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I establish that a reduced normal form (RNF) game N has a particular
structure if and only if there is a game in the family of extensive form games
having RNF N which has a subgame with an appropriate RNF. Examination of this
Structure suggests that what is important about subgames is not the particular
form of the game tree, but rather a form of strategic independence between parts
of the game. This strategic independence forms the basis for the definition of
a "normal form subgame" which is closely related to the subgame in the extensive
form but is immune to the criticism that it depends on seemingly irrelevant
details of how a game is represented. This makes it possible to both motivate
and implement such things as subgame perfection, subgame consistency, and
backward induction without reference to the extensive form.

Introduction

This paper was motivated by the question "what do you do when twenty odd
years of extensive forﬁ game theory have convinced you that there is something
important about the subgame, but you are also convinced by the arguments of
Thompson [1952] and Elmes and Reny [1987] that the reduced normal form (RNF) of
a game is all that matters?" These two ideas are, after all, incompatible; for
every extensive form game, there is another with the same RNF which has no
subgames. As there are extensive form games with distinctively different
subgames, but the same RNF, it is immediate that there will be no way of exactly
recovering the "information" contained in the subgame structure of the original
extensive form game. Thus, one may be able to look at a RNF and say "these are

the extensive form games for which this is the RNF," but there is no way of

The author is grateful to Susan:Elmes, Vijay Krishna, and especially Hugo
Sonnenschein for helpful discussions and comments.
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singling out any particularqone, and thus in specific, any particular set of
subgames.

One way to approach this is to ask whether there is gome more fundamental
property of a subgame, something other than a set of conditions on the
information sets and order structure of an extensive form tree, which still
captures our fundamental intuition about why a subgame is important, but does
not depend on "irrelevant details" of an extensive form game. Such a property
would form—the basis for a "normal form subgame,” that is, a reasonable way of
decomposing a RNF game into subproblgms in much the same way as one decomposes
an extensive form game into subgames.

To find such a property, I devote the ma jority of the péper to exploring
the relation between the structure of a RNF game N and the structure of the
elements of the family of extensive form games having RNF N, E(N), especially
as regards the subgames of the elements of E(N). I establish that there will
be an element of E(N) Qith a subgame having a particular RNF if and only if N
has a certain structure.

This structure is characterized by a form of strategic independence between
the restriction of the game to certain subsets of the players’ strategy sets,
and the remainder of the game. Even in the absence of any relation to the
subgame, this independence would form the basis for an interesting subproblem
in the RNF. However, the results of this paper provide a stronger motivation,
by establishiﬁg a very close relation to the conventional subgame: such a
subproblem can be found in the RNF if and only if a subproblem (subgame) with
the same RNF can be found in some element of E(N). I thus term the structure

a Normal Form Subgame.

It should be emphasized that this paper has two distinctly different
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aspects, the theorem relating extensive and normal form structures, and the
interpretation I make of that relation. The wvalidity of the theorem is
independent of the validity of the opinion I advance about its interpretation.
I would argue that much of its interest is as well: a reasonable first step in
a better understanding of the relation between various extensive form and normal
form solution concepts must surely be a better understanding of the relation
between the extensive form and normal form structures on which they are defined.

The organization of the paper is a follows. Section II covers definitions
and notation. Some of this material is standard and provided for the sake of .
completeness while much of the remainder is important only for a detailed
understanding. The reader may wish to skip it on a first reading, referring back
to it for specific terminology which is unfamiliar. Section III discusses the
relation between subgames in extensive form games and their associated RNFs when
the RNF is defined as containing no payoff equivalent pure strategies; I start
with this case because the heart of the relation can be more clearly expressed
for this RNF. I begin with a series of examples, and then go on to state and
prove Theorem 1, the main theorem of the paper. Section IV begins with an
example of why things become slightly more complicated when one extends the idea
of the RNF to include removing strategies which are payoff equivalent to convex
combinations of other strategies. I then present the extension to Theorem 1 which
covers this case. In Section V, I discuss the implications of the theorem for
understanding normal form games. I also present some very preliminary thought;
as to solution concepts defined in terms of this structure. Section VI briefly
discusses other implications of equality restrictions in the normal form. I

conclude in Section VII.
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Terminology and Preliminaries

Borrowing from van Damme [1984], an extensive form game F is defined by:
(1) a finite tree, (2) a partition of the non-terminal nodes of the tree between
n players, denoted 1,...,n, and a nature player, denoted 0, (3) a partition of
each player’s set of nodes into information sets, (4) a specification of a
player’s options at each of her information sets, (5) a probability distribution
over nature’'s choices at each ;f her information sets, and (6) a function G
assigning to each terminal node of the tree an element of R® representing payoffs
to players 1,...,n from reaching that terminal node.

