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Headnote

This paper considers asymptotically efficient instrumental variables
estimation of nonlinear models in an i.i.d. environment. The class of models
includes nonlinear simultaneous equations models and other models of interest.
A problem in constructing efficient instrumental variables estimators for such
models is that the optimal instruments involve a conditional expectation,
calculation of which can require functional form assumptions for the
conditional distribution of endogenous variables, as well as integration.
Nonparametric methods provide a way of avoiding this difficulty. Here it is
shown that nonparametric estimates of the optimal instruments can give
asymptotically efficient instrumental variables estimators. Also, ways of
choosing the nonparametric estimate in applications are discussed.

Two types of nonparametric estimates of the optimal instruments are
considered. Each involves nonparametric regression, one by nearest neighbor
and the other by series approximation. The finite sample properties of the

estimators are considered in a small sampling experiment involving an

endogenous dummy variable model.

Keywords: Instrumental Variables, Nonlinear Models, Efficient Estimation,

Nonparametric Regression.



1. Introduction

The asymptotic efficiency of instrumental variables (IV) estimators of
nonlinear models depends on the form of the instruments. Amendya (1974, 1977)
characterized the instruments that minimize the asymptotic covariance matrix
of an IV estimator. However, using these optimal instruments presents
difficulties. They often involve conditional expectations of nonlinear
functions of endogenous variables. Therefore, their calculation often
requires specification of the conditional distribution of the endogenous
variables as well as integration. This feature presents conceptual and
practical problems. One of the attrative properties of IV estimators is that
their consistency does not depend on specifying the distribution of the
endogenous variables. It would be useful if asymptotic efficiency also did
not depend on distributional specification. In addition, even when the
distribution is specified, calculation of the conditional expectation can be a
formidable task.

Nonparametric estimation of the optimal instruments provides a way of
circumventing the need for distributional specification and difficult
calculation. The idea is to use nonparametric regression to estimate the
conditional expectations that appear in the optimal instruments. Here two
types of nonparametric regression estimators will be considered, nearest
neighbor and series approximation. It will be shown that, just as in linear
models estimation of the optimal instruments does not affect asymptotic
efficiency, an efficient IV estimator for nonlinear models can be obtained
using nonparametric estimates of the optimal instruments. The estimators
considered here represent feasible versions of Amemiya’s (1974, 1977) best
nonlinear two and three stage least squares.

The idea of using nonparametric estimates of the optimal instruments is




related to previous work. Kelejian (1971) suggesting using polynomials as
instruments, which is closely related to the idea of estimating the
instruments nonparametrically by series approximation. Also, Amemiya

(1985) suggested searching among different specifications to find one that
provides the best fit for the endogenous variables, which might be thought of
as a kind of informal, nonparametric procedure. In addition, for other

types of models there exists previous work on efficient instrumental variables
estimation with nonparametric estimates of optimal instruments. Robinson
(1976) considered efficient, feasible, instrumental variables estimation of
dynamic linear models. Also, since generalized least squares (GLS) can be
thought of as an efficient instrumental variables estimator (e.g. Amemiya,
1985, pp. 11-12) this previous work includes results on feasible GLS for
times series regression by Hannan (1963) and for heteroskedasticity by
Carroll (1982) and Robinson (1987).

In Section Two the model is defined and previous results on efficient IV
estimation are briefly reviewed. Section 3 discusses nearest neighbor
estimation of the optimal instruments, and shows asymptotic efficiency of the
resulting estimator under conditions there specified. Section 4 carries out
the same exercise for series estimates. Section 5 reports results for a small
sampling experiment, involving an endogenous dummy variable model of Heckman
(1978). 1In each of Sections 3, 4, and 5 implementation issues concerning the
choice of a nonparametric estimate are discussed. Both series and nearest
neighbor estimates involve a choice of a certain parameter (e.g. the number of
series terms). Some suggestions for data-based choices of this parameter are

discussed.



2. The Model

The econometric model to be considered is one where there is a s x 1

residual vector p(z,B8) and instrumental variables x satisfying

(2.1) E[p(zi’BO)IXi] = 0,

where BO denotes the true value of a q x 1 vector of parameters and

z zn are i.i.d. observations on a data vector Zi' Attention will

1, « ey

be restricted to the homoskedastic case, where

(2.2) E[p(zi,BO)p(zi,BO)’lxi] = Q,

for a constant matrix Q. An important example of this model is one where
p(z,B) 1is a subvector of the residuals of a nonlinear simultaneocus equations
system.

Instrumental variable (IV) estimation methods for this model were
developed by Amemiya (1974, 1977), Kelejian (1971), Jorgenson and Laffont
(1974), and Berndt et. al. (1974), among others. Such methods are motivated
by the conditional moment restriction of equation (2.1). For any q x s
matrix of instruments A(x), consisting of functions of the instrumental
variables, the orthogonality condition E[A(Xi)p(zi,BO)] =0 will be
satisfied. An estimator of B can be obtained by imposing the sample analog

of this population orthogonality condition, i.e. as the solution to

TioAlx)p(z, ,B)/n = 0.

Often an exact solution is not possible, and B is chosen to set the sample

cross product between instruments and residuals to be close to zero, say
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(2.3) B = argmlnBeBZi=1p(zi,B) A(xi) [Zi=1A(xi)A(xi) ] ZizlA(xi)p(zi,B).

This is one general definition of nonlinear instrumental variables
estimators. The matrix A(x) might consist of a linear combination of
Is®a(x), in which case this estimator uses the instrumental variables a(x)
for each residual, as in Jorgenson and Laffont (1974). This formulation also
allows there to be different instrumental variables for different residuals,
as in Berndt et. al. (1974) and Amemiya (1977).

The asymptotic properties of estimators of this form have been worked out
by Amemiya (1974, 1977), Burguete, Gallant, and Souza (1982), Hansen (1982),

and others. Let

(2.4) D(xi) = E[ap(zi,BO)/alei].

The asymptotic covariance matrix of ﬁ is

(2.5) Ay = (E[A(X.)D(X.)])-lE[A(X.)QA(X.)'](E[D(X.)'A(X.)'])—l,
i i i i i i

Asymptotic efficiency of B was studied by Amemiya (1974,1977), Jorgenson and
Laffont (1974), and Berndt et. al. (1974). Amemiya (1977) showed that the

optimal instruments are

* -
(2.6) A (x) = FoD(x)'Q L,
where F is any nonsingular constant matrix; see Chamberlain (1987) for a
proof for the IV formulation adopted here. For this choice of instruments the

asymptotic covariance matrix AA becomes

* , o1 -1
(2.7) A = {E[D(x,)'Q "D(x)]} .



For an example consider the model

(2.8) vy = [5’105.1 + f(xi,BO) * €, s, € {0, 1}, E[eiIXi] = 0,

where 310 is the first element of BO and S; is correlated with €.
This is one of the endogenous dummy variable models of Heckman (1978). 1t is
quite simple, but has a number of important applications, e.g. Heckman and
Robb (1985), and can be used to illustrate a number of features of the topic

under consideration here. For this model 6p(z,BO)/GB = fB(X,BO) + e,s,

1

where fB(x,B) = 0f (x,B)/88 and e, 1is the first unit vector. Here the

1
residual is a scalar so that in can be subsumed in F. Thus, the optimal
instruments are any nonsingular linear transformation of D(x) = fB(x,BO) +
eln(x), where mw(x) = Prob(d=1|x).

It is generally not feasible to use the optimal instruments A*(X) to
form an efficient IV estimator. The functions D(x), as well as the cons-
tants Q, are unknown. However, if D(x) is known up to some parameters,

then estimating the optimal instruments is straightforward. The covariance

matrix Q can be estimated by
A n PN ~.,
(2.9) Q= Zizlp(zi,B)p(zi,B) /n,

where ﬁ is some initial IV esfimate, as could be obtained from equation
(2.3) with A(x) known. Since D(x) is a conditional expectation, its
parameters could be estimated by, say, least squares. The resulting estimate

D(x) could be combined with Q to estimate the optimal instruments as

(2.10)  A(x) = D(x)’@ L.

If D(x) 1is a sufficiently smooth function of the unknown parameters and the

estimates converge sufficiently fast then estimation of the optimal



instruments will not affect the limiting distribution of the IV estimator.
Consequently, it will be asymptotically efficient. For example, it is well
known that if D(x) is linear in unknown parameters then consistency of the
parameter estimates will suffice. Intuitively, equation (2.1) implies that
variation of A(x) around A*(x) that is asymptotically small in an
appropriate sense will have no effect on the asymptotic distribution.

