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1. INTRODUCTION

When a society consisting of several individuals has to select from a set of alternatives, it
often relies on certain rules to make this choice. In economic theory such rules are called
mechanisms ( or voting schemes, or social choice functions ). These mechanisms may be
inherited from earlier generations, or they may be adopted via democratic processes. In order
that a mechanism represent an optimal compromise ( in any well-defined sense ) of the
conflicting interests of the members of a society, it must take into account individuals'
preferences over the alternatives. However, these preferences are usually privately known
and they have to be solicited for public use. Thus, those individuals who try to maximize
utility have an opportunity to manipulate the final outcome by misrepresenting their
preferences. As a result of such manipulations the actual outcomes may be far from
satisfactory from the social point of view. Hence, in order to have a better understanding of
social decision-making processes, it is important to know how severe the problem of

manipulation is, and whether mechanisms immune to manipulation can be devised.

In the framework of social choice theory, Gibbard [1973] and Satterthwaite [1975]
independently proved that, subject to a minor qualification, a mechanism is manipulable if it is
nondictatorial. Since then many different proofs of this classical result have been provided by
other authors. However, thé original theorem is stated only for the case in which all possible
preferences are admissible, and it leaves unanswered the question of whether similar results

are true under various restrictions of the domain of admissible preferences.

For example, let us consider a canonical problem from public finance.! There are three

public goods to be provided: education, tele-communication, and transportation. Since

1 This example was suggested by H. Moulin.



these are "goods", every individual has increasing preferences over them. In addition,
individuals' preferences are also assumed to be continuous and quasi-concave. The feasible
set is given by A = { (x,, Xy X3) | x; 20, X x; <1 }. Society has to choose an allocation
from A. In this problem it is natural to consider mechanisms that satisfy the property of
unanimity, i.e., those mechanisms that choose x if all individuals regard x as the best
alternative in A. The question is whether there exists a nonmanipulable and nondictatorial
mechanism for this problem . Surprisingly, this seemingly straightforward question is not

answered by any existing result.

In this paper I consider a general model of economies with pure public goods, in which
individuals' preferences are continuous and quasi-concave. Although the existing literature on
this subject contains some results which suggest that the Gibbard-Satterthwaite Theorem can
be extended to such economies, it does not have a general and fully satisfactory resolution of
the issue. The reai difficulty in this area stems from the fact that most of the work on strategy-
proofness relies heavily on pure logical induction, thus leaving little room to deal with the
properties of continuity and quasi-concavity. For example, in Schmeidler and Sonnenschein's
[1978] proof of the Gibbard-Satterthwaite Theorem, they assume that if one changes any
individual's preferjence ranking by moving any pair of alternatives to the top of the original
preference rankin;jg, then the new preference is still admissible. This certainly violates the

continuity of the preferences .

A recent paper by Barbera and Peleg [1988] presented a new and elegant proof of the
Gibbard-Satterthwaite Theorem that is based on the so-called pivotal-voter approach
developed earlier by Barbera [1983]. It is very direct and simple, invoking neither the Arrow
Theorem nor any monotonicity argument. Yet it is so powerful that under its framework
many other interesting issues can be addressed. The authors used it to prove that if the set of

allocations is a metric space ( not necessarily a subset of some finite-dimensional Euclidean



space) and the space of admissible preferences contains all continuous utility functions, then
any strategy-proof mechanism is dictatorial. The shortcoming of their work is that some
double-peaked preferences are used in an essential way. Thus it failed to deal with quasi-

concavity, which is a very important property for most economic problems.

However, a more refined use of the pivotal-voter approach enables me to establish
impossibility results for public goods economies. In this paper it is shown that one simple
dimension condition, analogous to the cardinality condition in the Gibbard-Satterthwaite
Theorem, plays an important role in our models. It is also shown that although the space of
all continuous, quasi-concave preferences is usually associated with economic environments,
some smaller subspace of it ( for example, the subspace of quadratic utility functions ) is

sufficient for a negative result to emerge. 2

The paper is organized as follows. In Section 2, the main results are stated and compared
to existing work in this area. In Section 3, a formal proof of our main results is presented.
Finally, Section 4 contains an application of the results to public "goods" economies in which

