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1. Introduction

Uniform convergence in prdbability is an important concept in econometric
theory. It is useful for showing consistency and asymptotic normality of
estimators. It is also.important for large sample inference, being useful for
showing that asymptotic standard erfor estimates are consistent.

The purpose of this paper is to provide uniform convergence results that
meet two, related requirements. The first is that the result apply to objects
other than sample averages. The second is that minimal pointwise convergence
in probability conditions are imposed. Both of these requirements are
motivated by the need for results that apply to certain nonparametric and
semiparametric models. Estimators for such models often involve objects that
are much more complicated than sample averages, such as preliminary
nonparametric regression estimators. To show consistency of such estimators
it is useful to have uniform convergence results that apply to these objects.
Furthermore, for complicated objects it is helpful to keep the convergence in
probability requirement to the minimum of pointwise convergence. In addition,
even for sample averages, when the data satisfies complicated dependence
restrictions it may be easier to check pointwise convergence in probability,
rather than the convergence of various supremums and infimums as in Andrews
(1989) and Potscher and Prucha (1989). Examples will be discussed below.

The focus here on convergence in probability, rather than almost sure
convergence, is also in keeping with these requirements. For complicated
objects it can be more difficult to show almost sure convergence. In any
case, convergence in probability is sufficient for asymptotic normality
arguments and the construction of asymptotic confidence intervals, so that if

only asymptotic inference is a concern, then convergence in probability is all

" that is needed.



The paper presents a condition, referred to as uniform stochastic
equicontinuity, that together with pointwise convergence characterizes uniform
convergence to equicontinuous functions on a compact set. Also, an easily
interpretable global Lipschitz condition is shown to be sufficient for uniform
stochastic equicontinuity.

For the special case of a sample average it is possible to formulate
uniform weak laws of large numbers that are complementary to those of Andrews
(1989) and Potscher and Prucha (1989). In comparison with Andrews (1989), the
result here require only pointwise éonvergence of the sample averages, rather
than convergence of certain supremums and infimums, at the expense of imposing
global, rather than local, Lipschitz conditions. In comparison with Potscher
and Prucha (1989), only pointwise convergence in probability is required,
under no additional conditions other than those given by Potscher and Prucha
(1989).

Section 2 gives the general uniform convergence results. Section 3
presents generic weak uniform laws of large numbers complementary to those of
Andrews (1989) and Potscher and Prucha (1989). Section 4 discusses two
nonparametric examples. A uniform law of large numbers for U-statistics is
given, and application of the results to the nonparametric instrumental

variables environment of Newey and Powell (1989) is discussed.

2. Generic Uniform Convergence in Probability

In order to discuss uniform convergence in probability it is necessary
to introduce some notation. Let 6 be a parameter vector, which can be

either finite or infinite dimensional. Let Qn(e) be a random function of 6



and the sample size n, where explicit dependence on the data will be
suppressed for notational convenience. Let ﬁn(e) be a function of 6 and
n, which should be thought of as the limit of én(e). For example, in some
environments ﬁn(e) can be taken to be the expectation of Qn(e). In other
situations ﬁn(e) will be the expectation of an analog of Qn(e) with
preliminary nonparametric estimates replaced by there true values. ﬁn(e) is
allowed to depend on the sample size to allow for nonstationarities, in
keeping with the recent econometric literature, e.g. White (1980).

Uniform convergence in probability over a set ® of parameter values

occurs when

(2.1) supeeelén(e)—ﬁn(e)l = opm.

To avoid measurability issues, it will be assumed that én(e) is continuous.

A related property that is also useful is

(2.2) {Gn(e)}nzl is equicontinuous on @.

In what follows equicontinuity of Gn(e) may be a hypothesis or conclusion,
depending on the specificity of the result.

The results make use of the following assumptions:
Assumption 1: (Compactness) © is compact.

Assumption 2: (Pointwise Convergence) For each 6 € 8, Qn(e) = Gn(e) + op(l).

It is difficult to do without the compactness assumption, and the pointwise
convergence assumption is an obvious necessary condition for uniform
convergence. The sense in which the results of this section are generic is

that Assumption 2 is taken as a primitive condition. In particular cases



Assumption 2 would have to be verified, using some law of large numbers or
other result appropriate to the form of Qn(e).
The condition that, together with pointwise convergence, characterizes

uniform convergence to equicontinuous functions on a compact set is:

Assumption 3: (Uniform Stochastic Equicontinuity) For every € > 0 ‘there is
. < .
An(e) such that 11msupn Prob(IAn(e)l >¢e) <eg, and for each 8 there is an

open set N(8,e) containing 6 such that

(2.3) limn—ewPFOb(supe’eﬂle,e)lQn(el)—Qn(e)l < An(e)) = 1.