There are many examples where it is useful not to specify the functional
form of D(x). Although the structure of the model may result in some
elements of D(x) having known functional form, knowledge of the functional
form of all these functions will often require calculation of the conditional
expectation E[ap(z,BO)/GBIx]. In many models this calculation will require
the conditional distribution of =z given x. Also, even when the dis-
tribution of 2z is specified, carrying out the required integration could be
very difficult. Nonparametric methods provide a way of estimating the optimal
instruments without relying on auxiliary distributional assumptions or
difficult calculations. A nonparametric estimate D(x) of the conditional
expectation can be used to form a nonparametric estimate of the optimal
instruments, as in equation (2.10). By analogy with the parametric case,
estimation of the optimal instruments should not affect the limiting distrib-
ution. In the next two sections asymptotic efficiency of IV estimators using
nearest neighbor and series nonparametric regression estimates of D(x) will
be shown.

To illustrate, consider the endogenous dummy example. The f component

B

of the optimal instruments could be estimated by f (x,ﬁ). If the conditional

B
distribution of d given x has a known functional form, then =n(x) could

also be estimated. For example, when d = l(v(x,yo)—n >0), where 1(B) is

the indicator function for a set B, and 7 is normally distributed d will



follow a probit model. In this case a consistent estimate of m(x) is
®(v(x,¥)), where ®(o) is the standard normal cumulative and 7 is the
probit maximum likelihood estimate. However, if the normality assumption
fails, then the resulting IV estimator will be inefficient, although still
consistent (assuming &(v(x,y)) is asymptotically correlated with s).
Asymptotic efficiency loss from distributional misspecification can be avoided
by choosing u(x) to be a nonparanmetric estimate.

It is will be convenient in what follows to restrict attention to linear-
ized versions of IV estimators based on estimated optimal instruments. The
computation of such estimators are does not require iterative procedures, and
they are technically convenient because the proof of consistency can be
bypassed. Let é be an initial IV estimator. One Newton-Raphson step toward

the solution of Zizlﬁ(xi)p(zi,ﬁ) =0 gives

1

(2.11) B =8 - (3,2 Axep(z,,B)/8R1" Lo, A ez, B).

Alternatively, one could replace Zizlﬁ(xi)ap(zi,é)/aﬁ by 2121A(X1)Q_1A(Xi)l
or Zizlﬁ(xi)p(zi,ﬁ)p(zi,é)’ﬁ(xi)’. Such a replacement will not affect the
asymptotic properties of é, because each matrix, when divided by n, will

* _
be a consistent estimate of (A ) 1.



3. Nearest Neighbor Estimation of the Optimal Instruments.

The first approach to constructing estimates of the optimal instruments
involves nearest neighbor nonparametric regression. Nearest neighbor
estimates are considered instead of kernels because the absence of random
denominators allows one to estimate the optimal instruments without trimming
under very general conditions on the distribution of the exogenous variables.

For expositional purposes it is helpful to describe briefly k-nearest
neighbor (k-NN) estimates of conditional expectations. A more complete
exposition can be found in Stone (1977) or McFadden (1985). k-NN estimates of
a conditional expectation g(x) = E[hjlxj=x] calculated from observations hj
and Xj’ (j=1,...,n), make use of weighted averages of hj’ where all
observations but those with Xj among the k closest values to x receive
zero weight. Consistency of the resulting estimator of g(x) follows by
letting k grow with the sample size at an appropriate rate. "Closeness" for
values of x 1is defined using a scaled version of the Euclidean norm ol
Let 5@ be some estimate of the scale of the Eth component (X)g of x,
satisfying the conditions given in Stone (1977). If E(HXHZ) exists then the
sample standard deviation 3% of the ﬂth component (Xj)g of Xj will do.
&2}1/2'

L

The weights {wj(x)} for averaging values of h(zj) are constructed in

The distance between % "and x 1is defined by {2&[(Xj)£—(x)£]2/

the following way. For positive integers m and k let wm(k) be constants

satisfying

(3.1 ek 20, wmk) =0, n>k §Xomo = 1.

If there are no ties among the distances of xj from x then for the

observation j which has mth smallest distance of Xj from x, let Wj(x)



= w(m,k). If there are ties, follow the same procedure, but with equal weight
given to observations for which xj equally distant from x. That is, for
n
. . _ v !
the n, observations with Xj closest to x let Wj(x) = Zm=1wm(m,k)/n1,

for the n2 observations with Xj next to closest to x let WJ(X) =

n,+n
Zmin ilw(m,k)/nz, and so on. A k-NN estimate of g(x) is
1

(3.2) gx) = ngle(x)h(zj).

Examples of weights are the uniform weights wm(k) = 1/k and the triangular
weights wm(k) = 2(k-m+1)/[k(k+1)], (m = k). The motivation for triangular
welghts is that é(x) will be a smoother function of x than for uniform
weights. Further examples of weights can be found in Stone (1977). Both of

these examples are such that that there is some positive constant WO with

(3.3) wim, k) = WO/k, (m, k =1, 2, ...).

This additional condition will be assumed to hold throughout.

It is conceivable that small sample performance of k-NN estimates can be
improved by estimating part of this conditional expectation by a preliminary
regression, a procedure referred to as "trend removal" by Stone (1977). To
describe trend removal let «(x,y) be a known function of x and parameters
¥, ¥ be the estimates from nonlinear least squares regression of hj on
a(Xj,y), and ﬁj = t(xj,g) the corresponding predicted values. A nonparam-
etric estimate of g(x) can be formed as the sum of t(x,y¥) and the k-NN

neighbor estimate of the residual g(x)-t(x,y), yielding

(3.4) g(x) = t(x,5) + ijle(x)(hj—ﬁj).

When estimating the optimal instruments it is useful to allow for



functional form restrictions, which are sometimes implied by the model. In
the endogenous dummy example D(x) = fB(X,BO) + eln(x), so that the
functional form of some components of D(x) is known to be fB(X,BO).
Imposing such restrictions will not improve the asymptotic efficiency of the
instrumental variables estimate, because the nonparametric estimate of the
optimal instruments will already give efficiency. Nevertheless, it is
reasonable to expect that imposing such restrictions might improve the finite
sample properties of the estimator.

The following assumption allows for both detrending and restrictions on

the form of D(x).

Assumption 3.1: There exists % and known T(x,y) such that D(x) =

T(x,yo) + G(x), where some elements of G(x) may be known to be zero.

It will be assumed that the elements of ¥ include B. Also, 7 may
include reduced form and detrending parameters. In the endogenous dummy

(x,B),

example there is a natural such decomposition with 7y =B, T(x,y) = fB
and G(x) = eln(x). The implication of some elements of G(x) known to be
zero is that the corresponding elements of D(x) have a known functional
form, given by the corresponding element of T(x,¥). Alternatively, if an
element of G(x) 1is not necessarily zero, then the corresponding element
of T(x,¥) can be interpreted as a trend term.

A nearest neighbor estimate of D(x) which allows for functional form
restrictions and detrending is constructed in the following way. Let
pB(z,B), d(x), t(x,7), and g(x) denote corresponding components of dp(z,)/88,

D(x), T(x,7), G(x), and let hiz,¥) = p,(z,B)-t(x,y). Let B be an initial

B

IV estimator of BO and & be an estimate of 70. To maintain a high level

of generality a full description of ¥ will not be given here, although

10



natural choices for % are avalilable in specific cases. For example, the
components of ¥ that are components of B can be estimated by the
corresponding components of f. Also, if t(x,7¥) 1is a detrending term, then
a natural choice of & is the (nonlinear) least squares estimator from a
regression of pB(zi,ﬁ) on t(xi,y). With such % in hand, in the case

where g(x) 1is known to be zero d(xi) can be estimated by

(3.5) d; =t, = t(xi,v).

If g(x) 1is not known to be zero, for each i let wii =0 and for j=#1i
let wij = Wj(xi) be the k-NN weight associated with the sample that excludes
the ith observation. For ﬁi = h(zi,g), adding £i to the k-NN estimate

of g(x) calculated from ﬁi = h(zi,Q) gives

"w. h,
J=171ij7]

(3.6) ai =t +7

~ n ~ A
i ti + Zj=1wi.[p6(zj,l3)—tj].

J

The estimates ai, each of which corresponds to an element of D(xi), can be
combined in the obvious way to form an estimate ﬁi of D(Xi)’ (i=1,...,n).
An estimate of the optimal instruments can then be constructed as in equation
(2.10), and a one-step estimator obtained as in equation (2.11).

The device of not using the ith observation in the k-NN estimate of
D(Xi) was employed by Robinson (1987) and is technically convenient. An
estimate of the instruments could also be constructed by using the ith
observation, and the efficiency result will still hold (under stronger
regularity conditions), as shown in Newey (1986). The small sample effect of
excluding or including the ith observation in the estimation of D(xi) will
be considered in the Monte Carlo example of Section 5.

In the endogenous dummy example, for T(x,y) = f {(x,B} and G(x) =

B

eln(x), the resulting estimate of D(Xi) is

11



n

(3.7) D, = fB(Xi’B) + e123=1wijsj'

It might also be desirable in this example to allow for a trend term. A
natural trend term here is the predicted probability @i from a binary choice
model such as the linear probability model, probit, or logit. Such a trend
term could be allowed for here by specifying ¥ to include the binary choice

parameters and T(x,y) = f_(x,B8) + eIW(X,W), where V¥(x,y) is the binary

B

choice probability. Here

(3.8) ﬁi = f (xi,é) + elt@i + ¥

n ~
B LW .(sj Wj)].