admissible preferences are further assumed to be increasing,

2 In the works of Maskin [1976], Kalai and Muller [1977], and Ritz [1985], it is established that a restricted
domain admits a nondictatorial Arrovian welfare function if and only if it admits a nondictatorial, strategy-
proof social choice procedure. However, it is important to recognize that the above relationship does not hold
for Arrovian welfare functions and strategy-proof mechanisms (as they are usally defined). Otherwise our work
would be vacuous, since it is already known that there exist no nondictatorial Arrovian social welfare functions
in our models. The concept of social choice procedures is quite different from the concept of mechanisms as
the former requires substantially stronger consistency conditions. Unfortunately, the lack of a common
terminology has lead to some misconceptions about these results among many economists. One can find in
Barbera, Sonnenschein, and Zhou [1988] an example of a domain that admits a class of nontrivial strategy-
proof mechanisms but no nondictatorial Arrovian welfare functions ( Footnote 3 ); and in Kalai, Muller,
and Satterthwaite [1979] an example of a domain with the opposite set of characteristics ( Example C in

Section 1 ).



2. THE MODEL AND THE STATEMENT OF THE THEOREMS

There are n agents in a society. They have to choose an allocation from a set of feasible
allocations. A is the set of all conceivable allocations. It is assumed to be a convex subset in
some finite-dimensional Euclidean space. For any set BCA, Co (B ) denotes the convex
hull of B ; dim (B ) denotes the dimension of B , which is the dimension of the smallest

affine superset of B ; and # ( B ) denotes the cardinality of B .

Each agent has a complete and transitive binary preference over A. Q denotes the space
of all the admissible preferences of the agents over A. Particularly, Q4 denotes the space of
all continuous and quasi-concave preferences over A; and €2, denotes the space of the
preferences which can be represented by a quadratic function u(x) = - (x-a)'H(x-a), where H
is a positive definite matrix, and a some pointin A . Given a preference R in Q and a set
BCA, Argmax (R ; B) denotes the set of maximal points of R in B, and argmax (R i B)
denotes the same set if it contains a unique maximal point. Q" denotes the product space:
Qn=Q xQ x..x Q. The generic point R =(Ry,Rp,..,R,)in Q" is called a
preference profile, where R; is the i-th agent's preference over A . Sometimes R = (Ry, Ry,

- » R, ) is simply written as (R;, R;).

A mechanism is a function f: Q" —A , which maps a preference profile to an allocation.3

Since A may contain allocations that are not feasible, f is usually not onto A. The range of f
is denoted by Ar. If each individual i announces a preference R; € Q, thenf(Rq, Ry, ...,

Ry, ) is society's chosen allocation. However, each agent is free to report any preference he

3 Iwill only discuss direct mechanisms in the paper. Nevertheless, the result can easily be generalized to

arbitrary mechanisms by using the " revelation principle ",



wants to; in other words, he is not expected to report the truth unless it is to his best interest

to do so. This consideration motivates the following definition.

Definition 1: A mechanism f is strategy-proof if for any profile R = (R{, Ry, ... , R, ),

any agent i, and any Q; in Q,
@R\ R;)R; f(Q;,R;).

It follows directly from the definition that if a mechanism f is strategy-proof, then any
agent / with any preference R; is always willing to report the truth no matter what the other
agents report. In other words, for any agent it is always a dominant strategy to report the
truth. For a more detailed discussion of the concept of stratetegy-proofness and the related
issues, readers are referred to existing literature, for example, Muller and Satterthwaite

[1986]. Our analysis focuses on the structure of strategy-proof mechanisms. We first look

at a special class of mechanisms.

Definition 2 : A mechanism f is strongly dictatorial if there is an agent i (the strong dictator )

such that for any profile R= (R, Ry, ... ,R,),
F(R) = argmax (R;; Af).

It is trivial to verify that a strongly dictatorial mechanism is strategy-proof. However, the
unique maximal point on the right-hand side does not necessarily exist unless we make some
assumptions on either Q or Af. For a general discussion of mechanisms, we need a weaker

condition simply to avoid non-existence problem.

