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ABSTRACT

Consider the stationary first—order autoregressive process Vg = g t e

e,MN(0,02) | yo ~ N(0, 02(1 - a2)"1) and let & be the least~squares estimator of « based on
a sample of size (T+1) sampled at frequency h. Consider also the continuous time

diffusion process dyt = €y, dt + a'dwt, yo ~ N(0 ,—02/20), w, a Wiener process, and let © be
the continuous time maximum likelihood (conditional upon ¥;) estimator of © based upon a
single path of data of length N. As shown in Perron (1988a), the asymptotic distribution of

T(a - @), as the sampling interval converges to zero, is the same as the exact distribution
of N(® ~ ©). This distribution permits explicit consideration of the effect of the initial

condition y, on the distribution of o. While our earlier work concentrated on the case
where y; is fixed, we consider here the stationary case. The moment—generating function of

N(© - ©) is derived and used to tabulate the distribution and probability density functions.
We also investigate the mean and mean-squared error of © as well as the power function.

For each case, the adequacy of the approximation to the finite sample distribution of « is
assessed. The approximations are found to be excellent for values of & not too far from
one, where the usual asymptotic distributional theory is inadequate.
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1. INTRODUCTION

Consider the stationary first—order stochastic difference equation:
(1) Yyy=oay, g +te t=1..T

where |a] < 1, e, ™ IN(0, o‘i) and y, ~ N(0, ai (1- 02)_1). The least~squares estimator of

a based on a sequence of observations of size (T+1), {yt}%‘ is:
S T 2 4
=T ¥V Coay i)

The distribution of a has been extensively studied. One perennial topic of concern
has been the adequacy of various asymptotic approximations to the finite sample
distribution. The standard asymptotic result, derived by Mann and Wald (1943) and

Rubin(1950), is that T"/"(a - 6)(1 - 2) " has a limiting N(0, 1) distribution when fa] <
1. A fact of interest is that this limiting result is valid whether y, has the distribution
specified in (1) or whether it is any fixed constant. Furthermore, the conclusion from
previous studies is that the limiting normal distribution is an inadequate approximation to
the finite sample distribution, especially for values of o near one (see Basmann et al.
(1974), Evans and Savin (1981, 1984) among others). Asymptotic approximations to
higher orders, such as the Edgeworth expansions, also do not yield adequate
approximations as shown by Phillips ( 1977).

Recently, a new class of models which specifically deal with the presence of a root
close to one has been studied. Phillips (1988) introduced the concept of a near-integrated
random process where the autoregressive parameter is defined by :

(2) a = exp(c/T).

Here, the real-valued constant ¢ is a measure of the deviation from the unit
root case. The model (1) and (2) may also be described as having a root local to unity (see
Cavanagh (1986)): as the sample size increases, the autoregressive parameter converges to

unity. An expression for the limiting distribution of T(;z ~ @) under (2) has been derived
by Phillips (1988), Cavanagh (1986) and Chan and Wei (1987). Tabulations of this
limiting distribution have been obtained by Nabeya and Tanaka (1987), Cavanagh (1986)




and Perron (1988b) using different procedures. These studies also show the approximation
to the finite sample distribution to be quite good in the case where yo = 0.

An important feature of this work is that the limiting distribution of T(e ~ a),
under the near-integrated process (2), is invariant to the value of the initial observation,
whether it be a random variable or a fixed constant,. By contrast, results of Nankervis and

Savin (1988) show that the exact distribution of « in the stationary case is quite different
from the fixed start-up case where the initial condition is Yo = 0. There is accordingly a
need to consider an alternative asymptotic framework which permits a distinction between
the stationary and fixed start-up cases.

More recently, Perron (1988a) showed how the 'continuous record' asymptotic
framework is useful in this regard. Here, the asymptotic analysis is performed not by
letting the sample size increase to infinity keeping a fixed sampling interval, but rather by
letting the sample size increase while keeping a fixed span of data, i.e. by letting the

sampling interval converge to zero. We derived the limiting distribution of T ~ &) under
general specifications for the initial condition Yo and showed how it is directly influenced
by different assumptions on its distribution.