J=1"1]

The small sample properties of the resulting IV estimator will depend on
the choice of k. One would expect that the best choice of k will vary with
the model and data. Thus, it would be useful to use a data-based method for
choosing k. Although the asymptotic distribution of the estimator provides
no guide to the choice of k, since its limiting distribution is efficient
(i.e. the same) for all suitably chosen of Kk, there are several reasonable
data-based methods.

The parameters of interest are the estimates of B, so that it seems
appropriate to use small sample measure of their performance. One possibility
would be to a bootstrap measure of the standard deviation of E, in a way
similar to that considered by Hsieh and Manski (1987) for adaptive estimation
of a regression model. Such a method is computationally intensive, so that
alternatives are worth considering.

Another possibility is to base the choice of k on some performance
measure for the estimate of the optimal instruments. The hope here is that
the IV estimator with the optimal instruments has good small sample

properties, and that these properties are inherited by instruments that are

12



chosen to approximate the optimal instruments. One such performance measure
involves cross-validation, which was recently considered by Robinson (1988) in
the context of generalized least squares for time series regression. A
cross-validated choice of k would be one which minimizes a sum of squared
prediction errors, where the prediction is calculated from different
observations than those to be predicted. In the current context, the nearest
neighbor estimate already has the ith observation excluded, so that such a

cross-validated choice of k could be obtained by minimizing

PN _ n .~ on ~ 2
(3.9) Cvlk) = 5,0 (hy-L 2w, h)
The small properties of this choice of k will be considered in the Monte
Carlo example of Section 5.

The asymptotic efficiency result will allow for k to be sample based in

a limited way. The specific assumption is

Assumption 3.2: k is (possibly) random and with probability approaching one
k € {kl(n),...,kz(n)}, where {kg(n)}, (=1,...,%), are nonrandom sequences

satisfying ke(n)/VH —> o and ke(n)/n — 0, (L=1,...,q9).

This assumption allows for a data based choice of k from among a finite
number of values satisfying the given growth rate conditions. It would be
useful to extend this result to allow for a larger choice set for k, and to
show that k that automatically satisfies the growth rate conditions. Such
results present technical challenges that are beyond the scope of this paper.
The growth rate for k specified here is useful in showing asymptotic
efficiency, but is not known to be optimal in any sense. If x is
continuously distributed and satisfies certain conditions (e.g. Newey, 1986)

and D(x) 1is Lipschitz then the growth rate for which the integrated

13



o/ (a+2)
n ;
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mean-square error of the k-NN estimate converges to zero fastest is
see McFadden (1985). This will only fall in the specified range, which
requires, k grow faster than Vvn, when « > 2. In any case it is not clear
the optimal growth rate for estimation of the instruments is also optimal
where the estimate of f 1is concerned. Deriving an optimality result for the
estimation of B 1is difficult. It necessarily involves refinements to
asymptotic distribution theory for E. Such a result is beyond the scope of
this paper.

Further regularity and identification conditions are helpful for an
asymptotic efficiency result. The next assumption is sufficient for
consistency of the initial IV estimator. For any matrix B let IBIl =

[tr(B'B)11/2,

Assumption 3.3: a) E[A(Xi)p(zi’B)] = 0 has a unique solution on B at BO;
b) BO is an element of the interior of B, which is compact; c) pl(z,B)
is differentiable at each B € B with probability one; d) E[Hap(z,BO)/BBHV]

<o for v>2; e) E[IAGINY] <@ f) sup
2v/(v-2)

BEBHP(Z’B)” = Mo(z) for MO(Z)

such that E[MO(Z) ] < w;

The next assumption concerns smoothness conditions that are useful for
showing asymptotic efficiency. For a matrix F(B) let aeF(B)/GBB denote a
vector of all distinct partial derivatives of order £ of all distinct

elements of F(B), and include B as a subvector of ¥.

14



Assumption 3.4: a) E[D(x)’D(x)] and Q are nonsingular, and E[A(x)D(x)]
has rank q; b) Vﬁ(%—yo) is bounded in probability; c¢) There exists a
neighborhood N of 7 such that T(x,y) and p(z,B8) and have continuous
partial derivatives with respect to ¥ on N up to order 2 and d

2

respectively; d) For (£ =0,1,2), supNHBZT(X,y)/BW N = Mz(z) such that

2v/ (v+2)

E[MZ(Z)V] <w £=0,1, and E[Mz(zi) ] <w e) For (U=1,....d),

v
there exists vy such that ME(Z) = maanaep(z,B)/aBeﬂ satisfies E[Me(z) 2]

< o003

3

The order of differentiability d of p(z,B8) will be specified in the
hypotheses of the theorems to follow. This assumption is somewhat stronger
than needed, in the sense that it is possible to replace the assumption of
existence and continuity of the d derivative with a Lipschitz condition on
the d-1 derivative. However, allowing for such extra generality would add

little at the expense of much notational complexity.

Theorem 3.1: Suppose that Assumptions 3.1 - 3.4 are satisfied with d = 3,

v, =v., =V, vy = 2v/(v+2). Then

~ o e A _ p
(3.10)  VAB-B,) 2o N(o,A7), 15,2 Bl ) @ Bl ) m1 Tt s A

All proofs are in the appendix. Besides stating the asymptotic efficiency of
the one-step IV estimator [, this result also gives a consistent estimator

of the asymptotic covariance matrix of E.

15



4. Series Estimation of the Optimal Instruments.

Another approach to estimation of the optimal instruments is nonparam-
etric regression by series approximation.” This method is related Kelejian’s
(1971) suggestion of using polynomial instruments. Here an asymptotic
efficiency result is presented. Asymptotic efficiency is obtained by letting
the number and variety of terms in the series approx- imation grow at a
specified rate with the sample size. Efficiency is a consequence of the
arbitrarily good approximation, in the mean square sense, of conditional
expectations by enough series terms.

It is helpful to describe briefly series estimates of conditional
expectations. Such estimates have a long history in statistics, and have
recently received attention in econometrics, e.g. Gallant (1981). Series
estimates of a conditional expectation g{(x) = E[h(z)|x] make use of the

first K terms,

K ;
(4.1) P7(x) = (pl(X)""’pK(X)) ,
of a sequence of functions (pl(x), pz(x), ...). The estimate is calculated
from observations h(zj) and Xj’ (j=1,...,n), as the predicted value

obtained from the regression of h(zj) on PK(XJ). Let P =
K
[P (xl),...,PK(Xn)]’, with the K superscript suppressed for convenience,

and let h = (h(zl),...h(zn))’. A series estimate takes the form

(4.2) 8(x) = P*(x)’ (P'P) Ph,

where 7 = (P’P) P’h are the coefficients of a least squares regression of h
on P, and B denotes a generalized inverse of a matrix B.

The presence of the generalized inverse allows for perfect multicol-

16



linearity among the columns of P. One generalized inverse corresponds to the
deletion of redundant columns of P and regressing h on the remaining
columns, as is done by some regression software. That is, if S 1is a
selection matrix such that S’P’PS is nonsingular and has dimension equal to
the rank of P’P, then S(S’P’PS)_ls’ is a generalized inverse of P’P; see
Rao (1975, 1b.5.2). The resulting series estimate is PK(X)'S(S’P’PS)_ls’P’h.
It should be noted that g(x) of equation (4.2) may not be invariant to the

choice of generalized inverse, although the instrument estimate discussed

below will be.

A simple example is a power series. Let the dimension of x be r. Let
A denote an r-dimensional vector of nonnegative integers and let xA =
A A
1"'(Xr) " denote a product of powers of the components of x. A basis

(Xl)

sequence would take the form

@3 p ) =x"" m=1,2 ...,

with distinct A(m). A more robust alternative, which puts less weight on
outlying observations in x, can be obtained by weighting by a function wi(x)
that is small for large values of x and/or replacing each component X, of

X with a one-to-one, bounded function v(xg), such as V(XE) = xe/(1+lx£IL

For v(x) = (v(xl),...,v(xr))' the resulting sequence is

(4.4) p_(x) Am)

wix) [v{x) I, (m=1, 2, ... ).

Trigonometric series are another example; e.g. see Gallant (1981) for formulas
for multivariate trigonometric terms.

Trend removal can be carried out in a way that is analogous to that for
nearest neighbor estimates. For t(x,y) and & as discussed in Section

3, and the predicted trend vector ¢t = (t(x1,§),...,t(xn,§))’, a series

17



estimate with a trend term is

(4.5) 8(x) = t(x,5) + PX(x)’ (P"P)"P’ (h=1).