Definition 3 : A mechanism f is weakly dictatorial , or dictatorial, if there is an agent i (the

dictator ) such that for any profile R = (Ry, Ry, ... R, ),

J(R) € Argmax (R;; Af).



A dictatorial mechanism is very degenerate since it mainly represents a single agent's
interest. It can hardly be regarded as a satisfactory solution for a social decision problem.
Given the above discussion, a natural question is: does there exist a strategy-proof mechanism

that is also nondictatorial?

The Gibbard-Satterthwaite Theorem gives a negative answer to this question for the case
in which the space of admissible preferences is unrestricted. It states that a strategy-proof
mechanism f on an unrestricted space of admissible preferences is dictatorial whenever
#Ar 2 3. This result reveals the essential difficulty in social decision-making when the
relevant information is private. At the same time, many researchers have investigated various
models in which either the space of admissible preferences or the set of outcomes has a certain
structure that is imposed by the nature of the problem under consideration. The Groves'
mechanism is perﬂaps the most notable example. It concerns the allocation of public goods.
By introducing a transferable private good into the model, Groves characterizes an important
class of non-dictatorial strategy-proof mechanisms.4 It should be noticed that the analysis of
the Groves' model strongly depends on the existence of the transferable private good. Hence

it does not extend to the model of economies of pure public goods.

The case of ecbnomies with pure public goods has been discussed by many other authors.
Satterthwaite and Sonnenschein [1981] proved the following: if the set of allocations A is a
convex set in some finite-dimensional Euclidean space and F is a differentiable allocation
mechanism on an admissible utility function space Q, which is an open convex subset of
C2(A), then the requirement that F be strategy-proof implies that there is a local dictator at
each regular point of F. Border and Jordan [1983] also derived a negative result similar to the

Gibbard-Satterthwaite Theorem for a specific case in which the allocation space is some Ek

4 The main results of Groves' mechanisms can be found in Groves and Leob [1975], Green and Leffont

[1979], Holmstrom [1979], and Hurwicz and Walker [1988].



(or at least a direct product set in £* ) and the mechanism is onto the allocation space. While
the deficiency of Border and Jordan's work is obvious, the difficulty with Satterthwaite and

Sonnenschein's work is more subtle, yet serious. It will be discussed below.

We now present a general treatment of economies with pure public goods. We assume
that the allocation set A is a convex set in some finite dimensional Euclidean space E¥ and that
the preference space is Q, the space of all continuous and quasi-concave preferences over A.

It turns out that negative results still prevail.

THEOREM 1: Any strategy-proof mechanism fon Q" satisfying dim (Af) 22 is

dictatorial .

The dimension condition dim (Af) 22 in Theorem 1 is exactly the counterpart of the
cardinality condition #Af 2 3 in the Gibbard-Satterthwaite Theorem. These two conditions
are very related in two ways. First, they are generally equivalent. The former implies the
latter; and while the converse is not always true, if # A¢ 2 3 and these points do not lie on the
same straight line, then dim (Af) 2 2. Secondly, they play the same role in different
contexts. When # A= 2, majority voting provides a counter-example for the Gibbard-
Satterthewaite Theorem. In our model, if dim (Af) =1, then a quasi-concave preference
restricted on Ar simply becomes single-peaked. Hence, the mechanism that always chooses

the median voter's most preferred outcome is strategy-proof and nondictatorial.

The above example also reveals the deficiency of Satterthwaite and Sonnenschein's work.
An agent i is a local dictator at some preference profile if any small change of other agents'
preferences does not change the local structure of the set of allocations he can achieve.
Satterthwaite and Sonnenschein proved that strategy-proofness implies local dictatorship.
They then claimed that this type of degeneracy is almost like that of global dictatorship and,

therefore, that their result is parallel to the Gibbard-Satterthwaite Theorem. However, the



above mentioned example makes their point hard to accept. In the example, at any regular
point the median agent is the local dictator. Still, one is quite satisfied with it since it is the
median voter's choice that best represents the compromise that the society is seeking . Thus
there is really no strong feeling against local dictatorship. In fact, if we could find for cases
dim (Ar) 2 2 some strategy-proof mechanism with characteristics similar to the median-voter
mechanism, it would be considered a positive result, regardless of whether it is locally
dictatorial or not. Consequently, a real negative result is called for to demonstrate the
impossibility of such mechanisms in higher dimensional cases. This was not observed in

Satterthwaite and Sonnenschein's work.