The word uniform refers to the fact that An(e) does not depend on 6, and
the word equicontinuity to the fact that the neighborhood #(6,€) does not
depend on sample size. If An(e) were allowed to depend on 6, then this
condition would be'equivaleht to stochastic equicontinuity at each 6, 1in the
sense of Pollard (1985). In the special case where Qn(e) is nonstochastic and
An(e) = ¢, this assumption is equicontinuity of the sequence {Gn(e)}. It is
well known that pointwise convergence and equicontinuity characterizes
convergence to a continuous function on a compact set; e.g. see Rudin (1976,

Exercise 7.16) for sufficiency. Generalizing to the stochastic case gives

Theorem 1: Suppose Assumption 1 holds and Gn(e) is equicontinuous. Then

SUPBCGIQH(G)‘QH(B)I = 0p(1) if and only if Assumptions 2 and 3 hold.

The proofs are given in the Appendix.
Although uniform stochastic equicontinuity may appear to be a complicated
condition, it is easy to see that it is implied by a global, stochastic

Lipschitz condition.



Corollary 2.1: Suppose Assumptions 1 and 2 are satisfied and Gn(e) is
equicontinuous. Also suppose that © is a metric space with metric d(e,6’)
and there exists Bn such that for all 6, 8’ € 0, lén(e)—én(e')l =

Bnd(e,e’) and Bn = Op(l). Then SuPeeelQn(e)-Qn(e)l = op(l).

The Lipschitz condition of Theorem 2 is similar to that of Andrews (1989),
although here it is global rather than local and applied to the whole function
Qn(e) rather than one component of a sample average. It is easy to check
that if Gn(e) = E[Qn(e)] and E[Bn] is bounded then equicontinuity of

Gn(e) can be dropped as a hypothesis and included as a conclusion. Also, it
is easy to see that when 6 1is a vector of real numbers, this Lipschitz
condition is implied by @ convex, Gn(e) continuously differentiable, and

norm of the derivative dominated by Bn.

3. Generic Weak Uniform Laws of Large Numbers

In this section the theorems of Section 1 are applied to give uniform
laws of large numbers. Suppose that the data is a realization of some
stochastic process ZyrZgs e and consider a sequence of functions qt(zt,e)

of a data observation zy and a parameter vector 6. Define

A _on = _w«n
Q (8) = Zt=1qt(zt,9)/n, Q,(6) =}, _,Elq, (z,,6)]1/n.

Uniform weak laws of large numbers concern conditions under which Qn(e)—ﬁn(e)
converges uniformly in probability to zero.

The first result is like Andrews (1989) generic uniform law.



Corollary 3.1: Suppose that Assumptions 1 and 2 are satisfied and © 1is a
metric space with metric d(e,0’). Also suppose there exists dt(zt) such
that for all 6, 8’ € @, Iqt(zt,e)-qt(zt,e’)l = dt(zt)d(e,e’) and
ZtglE[dt(zt)]/n is bounded. Then Gn(e) is equicontinuous and

supeealQn(e)-Qn(e)l = op(l).

This result differs from the convergence in probability version of Andrews
(1989) in that only pointwise convergence of the sample average is assumed,
rather than convergence of the average of supremum and infimum of qt(zt,e)
over small sets to the population average. This change may make the
conditions somewhat easier to check, particularly in situations where weak
dependence conditions are imposed.

The second result is like the generic law of Potscher and Prucha (1989).

Corollary 3.2: Suppose that Assumptions 1 and 2 are satisfied and © c Rk.

Also suppose qt(z,e) is equicontinuous on Z x ®, there is ¥ > 1 and

n Y
dt(zt) such that Supee®|qt(zt’6)| = dt(zt) and Zt=1E[dt(zt) 1/n

0(1), and there exists an increasing sequence of compact sets Kj such that

0 _ S , . n a = ,
Uj=1Kj = R~ and llmjemllmsup §t=1Prob(zt¢Kj)/n = 0. Then Qn(e) is

equicontinuous and supeeglén(e)-én(e)l = op(l).

See Potscher and Prucha (1989) for more primitive conditions that imply the
condition involving the compact sets K,. This result differs from the
convergence in probability version of their result in that only pointwise
convergence of the sample average is assumed. This modification does

not require strengthening the other conditions. However, it is important
to be reminded that convergence in probability is under consideration here,

~and that both Potscher and Prucha (1989) and Andrews (1989) also consider



almost sure convergence.