It should be noted that such a trend term may be redundant unless it is
different than the approximating series. To be precise, if t(x,y) is a
linear combination of the elements of PK(X), ¥ is estimated by least
squares regression of h on these elements, and x = Xs for some 1, then
by an iterated projections argument the estimates of equations (4.2) and (4.5)
wWwill be the same.

As discussed in Section 3, it may be useful to impose restrictions on the
form of the optimal instruments. Such restrictions will be allowed for as
in Assumption 3.1. A series estimate of D(x) that allows for restrictions
is constructed in the following way. Let pB(z,B), d(x), tix,7), glx),

h(z,y) (z,B)-t(x,7), and % be as specified in Section 3. If g(x) is

i
known to be zero let the estimate of d(xi) be as given in equation

(3.5). Otherwise, let

h = (hl,...,hn) , hi = h(zi,y) = pB(zi,B)—t(xi,y), (i =1,...,n),

and take the estimate of d(Xi) to be

(4.6) dy = tlx,7) + PK(xi)’(P’P)_P’ﬁ.

The resulting vector (d ,an) is the sum of the observations on the trend

10
terms added to the predicted values from the least squares regression of h
on P. The estimates ai, each of which corresponds to an element of D(Xi),
can be combined in the obvious way to form an estimate ﬁi of D(xi),

(i=1,...,n). An estimate of the optimal instruments can then be constructed

as in equation (2.10), and a one-step estimator obtained as in equation
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(2.11).

Series estimates of the optimal instruments depend on the choice of the
number of terms K. It is desirable to choose K based on the data. One
could use measures of fit for choosing K, as suggested by Amemiya (1985). A
cross-validation criteria for choosing K takes a particularly simple form.
Let ﬁi = ﬁi - PK(xi)’(P’P)_P’ﬁ be the i residual from regression of h
on the series terms and let Ii =1 - PK(Xi)'(P'P)_PK(Xi). It is
straightforward to check that under certain conditions the sum of squares of

cross-validated residuals is

(4.7) CV(K) = 3,0 (3,17

A sufficient conditions for this result is that the second moment matrices of
the series terms are nonsingular for each subsample.
The asymptotic efficiency result will allow for K to be sample based

in the following way:

p

Assumption 4.1: a) K —» o, and K = op(n(V—Z)/ZV

); b) For each
g(xi) there exists ¢ = 0 and s (K =1,2,...) such that
. g oK s 21,172 . _
11mK K {E[(g(xi) P (xi) nK) 1} = 0; c¢) Either £ > 1, or & =0 and
there exists K(n) such that the number of elements of X(n) is bounded and

Prob(K € K(n)) — 1.

This assumption involves an interaction between flexibility in the choice of

K and the rate at which the series can approximate the unknown components of
the instruments. If, for each sample size, K is chosen from among a finite
number of values, then the assumption only requires that the series term can

approximate g(x) in mean square. For power series, it is well known that

such approximation holds under weak conditions involving the characterization
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of the distribution of x by its moments; see Szego (1975). Sufficient
conditions for weighted, transformed polynomials as in equation (4.4) can be

obtained by suitably modifying Theorem 3 of Gallant (1980). Let

a(K) =max{€ | ¥V A with Al =2 3 m=K with A(m) = AL,

denote the maximum order such that the PK(x) includes all power terms up to

and including that order.

Lemma 4.1: Suppose that a) Assumptions 3.3 d) and 3.4 d) are satisfied; b)
there exists © > 0 such that E[w(x)zexp{tﬂv(x)n}] is finite; c¢) a(K) — o.

Then there exists Ny such that limK__m{E[(g(xl.)—PK(Xl.)'nK)Z]}l/2 = Q.

The hypotheses of this result are quite weak. Note in particular, that no
assumption on the smoothness of g(x) as a function of x is required for
this result. Also, for some choices of v(x) and w(x) hypothesis b) will
automatically be satisfied, e.g. if v(x) and w(x) are bounded.

As in Assumption 4.1 c¢), if the environment is such that the approx-
imation rate for the series is K—c for > 1, then K 1is allowed to be
anything satisfying the rate conditions of Assumption 4.1 a). Such an
approximation rate holds when g(x) is sufficiently smooth. Sufficient
conditions for an approximation rate for weighted, transformed polynomials as
in equation (4.4) can be obtained by an elementary Taylor expansion argument.

Let v = v(x) and g(v) = g(v_l(v)). Denote the partial derivatives of g(v)

on R by
2 Al Al A A
Dg(v) = (8 “/av,')--(8 ”/avrr)g(v),
where A = (Al,---,Ar) is a r-vector of nonnegative integers. The order of

the derivative is |[A] = Zéi1lhgl' Also, let O(K) = maxm<K|A(m)l denote the
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maximum order of the power series terms included in PK(X).

Lemma 4.2: Suppose that g(v) can be taken to have a compact convex domain
containing the support of V(Xi) such that there exists C such that for all
A, Dhg(x) exists and supxeXIDAg(x)I = CIAI, and suppose O(K) = 0(a(K)).
Then there exists ¢ > 1 and nK such that

limg_ KHE[(g(x D)-PE(x ) n 0?1172 < o

The smoothness condition is certainly stronger than needed, but a proof would
require a more refined approximation result for power series. A literature
search has not yet revealed such an approximation result for multivariate
power series, although there are well known results for univariate

povwer series, e.g. Powell (1981).

One could also carry out a similar analysis for trigonometric series.

The required approximation results for Assumption 4.1 b) and c) are contained
in Edmunds and Moscatelli (1977).

It would be useful to consider whether cross—-validation, or other model
selection procedures, result in K automatically satisfying the growth rate
conditions. Also, it would be useful to consider optimal growth rates for K.
Such results are beyond the scope of this paper.

The following result is an asymptotic efficiency result for an IV

estimator with series estimates of the optimal instruments.

Theorem 4.1: Suppose that Assumptions 3.3, 3.4, and 4.1 are satisfied with d

=2, v, = v, v, = 2, and that for all K, E[IpK(X)IV] < w. Then

x d * n a ,a=1a -1 P *
(4.8) Vi(B-B,) — N(0O,A ), [X;o4D(x)7Q "Dx )/l - —— A
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5. A Sampling Experiment

To see how the estimators might perform in finite samples a small
sampling experiment was carried out. The model considered in the experiment

was the endogenous dummy example discussed previously, with the following

specification:
Yi = BipS; * Byg * &y € 0 1.7
(2.8) n "'N O » 7 1 )
5; = Moy + aygx; +my > 0), 1
Xp ~ NGO, 1), By = Byg = g = @y = 1,

where x.1 is distributed independently of Si and ni. Two sample sizes
were considered, n = 100 and n = 200. The number of replications was 400,
with computations carried out via Gauss on a microcomputer.

Tables One, Two, and Three reports results for a variety of estimators of
BlO' Table One gives the performance of several parametric estimators. The
estimators of Table One are ordinary least squares (OLS), an IV estimator with
instruments A(x) = (1, 1(x > 0))’ (Dummy IV), where the instrument for s is
the dummy 1(x > 0), an IV estimator with A(x) = (1, x)* (Lin Prob), which
corresponds to a linear probability model instrument for s, and the

efficient instrumental variables estimator (EIV), with instruments

D(x) = -(1, n(x))’, m(x) = &(1+x).

The performance measures reported in the table are Bias, being the Monte

Carlo mean of the estimate minus the true value = 1, the Monte Carlo

BlO
standard deviation (Std Dev), and the ratio of the square root of the Monte
Carlo mean square error for the estimate to that of the efficient v

estimator. It is possible that second moments of the IV estimators do not

exist, so that the population values of these performance measures are not
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well defined. However, in this experiment the sample values seemed to be
quite stable to changes in the number of replications, suggesting existence of
moments may not be a problem.

Interesting features of Table One are the large bias of OLS, the tiny
bias of the IV estimators, the relative inefficiency of Dummy IV, and the
relative efficiency of the estimator with a linear instrument. One cause
of the relative inefficiency of the dummy instrumental variable is that it
Jumps from zero to one at x = 0, which is one standard deviation (in x
units) away from the inflection point of w(x) = &(1 + x) (which occurs at
x = -1). The Dummy IV estimator was included in order to illustrate that
making a substantial mistake about the form of the optimal instruments can
have large efficiency costs.

Table Two reports results for IV estimators with nearest neighbor estim-
ates of the optimal instruments. The nearest neighbor estimates involve a
moderate size grid for k, the grid being (10,15,20,25,30,35,40) for n =
100 and (15,22,30,37,45,52,60) for n = 200. These grids are consistent
with Assumption 3.2, in the sense that they are the same size for both sample
sizes, and for corresponding grid values k/n falls and k/vn rises as the
sample size goes from 100 to 200. Included in Table Two is the relative
frequency of different values of k (Distribution of k). The first seven
rows of results (Uniform) are for uniform weights with fixed values of k; see
Section 3 for a description of the nearest neighbor estimate of mn(x). The
other rows of the table involve a sample based choice of k from the
corresponding grid, with k chosen to minimize CV(k) of equation (3.9).
The row labeled Triang used triangular weights rather than uniform, that
labeled Uni, +i involved an estimate that included the ith observation in

the uniform nearest neighbor estimate of n(xi), and Uni, Detr included a
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linear probability trend term. The final row involved uniform welights without
detrending and with the ith observation excluded, for n = 200.