E is of perfect recall if nodes belonging to some player which follow from
distinct information sets or mo?es for that player are never in the same
information set, i.e., players néver forget what they previously knew or did.

E is of perfect information if each information set has only one node.

An information set t precedes an information set s if there is a sequence
of choices leading from some node in t to some node in s. s succeeds t it t
precedes s.

If a subset of the nodes of E is such that (1) any time a node is in the
set, so are all the nodes which succeed it, (2) if a node is in the set, so is
every node in the same information set as that node, and (3) there is a unique
node t in the set which precedes every other node in the set, then we say that
the set of nodes along with the appropriately respricted player and information
set partitions, probability distributions for moves by nature, and payoff
function is the subgame beginning at t.

A pure_ strategy for player i is a mapping assigning to each of i's

information sets a choice at that information set. Call the set of all pure



strategies for player i S;.
The normal form of E is N =(H,(Sy,...,S,)) where H:)T(\Si + R" is the payoff
Lo
function. H(sy,...,s,) equals G evaluated at the termigél node which would in
fact be reached if (s;,...,s,) were followed in the extensive form?. Payoffs for
mixtures of pure strategies are defined from H in the obvious way. We will
often abuse notation by failing to differentiate between H and its restriction

to various domains. We will also take as given the appropriate redefinition of

H to deal with relabellings of its domain.

Two games G* = (a,{A,,...,A )) and G® = (B,(B,,...,B,})) are isomorphic if
n :
i3 Ci:A; = B;, i = 0,...,n, such that V (ag,...,a,) € X A;, a(ag,...,a,) =
=t
B(Cylay),...,C (a,)). That is, two games are isomorphic if they differ only in

the names given to the individual strategies of each player?®.

Following Kuhn [1953], term an information set for player i relevant
relative to i's strategy s; if that informatioﬁ set can be reached given s;.
Call two strategies s; and t; realization equivalent if they reach the same
terminal node for every given specification of the strategies for the remaining
players (i.e., if s

; and t; differ only at irrelevant information sets).

Call two strategies s; and t; payoff equivalent (PE) if H(sy,...,s;.q,
Si,Si41,---,8) = H(sg,...,8;.1,t1,8541,---,S3) VY (Sg,...,8;-1,85415++-,5q)-

2The reader will note that the treatment of nature is non-standard, i.e.,
that we have departed from the normal practice of "collapsing" the game using
the probabilities attached to nature’s moves. This is done for two reasons.
First, it makes some of the analysis simpler. Second, note that the definition
of an extensive form subgame depends only on (1) to (4) of the first paragraph,
and that (1) to (4) treat nature symmetrically with other players. It thus seems
reasonable that a normal form structure closely related to the extensive form
will also have this symmetry. Comment 2 following Theorem 1 suggests an
alternate approach.

%0ne could extend this idea of isomorphism to allow renaming of the players,.
but as this adds nothing to the rest of the paper, we avoid the complication.
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Realization equivalence implies payoff equivalence, but not conversely.

A quasi reduced normal form (QRNF) for E is (H,{QO,...,Qn)) where each Q;
is a subset of S; such that (1) no two elements of Q; are RE and (2) every
element of S;\Q; is RE to some element of Q;.

ure strategy reduced normal form (PRNF) for E is (H,(P,,...,P,}) where
each P; is a subset of §; such that (1) no two elements of P, are PE and (2)
every element of S;\P; is PE to some element of P;.

A mixed strategy reduced normal form (MRNF) for_E is (H, (Mp,.... M) where
each M, is a subset of S, such that (1) no element m; € M; is PE to any convex
combination of the elements of M;\m;, and (2) every element of S;\M; is PE to some
convex combination of elements of M;.