Since uniform stochastic equicontinuity is implied by uniform‘convergence
and equicontinuity, Assumption 3 is implied by the conditions of Andrews
(1989), as well as the usual uniform law of large numbers for stationary,
ergodic environments. A direct proof that Assumption 3, with An(e) = g, is

implied by these other conditions is also straightforward.

4, Examples

The first example is a uniform convergence in probability result for
U-statistics. Such a result is useful in showing consistency of the
residual-based method of moments estimator for nonlinear simultaneous
equations models developed in Newey (1988). For notational simplicity we
restrict attention to U-statistics of order 2. Let m(z,z,8) be a function
of a p air of data arguments that is symmetric in the data arguments, i.e.
m(z,z,8) = m(z,2,8). A U-statistic, depending on the parameters 0, takes

the form

A _ n
(4.1) Qn(e) = 22t=lzs>tm(zt,zs,e)/n(n—l)

Results on the pointwise convergence of 22t2128>tm( ,8)/n(n-1) to

R
Q(e) = E[m(zt,zs,e)] are well known, e.g. Serfling (1980). Such results can
easily be turned into uniform convergence results via Corollary 2.1. For

example:



Corollary 4.1: Suppose that Assumption 1 is satisfied and that Zys
(t=1,2,...) are i.i.d.. Also suppose that E[Im(zl,zz,e)l] < @ for all 86

and there is a function d(z,z) such that for 6, 6’ € ®, |m(z,z,0)-m(z,z,6")]|

= d(z,z)le-8’ll, and E[d(zl,zz)] < w. Then E[m(zl,zz,e)] is continuous and

n —
SUPgeg|2Li=1ls>M(Z g 2y 0)/n(n=1) = Elm(z),2,,8)]1 = o (1).

A second, more specific example is the nonparametric two-stage least
squares estimation problem of Newey and Powell (1989). In this example 6

is interpreted as function, appearing in the equation

Y, = Bo(xt) + £ E[etlzt] = 0.

t’

are the endogenous variables, and =z is an

The variables Yi and x ¢

t
instrumental variable. The nonparametric two-stage least squares estimate 8

of 6, is obtained by minimizing ﬁn(e), where

A _ n & 2
Qn(e) = Zt=1(yt E[Glzt]) /n,

and E[8|z] is an estimate of the conditional expectation of 8 given z.

To show consistency of 6 it is quite useful to show uniform convergence
of Gn(e) to Q(e) = E[(yt—E[BIzt])Z]. It is difficult to see how one would
apply results from previous papers, but it is straightforward to apply
Corrollary 2.1. For pointwise convergence, existence of second moments of Yy
and E[elzt], a law of large numbers, and thl(ﬁlelzt]—E[elzt])Z/n = op(l)

for each 06 suffices. Also for d(e,8’) = supxle(x)—e’(x)l, it is easy to

A

check that the Lipschitz condition is satisfied if Ztgl(ﬁ[elzt])z/n

supxle(x)lz; see Newey and Powell (1989) for details.



Appendix

Proof of Theorem 1: First sufficiency of Assumptions 2 and 3 will be shown.
Pick € > 0. By equicontinuity of Gn(e), for every 6 there exists a
neighborhood X¥(6,e) of 6, contained in the neighborhood of Assumption 3,

such that for all n, supe,EN(9 e)Iﬁn(e’)-ﬁn(e)l = e. Then by the triangle

in equality and Assumptions 2 and 3,
(A. 1) Supe’eﬂ(e,e)lqn(e )—Qn(e JI = SuPB'EN(G,e)IQn(G )—Qn(e)l

+ IQn(G)-Qn(G)I + supe’eﬂle,e)lon(e)—Qn(e')l =g + An(e) + op(l).

Since ueeeﬂ(e,e) is an open covering of ©® and © is compact, there is a

finite subcovering ujilﬂTej,e).- Thus, by eq. (A.1),
(A.2) SupeeQIQn(e)-Qn(e)l = maxjsupeeﬂlej,e)IQn(e)_Qn(e)l
= max.{e + |[A (e)]| + 1)) =e + |A + o (1).
m J{e | n( | Op( )J)} € [ n(e)l Op( )

Consider & > 0 and choose € = 8\3. Note that Prob(IAn(e)l > 8/3) =

Prob(IAn(e)I > £). Then by eq. (A.2),

limsupnemProb(supeeglQn(e)-ﬁn(e)| > 3)

1A

Prob(e > 8/3) + Prob(IAn(e)I > 8/3) + Prob(lop(l)l > &8/3)

1A

0+ Prob(IAn(e)I >e) +o(l) se+ 0(1) <& + o(1).