The most striking feature of Table Two is the poor performance of the
nearest neighbor estimates for n = 100. In most cases the bias is more than
two standard deviations away from zero, i.e. |Bias| = 2(Std Dev)/(400)1/2 =
(Std Dev)/10, suggesting that the estimates are biased. The point estimates
of the bias are also quite large. It is interesting to note that letting k
be data-based improves the performance of the estimator, lowering both bias
and variance by a substantial amount. Also, using triangular weights results
in a slight increase in bias and standard deviation. Surprisingly, including
the ith observation substantially alters the performance of the estimator.
Possibly this is a result of the relatively high correlation of €. and ;-
The sensitivity of performance to inclusion of the ith observation was much
diminished when n = 200, although for brevity the results were not reported
here. The performance of the uniform weights with n = 200, reported in the
last line of Table Two, were somewhat more promising. The RMS Ratio is
much reduced for the larger sample size.

Table Three reports results for IV estimators with series estimates of
the optimal instruments. The series estimates involve a grid of values for
K, the number of series terms, the grid being (2,3,4,5,6) for n = 100 and
(3,4,5,6,7) for n = 200. These grids are consistent with Assumption 4.2,
in the sense that the minimum order grows with the sample size and that the
number of terms grows much less than the square root of the sample size (note
that v can be taken as large as desired since s 1is bounded). Included in
Table Three is the relative frequency of different values of K (Distribution
of K). The rows labeled Polynomial or Poly are for the series pm(x) =

xm_l, (m =1, 2, ... ), with the first five rows involving fixed values of
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K; see Section 4 for a description of the series estimate of m(x). Because
the moment generating function of the normal distribution exists, the
hypotheses of Lemma 4.1 are satisfied for this series. The row labeled Poly
in v was for the series pm(x) = V(x)m_l, (m=1, 2, ... ), where v(x) =
x/(1+]x]|}. The hypotheses of Lemma 4.2 are satisfied for this series and for
D(x) = ¢&(1+x). The last three rows of Table Three involve a sample based
choice of K from the corresponding grid, with K chosen to minimize CV(K)
of equation (4.7).

The most striking feature of Table Three is the outstanding performance
of the series estimates. The estimated biases are tiny, and, surprisingly,
the RMS ratio is less than one in many cases, although this phenomenon almost
disappears for the larger sample size. The performance of the estimator is
sensitive to the choice of K, suggesting the need K to be data-based. The
cross—validated K considered here performs well, with small bias, and RMS
less than one. Also, it is interesting to note that the transformed power
series estimator performs almost the same as the linear power series
estimator. This occurs in spite of the fact that the inflection point of the
transformation v(x) = x/(1+|x|) occurs at x = 0 rather than at the
inflection point of m(x) = &(1+x).

Another interesting feature of Table Three is that the bias changes sign
as the number of series terms increases. This is undoubtedly an artifact the
the particular model considered here, and accounts in part for the tiny biases
of the series estimates when a moderate number of terms is included. In
general one might expect to find that the bias gets large as the number of
terms increases. If K =n and P has full rank then the series estimate
will give an exact fit, and the IV estimator reduces to least squares.

In summary, the series estimates of the optimal instruments perform quite
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well, but the nearest neighbor estimates are less satisfactory. Both sets of
results suggest the usefulness of a sample based choice of the number of

nearest neighbors or of series terms.

6. Extensions

Work on efficient instrumental variables estimation in heteroskedastic
cases has been carried out concurrently, e.g. Newey (1986). It is also
possible to extend the asymptotic efficiency result for series estimates of
the optimal instruments to time series. Such an extension could be carried
out via, say, mixing conditions and the type of arguments for efficient
estimation by series approximation given here and in Newey (1988). This

extension will be investigated in future work.
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APPENDIX

The proofs of the theorems will make use of a number of intermediate
lemmas. Throughout, C will denote a generic constant that can take on
different values in different appearances, and T, CS, H, and M will
refer to the triangle, Cauchy-Schwartz, Hdlder, and Markov inequalities,
respectively. Also, the n subscript will often be suppressed for notational
convenience.

Note that the estimates of the optimal instruments take the form Ai =
A, a=1

D;Q = (Ti + Gi)’ﬁ 1, where Ti is the matrix of trend terms, and éi is a

matrix consisting of the nonparametric estimates of the trend residuals and
(possibly) zeros. The following lemma gives sufficient conditions for the

conclusion of Theorems 3.1 and 4.1, for instruments of this form. Let

_ _ _ nra-l _
Gi = G(Xi)’ Di = D(Xi), Ai = DiQ , Ti = T(xi,wo).

Lemma A.1: If Assumptions 3.1, 3.3, and 3.4 are satisfied with d = 1 and

v1 = v, and in addition,

(A.12) 3,006 -6, 0%/m = o (1),

n ~
(A.1Db) Li—1 (G;=G;)ep(z,,B,)/Vn = °p (1),

~ * ~
then VR(B-g,) 9, N,A), for B of equation (2.11), and

noa,a-la -1 %
Ty DI Dy/m) " = A+ 0 (1),

Proof: The Vﬁ—consistency of the initial IV estimator under Assumptions
3.3-3.4 follows by a standard argument, so that the proof will be omitted.

Consider any B = B

0¥ op(l), and let Ai(B) = 6p(zi,B)/BB. By H and Assumption

3.4 d), E[Ml(zi)z] < o.  With probability approaching one f € N, so that by
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T, CS, and M,

n .- — n .- — n s _
(A.2) ”Zi=1(Ai—Ai)Ai(B)/n" = Zi=1HAi—AiHHAi(B)H/n = Zi=1IIA.1 Ai”Ml(zi)/n
n  » 2 172 n 2 1/2 n 4 2 172
- = A 0 (1).
= (g0 1A =A%) A M, (2,)%/m) (L;2 1A, -A;0%/m) %0 (1)

By Assumption 3.4 d) and H, E[MI(zi)z] < ®. Then by 7 = ¥ * op(l), a mean

value expansion, and CS and M,

n ,a 2 n ~ 2.~ 2
(A.3) Zi=1”Ti—Ti" /n = Zi=1H8T(xi,7)/67H ly you /n

n T 2 ~ 2 _ -
=< (Zi=1M1(zi) /n)Hy—yOH = Op(l)op(l) = op(l),

where g 1is the mean-value, which actually differs from element to element of

T(x,7¥). By H, E[HDiHZ] is finite and by a standard application of the

i.i.d. uniform law of large numbers and Q nonsingular, ﬁ_l = Q—l + op(l).

Then by eq. (A.3) and M,

(a.4) xR A A 1%/m

2 2 1,,2

JIT)

IA

n A, A—l A l\—'l ,\-.-1 —
Zi=1C(“(Ti Ti)Q = + ”(Gi—Gi)Q = + HDi(Q Q

cle %y, D it -1 1+ 16, -G 1%y /n + a2 %g. ® ip, 1é/n
i=1 i 71 i1 i=1""1

1A

0 (1)o (1) + o (1)0 (1) = o_(1).
p p p p p

Also, note that maxNHAiAi(B)H = HDiHHQ_luMl(zi), so that by the i.i.d.
_ *
uniform law of large numbers ZizlAiAi(B)/D = (A) 1y op(l). It then follows

from eqs. (A.2) and (A.4) that

(A.5) Y. A

Next, note that 2121”A1”2/n = Op(l) by M. Also, for matrices B1 and
BZ’ by T and CS HBlBl—BZBZH = H(Bl—BZ) (Bl—B2)+BZ(Bl—B2)+(B1—B2) BZ” =
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HBl—B2H2+2HB1—BZHHB2H. By plim(ﬁ) =Q and Q positive definite there

exists F such that FF’ = with probability approaching one and F =

A

0 _(1). Let R, =A.F, and R, = A.F. Then by eq. (A.4),
o) i i i i

(A.6) iy, 2 (ALOR7 - A QA /mi = ¥R IRZR, -R/B. I/n
i=17i1 il i=1"11 i

2

1A

n tal ~ n A s ~
ZizlﬂRi—RiH /n + 221=1HR1—R1HHR1H/D

2

A

A 20T 4 2 A 2 n - 172 n 2 172
IHEl ZizluAi—AiH /n + 2HFI (Zi=1HAi—AiH /n) (Ei=1”Ai” /n) s

0_(1)o (1) + 0_(1)(o ()0 (1NY2 = 6 (1).
p p p P p p

n Arr ; n a p & n 2 _
Also, "Zi=1(AiQAi AiQAi)/nH = ZizlﬂAi(Q Q)Aiﬂ/n = 1IQ QHZizlﬂAiH /n

o (1)0 (1) = o (1), and by the law of large numbers Y. ,A,QA’/n =
p p p i=111

1
*
(A) 1y op(l). The second conclusion then follows from eq. (A.6) and T.