Any two PRNFs, MRNFs, or QRNFs for a given game are isomorphic. We will
thus speak of the MRNF M(E), the PRNF P(E), and the QRNF Q(E) of E, taking the
isomorphisms as understood. For generic extensive form games M(E), P(E), and
Q(E) are the same. Furtﬁer, M(E)=M(P(E))=M(P(Q(E))), or, what is the same thing,
M, C P, €Q, i.e., one can find the MRNF of E in three steps, first checking
that no two strategies always reach the same terminal node, then checking that
no two of the remaining strategies always result in the same payoff, and finally
checking that no remaining strategy can be replicated by a mixture of the
remaining strategies. For convenience, we will refer to the strategies in Q(E)
(and thus in P(E) and M(E)) simply.by specifying what actions are taken at
relevant nodes.

Q(E) can be found by an iterative process of removing a strategy s;! from
S; which is RE to an element of Si\sil, removing a strategy s;2 which is RE to
an element of S,\(s;',s;?) etc., until no element s;**' € S;\(s;*,...,s;") is RE to

an element of S;\(s;,...,s,*'}. A similar iterative process can be used to find



P(E) or M(E).

Call two games A and B equivalent, written A~B, if they have isomorphic
MRNFs. Call two games A and B P-equivalent, written A=B, if they have isomorphic
PRNFs. We note for future use that isomorphism = equivalence = P-equivalence,
and that isomorphism, equivalence, and P-equivalence are transitive. We are now

in a position to discuss the main theorem of this paper.

ITI
Subgames and the Pure Strategy
Reduced Normal Form
Assume an extensive form game E has a subgame E°. Consider, for example
E, of Figure la, where the particular subgame we shall be interested in is the
one beginning at node 1,, i.e., at player 1’s second node. Assuming all of the
labels are associated with distinct payoffs, P(E) is given by N; of Figure 1b.
One could think of divi&ing a player's strategies in P(E) into two sets: those
which take the unique action at each information set preceding E® consistent
with E° being reached, and those which at some information set preceding E® take

an action which makes reaching E® impossible. Call the first set :;, and the

i
second set w;. For our example, strategies in ., are ones which begin L;, and
strategies in w; aré those which begin R;. Strategies in ¢, begin 1,, and
strategies in w,, r;. We will concentrate on ;.

Given a choice of L;, i.e., a choice in :;, there are only two relevant
ways in which player 1's strategies can differ: 1in what they specify at 1,,
i.e., in the subgame, and in what they specify at‘l3, i.e., when the subgame can

no longer be reached. Further, these choices are independent.

More generally, in Theorem 1, I show that a choice among the elements of
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v; can always be represented as the product of two independent choices, one of
what to do if the subgame is reached, and one of what to do when it is known that

the subgame is no longer reachable. If we label the choices within the subgame

by 1,...,u;, and the choices for when it is known the subgame if no longer
reachable by 1,...,v,, then this implies that the elements of ¢, can be
relabelled as ((li,ki)lli e (1,...,u), k; € (1,...,v;}).

In our example, u, = 2 and we can label L, as choice 1 within the subgame
and R, as choice 2. Similarly v, = 2,. and we can label L = 1, and Ry = 2. In
the same manner, u, = Vv, = 2, ,=1, r, = 2, 1, a_l, r, = 2. The elements of ¢,
and ¢, are labelled using this convention in Figure 1lb.. Thus for instance,
(L;,L,,R3) is relabelled (1,2).

Now, if everyone is playing a strategy from ¢;, then E* will indeed be
reached, and it is irrelevant to the outcome‘what the players planned on doing
in the event of the subgame not being reachable, i.e., k, is irrelevant t- “he
payoffs. Thus in Figure 1lb, note that columns (1,1) and (1,2) do not diffe: ;.5n
we restrict player 1 to strategies in ;.

Similarly, if anyone chooses a strategy in w,, then E® is not reached, and
it is irrelevant what people who played strategies from :; chose for within E®,
i.e., payoffs are independent of 1,. Thus, columns (1,1) and (2,1) are identical
when we restrict player 1 to strategies in w,;.