Theorem 1 gives us a result that corresponds to the original Gibbard-Satterthwaite
Theorem. It is directly applicable to location problems and other such problems. However,
since Q4 contains many preferences that have bliss points, it cannot be assumed for cases in
which all public goods are real "goods" instead of "bads", like the example we put forward at
the beginning of the paper. Hence, Q 4 18 too large in many problems. In order to amend

this, we introduce the following definition.

Definition 4 : An admissible preference space Qis abundant on some set BCA if it contains

all quadratic preferences on B, i.e., for any ve ) there exists some u € Q, such that
ulp=vylp.

The space of all preferences over 4, Q 4> Or O, are all examples of abundant spaces on
A. By definition, an abundant preference sp.ace  on B is also abundant on any subset of B.
Generally, the size of an abundant space € on B will be reduced when the set B become

smaller. Hence it is not a very strong requirement that a space Q be abundant on some set

BCA for models of public goods economies. The next theorem shows that if f is strategy-



proof and the admissible preference space Q is abundant on the range of f, then fmust be

dictatorial.

THEOREM 2 : Assume Q is abundant on some convex set BCA. Any strategy-proof
mechanism f on §* satisfying dim ( Ar)22 and Co ( Ar) CB is dictatorial .

Theorem 2 demonstrates that the space of all quadratic preferences contains enough
preferences to make strategic manipulation inevitable. Of course, this is by no means
necessary. From the proof we will see that many other spaces can also be used to serve the
same purpose. Roughly speaking, the important point is that the preference space should be
rich enough so that it is closed under any nonsingular transformation. This is also supported
by the work of Border and Jordan [1983] in which they characterized a large class of

nondictatorial strategy-proof mechanisms for the space of all separable quadratic preferences.’

It is easy to see that Theorem 1 is just a special case of Theorem 2. Theorem 1 is singled
out because it has a very clear and simple form that matches the Gibbard-Satterthwaite
Theorem. Theorem 2 is much sharper and its flexibility allows us to solve some problems
with different restricted domains of preferences, especially those preferences that are also

increasing. Such an applicétion will be shown after the proof of Theorem 2.

3. PROOF OF THEOREM 2

Since we often deal with those preferences that have utility function representations in

Theorem 2, we will use utility functions instead of preferences in our discussion. We begin

5 In their paper, Border and Jordan were even able to establish negative results for preference spaces with
arbitrarily small off-diagonal perturbations. However, it was done under the strong assumption that the

mechanisms must be onto. For general mechanisms, this seems very unlikely to be true.



with two basic properties of any stategy-proof mechanism f on any domain.

If fis strategy-proof on some utility function space Q", then for any pair of utility

function profiles ( u,uy, ... ,uy ) and (vy, vy, ..., vn), the following inequalities hold :

ur (f @ va)) 2 ur (fv,va)),
up (f (uys U2, w-(1,2)) ) 2 ua (f (uyv2, vveq12)) )

un (f (U1, U2, s un)) 2 un (f (U1, Uz, oy vp) ).
From these inequalities, we can derive the followin g lemmas.

Lemmal: Foranyue Q, Argmax (u; range (f) ) is nonempty, and

f‘( U, U, ..., u) € Argmax (u;range (f)).

Proof : For any a € range (f), find some (V1, V2, ..., V) such that £ (vy, va, ..., Vp) = a.

Successive application of the above inequalities leads to u(f(u, u, ..., u) ) 2ua). Q.E.D.

Lemma 2 : Given a profile ( uy, uy, ..., Up ), if there is a € range (f) such that, for all J»

a=argmax (u;j; range (f)), then

flu,up, wup) = a.

Proof: Take any profile ( vy, vy, ..., vn ) such that f( vy, vy, ., vy)=a. Apply the
above inequalities successively. Since a is the unique maximal point for each u; , not only the

utility values but also the outcomes on both sides of each inequality must be equal. Q.E.D.