Next, by a second-order mean value expansion note that for an element

t(x,7) of T(x,7), with probability approaching one for all i,

~ - T ~ 2
t(x., = . . "y . . = . - .
(Xl ) t(x1 70) + at(xl,yo)/ay (y-7) + Ty Irlnl < CMZ(zl)Hy 70"

Let p, = : 5 =
et p; p(zl,BO) and Py be an element of Py By E[pilxi] 0 and
Assumption 3.4, E[piat(xi,yo)/ay] exists and equals zero, so that by the

law of large numbers, Zizlpiat(xi,yo)/ay/n = o (1). Also, E[Mg(zi)upiu] < w

P

by Assumption 3.4 d) and H. Then by CS, M and y = LA OP(VH),

(A.7) Izizl[t(xi,§)—t(xi,7o)]pi/VHl :

IA

Hzizlpiat(xi,yo)/ay/nHVHH§—70H ¥ C(Zileg(zi)lpil/n)VHHQ—youz

o (1)O_(1) + 0 (1)0 (1/vn) = o (1)
p p p p p

Since this equation applies to each element of 51 and T(x,7), it follows
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n s _ n s _ =
that uzi=1(Ti—Ti)®pi/VHu = op(l). Then nzi=1(Di Di)®pi/VHn op(l)by eq.

(A.1b) and T. Then note that for the Bth column B2 of a matrix B,

n a sa— 1~ _ A~len ~ o ’
(A.8) X521 (DypDy )70 " /Ml = ItriQ Li—qP; (D,7Dy ) /¥l

IA

2=l n ~ A a—1 n~ .a
- ' < —_ 7’ ”
ClQ Zi=1pi(Die Diz) /vnll = Cif uuzizlp (Die D,,)’ /vn

i il

1A

n A ~ - -
Op(l)HZi=1(Di—Di)®pi/VHH = Op(l)op(l) = op(l).

Also, E[Di®51] = 0 so that by independence and Holder’s inequality,

2

E[”212191®51/VH”2] = E[uﬁin nDinzl < o. It follows from M that

n., a1 -1.~ _ a=1 -1 n-~ _,
(A.9) lzi=1Di£(Q Q )pi/VHI = |tr[(Q "-Q )Zi=1piDie/VH]'

= cuﬁ-l_g-luuzizlﬁinie/VHn = op(l)u2i21D®5i/VHn = op(l).

Since this is true for each £, it follows by the triangle inequality that

(A.10) uzigl(ﬁi—Ai)'Ei/VHn = o (1).

The first conclusion now follows from egs. (A.5) and (A.10) by standard mean

value expansion and central limit arguments, which for brevity are omitted. =m

It is straightforward to formulate a result that allows data-based choice of

the estimate of the optimal instruments from a finite set of sequences.

P

Lemma A.2: If Gi = @i(@) for 1 e £, £ 1is finite, and for each £ € &,

éi(ﬂ) satisfies equation (A.1) with ﬁi(ﬂ) replacing éi then the

conclusion of Lemma A.1 holds.

Proof: The conclusion follows immediately from Lemma A.1 upon noting that

2

n fat 2 n A n A ~
Zi=1”Gi Gi” /n = max$21=1”Gi(£) Gi" /n, H2i=1(Gi—Gi)®pi/VHH =
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n ~ ~
max£HZi=1(Gi(€)~Gi)®pi/Vﬁu.

Let h(z,¥) be a function of z and a parameter vector % and let % be a
consistent estimate of some value LL% The following assumption concerning

h(z,y¥) and 7 will be maintained:

Assumption A.1: (i) %—70 = Op(l/VH); (ii) For v > 2, E[Ih(zi,yo)lv] is
finite; (iii) h(zi,y) is continuously differentiable and on a neighborhood N

. h h v
of Vi iv) supyeNHBh(zi,v)/aqn < Ml(zi) and E[Ml(zi) ] < o,

The following Assumption will be used for the nearest neighbor case

Assumption A.2: k/vn — w, k/n — 0.

The following lemmas will be useful in proving Theorem 3.1. Let

(A.11) h, h(zi,yo), h, = h(zi,y), g = E[hilxi]’

n n n »~

B T Lya"is8y & T LmMighy 8 S LWy

Lemma A.3; Stone (1977, Proposition 1)): 1lim E[Ig.—g.lvl
n—> i®i

I
o

The proofs of the following three Lemmas are nearly identical to the proofs of

Lemmas 8, 9, and 5, respectively, of Robinson (1987), and so will be omitted.

Lemna A.4: {E[1g,-g,1"1}""" = 0”2,

Lemma A.5: max15n1§1—§i| = Op(nl/vk—l/Z)

Lemma A.6: max15n|§i—§i| = Op(k‘i/z).

Let X = (Xl" s X ) and Z . = (Zl" 25 g i+1,zn).
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Lemma A.7: Suppose that (i) pn(z,I) is a function such that

2v/ (v-2)

E[pn(zi’Xn)IXi’z—i] =0 and E[Ipn(zi,Xn)I 1 =0(1); (ii) h(z,,7)

. 2 2
iIs twice continuously differentiable in N; (iv) supquua h(zi,y)/ay I =

2v/ (v+2)

h h
Mz(zi) and E[MZ(Zi) ] < w. Then

n = —
(A.12) Zi=1(gi—gi)pn(zi,xn)/VH = op(l).

Proof: Let Pin = pn(zi’xn)' By the triangle inequality

n .-~
(A.13) IZi=1(gi—gi)pin/VH| = T1 + T2 + T3,

_ n - _ n o~ - _ n o~ ~
Ty = 12, (g;-g; ey /¥, T, 129 (88 )p; V0], Ty 121 (85783 )p; VAl

Note that E[léilvl and E[lgilvl are finite by E[Ihilv] finite.

Also, by i) and Holder’s inequality all fourth order cross moments of gi,

gi, and pin exist. Therefore, by gi and gi functions of only Xn’ p

in
uncorrelated with p conditional on X for s # i, p. and g.—g.
sn n in i®i
identically distributed, Holders inequality, and Lemma A.3, it follows that
for T = v/(v-2),
2 _ n - 2, _ = 2 2
(A.14) E(T1 ) = E[{Zi=1(gi gi)pin/VH} ] = E[lgi gil Pin ]
— / /
= {El1g,-g,1"1¥*"ElIp. 17 13T = 0(1)0(1) = o(1).
i®i in
Thus, by Markov’s inequality, T1 = op(l). Next, note that for i = j,
(A.15)  EIT,”] = E[Ig,-2, 1%, 21 + (n-1)EL(F.~2.)p. p. (5.5 1.
2 i ®i' Pin i ©17PinfPn 8578
By Lemmas A.1 and A.2 it follows similarly to eq. (A.14) that first term fol-
lowing the equality is o(l1). For define éi'j = éi - wijhj, and note that,
conditional on X , g, . is independent of =z, and =z.. Also, by W.. =0,
n i; 3 1 J JJ
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éj is independent of Zj conditional on Xn' Then

& g = g . . 2.1z X .
(A.16) E[gi;jpinpjngj] E[E[gi;jplnpjnng iy xJ]]

= Elg, . .p. g.°E

[, 1Z_.x.1} =0, (i=% j).
1;J 1n7J pJnl -J J J

It follows similarly that

~

= Flo g 1 = o = Elg o i # j).
(A.17) 0 E[gipinpjngj] E[gi;jpinpjngj;i] E[gipinpjngj], (i = j)

Also, the same results hold with J and 1 interchanged, so that by Holder’s

inequality, for = = v/(v-2),

(é.—gj)]l = |Elg.p, p. g.11

(A.18) lE[(gi—gi)Pin in'&; i"in" jn®j

lE[(gi-gi;j)p. p. (g.-g

in? in (&5 J.;i)]l = E[wijwjilhillhjllpinllpjnll

2T
in

1/ 2

T < c/ke.

1A

(Wo/k)z{E[lhiIV]}Z/v{E[p 1}

It then follows by n/k2 = o(1) that the second term following the equality

in eq. (A.15) 1is o(1), so that T2 = op(l) by Markov’s inequality.