We also established how this 'continuous record' asymptotic distribution can be
related to the exact distribution of the continuous time estimator of the diffusion
parameter in a suitably defined diffusion process. This result, in turn, permitted the
derivation of a moment—generating function appropriate for the calculations of various
distributional quantities under different assumptions about the initial condition.

While our earlier work analysed the case where the initial condition is any fixed
value, the purpose of this paper is to consider in detail the stationary case as specified by
(1). The paper is organized as follows: Section 2 outlines the framework adopted and
describes the relevant distributional results. The main theoretical contribution is contained
in Section 3 where we derive the appropriate joint moment—generating function necessary
to calcute, by numerical integration, the distributional quantities of interest. Section 4
presents such computations concerning the c.d.f., p.d.f., moments and power functions. In
each case, the adequacy of the asymptotic approximation to the finite sample distribution
is assessed. Finally, Section 5 offers concluding comments and suggestions for future
research.




2. SOME DISTRIBUTIONAL RESULTS

In this section, we briefly outline the particular stochastic processes of interest with
their distributional properties. A more detailed treatment is presented in Perron (1988a).

We begin with an observable process {yt, t > 0} defined on a probability space (Q, F, ,u?).
The measure p? is induced by the following diffusion process postulated for Yy

(3) dy, = &, dt + o dw, ; yo~N(0,-02/28); t>0.

Here, @ and o are unknown parameters with —w < © < 0 and o > 0. LA is the standard
unit Wiener process. According to (8), the stochastic process {yt} is second-order
stationary (see, e.g., Arnold (1974)). Our concern is the estimation of © given a single

sample path of observations {yt, 0 <t < N} where N is the span of the data. The analog of
the least-squares procedure in continuous time yields the estimator:

¢ o = [Ny dy, / [Ny2a.

For simplicity of notation, we write © = eN(y) and analyze the distributional properties of

the standardized estimator N(e- &)
The discrete—time representation of the process y, is easily shown to be given by :
(5) yth = exp(eh) y(t——l)h + uth

where u) ~ N(0, o2 (egeh -1)/28), yo ~ N(0, —02/26) and h is the sampling interval. This

process is equivalent to (1) by specifying o = o, = exp(¢h) and ¢2 = o‘i 26/(e2eh -1). In
this discrete—time framework, the goal is to estimate the unknown quantity a = exp(eh)
given a sequence of observations {yth; t =0,1,2,.,T} where T = N/h. The least-squares
estimator is

o =371 T 2
(6) =Ty Ven ¥ (t-1)h/ Ty =1 Y(t-1)h

We focus on the asymptotic distribution of T( &h - ozh) as h = 0 given a fixed span




N. For simplicity, we consider a limiting sequence {h = hy, hy, ..., hy} such that T = N/h
is integer—valued and we require hy = 0 as n - w.

The following result, proved in Perron (1988a), characterizes the exact distribution
of N(é— ©) given a sample path of observations {yi_'}l(\)‘T and the asymptotic distribution of

T( oy, — @ ) with the 'continuous record' asymptotic framework.

Proposition 1
1 1
Let Ay, ¢) = fyj; exp(cr)dwr + j; J (1) dw,

2 1 1., .2
and B(y, ¢) = v (exp(2¢c) - 1)/2¢ + v j; exp(cr)Jc(r)dr + jl; J (r) dr
where J (r) = j; Texp(c(r - s))clwS and w_ is the Wiener process defined on C(0, 1).

i) Let {yt, t 2 0} be a continuous time stochastic process generated by (3) and let © be the
estimator of © defined by (4). Then,

o d
N(e-8) = A%, ¢)/B(y, ¢) = Z(y, ¢)

142
where v = y,/oN / and ¢ = €N; and where = signifies equality in distribution.

ii) Let {¥,, t 2 0} be a continuous time stochastic process generated by (8) and let ;h be
defined by (6) with {yth’ t =0, ..., T} generated by (5). Then as h » 0 with T + © and N
fixed:

T(;h - ah) -+ Z(y, c)

: ) 1/2 _
with, again, v = yo/aN/ and ¢ = eN; and where "' denotes weak convergence in
distribution.