The above suggests some necessary conditions on a PRNF N for there to be
an extensive form gave E with a subgame having a particular subgame E®: (1) it
must be possible to partition each player's strategy set into two sets, the first
representing attempting to reach E®, and the second representing making it
impossible to reach E®, (2) it must be possible to represent a decision among the

elements of the first set as the product of two independent decisions, such that
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is everyone else is also playing from the first set, i.e., if E° is reached, then
only the first of the two decisions matters, while conversely, if anyone plays
from their second set, then, among those who played from their first set, only
the second of the two decisions matters. The obvious question is whether these
conditions are also sufficient.

Figure 2a shows the simplest example of an N, satisfying these properties
without being entirely degenerate. It should be clear that as player 2's
decision is relevant if and only if player 1 chooses r,, it makes no difference
if player 2 knows player 1l's decision before making his. So, we arrive at E, of
Figure 2b.

In Figure 3a, I elaborate the example slightly. Now it does make a
difference if player 2 knows player 1’s move before making his. However, it is
still true that if player 1 chooses r;, then player 2's choice is irrelevant.
Thus, if makes no difference if player 2 knows whether or not player 1 has chosen
r, when he makes his move. Hence E; of Figure 3b.

In 4a, much the same story holds. Player 1's choice is clearly irrelevant
if player 2 chooses c,, and thus it makes no difference if player 1 knows whether
or not this is the case when he makes his first move. Similarly, if player 2
is choosing between ¢, and c, , it makes no difference if he knows whether or not
player 1 chose r,. Thus E, of Figure 4b.

N; of Figure 5a is more difficult. As in the two previous examples, the
conditions seem to be satisfied for the block with entries a,b,c, and d to bg
a simultaneous move subgame. However, now there is no simple structure such as
that of N, where first player 1 could find out whether player 2 chosé to play
c3 or not, and then conditional on playing {c,,c,} player 2 would find out if

player 1 chose r, or not. Now it is necessary to condition both players’ receipt
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of the information as to whether thg}r opponent chose within his first two
strategies on whether they themselves choose their first two strategies. Not
only is the subgame simultaneous, but now the decision to enter it must be as
well .

An extensive form game structure which does this is illustrated in Figure
5b. In the first stage, players simultaneously choose whether to make the
subgame reachable or not. In the second, if both players attempted to reach
the subgame, then it is reached and both are told this. If either chose not to
attempt to reach the subgame, then it is not reached.

There is not currently an information structure defined at the terminal
nodes e,f, and g of Figure 5b. However, the importance of this example is that
with the right information structure, arbitrarily complex extension can be
‘grafted on' at each of these nodes. This will allow us to generate-extensive
form representation with the relevant subgame for any PRNF satisfying the
structural requirements,

To see the right information structure, consider Ny in Figure 6. Here, if
player 2 plays to reach E®, i.e., plays anything but cg, but player 1 plays to
make E° unreachable, i.e., plays r;, player 2 still has a decision to make.
Further, conditiomal on playing {(c;,...,¢,) in the first stage, he can be told
in the second stage whether he is facing r; or (r,,r;}. Hence E; of Figure 6b.

In N, of Figure 7a, on the other hand, player 2 has an option if he chooses
to ‘veto’ the subgame, i.e., to restrict himself to {cj,¢,). Thus, it makes a
big difference if player 2 is told whether or not player 1 chose r;, and we
arrive at the information structure of Figure 7b. Player 2 is not told, if he
chooses to restrict himself to {cj,c,), what player 1 chose.

The general principle then is that players who chose to restrict themselves



11
to strategies consistent with reaching the subgame in the first stage can be told
in the second stage whether or not the subgame is reached. Players who 'vetoed’
the subgame in the first stage are given no extra information.

Finally, consider a RNF such as N; of Figure 8a. Figure 8b shows an
extensive form game with RNF Ny having a subgame with RNF given by the 2 by 2
submatrix in the top left corner of Ny, while Figure 8c does the same for the 2
by 2 submatrix in the bottom right of Nj. However, by considering the implied
sized if the players’ strategy spaces, it can be seen that no one extensive form
game having RNF Ny can have subgames with both these RNFs. This demonstrates
that in general the most we can ask is for a relation between the RNF and all
the elements of E(N)." There will not in general be any one extensive form game
which captures all the subgames of the elements of E(N), even up to having the
same RNF.