Next, note that by a mean value expansion,

(A.19) g, ~ 8 = giy(y—yo) = giy(y—yo) oo

(¢} [«] ~
where . a i i . .~ = - ,
¥; are mean values satisfying maxlSnlar1 70| ly 701

2w n (z.,§i), g

e n
. = . =Y. W..h . ,
glz ZJ=1 ij7v 73 iy ZJ=1 1j 7(2J 70)

— ° ISV o _ o n h o 2
lr, I'= I(g17 g, (7)1 = gy, =85, Ir-ngll = [Zj=1wijM2(Zj)]"7 i,

and the last equality holds for every 1 with probability approaching one

by ”51_70” < n&—you and plim(y) = y Therefore,

o
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N ~ 2
(A.20) T, = T4V3Hy—7ou + TSVHuy—yOH + op(l),

—
]

n ~ n n h
= . . 1/n.
4 ”Zi=1giypin/n”’ T Zi=1[zj=1wijM2(ZJ)]|p1nl n

By Lemma A.3 applied to Mg(zi) and the Holder inequality, for < =

1/7{1-11/{2v/(v-2)}1} = 2v/(v+2)

1/t 2v/ (v=-2) ., (v-2)/2v

1} 0(1),

n h
(A.21) E(TS) = {E[lzjzlwi.M

T
j 2(zj)l 1}

{E[pinl

so that T5 = Op(l). Also, for giy = E[hy(zi,yc)lxi], note that
n
i=

plim(} 181 ,P; /n) = 0 by Chebyshev’s law of large numbers, so the triangle,

iy"in

Holder, and Markov inequalities, and Lemmas A.3 and A.4 applied to

hy(zi,yo), it follows that for =t = 2v/(v-2),

n -~ n
(A.22) T, = "Zi=1(giy_giy)pin/n” + ”Zi=1g17pin/n”

Op(E["giy_giy”Ipinl] + op(l)

”2v/(v+2) (v+2)/2v 1/t

1}

- T _
Op({E[”giy_giy {E[Ipinl 1} ) o+ op(l) = op(l).

The conclusion then follows by eq. (A.20) and vau§—you2 = op(l). "

Proof of Theorem 3.1: By Lemma A.2 is suffices to show that eq. (A.1) is
satisfied for a particular sequence k = ke(n) as in Assumption 3.2.

For a nonzero element g(x) of G(x) let ¥ include B and h(z,y) =
pB(z,B)—t(x,y) for corresponding elements of dp(z,B)/88 and T(x,y). It
follows by Assumption 3.4 and H that Assumption A.1 is satisfied for v = 2.

Then by Lemmas A.3, A.4, and A.6, T, and M,
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2

n - 2 n ~A o~ - = 2 = 2
(A.23) Li—1!8;78;17/n = CL, -, (lg;~g;1"+lg;-g; |"+lg;-g, 1" )/n

2

A n I — 2
= CmaxiSnlgi—gil + Op(E[Igi—gil 1) + Op(E[lgi gil 1)

0 (1/k) + 0 _(0(1/k)) + 0_(o(1)) = o_(1).
p p p p

Equation (A.1a) follows since this result holds for each element of G(x).
Next, note that Assumption A.1 is satisfied for v as in Assumptions 3.3
and 3.4. Let pn(z,X) be an element of p(zi,BO), and note that by Assump-
tion 3.4 the hypotheses of Lemma A.7 are satisfied. Then by the conclusion of
Lemma A.7, the corresponding element of Zizl(éi—Gi)®5i/VH is op(l).
Equation (A.1b) then follows since this is true for each element of G(x) and

p(zi,BO). The conclusion of the Theorem then follows by Lemma A.2. =

The following lemmas will be useful in proving Theorem 4.1. Let

(A.24)  h=(h,....n), A=, . h), g-= (g)r---r8)"

(P (%), py (2,07, pr = [p

g
1

m

. K, .2 ~ ~o o~
argmmnE[(gi Pi n)71, 8 = PHK, g = 8,

Assumption A.1 and the following assumption will be imposed for Lemmas A.8 -

A.13.

p
Assumption A.3: i) K — o, and K = op(b) for b — w; 1ii) There exists
_ . Z Ko y20, 172
r 0 and Mys (K =1,2,...) such that llmK K {E[(g:.L Pi nK) 1} 0;
iii) Either & > 1, or & =0 and there exists X(n) such that the number

of elements of K(n) is bounded and Prob(K € K(n)) —s 1, iv) P>

(i=1,...,n) are i.i.d. random variables satisfying E[pilxi] = 0, E[p?lxi]
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2v/ (v-2)

i
[ay
N
—

is bounded, and E[Ipil ] < w; iv) E[IpK(xi)Iv] < w, (K

Henceforth let p = (pl,...,pn)'.

Lemma A.8: There exists nonrandom Ku such that K = Ku with probability

approaching one and Ku = o(b).

Proof: By Assumption A.3 i), K/b = op(l), so that there exists &8 — 0 such
that Prob(K/b=8) — 1. Take Ku = [8b] + 1, where [o] denotes the greatest

integer less than. Then Ku/b = [8bl/b + 0(1) =8 + o(1) = o(1). =

Lemma A.9: Ilh-hil = Op(l).

Proof: By consistency of ¥ and Assumption A.1 (iii) and (iv), it follows

that with probability approaching one,

2

Ih=hiI< = ziil(ﬁi—hi)z =y.n

h, 2.~ 2 _ . .n h _ .2 .2
i=1M1(Zi) Hy—you = (Zilel(Zi) /n) (nily 70” ).

By M, Zile?(zi)z/n = Op(l), so that the conclusion follows from Assumption

A1 (1). u

Let Q = P(P’P) P’ denote the matrix of the orthogonal projection onto the

space spanned by the columns of P.

/v

Lemma A. 10: IlQ(h-—g)ll2 = op(n2 ob). Also, if E[h?lxi] is bounded, then

1Q(h-g) 1% = 0, (b).

Proof: Take Ku as in the conclusion of Lemma A.8, and let

p, = (pl(xi),...,pKu(xi))’, P = [pl,...pn]’, Q = P(P'P) P’.

(A.25)

Also, let 1u be the indicator function for the event K = Ku, and note that
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for 1u =1, 6 - Q 1is positive semi-definite. Then for e = h-g,

2 =2 = 2
(A.26) 1 1IQel” = 1 IQel” = IZel®,

By Assumption A.1 (ii), and the conditional version of H, E[IinV/Z] is

finite for v, = Var(hilxi). Then by M

(A.27) Prob(max, y. = nZ/VC) = noProb(ly,| = nZ/V
i=n’1i i

2
C) = E[Iyilv]/CV/ .

2/v
n

Thus, max,_Var(h. |x.) 0 ( ). By independence of the observations,

i=n i 71 o)
€ .--,€  are independent conditional on X = (Xl,...,xn), implying Ele|X]
= g and Var(h|X) is a diagonal matrix with ith diagonal element

Var(hilxi). Also, Q is idempotent, so that its elements are bounded. Thus,

— 2 _ = _ n =
(A.28) E[IQell”}X] = Ele’Qe|X] = Zi,j=1QijE[eiej|X]

= ZizlﬁiiVar(yilxi) = [maxiSnVar(yilxi)]tr(G)

0 (nZ/V)rank(Q) =0 (nZ/V)rank(ﬁ) =0 (nZ/V)K =0 (nZ/Vob).
1Y p P u P

It follows by the conditional Markov inequality and bounded convergence that

= 2
IQell™ = op(nZ/Vob). Also, since 1—1u = 0 with probability approaching one

(1—1u)HﬁeH2 = op(nZ/Vob). It then follows from equation (A.26) that

>

Qe = (1—1u)HQeH2 + 1uHQeH2 < op(nZ/Vob) + 1Tell? = op(nZ/Vob),

giving the first conclusion. The second conclusion follows from the first

inequality in eq. (A.28) and tr(Q) = o(b). n

Lemma A.11: lig-gll = op(VE), lp’ (g-g)| = op(VH), lp’Qlg-g)| = op(VH).

Proof: Let Ku be as in the conclusion to Lemma A.8, and let Kﬂ be such
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that Prob(K = K)) — 1 and K, > & If £>1 let K = KpKpyqo -

For £ =0 take X = K(n), and note that by Assumption A.3 i) it can be

K }.
u

assumed without loss of generality that the smallest element K£ of Ki(n)

goes to infinity. Note Prob(K € K) — 1. Then, for 1K = 1(K € K),

(A.29) E[1, llg-gll] = E[1 emax lg,—gl] = ¥, E[Ig ~gll] = T (E[NIg —gHZ])l/Z
) K X K=K K K K K ‘

_ . 2..172
= VHZK(E[(gKi g ) o

Also, by Assumption A.3 iii) and iv) and H E[I(gKi—gi)(ng—gj)pipj]] is
finite for all i, j, K, so that it follows similarly to the proof of Lemma

A.10 that
Ellp’ (g —g)IZIX] = (g, -g) Elpp’ 1X1(g,-g) = max E[p2|x g —gnzs Clig —g”2
K K K i=n i K K

Let PN = [PK(xl)...,PK(xn)]’ and Q = PK(PK'PK)‘PK'. Since, by Q

idempotent, the elements of QK are bounded, it also follows that
ELlp’ O (B-8) 1% 1X] = (By-8)" QElpp’ 1X1Q, (F,-8)
= maxiSHE[p?IXi]HQK(éK—g)II2 = CHéK—gHZ.