Remark: The distributional result (ii) is valid under more general conditions upon the
innovation sequence {uth}‘ Indeed, the result remains valid if {u,} is a martingale

difference sequence, thereby allowing possible heterogeneity and non-normal distributions.

Proposition 1 establishes that the small-h (or continuous records) asymptotic




distribution of T(ozh - ozh) is the same as the exact distribution of the normalized
continuous time estimator N(© - ©). This result justifies studying the distributional
properties of N(© ~ €) as an approximation to the exact distribution of the discrete time

normalized least~squares estimator T(a — a).

More importantly, the stochastic representation of the variable Z(4, c) is explicitly
affected by the specification of the initial conditon ¥o- In particular, it is readily seen that
the distribution of Z(4, c) is different when considering the fixed start-up case, ¥y = 0, and

the stationary case, y, ~ N(0, ai (a? - 1)_1)A In this asymptotic context, one can at least
hope to achieve a better approximation to the exact distribution in finite samples then in
the usual (T - o) framework. Although it is possible to study the distributional properties
of Z(, ¢) under any assumption on the distribution of ¥o, the natural case of interest is the
one stipulated above where {yt} 18 a stationary process and we shall restrict our attention
to this important case.

In order to use these distributional results as approximations to the finite sample
behavior, we need a method to compute the distributional quantities of the random

variable Z(7, c), or equivalently N (® - ©). To this effect, the next section presents a
moment-generating function which can be numerically integrated to obtain the various
quantities of interest.




3. THE EXACT DISTRIBUTION OF N(é - ) IN THE STATIONARY CASE

Given that, in the stationary case, the exact distribution of N(® - ©) depends only
on the parameters ¢ = 6N, it is uzeful to transform the original model. The transformation
t € (0, N) - r € (0, 1) with t = Nr yields :

o " -2 -1/2 p1 -1 pt
N©-9) = oN" [Ny, dwy/N* [N y1 dt = oN P [y dw N [ via

where

y, = exp(cr)y, + oN 'Y/ 2J;rexp(c(r - s))dwS = exp(cr)y, + oN Y/ 2Jc(r) 1 0<r<1,

with initial condition y, ~ N(0, -02{26). Now, let X, =Y, / aNll 2. Then

(7) N@©-90) = S X dw_/ ) 2 dr
where
(8) x, = exp(cr)y + J (r).

The expression (8) is the solution x, of the stochastic differential equation:
(9) dx, = cx dr + dw_ 0<r<1
Xy = 7~ N(0, -1/2¢)

where ¢ = eN,

To study the exact distribution of N(e- ©), we derive the joint moment—generating

1 1
function of [f xrdwr, fo xg d.r] given that X, 1s a random variable in the probability space
0

(Q, F, ,u?-:— ,u)c{) generated according to the diffusion process (9). We denote this joint
moment—generating function as :




1 1
M (v, u) = E[exp(v j; x dw_+u j; x2 dr)}

where the expectation is taken with respect to the measure ;z = ;4 The main result of
this section is an expression for M (v u) which is presented in the followmg theorem.

Theorem 1
1/2
Let A= (c2+2cv-2u)/".

Then :
dcrexp(—(v + ¢ + 1)) 1/2

dchexp(-21) + (1 — exp(—2X))(v2 - (c = A)?)

M (v,u)=

Proof: The first part of the proof is the same as in the case of a fixed y, considered in
Perron (1988a) and is omitted. The relevant result is that

(10) M_ (v, u) = E [exp{(2/2)((x))" - (¢)))]

where a = v + ¢ ~ ) and x': 1s a stochastic process generated by the following stochastic
differential equation :

(11) dx}‘:Ax;\dr+dwr 0<r<1
with x’é = y~N(0,-1/2¢c) and where A = (c2 + 2cv - 2u)1/2.