The properties stated in Lemma 1 and Lemma 2 represent two different expressions of
conditional unanimity, i.e., unanimity on the ran ge of the mechanism. The first requires that

when all agents have the same utility function, a mechanism choose an allocation that is at

10



least as good as any allocation in its range; while the second requires that when all agents
consider a specific allocation as the best allocation in its range, a mechanism choose this

allocation.

Now we start to prove Theorem 2. Define a subspace Q¢ of Q consisting of preferences

that are more nicely behaved and thus more easily dealt with:
Qf ={ulue Q, and argmax(u;Af) exists }.

Clearly f*, the restriction of fon QF, is still strategy-proof. Furthermore, the range of f*
remains the same as f. To see this, we take any a € Af. Since Q is abundant on some
B> Af, there is a u € Q such that u IB = -llx-al? IB . Obviously a = argmax (u ; Af),
hence u e Qf anda=f(u,u,..,u)byLemma2. Thusae Af*. This shows Af* =Af. In
what follows, we first work with f*on Qf”. After finding a dictator for f* on Qf", we can
show that he is the dictator for f on Q" as well. For convenience of notation, we keep

using f instead of f*.

The key idea of the pivotal-voter approach is captured in the following concept. For each

agent i, given his utility function u;, define the option set for agents other than i as:
O.i(w) ={aec Al thereexists ue an-l , suchthat a= f(u;,u;)}.

This is the set of allocations which agents other than i can achieve collectively when agent i’s
utility function is fixed at u; . Itis direct to observe that if an agent i is a dictator, then for
any u;, O (u;) = argmax (u;; Ar). The insight provided by the pivotal-voter approach is
that the converse of the above observation is also true: if there is an agent i such that for any
Ui, Oi(u;)=argmax (u;; Af), then he must be the dictator. This is the strategy we adopt

in our proof of Theorem 2. We divide our proof into several steps.

11



Step 1: O.; (u;) is closed.

Proof: We first show that Ar is closed. For any point a e Bd (Ar), the boundary of Af,
u)=-llx-al? belongs to Q, where IlIl is the Euclidean distance.6 By Lemma 1,
Argmax (u ; Ar) is nonempty. However, it can be nothing but {a} because a € Bd (Af) .

Hence a e Af. This means that Ay is closed.

Now take any a e Bd (O_; ( u;)). Since Ar is closed, a e Ar. Thus u(x) =-llx-al?
belongs to €. Notice that when y; is fixed, f is still strategy-proof on .Qf"‘l. Lemma 1

then implies a € O.; (u;). This means that 0.i (u;) is closed. Q.E.D.
Step2: For any Uj, argmax (ui; Ar) € O (u;) .

Proof : By the definition of Qp argmax (u;; Ar ) is always well defined. Take any ( v;, Vi)

such that f(v;, v.;) =argmax (u;; Af ). f is strategy-proof implies
wi (FCuivi)) 2 ui(f i, vaq)).
This means that argmax (u; ; Ar) = f(uj,vi)e O4(w) . Q.E.D.

In order to continue our discussion on these option sets, we need some notation. Let a, b
be two points in some R, denote (a,b),(a,b],[a,b),and[a, b ] the segments, open
or closed, connecting them. Given two sets S and T, we say that S is star-shaped ( relative

to T') with respect to a base pointb € S ifforany ce S, [¢,b]NTCS.

6 The precise statement here should be that there exists u € Q such that u(x) | Ap =- lx-al? IAf-

However, our use of language makes the argument a little simpler, without any effect on its validity. This

same remark applies on several subsequent occasions.

12



Step 3: O.; (u;) is star-shaped ( relative to Ar) with respect to argmax (u; ; Ar).