Thus,

(A.30)  Ell,lp’(g-g)]] = Ellyomaxy lp’ (g-g) 1] = T, Ellp’ (g -g)!]

IA

Lo~ 2..1/2 , o~
Iy ELle” (gmg) 1" 1'% = T (EELIp’ (B-g) 121X11) /2

1A

CZKE[HéK—gHZJ = CVHZK(E[(éKi—gi)ZJ)l/Z,
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(A.31) E[1K|p'Q(§—g)|] =< E[lKomaxklp'QK(éK—g)ll = ZKE[|P'QK(§K'8)|]

IA

~ 2.1/ R 2 1/2
Ty (ELIp QB -) 1711 = 1 (EIELIp Q (&) 171X11)

1A

CTyEIg 21”1 = OVAL, (El (&, -g,)%1) /2.

Note that L = K implies that E[(éLi—gi)z] = E[(éKi—gi)Z], so that for ¢

0, by KE — o and the number of elements of X bounded,
~ 2..1/2 ~ 2..1/2
ZJ((E[(gKi_gi) 1) = CmaXJ{(E[(gKi gi) 1)

- ~ 2,172
= C(E[(gKui g;)"1) = o(1).

For ¢ > 1, note that szl(E[(éKi_gi)z])1/z - CZKle_C < ® so that

~ 2..1/2 o ~ 2..1/2 _
ZJ{(E[(gKi—gi) 1) = ZK=K2(E[(gKi~gi) 1) = o(1).

It then follows from egs. (A.30) and (A.31) and M that

1KII§—gII = opwa), Lyl (g-g)| = op(\/ﬂ), 1KIp’Q(§—g)I = opwﬁ).

The conclusion then follows from the fact that 1_1K = 0 with probability

approaching one. |

Lemma A.12: IQh-gll = op(nl/vbl/z) + op(VH).
Proof: By Q idempotent, é = Qé, and by Lemmas A.9, A.10, and A.11,
IQh-gl = NQ(h-h)Il + 1Q(h-g) + Q(g-g)i + lg-gl

< lh-hll + op(nl/vbl/z) + 2lg-gll = Op(l) + op(nl/vbl/z) + op(VH)
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n1/Vb1/2

= op( ) + op(Vﬁ). n

Lemma A.13: |p’(Qh-g)| = op(nl/vb) + op(VH).

2

By Lemma A.10 and Var(pilxi) bounded, lQpll = op(bl/ ). Then by Q

idempotent, é = Qé, and by Lemmas A.9, A.10, and A.11,

lp* (Qh-g) | = 1p’Q(h-h)| + Ip’Qlh-g)| + [p’Qlg-8)| + lp’ (g-g) |

1A

IQpllth-hil + IQplllIQ(h-g)l + op(VH),

1/2_1/v
n

o %0 (1) + 0o %0 ® ) + o (VR),
p p P p P

o (bnl/v) + o_(vn). ]
p p

Proof of Theorem 4.1: For a nonzero element g(x) of G(x) let ¥ include
B and h(z,y) = PB(Z,B)‘t(X,W) for corresponding elements of dp(z,B)/8B
and T(x,y). It follows by Assumption 3.4 and H that Assumption A.1 is

satisfied. Also, note that by Assumptions 4.1, Assumption A.3 is satisfied

for b = n(v—Z)/ZV

and p; any element of p(zi,BO). Then by Lemma A.12,
(A.32) Ztﬂlléi—gilz/n = (nQh-gl V)% = [op(n[(Z'V)/ZV]+(V"2)/4V) * op(1)12

= [o_(o(1)) + o (1)1% = 0 _(1).
p P P

Equation (A.1a) follows since this result holds for each element of G{x).

Also, by Lemma A.13
n o~ _ — (AP _ (2-v)/2v+ (v-2)/2v
(A.33) Zi=1(gi gi)pi/VH = p’ (Qh~-g)/vn = op(n ) + op(l)

= op(l).

Thus, the corresponding element of Zizl(éi—Gi)®pi/Vﬁ is op(l). Equation
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(A.1b) then follows since this is true for each element of G(x) and

p(zi,BO), and conclusion of Theorem 4.1 by Lemma A.1. [

Proof of Lemma 4.1: Since v(x) 1is a one-to-one function of x, g(x) and
w(x) can be regarded as functions of v = v(x). Let FV denote the
probability measure for v, and define a new probability measure by F(S) =

fSw(v)ZdFv/Iw(v)zdFv. Note that by Assumption 3.3
2 2
(A.34) Jlg(v)/w(v)]®dF = CJg(v) dFV < o,

Iexp[r"v”]ZdF = wa(v)zexp[tHvH]ZdFV < .

Then by Theorem 3 of Gallant (1980) and «a(K) — w it follows that there

exists % such that Cflg(v)/w(v) - ZmzlanvA(m)]ZdF = o(1), implying

(A.35)  Elg(x) - P )0 %) = flg@mv) - § K g A2

‘m=1"mK ]

w(v)zdF =
v

A(m)
v

= Cflg(v)/w(v) - ZmK ]ZdF = o(1). [

=1an

Proof of Lemma 4.2: Let P(g,J,v) denote the Taylor series up to order J

for an expansion around a point v, 1i.e.

b4

(A.37) P(g,J,v) = g(v)

J r aeg(V)
+ 1/01 -v_ ) -
211:1( )m . my =1 %m %y v 1 le) (Vme Y e)
1770 1 L
By the mean value form of the remainder,
(A.38) lg(v) - P(g,J,v)]|
r 7 g
= ' __ LRy —-—
|[1/(J+1).]m Y N avm "'6Vm (vm1 vml) (VmJ+1 va+1)I
17777 J+1 1 J+1
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+1 J+1

[1/(J+1)1 117

1A

Ao -
sup|A|=J+1ID g(V)l(StusqueXIvj vjl)

1A

J+1 _J+1
r

[1/7+0) 0 107 e < L g,

where v lies on the line joining v and v and C following the
last inequality does not depend wv.

Next, note that there exists C such that O(K) = Ca(K). Also, for
each positive integer £, the set {VA | 1Al = £} 1is a subset of the set of

elements of (1,...,(v1)£)®---®(1,...,(vr)z). Therefore,

(A. 39) K = rO(K) = rCO(K).

Note that all polynomials of order less than or equal to «a(K) can be formed

A1) A(K)
% s,V

from linear combinations of PK(V) = ( ). Therefore, since

P(g,a(K),v) is a polynomial of order a(K), there exists such that

g
PK(V)’T)K = P(g,a(K),v), for . Then for any & > 1, by eqs. (A.38) and
(A.39)

Kcsupvevlg(v)—PK(v)’nKl = Kcsupvevlg(v)—P(g,a(K),v)l

< KCCQ(K) Ca(K))cCa(K) o (X)

/a(X)! = (r /alK)t = C /a(K)! = o(1).

The conclusion now follows from the fact that V includes the support of
. . K , 2:.172 K , 2,,172
v(xi) implying, {E[(g(xi) P (Xi) nK) 1} = {E[(g(vi) P (vi) nK) 1} =

K p
squeV'g(V)_P (v) nKl. x
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Table 1: Parametric Instrumental Variables

n Estimator Bias Std Dev RMS Ratio
100 OLS . 835 . 215 1.97
Dummy IV ~.032 .594 1.36
Lin Prob -.036 . 458 1.05
EIV -.042 . 435 1.00
200 OLS . 850 . 142 2.82
Dummy IV -.024 . 386 1.26
Lin Prob -.013 . 325 1.06
EIV -.016 . 306 1.00

Table 2: Nearest Neighbor Instruments
n Estimator Bias Std Dev RMS Ratio Distribution of k

k =10 15 20 25 30 35 40

100 Uniform -. 197 . 756 1.79 1
-.164 L7117 1.68 1
-. 152 . 652 1.53 1
~-. 145 . 597 1.41 1
-. 154 .599 1.41 1
-.154 . 591 1.40 1
-. 162 .618 1.46
Uni, CV -.085 . 550 1.27 .14 .19 .21 .19 .11 .10
Triang -.101 . 576 1.34 .08 .08 .07 .15 .17 .12
Uni, +i . 105 . 429 1.01 .14 .19 .21 .19 .11 .10
Uni, Detr| -.052 . 486 1.12
K= 15 22 30 37 45 52
200 Uni, Cv -. 027 . 326 1.07 .10 .17 .23 .23 .13 .08

Table 3: Polynomial Instruments

n Estimator Bias Std Dev RMS Ratio Distribution of K
K =2 3 4 5 6 7

100 Polynomial| -.036 . 458 1.05 1
-.028 . 430 .99 1
. 002 . 416 .95 1
.018 .411 .94 1
. 042 . 399 .92 1
Poly., CV . 003 . 425 .97 .13 .56 .14 .13 .05
Poly. in v .014 . 418 .96 .13 .65 .11 .05 .07
200 Poly., CV . 004 . 302 .99 .44 .20 .25 .06 .05
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