Now the stochastic process xA given by (11) has the following unique (/4 measure)
solution :

(12) x;,\ = exp(ir)y + j;rexp(A(r - s))dw{s
= exp ()74 ,1)

where J, (r) ~ N(0, (<32’\r ~ 1)/2)). Hence, x)l‘ is a normal random variable with mean 0




and variance given by
Var(x’,\) = exp(22) Var(y) + Var(J,(1)) ,
since by assumption vy = xa\ is independent of w s(0 <8 <1). Simple calculations yield

Va.r(x’,\)=-—E£——-)-eX 24 [%—-%:I—E%-Ed

Efxq x)] = exp(A)(~1/2c).

and

2 2
Let x' = (x’l\ x%). The components of x are jointly normal and (x%) - (xé) is a
quadratic form in normal random variables. Hence, we can write

M, (v, u) = Blexp{(a/2)(x'Ax)}]

where A = [(1) _(1)] and x~N(0, Q) ;

and Q= (<1/2) [exg( 3 exlf{'\)] = (-1/2¢)¥

with  h = (-2¢)d = exp(2A)[1 - ¢/A] + ¢/A.

Let g= Q' xw N(0, I,) then x'Ax = (—1/2c)g"1’1/ A v/ 2g is a quadratic form in

N(0, 1) independent variates. \Ili/ 2A \Ifl/ 2 1s symmetric and can therefore be diagonalized
as

o PAe'p =
where PP'=1 and A is a diagonal matrix with the characteristic roots of \Ill/ 2A \Ill/ 2 as

elements. Now let Z = P'g then

x'Ax = (-1/2¢)2'Pe'* v'/*pz
= (-1/20)Z'A Z

= (<1/20)(\Z; + AZo)




Where Z’ = (Z1 ' Zz) ~ N(O,Iz).

The moment-generating function can then be expressed as :

M, (v, u) = E [exp{(~a/4c)(\Z1 + AZD)}]
= E [exp{(~a/4c)\ 21 |E[exp{(~a/4c) \yZ)]

1 1/2 1 1/2
o [ e
1 + (af2c)), 1 4+ (af2c)),

. 2 2 . . .
since Z, and Z, are independent central chi~square variates.

It remains to find the explicit form of the eigenvalues A; and ),. These are analysed
in the appendix and are given by :

(14) A dg = (h=1)/2 % [(h - 1)/2 + h - exp(22)] /*
where h=exp(2A)(1-c/A) +¢/X.

Simple but tedious manipulation of (18) and (14) yields the desired form of the
moment—generating function. o

The moment—generating function derived in Theorem 1 allows us to compute the
cumulative distribution function as well as other distributional quantities using numerical
integration. Various computational procedures are discussed in Section 4 and the numerical
results presented in Section 5.
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4. NUMERICAL INTEGRATION OF THE MOMENT-GENERATING FUNCTION

The moment—generating function derived in Section 3 can be used directly to derive

the moments of N (é- 8). Using Mehta and Swamy's (1978) results, we have:

a M (v, - u)}
du
v’ v=0

(15) E[N(@-o = F%—) f @yl [
I)Jo

1 1 : :
where M (v, u) = Efexp(v j; x dw_+u j‘; x2 dr)] is the joint moment—generating function

of [j;lxrdwr, j:xg dr] .

Section & presents results for the first two moments of N(®- 6) evaluated at various
values of c¢. In practice, the integral in (15) is evaluated in a range (€, U) where U is set

such that the integrand is less than € when evaluated at U. € was fixed at 1.0E - 07. The
subroutine DCADRE of the International Mathematical and Statistical Library (IMSL)

was used to evaluate the integral (the error criterion for this routine integration was also
set at 1.0E — 07).

To compute values for the cumulative and probability density functions we must
1 1
. . e : 9
consider the joint characteristic function of [ j; xrdwr, j; x2 dr], denoted by cfc(v, u).
Then :

o .l .pl
of (v, u) = M (iv, iu) = E[exp(iv j; x dw_ + iu j; x2 dr)].

The distribution function of N(é — ©) can be obtained as follows. Let
~ . 1 1
F (z) = P[N(e-) < z] and recall that N(® — ) = j; x dw_ / _/; x2 dr. Then, by
Theorem 1 of Gurland (1948), we have :

0 1 1 lim [cfc(v, - vz}
F(z)=5- €1~0 ——e | dv
¢ 2 €9~ €1<|V|<62 v
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cf (v, — vz
(16) =g _[; ® AIMAG [-—C(-—v—_)] dv

where AIMAG (.) denotes the imaginary part of the complex number. Further, the
density function is obtained as follows:

oct (v, u )

— dv.

