = Tn(exp( Yhn) 1) and ze have: 1) 6n + 0 if hn O(Tn) for any
a >L%; i1) 6n > -= {f hn = O(Tn) for any a < £ and iii) 6n > -y if hn =
2
O(Tn).
Finally, this shows that
-1
2 s
1im Pn(eO + 6nTn ) = ®(a)

n->®

o if h

a
>
N O(Tn) for any a

o

®(=) =1 if h_ = O(Tﬁ) for any a <

a+ yp(0)/o(6)]  1f b= O(Ti).

Nt
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Table I
Normalized OLS Coefficient

s 8 16 32 64 128 256 512

8 0.078 0.077 0.080 0.069 0.069 0.071 0.075
16 0.148 0.158 0.166 0.155 0.166 0.155 0.155
32 0.303 0.359 0.407 0,413 0.430 0.431 0.421
64 0.519 0.740 0.839 0.868 0.903 0.903 0.908

128 0.670 0.947 0.996 1.000 1.000 1.000 1.000
256 0.704 0.988 1.000 1.000 1.000 1.000 1.000
512 0.705 0.992 1.000 1.000 1.000 1.000 1.000

INF 0,705 0.992 1.000 1.000 1.000 1.000 1.000
c.V. -6.275 -7.068 -7.,497 -7.795 -7.760 -7.943 -8,079

Size 0.057 0.053 0.050 0.051 0.057 0.053 0,053

Table II .
t—-Statistic on B

s\ 8 16 32 64 128 256 512

8 0.150 . 0.142 0.141 0.132 0.116 0.122 0.132
16 0,232 0.225 0.229 0.224 0.216 0.212 0.222
32 0.396 0.436 0.488 0.480 0.463 0.473 0.477
64 0.609 0.778 0.863 0.892 0.903 0.912 0.913

128 0,737 0.948 0.995 0.999 0.999 1.000 1.000
256 0.769 0.987 1.000 1.000 1.000 1.000 1.000
512 0.770 0.990 1.000 1.000 1.000 1.000 1.000

INF - 0.770 0.990 1.000 1.000 1.000 1.000 1,000

c.v. -1.972 -1.974 ~1.946 -1.934 -1.959 1.957 1.946

Size 0.067 0.060 0.054 0.050 0.056 0.047 0,056

Table ILI
Locally Best Invariant
T
S8 16 32 64 128 256 512

8 0.085 0.095 0.085 0.098 0.093 0.099 0.091
16 0.120 0.131 0.127 0.120 0.117 0.124 0.138
32 0.158 0.168 0.166 0.168 0.161 0.179 0.174
64 0.186 0.207 0.211 0.234 0.236 0.248 0.244

128 0.199 0.268 . 0.280 0.325 0.345 0.335 0.330
256 0.207 0.263 0.350 0.410 0.430 0.473 0.460
512 0.214 0.286 0.382 0.469 0.537 0.593 0.605

INF 0.214 0.286 0.385 0.515 0.681 0.857 0.948

c.V. 60.300 27.098 12.890 6.291 3.108 1.545 0.770
5
x10

Size 0.047 0.046 0.045 0.050 0.053 0.049 0.050




Table IV
Uniformly Most Powerful Invarfiant

T
s\ 8 16 32 64 128 256 512
8

0.059 0.065 0.067 0.075 0.074 0.074 0.053

16 0.097 0.094 0.106 0.099 0.088 0.110 0.101
32 0.163 0.183 0.215 0.234 0.234 0.238 0.225
64 0.290 0.455 0.547 0.599 0.621 0.641 0.626
128 0.400 0.770 0.932 0.987 0.991 0.991 0.992
256 0.444 0.901 1.000 1.000 1,000 1.000 1.000
512 0.427 0.921 1.000 1.000 1.000 1.000 1.000