Using these examples as a guide, Theorem 1 can now be stated and proved.

Theorem 1:
Let N = (H,(Sy,...,S,)) and M = (H,(Ry,...,R,}) be PRNF games, with R, =
{t;,...,r,;). Then, 3 an extensive form game E with P(E) = N having a subgame

E® with P(E®) = M if and only if each S; can be partitioned as (:;, w;} and the
elements of :, relabelled as ((li,ki)l(li,ki) e (1,...,u;)x{1,...,v;}} (where v;
= size(¢;)/u;) such that

(1) H((1g,kg), ..., (1,,k)) = H((Qg,ko'), ..., (Ao, k")) = F(ryp, ..., T1y)

V1<l <u, 1l <k k' <v;.

and

(2) if w.l.0.g. players 0,...,m play 7, € w;, while players m+l,...,n

play (1;.k;) € then H(ry,...,75 (QApers K)o (L k) =

i

H(rg, ooy 7o (Tgeg v Kgeg) s - (170 k)) V1 <1,17 <uy, 1<k <v,.
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Comment 1:

There is no loss of generality in assuming all players participate in the
subgame: players who do not participate in the subgame are given a singleton
strategy set (u;=1). Similarly, it should be noted that the partition (&;,w;}
may have ¢; = S; and w; = @, i.e., some players may have no choice as to whether
or mot a given subgame is reached.

Comment 2:

If one uses the PRNF with the nature player "collapsed out,” then the
theorem becomes slightly more complicated. There will exist an extensive form
game with a particular subgame if and only if there exists a group of conformable
games such that (i) the original game is a convex combination of these games,
and (ii) if the set of conformable games is interpreted as a game with a nature.
player then Theorem 1 is satisfied. The weights in the convex combination can

be interpreted as the weights given by nature to the various "layers" of the

game.
Proof:

To prove the "if" part of the theorem, assume we have ¢; and w; and a
renaming of the elements of ii such that (1) and (2) hold. Consider the

following 2 stage extensive form game with perfect recall (illustrated in Figure
9 for 2 players). Stage 1: all players simultaneously choose to restrict
themselves either to .; or w;. Stage 2: all players simultaneously choose a
strategy. If all players chose ¢; in the first stage, then all players are told
this,‘and given a choice among ((li,l)lli e {1,...,u;}}. If not, then those

players who chose :; in the first stage are told that not everyone chose :;, and

given a choice among {(1,ki)|ki e (1,...,v,)}. Players who chose w; in the first
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period are given no extra information and choose among w;.

I define the payoffs of this game by specifying the payoff function for
the QRNF. The strategies in the QRNF of E are Q; = ((:;, choice among {(li,l)lli
€ (1,...,u;}}) if everyone else also chooses .;, choice among ((l,ki)lki IS
(l,...{vi)} otherwise)} U {(w;, choice 7, € w;)}. This is written more compactly

as Q; = (((1;,1),(1,k;))} U {r;). The payoff function G of E is given by H taking

as arguments the choices made in the second stage, i.e.,

G(((1g,1),(1,kg)), ..., ((1,,1),(1,ky)) = H((1p,1),...,(1,,1))
while if w.l.0.g. players 0,...,m chose w; in the first stage then
G(7g, oo vy (A1, 1), (L, kpyy) 5 oo, (1,,1),(1,k)))
= H(rg,...,7, (L, kpyy), oo, (LKD)

I claim E defined as this game with E® defined as the second stage which

; in the first stage satisfies the theorem.

follows from everyone choosing .
There are tﬁreé things to prove (a) that P(E) = N, (b) that E® is indeed a
subgame, and (c¢) that P(ES) = M.