() @ =g F =gk &0 f
zZ)= zZ)= €1~
¢ dz "c 2 €~ “€1<|v]|<Ey

u=-vz

The expressions (16) and (17) can be numerically integrated to obtain values for the
cumulative distribution function and the probability density function. When calculating

these values, we again evaluate the integrals in a range (€, V) where V is an upper bound

set such that the integrand evaluated at V is less than €. We again use the subroutine
DCADRE of IMSL and all error criteria are set at 1.0E — 07. The integration of the ¢.d.f.
and p.d.f. are, however, quite different in practice than the integration involving the
moments. Here, the integrand involves the square root of a complex valued function. The
use of the principal value of the square root may not ensure the continuity of the integrand.
We must, therefore, integrate over the Reimann surface consisting of two planes. The
method used is described in more detail in the Appendix to Perron (1988b).

The cumulative distribution function (18) can also be used to analyze the power
function for tests of the null hypothesis

(18) Hy:e=g

using the statistic N(© — &) against various alternatives © (w<©<0,0#9). Denote
*

* "
by z the value such that PGO[N (6—~&) <z ] =p Then the power function of a one-sided

test with size § for testing © = @, against © < §, is given by:

(19) Po[N(©-8) <2 ]=PN©-6) <2 +(c—0)]

with ¢ = N@ and ¢; = N&,. Expression (16) can be used to evaluate the power function
(19) for various values of c, ¢o and significance level §. A similar analysis carries over for
testing © = §, against © > §, or for two—tailed tests.
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9. DISCUSSION OF THE NUMERICAL RESULTS

Figure 1 presents the graph of the cumulative distribution function of N (é— &) for
¢ =-5.0, ~1.0, -0.5, -0.1 and -0.01. Each curve is constructed by evaluating the integral
(18) at 160 equidistant points. Figure 2 presents the corresponding probability density
functions and is constructed in a similar way (we have, however, omitted the case ¢ =
—0.01 from the graph due to a sharply different scale from the other cases). Several features
are worth noting. First, there are marked differences in the distribution functions for
different values of c¢. The probability density function is very flat for large (negative)
values of c. It gets more concentrated around zero as ¢ gets small (in absolute value). The
p.d.f. is also sharply non-symmetric when c¢ is large, however, the skewness decreases as ¢
gets smaller. From this evidence and the results of other experiments not reported, it
appears that the distribution function becomes degenerate at zero as ¢ approaches zero.

Table 1 presents selected percentage points of the distribution function of N(é -6
for ¢ = -10.0, -5.0, -1.0, -0.1 and —0.01. These are presented in the infinity rows. Table 2

presents the mean, median and standard deviation of N (é—- ©) for the same values of c.
These tables also presents finite sample results to assess the adequacy of the asymptotic
approximation. The finite sample results were obtained by simulation methods. We used
20,000 replications of model (1) with & = exp(c/T) to obtain our estimates. N(0, 1)
random deviates were used to construct the series. These were obtained from the
subroutine GASDEV in Press et al. (1986).

Overall, the results show our approximation to be adequate. The approximation is
better when 1) ¢ is closer to zero, 2) T increases and 3) for the right-hand tail of the
distribution. When c is as large as —10.0 and T is small (e.g., 25), the approximation is not
very good. It becomes noticeably better as T increases. To get a better grasp of the
relationship between the finite sample distribution and its asymptotic counterpart, Figure
3 graphs the c.df. for ¢ = -10.0 and T = 25, 50 , 100 and infinity. One can see from this
graph that the approximation improves rapidly when T increases.