Proof: Suppose the statement is false. Then there exist ¢ and b such that ae O0(u;),
be ANO_i(u;), be (a, argmax (u;; Ar) ). Since O.; (u;) is closed, we can further
assume, without loss of generality, that there exists p= A (b-a), A >0, such that

(a,b+2p 1N 0 (u;) = B. (See Figure 1.) Let ITdenote the straight line passing a and b.
Choose ¢ =1/2 (a+b )+ p and construct a sequence of utility functions u™in Q :
W(x)= - (x-cYHP(x-c),

where the posifive definite matrix H® is chosen so that any indifference curve of u™ is an
elliptic ball obtained by shrinking a standard ballby a factor of 1/4 to IT in all directions
orthogonal to 1. Consider the sequence of profiles { (u;, u(_;) }, where u(”)j =u" for
all j#i, and the sequence of allocations { f (u; , ulm ;) ). Since when u; is fixed, fisa
strategy-proof mechanism on _Qf”‘l for agents other than i, u(”)( f @, u(”)_,- ) 2 u(”)(a) for
all n by Lemma 1. This means { f (u; , u(”)_l-) } is a bounded sequence; therefore, it (ora
subsequence of it ) converges to some point d. By the construction of the sequence, d is on

[a,b+2p]. Andsince O, ( u; ) is closed, d is alsoin O ( u;). Thus d =a because

(a,b+2p 1N 0 (y) = @.

On the other hand, let vi(x) =- lx - b 1> and consider the sequence { f(v; ,u(”)_,-) }. For

the same reason as above, { f (v; ,u(”)_l-) } convergesto somee € [a+2p, b ].

When { f (u;,u(™ ;) } converges toa and {f(v;um_;) } converges to e, the
corresponding sequences {u; (f (u; u(_;)) } and {u; (f (v; ,u® ;) ) } will converge to
ui(a) and u,(e). Since f is strategy-proof, u; (f (u; MY ) 2w (F (v; u®™ )y forall n.

Therefore, u; (a) = u; (). But the quasi-concavity of u; implies that

13



u; (argmax (u;; Ar))> u;e) >u;(a).
We have a contradiction. Thus we have proved our claim. Q.E.D.
Step 4 : For any pair 4; and v; in Qp, if argmax (u;; Ar) = argmax (v;; Ar), then
O.i(u;) = 0,4(v;).

Proof : Suppose it is not true. Since both sets are star-shaped ( relative to Ar) with respect
to the same point d = argmax (u;; Ar) = argmax (v;; Ar), when O.; (u;) =0, (vi),
they must differ on some ray starting from d. We can assume, without loss of generality,
that there exist @ and b such thata e O_; ( vi©,be O.i(u;), be (a,argmax (u;; Af) ],
and [a,b) " O (u;) = @. (See Figure 2. ) Denote IT the straight line passing @ and b.

Asinstep 3, we construct a sequence of utility functions u™ in Q.
u(x)= -(x-a)YH"(x-a),

where H®™ is also similarly defined. Consider the sequence of allocations { f (u;, u(_;) }
where u(”)j =u™ for all J#1i. By asimilar argument as in step 3, we can show that

{f(y, u(n)_i) } converges to b. Since v; is quasi-concave,
vi Cargmax (vi; Af)) >v; (b) >v;(a) .

Therefore, there is a finite n, such that v; (f(u;, u(”o)_,- )) >vi(@) = vi(f (v, u(”o)_i )).

This contradicts that f is strategy-proof. Q.E.D.

Step 5:  Either (i) O,;i(y) = argmax (u;; Af) , forall u; € Qf, or
(i) O-i(w;) =Ar , forall u; e Qf .

Proof: We first show that for any given u; e Qf , either O (u;) = argmax (u;; Af),

or O, (u;) =Ar. If this is not true, then there exist a and b such that a ¢ O ( u;)

ki

14



be O0.i(u;), a;nd b #argmax (u;; Ar). ( See Figure 3. ) The condition that
dim (Af) 22 furtl?wr guarantees that we can find a pair like this also satifying that a, b, and
argmax (u;; Ar) are in general position, i.e., they do not lie on the same straight line. Let
I1; denote the straifght line passing a and argmax (u; ; Ar), and I, the straight line passing a

and b.