To prove (a), we start by showing N = Q(E) (i.e., that N and Q(E) are
isomorphic). Define an isomorphism p:Q; = S; by p((1,,1),(1,k;)) = (1,,k;) and

p(r;) = 7. Note that

G(((1g,1),(1,kg)), .-, ((1,,1),(1, k)
= H((1,,1),...,(1,,1))
= H((1g,kg), ..., (145,k))
= H(po((14,1),(1,kp)), ..., pa((15,1),(1,ky))
and
G(rgyvee Ty (A, 1), (L kpyy), -0, (1, 1), (1, k)
= H(rg,...,7p, (L, kp41), ..., (1, k).

= H(To, PN ,Tm, (lm+1,km+1) g 4wy (ln,kn))
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= H(po(rg)s -+ 1 PulTw) s Pra Liers 1) (1, %)) - - P15, 1), (1K)
where the first equality in each sequence is by definition of G, the second by
(1) and (2) respectively, and the third by definition of p;. Thus, N = Q(E) and
so P(E) = P(Q(E)) = P(N). However, N is already a PRNF, so P(N) = N, and thus
P(E) = N.

To show (b), let t be the first node of the second stage which results when
everyone chooses ¢; in the first stage. The player who is called upon to move
at t (i.e., the player who moves first in the extensive form representation of
the second stage of the game) knows the first stage choice of all the players,
and thus knows He is at t. Similarly, those playefs who follow in the second
stage also know the first stage moves of all players, and thus they know they
are within the set of nodes which follow from t. This set of nodes, along with
the payoff structure inherited from E is thus a subgame.

To see (c), note that E® has strategy sets {((1g,1),...,(1,, 1)) and payoff
function H and so by (1) E® = M. Thus P(E®) = P(M) = M.

To prove the "only if" part of the theorem, assume there exists E such
that P(E) = N with a subgame E°® such that P(E®) = M., Partition the information
sets of player i in E into three sets: those which precede ES, p;, those within
and those which are neither in E® nor precede it, o;. Partition S; into

S
E®, w,,

t,', consisting of those strategies which make it possible to reach E°, i.e.,
those which take the unique action at each information set preceding E° which
would lead towards E® if the player were at the node in this information set
which preceded E°® , and w,;’ consisting of those strategies which make it
impossible to reach E° . - Strategies in :;' are those which take the unique

action at each information set in p; which is consistent with reaching E®,

strategies in w;’' are those which take some other action at some information set
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in p;.

Because p;, w;, and o; are a partition of i’s information sets, we can

i
generate S;, the set of all mappings from information sets to choices at those
information sets as S; x S,; x S,;, where S, (respectively S, S,) is the set
of all mappings from information sets in p; (respectively w,, o;) to choices at
those information sets.

Let s,* be the unique element of S,; which specifies taking the action at
each information set which is consistent with reaching E°. Then,

' L4

byt =8y X Sy X Sy

and
w' = Spi\s;” X Sy X Soy-
. Consider deriving P(E), i.e., reducing each S; to a subset of itself such
that no two remaining strategies are PE. Recall that this can be done by

iteratively removing'strategies thc’h are PE to some strategy which remains.
Begin by removing elements of w;’' until no element of w,' is PE to any remaining
strategy. Call what remains of w;’ after all such removals w;. Any two
remaining strategies which are PE must both be in ;’.

Assume si"r X Sy x Soi PE s;" x s,;' X S,  where at least one of s, # Suwi'
or S,; # S,;' holds. Take the case Syi 7 Syi' (the argument is completely
analogous if s ; # s, ;'). Then,

* [

* '
Si X Suyi X Soi PE S X Swi X Soi
’

* *
2 S; X Swi X Soi PE 85 X 54" X S5 V s

= can reduce :;' to s;" X Su\Swi' X Soi-
Let s," x Qu X Q,; be what remains of :,’ after all such removals. I claim