INF 0.427 0.923 1.000 1.000 1.000 1.000 1.000
C.V. 2,115 1.324 0.749 0.400 0.207 0.105 0.055

Size 0.058 0.057 0.062 0.054 0.049 0.055 0.051

Table V
The von Neumann Ratio

T
sS_ 8 16 32 64 128 256 512

8 0.053  0.050 0.054 0,051 0.051 0.053 0.048
16 0.054 0.075 0.064 0.073 0.056 0.064 0.059
32 0.096 0.090 0.086 0.084 0.078 0.062 0.063
64 0.149 0.175 0.160 0.150 0.110 0.090 0.077

128 0.194 0.327 0.360 0.306 0.233 0.157 0.127
256 0.220 0.498 0.682 0.691 0.555 0.396 0.255
512 0.211 0.513 0.854 0.950 0.949 0.851 0.667

INF 0.218 0.497 0.888 0.997 1.000 1.000 1.000
C.V. 3.450 2.958 2.647 2.433 2,307 2.214 2.149

Size 0.047 0.059 0.051 0.058 0,054 0.058 0.058

Table VI
First-order Correlation Coefficient

s~ 8 16 32 64 128 256 512

8 0.039 0.046 0.067 0.055 0.058 0.064 0.055
16 0.050 0.060 0.086 0.064 0.066 0.068 0.058
32 0.082 0.111 0.116 0.089 0.081 0.074 0.067
64 0.158 0.224 0.200 0.161 0.132 0.107 0.089

128 0.225 0.416 '0.430 0.343 0.257 0.199 0.139
256 0.250 0.582 0.766 0.718 0.581 0.412 0.280
512 0.251 0.620 0.900 0.965 0.953 0.854 0,650

INF 0.251 0.622 0.928 0.997 1.000 1.000 1.000
c.V. -1.645 -1.645 -1,645 -1,645 -1,645 -1.645 -1.645

Size 0.027 0.039 0.056 0.047 0.051 0.061 0.053




Table VII
Turning Point Test

SS_ 8 16 32 64 128 256 512

8 0.073 0.073 0.061 0.050 0.048 0.048 0,045
16 0.077 0.078 0.061 0.050 0.047 0.048 0.044
32 0.090 0.085 0.071 0.053 0.048 0.045 0.044
64 0.112 0.102 0.080 0.054 0.049 0.043 0.045

128 0.134 0.139 0.098 0.065 0.058 0.049 0.046
256 0.141 0.184 0.160 0.110 0.083 0.058 0.046
512 0.141 0.194 0.224 0.216 0.151 0.088 0.062

INF 0.141 0.194 0.240 0.363 0.568 0.812 0.978
c.v. 1.645 1.645 1.645 1.645 1.645 1.645 1.645

Size 0.069 0.069 0.057 0.048 0.047 0.046 0.045

Table VIII
Wald-Wolfowitz Statistic

sS_ 8 16 32 64 128 256 512

8 0.047 0.051 0.063 0.054 0.052 0.061 0.055
16 0.054 0.054 0.070 0.060 0.058 0.064 0.056
32 0.073 0.089 0.095 0.076 0.074 0.072 0.065
64 0.119 0.166 0.173 0.142 0.111 0.099 0.085

128 0.167 0.326 0.363 0.308 0.231 0.183 0.132
256 0.184 0.482 0.691 0.672 0.541 0,385 0.270
512 0.184 0.524 0.861 0.947 0.945 0.843 0.633

INF 0.184 0.526 0.889 0.996 1.000 1.000 1.000

C.V. -1.645 -1.645 -1.645 ~1.645 1,645 -1.645 1.645

Size 0.045 0.048 0.060 0.050 0.050 0.060 0.054

Table IX
Rank Correlation Coefficient

SSS_ 8 16 32 64 128 256 512

8 0.029 0.037 0.048 0.047 0.056 0.062 0.051
16 0.031 0.044 0.053 0.053 0.061 0.067 0.053
32 0.044 0.061 0.082 0.076 0.071 0.074 0.061
64 0.067 0.132 0.146 0.128 0.108 0.101 0.077