Take u(x) = - ll x - @ 112 and shrink the indifference curve of it to I, in all directions
orthogonal to [T . [We can get a utility function v e Qf such that a = argmax (v; Ar), and
any point on [ a, drgmax (ui; Af) ] does not belong to Argmax (v ; O.; ( u;) ). Since
Argmax (v ; O (u;) ) is compact, we can find Vi€ Qf, by applying the same procedure to
-llx - argmax (u;; Af) 2, such that argmax (v;; Af) = argmax (u;; Af), and
vi(a) >v;(c) for any cin Argmax (v; O;(u;)). By Lemma 2, for profile (v;, v.),
where vi=v forallj#i, f(v;,vi)e Argmax (v ; O, (v;))=Argmax (v ; O.i(u;)),
since O-; (u;) =0.; (v;) by step 4. But when agent i with utility function v; falsely
announces that he has utilify function - ll x - a 12, the allocation would be a by Lemma 2,

which is better to him than f( v;, v;). This contradicts that fis strategy-proof.

Now we show that if for some u; € Qf, O.i(u;)=argmax (u;; Af), then for all
Vi € Qf , O4(v;) = argmax (vi; Ar). Suppose that it is not true. By what we have just
shown, there musE exist some u; € Qf such that O; (u;) = Ar. Notice argmax (v;; Af) #
argmax (u;; Af) by step 4 . Add to them some ¢ e Ay such that these three points are in

general position. Then an argument similar to that in the above paragraph will lead to a

contradiction. Q.E.D.
Step 6 : There is an agent i such that for all u; € Qf, O, (u;)=argmax (u;; Af) .

Proof : We proceed by induction for n, the number of the agents . The case n =2 is simple.

If the statement is not true, then for any (uy, uz), O.1(uy) = Af, and Oo(up) = Ar.f

15



is strategy-proof implies f (u1,us) = argmax ( uy; Ar), and f(u1, uy) = argmax (uy; Af).

But it is impossible for any profile ( uy, uz), where argmax (u; ; Ar) # argmax (uz; Af) .

Now we assume the statement is true for n =k . Let us consider the case n=k + 1. If
the statement is false, then by step 5, for any profile (uy, us, ..., Ugs1 ), O-;( u)= Af for
all agents. Therefore when we fix any agent's utility function, f is still a mechanism for the
other k agents which satisfies the conditions of the theorem. If we first fix some Vi € Qf,

then by the induction hypothesis, we can find a dictator i = 1. Hence for any u.1 € Qf”‘l,

J (v, ua, o, Uper ) = argmax (u; Af) .

But if we fix some v; such that argmax (v;; Ar) #argmax (v1; Ar), again by the induction

hypothesis, we can find another dictator j #i so that for any u.; € Qf”'l,

FQunty, ooy vis o, 1) = argmax (uj; Ar) .

If we choose a particular u.; such thatvy =vy fork#i , then the above two equations lead
|

to a contradiction.  Thus we complete the induction. Q.E.D.

Up to now, we have found a dictator i for the restriction of fon Qf”. The final thing to
do is to demonstrate that he must be a dictator for J on Q" as well. To see that, consider the
profiles in which the dictator's preference belongs to Qf , while the other agents might have
preferences outside it. If there were such a profile that could lead to an allocation different
from the dictator's best, then it is easy to find a manipulation by some agents other than the
dictator . Thus as long as the dictator announces some prefence in Qf, the mechnism f has
to choose the dictator's best alternative. Therefore the dictator can always enforce any
allocation a € Ar by claiming that he has the utility function -l x - @ I12. This concludes the

proof of Theorem 2 .
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4. AN APPLICATION

In the problem put forward at the beginning of the paper, admissible preferences are also
increasing. This property is very common in many problems associated with pure public

goods. In this section we apply our result to a general model of such problems.

We assume A* = EF_| the nonnegative orthant of EX, k 2 3. Q* is the space of all
continuous, strictly quasi-concave, and strictly increasing preferences on EF +. This model is
standard and has been considered by many authors.6 Since we are considering allocation
mechanisms that are related to decision-making instead of just ranking alternatives, some
feasibility constraint should be imposed. It not only makes the model more realistic, it also
keeps the problem well-defined ( as we will see that the range of any strategy-proof

mechanism must be properly bounded). For simplicity, we assume that it is given by
A** = { xe EF_| Zpix; <11,

where p; 's and I are all positive numbers with Dp; representing the price of public good i and
I the total budget.,’ Therefore, A** is a convex set in Ek+, and its boundary Bd ( A** ) is
givenby {xe EF_ | = pix; =I }. A mechanism is again a function f: (Q*)% — A**
which chooses a feasible allocation for every preference profile in (Q*)". Finally, we impose

another condition that is intuitively appealing.