Sufficiency follows since & can be arbitrarily small. Turning to necessity,
note that Assumption 2 is implied by uniform convergence. Suppose that
Assumption 3 is not satisfied. Then for some ¢ there is no An satisfying

the hypotheses, so that for An = g, there exists some © such that for all



neighborhoods ¥ of 8, Prob(supe,eﬂlﬁn(e’)—Qn(9)|>€) does not converge to
— =
zero. Choose AN such that supe,ENIQn(e ) Qn(e)l < ¢/3 for all n large

enough, so that for such n,
Prob(supe,ENIQn(e )—Qn(9)|>e)

= Prob(supe,eﬂlﬁn(e’)-Gn(e’)|>e/3) + Prob(|6n(e)—6n(e)|>e/3).

Then since the second term following the inequality converges to zero, it
follows that Prob(supe,ENlén(e’)-ﬁn(e’)l>e/3) does not converge to zero.

Thus, convergence is not uniform over 4, and consequently not over . | ]

Proof of Corollary 2.1: Consider € > 0. Choose &(e) so that
limsup Prob(B_ > £/8(e)) < £, and take AX¥(8,e) to be an open ball
n—w n
centered at 06 with radius d&(e). Then note that Assumption 3 is satisfied

for An(e) = an(e), so the conclusion follows by Theorem 1. =

Proof of Corollary 3.1: By the triangle inequality,

n ’ n -n’
Zt=1|qt(zt,9)-qt(zt,e )J|/n = [Zt=1dt(zt)/nlﬂe e’l,

IA

19, (0)-Q_(e")1

1A

o A\ ’ A A ’ < n Y
1o, (e)-Q (6”)| = E[IQ_(6)-Q (6")I] = {}, _,Eld, (z,)]1/n}lie-e" .

The hypotheses of Corollary 2.1 are satisfied for Bn thldt(zt)/n' n

Proof of Corollary 3.2: Consider the compact set Sj = Kjx@. It follows as
in Potscher and Prucha (1989) that qt(z,e) is uniformly continuous on Sj’
uniformly in t, so that for any 6 and e > 0 there exists a neighborhood

X¥(8,g,j) such that Iqt(z,e’)—qt(z,e)l < £/2, giving

Supt,e’eN(e,e,j),zeKj

10



P <n ’ Y
(A.-4) suPy, (g, e, ) @) 0O = T ySUPq ey (g, ¢, 5) 19t (242 07 )-q (2, 00 I/n
n
s Zt=1[€ + 2-1(zt¢Kj)dt(zt)l/n

-1)/ 1/
< e/2 + [thll(zteKj)/n](7 ) 7[Zt21dt(zt)7/n] 7,

Note that Ztgldt(zt)y/n = Op(l) by the Markov inequality. Choose M such
X n 7
that llmsupnemProb(Zt=1dt(zt) /n > M) < 3/2, j such that

7/(7-1)/M1/(7'1)}—1 < g/3, and let

. n
llmsupnam[2t=1Prob(ztéKj)/n]{(8/2)
N(a,e) =N(8,g,)) and An(e) be the expression following the last inequality

in eq. (A.4). Then

Prob(a_(e) > €) = Prob([zt211(ztexj)/n](7'1)/7[zt21dt(zt)7/n]1/7 > £/2)

1A

Prob(F,2,1(z,K )/n = (er2y¥/ (F=1) 1/ (3=1),

+ Prob([ztzldt(zt)y/nll/w > M1/7)

)7/(7—1)/M1/(7—1)}—1

IA

LioiEl1 (2 #K )/nl{ (e/2 + e/3 + o(1)

IA

2¢/3 + o(1),

giving Assumption 3. Equicontinuity of Gn(e) follows by a similar argument,

so that the conclusion follows from Theorem 1. ]

Proof of Corollary 4.1: Take én(e) as in eq. (4.1) and Q(8) = E[m(zl,zz,e)].
Assumption 2 is satisfied by Theorem A of Serfling (1980). By the i.i.d.
assumption, the distribution of (Zt’zs)’ t # s, 1s invariant to t and s,

implying E[ﬁn(e)] = Q(@). Furthermore, for Bn = 22t2128>td(zs,zt)/n(n—l),

11



E[Bn] = E[d(zl,zz)] < o,

10,(6) - Q (") = 25,2 7 . Inm(z_,z 0)-n(z_,z,,6')|/n(n-1) = B_lle-0"1,

t) t)

|Q(e) - Qe’)] = E[Iﬁn(e) - Gn(e')ll = E[B_llie-8" I,

It follows by the last inequality that Q(6) is continuous, so that by the

second inequality the hypotheses of Theorem 2 are satisfied. u.
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