When c= ~0.01, the approximation is excellent for even very small sample sizes, and
even in the extreme tail of the distribution. This feature is to be expected since our
asymptotic framework is one that is local to & = 1 and a - 1 as h, the sampling interval,
converges to zero.
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To see more clearly how our approximation fares in terms of the exact distribution

of a, for various o, Tables 3 and 4 present some additional evidence with respect to the
mean and standard deviations of o for various values of « and sample sizes T. These tables

present the exact mean and standard deviation of ;r as calculated by Nankervis and Savin
(1988a, b) using Sawa's (1978) method. The selected values of o and T are a = 0.99, 0.95,
0.90, 0.80 and 0.60 and T = 10, 20, 25, 30, 50 and 100. Our approximation for the

expected value of a is also compared with White's (1961) approximation as reported in
Nankervis and Savin (1988b). Our approximation for the standard deviation is also
compared with those of White (1961) and Bartlett (1946), again as reported in Nankervis
and Savin (1988b). It should be noted that our approximations to the mean and standard

deviations of « are obtained using (15) with r = 1, 2 and specifying ¢ = T In(a).

The results of Table 3 show our approximation to the expected value of ;1 to be
better than White's approximation for a = 0.99 and « = 0.95 (for all values of T). The
approximation is, in general, excellent even for small values of T. For values of o at 0.90,
0.80 and 0.60, White's approximation is better. OQur approximation is imprecise for small
sample sizes but becomes quite precise as the sample size increases. In general we find that
the smaller the value of o , the slower is the approach between the asymptotic
approximation and the exact distribution as T increases.

Much of the same comments apply to the results concerning the standard deviation

of ;, presented in Table 4. Our approximation is better than White's approximation for o
= 0.99 and « = 0.95; almost as good for & = 0.90 and less good for oo = 0.80 and 0.60. An
interesting feature is that our approximation overstates the exact result while White's and
Bartlett's understate it.

To obtain a clearer view of the behavior of the first two moments of N (é - ©),
Figures 4 and 5 present a graph of these two quantities for values of ¢ in the ~20 to 0 range.
To see the effect induced by the stationarity assumption we also compare the results with
those obtained in the fixed start-up case where Yo = 0 (see Perron (1988a)).

As can be seen from Figure 4, the normalized bias of © (the mean of N(é - ©))
decreases rapidly towards zero as ¢ approaches zero. This is unlike the fixed start-up case
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where the decrease in the bias is small as ¢ approaches zero (the decrease is quite rapid,
however, as ¢ increases on the positive side, see Perron (1988a)). Although not shown in
the graph, the bias in the stationary case eventually approaches the value of the bias in the
fixed start-up case for very large (negative) values of c.

Much of the same comments apply to the normalized mean-squared error of © (the

second moment of N(é— ©)) presented in Figure 5. In the fixed start-up case the curve is
basically linear in ¢. The mean-squared error in the stationary case follows closely that in
the fixed start-up case for large (negative) values of ¢ (again for very large ¢, the two
curves eventually join). However, in the stationary case, the mean—squared error function
approaches zero as ¢ approaches zero.

The results presented in Figures 4 and 5 help to explain the result of Nankervis and
Savin (1988) concerning the finite sample properties of a. First, if o is much lower than

one, the mean and standard deviation of o are basically the same in the stationary and
fixed start-up cases. However, for value of & closer to one, the two cases yield quite
different behavior, the stationary case showing less bias and variability.

The final computational exercise using the results of Section 4 concerns the power
function of a test of the null hypothesis (18) obtained using the function (19). Figure 5

presents the power functions of a 5 % one—tailed test using the statistic N (é - §)) for
& =-5.0, -2.0, -1.0, -0.5 and -0.1. Several features from this graph are worth
mentioning. First, the power function against left—sided alternatives ("more stationary™)
rises faster as €, is closer to 0. For instance, the power of a test that ¢y = —0.5 against an
alternative that ¢ = —5.0 is approximately 0.50 which is close to the power of a test that o
= 5.0 against an alternative that ¢ = —14.0.

The behavior of the power function for right-sided alternatives is, however, quite
different. For & = —5.0 and 2.0, the power function is monotonic and increases faster
than for left~sided alternatives. Interestingly, the power functions in the cases § = -1.0
and -0.5 exhibit non-monotonic behavior. For the null hypotheses & = -1.0 and §, =
0.5, the power function mitially increases but eventually starts decreasing as the
alternative value approaches zero. The tests even become biased for values of ¢ close to
zero. In the case of a null hypothesis that € = -0.1, the power function is
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monotonic—decreasing as ¢ approaches zero. Accordingly the test is biased for all values of
¢ between —0.1 and 0.0.