128 0.093 0.253 0.321 0.265 0.212 0.164 0.119
256 0.104 0.384 0.619 0.616 0.491 0.354 0.249
512 0.104 0.429 0.809 0.928 0.923 0.811 0.611

INF 0.104 0.430 0.849 0.992 1.000 1.000 1.000
C.V. -1.645 -1.645 -1.645 -~1.645 -1.645 -1.645 ~1,645

Size 0.024 0.034 0,048 0,046 0.056 0.062 0.051




Table X
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Rank Version of von Neumann Ratlo

T
SS~_ 8 16 32 64 128 256 512
8  0.054  0.045 0,055  0.049  0.059  0.062 0,052
16  0.069  0.054  0.064 0,054  0.062  0.067  0.053
32 0,090 0.080  0.092  0.079 0,074 0,074  0.061
64  0.141  0.161  0.158  0.132  0.118  0.101  0.076
128 0.188  0.296  0.335  0.274 0,213 0,165  0.120
256 0,199  0.429  0.644  0.620  0.496  0.356  0.249
512 0.201 0,472  0.811  0.928  0.922  0.808  0.610
INF  0.201  0.473  0.853  0.993 1,000 1,000 1,000
c.v. 1.645  1.645 1,645  1.645  1.645  1.645 1,645
Stze  0.049  0.041  0.053  0.046  0.059  0.062  0.050
Table XI
Sign Test
T
s~ 8 16 32 64 128 256 512
K}
8  0.069  0.060  0.038  0.043  0.059  0.050  0.046
16 0.086  0.075  0.044  0.048  0.062 0,062 0,043
32 0.118  0.101  0.063  0.054  0.071  0.070  0.053
64  0.169  0.157 . 0.092  0.080  0.094  0.089  0.062
128 0.208  0.247  0.175  0.151  0.152  0.120  0.090
256  0.219  0.336  0.334  0.340  0.309  0.224  0.154
512 0.219 0,359  0.476  0.621  0.669 0,515  0.345
INF ~ 0.219  0.360  ©0.517  0.844 0,995  1.000  1.000
C.V. —-1.645 =1.645 —1.645 ~—1.645 ~-1.645 -1,645 ~—1.645
Size 0,056 0,054 0,038  0.040  0.059  0.053  0.040
Table XII
Wilcoxon Signed-rank Test
T
5\\\\\\ 8 16 32 64 128 256 512
8  0.070  0.060  0.057 0,055  0.064  0.062  0.054
16  0.083  0.078  0.069  0.064  0.068  0.066  0.057
32 0,123 0.109  0.099  0.085  0.081  0.074  0.062
64  0.191  0.208 _0.171  0.134  0.117  0.100  0.076
128 0.266  0.355  0.344  0.276 0,209 0,160  0.120
256  0.282  0.506  0.634  0.595  0.461  0.327  0.237
512  0.282 0,538  0.806  0.892  0.883  0.751  0.540
INF  0.282  0.539  0.842 0,987  1.000  1.000  1.000
C.V. ~=1.645 =-1.645 =—1.645 ~1.645 ~-1.645 ~-1.645 ~-1.645
Size  0.050  0.048  0.058  0.045 0,057 0,055 0,053




Table XIII
Van der Waerden Test Statistic

T
s~ 8 16 32 64 128 256 512

8 0.070 0,054 0.058 0.058 0.065 0,064 0.055
16 0.083 0.073 0.071 0.068 0.072 0.068 0.057
32 0.123 0.107 0.110 0.089 0.085 0.080 0.063
64 0.191 - 0.212 0.183 0.147 0.124 0.106 0.080

128 0.266 0.366 0.370 0.304 0.225 0.183 0.127
256 0.282 0.521 0.672 0.651 0.512 0.372 0.265
512 0.282 0.557 0.841 0.924 0.927 0.817 0.615

INF 0.282 0.562 0.871 0.995 1.000 1.000 1.000
C.V. ~1.645 -1.645 -1.645 -1.645 ~-1.645 -1.645 ~=1,645

Size 0.050 0.045 0.055 0.048 0.056 0.059 0.052
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