Definition 4 : A mechanism fis unanimous if for any ue Q%,

FQuu, o u) = argmax (u; A**),

6 For example, Kalai, Muller, and Satterthwaite [1979] considered this model and proved the nonexistence of

Arrovian social welfare functions.
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Unanimity, as we defined above, is a very natural and mild requirement. But our next
theorem demonstrates that a unanimous mechanism violates incentive compatibility unless it is
dictatorial. It is also worth mentioning that we do not need to add any dimensional condition

on the range of f once we require unanimity.

THEOREM 3 :  Any unanimous mechanism f: (2*)* — A** s strategy-proof if and only

if it is strongly dictatorial.

Proof: Itis trivial that f is strongly dictatorial implies that f is strategy-proof. Now assume

that f is a strategy-proof and unanimous. If it can be shown that Q* is abundant on the
range of f, then f is dictatorial according to Theorem 2. Thus f is strongly dictatorial since

Argmax (u ; A**) is always singleton when fis strictly quasi-concave.

We first show that the range of f is Bd (A**). Given a € Bd (A**), itis easy to find
some u € Q* such that a =argmax (u; A**). Thus, that f 1is unanimous implies that a
belongs to the range of f. On the other hand, suppose a belongs to the range of f. Let us
find a preference profile ( uy, Uy, ..., u, ) such that a = fCuy, ug, ..., uy ). We normalize

Ui, W, ..., Uy sothat uy(a) = u;(a) foralli # 1, and then construct a utility function u by
u(x) = Minj<j<cn {ux) Y+ Minj<i<k { (1) / (@i+1) ).

Since u; € Q* foralli, Min j { ui(x) } € Q*. Itis obvious that Min ; { (xi+1) / (a;+1) } is
continuous, weakly quasi-concave, and weakly increasing. Therefore, u € Q*. And we
further claim that if u(x) = u(a) for some x#a, then ui(x) >u(a) for all i. To see this,
we consider the following two cases : (1) x; = a; foralli: or (i) x; <a; forsomei. In

the first case, since u; is strictly increasing, u;(x) >ui(a) foralli. In the second case,

Min ;i { (x+1)/(ai+1) } <1 =Min; { (ai+1)/ (@+1) }. Because u(x) = u(a), it must be
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true that Min ; { ui(x) } > Minj { uj(a@) }. This also leads to u;(x) > u;(a@) foralli. We

now replace uy in (uy, U, ..., uy ) by u. That f is strategy-proof implies

u (f(u,ug, o up)) 2 u(f(uy, U, o up)) = ul@), and

u(@) =ur(f(u, uo, s tiy)) 2 g (FCU, Uy ey Uly)) .

These two inequalities imply f(u, u, ..., up) =a. Doing this repeatedly for all i leads to
fCu,u,..,u)=a. Since f is unanimous, a = argmax (u; A** ). This is possible only

whena € Bd (A**). Therefore, therange of f is Bd ( A**).

Secondly we show that Q* is abundant on Bd (A**). Given any quadratic function

u(x) =-(x-a)H (x-a), we define vg(x) (s is a scalar) by :
vsx) = -(x-a-sH'p)YH (x-a -sHlp).
We can write v4(x) as

vs(@) = -(x-a-sH'p)YH (x-a -sHlp)

=ux) - 2s(x-a )p +s%p 'Hp.

Since the second and the third terms are constants on Bd (A*™)={xe Ek+ VZpix; =1},
u(x) and vg(x) represent the same preference on Bd (A** ). The gradient of vg(x) is
proportionalto sp -H (x-a ). If wechoose an s which is large enough, then all the first
order derivatives of vy(x) are positive on any bounded set in Ek+, especially on A**,
Therefore, vy is also increasing on any bounded set in Ek+. Then it is not difficult to
construct some w e Q* such that w coincides with vy, thus # on A**. Therfore, Q* is

abundant on Bd ( A** ), Q.E.D.
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