This non-monotonic behavior of the power function can be understood by looking at
the graph of the cumulative distribution function of N (©— ©) presented in Figure 1. What

emerges from this graph is that the distribution function of N (é — ©) shows little
displacement as ¢ changes for low values of ¢. It simply shows a greater concentration
around zero with little horizontal shift. Now, from (19), the power function can be
decomposed as:

(20) PoIN©=8) <z + (co—c)]

=PN(©-6) <2 Pz +(c-c) < N©-6) <27

The first term in (20) will be so much above 0.05 (the size of the test) depending on

the displacement of the distribution of N (é—- ©) as ¢ (or ©) changes. The second term in
(20) tends to reduce the overall power and the amount of the reduction is greater as ¢
approaches zero. The power function will exhibit non—-monoticity when the second term
eventually outweighs the first. This happens for small values of ¢ essentially because in
this case changes in ¢ cause only a small displacement in the distribution function. Hence
the first term in (20) is little above the size of the test. On the other hand, as ¢ approaches
zero there is even more concentration in the distribution causing the second term in (20) to
be larger as ¢ approaches zero. In the case of the null hypothesis & = -0.1, the
displacement in the distribution as c gets closer to zero is so small and the increased
concentration so large that the second term in (20) outweighs the first for all values of ¢
between 0.1 and 0.0, and results in a monotonic decreasing power function.
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6. CONCLUDING COMMENTS

This paper has presented an asymptotic approximation to the least-squares
estimator of the parameter in a stationary first—order autoregressive model. Our approach
is different from the previous literature in that we consider a framework using the
continuous record asymptotic analysis (h - 0) instead of the usual (T - o) asymptotic
theory. The main advantage of our method is that it allows explicit consideration of the
effects of different assumptions concerning the initial condition.

Our approach yields interesting results concernming the distributional properties of
the continuous time estimator of the diffusion parameter ©  These are interesting
theoretical results per se but their usefulness lies in their adequacy to provide satisfactory
approximations to finite sample estimators in discrete—time models. To this effect, we
have presented extensive evidence that the approximation is indeed adquate for a certain
range of parameter values near unity. This is particularly useful because it is precisely this
range of parameter values where the wusual asymptotic theory yields inadequate
approximations.

While our framework is particularly simple, the method can be extended to more
complex models where exact results are too difficult or expensive to obtain. These include
models with an intercept and/or time trend. Such analyses are left for future research.
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APPENDIX
Derivation of the eigenvalues A,, ),

Let w‘/zs[ ‘}] and X = U'/*A v'/*  then .

q

X=|PP-2 pg-ar
q-qr g% -r?

and the eigenvalues of X are the roots A, , Ag of |X = ALy| = 0 or equivalently the roots A
s /\\2 of
2 2

A+ A {FE2-pY)-(pr—q? =0.

Hence,
2 2.1/2

M do = (92 = 19/22 (92 - x2) /4 + (pr - )" )"

To solve for A, and Xy, we need an expression for the quantities (p? - r?) and (pr - q2)2.

1/2 _1/2
Using the identity ¥ / v / = ¥, we have the following system of equations :

(A.l) pP+qg2=h
(A.2) pq + qr = exp(})
(A.3) g?+12=1

Using (A.1) and (A.3) we have : p2~r2=h-1. Now,

(A.4) (pr - q2)2 = p%r? 4+ q¢ - 2prq?.
From (A1) and (A3) : (p2+¢?) (¢?+1)=h or
(A.5) p?r? + q* = h - (pg? + q22).
Now, from (A.2) :

(A.6) (p?a? + %?) = exp (2)) — 2prq?.

Substituting (A.6) in (A.5) yields :
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(A7) P2 + q* = h - exp (2)) + 2 prg?

and substituting (A.7) in (A 4) yields :

(pr - q2)2 = h-exp (21) .
Hence :

Mo dy=(h-1)/2%[ (h-1)"/4 + h-exp 20)]/*
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