(H,{Quqs---,Qum)). =M. To see this, let q and t € Q,;. Then, if E° is reached,

H(qg,---,95-1,5;" X 9 X Qo3rGi41s---9n) = H(Qgs -+, Q5-1,8;" X t X Doz Di+1s -+ +»9n)
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if and only if q and t are PE in E® while if E® is not reached,
H(Qgy - - -»95-1,S;" X 4 X Qos-das1r - -»Gn) = H(doy -1 0i-1, 857 X € X GosrQasre - -+ 1 Gn)
independent of gq and t because these strategies are identical on every

information set outside E®. Thus,

qPEt in B ® s, x @ X 9o; PE 8," X € X Qg;,

so it is clear that Q, is a relabelling of R;. That H(Sq" X Tg X Qoir---»5q X
t, X don) = F(¥y,...,r;) is also clear. If we take v; = size(:;)/uy, then we can
clearly relabei Q,; as {qq;t,-.-,90;"%). This suggests a natural relabelling of
v, as ((L,k) |1, k) € (1,...,u)x(L,...,v;)) where s, x j; X qo;*' is renamed

(1;,k;). It is immediate that :; and w; with this relabelling satisfy (1) and

1

(2).
v
Subgames and the Mixed Sérategy
Reduced Normal Form
Coﬁsider the extensive form game of Figure 10a. Its PRNF, given by Figure
10b, has the now familiar structure. However, the MRNF of this game 1is

illustrated in Figure 10Oc, and it can be seen that the structure we have found
so far has been damaged. What is different about this example? Essentially,
the "only if" part of Theorem 1 used that when two pure strategies are PE, one
can remove either of them. Thus, if a row in ¢, and a row in w; were PE, one
could remove the row in w;. When one is using payoff equivalence to mixed
strategies, this no longer holds. x may be PE to some convex combination of y
and z without y being PE to any convex combination of x and z or z being PE to
any convex combination of x and y. Thus, if a strategy in ¢, is PE to some

convex combination of strategies not all in :;, there may be no choice but to
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remove that strategy. An argument similar to that used in Theorem 1 shows that
if a strategy in ¢; is PE to a convex éombination of elements all of which are
in :;, it will be possible to remove an entire class of strategies, i.e., to
reduce either u; or v, by 1.

Using the above as motivation, Theorem 2 is stated without proof.

Theorem 2: .
Let N = (H,(S;,...,S,}) and M = (F,(Ry,...,R,} be MRNF games, with R, =
{ry,...,ry). Then, 3 an extensive form game E with M(E) = N having a subgame

E® with M(E®) = M if and only if 3 ., :,’ and w; and a relabelling of each ;
as {(li,ki)l(li,ki) € (1,...,u)x{1,...,v;}} (where v; = size(t;)/u;) such that
(1) ¢,' and w; partition §;

(2) ¢; = ¢;' plus some finite number of distinct non-pure strategies

which put positive weight on some element of w,
(3) H((Lg,ke), .o, (15,k)) = H((Lg, ko), ..o, (1, k")) = Flryg, ..., 1py)

V1<L; Sy, 1<k k' <v.

and

(4) if w.1.0.g. players 0,...,m play r; € w;, while players m+l,...,n
play (1i,k;) € ;, then H(TO,...,%m,(lmﬂ,kmﬂ),...,(ln,kn)) =
H(rg, o7 (L o Rpey) o, (1,7 ,k))) VI <1, <uy, 1 <k; <v,.

Comment 1:

¢;' and :; differ on a subset of those extensive form games for which M(E)
and P(E) are not the same. For generic payoffs on the terminal nodes, M(E) and
P(E) are the same.
Comment 2:

Comment 2 following Theorem 1 (concerning games with a nature player) again

applies.
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Proof:

A simple but notationally tedious corollary to Theorem 1.

v
The Normal Form Subgame

This section briefly considers the interpretation and applications of the
structure introduced by Theorems 1 and 2. I begin by defining a normal form
subgame (NFS) using the results above as a guide. I then discuss the
interpretation and motivation of the NFS. Next, I discuss some applications of
the NFS in understanding games and their solutions. More extensive
interpretation and application of the normal férm subgame and the derivation,
interpretation, and application of other normal form structures is the subject
of current joint research by George Mailath, Larry Samuelson, and myself.

Assume RNF’'s M and N have the relation given by Theorem 2. Then, I will
call M a normallform suﬁgame (NFS) of‘N. Theorem 2 can thus be restated: a RNF

game N will have a NFS M if and only if some extensive form game with MRNF N has
a subgame with MRNF M.

In ;he introduction to the papef, I asked whether there might be a more
fundamental property of the subgame, something which captures our intuition as
to why the subgame is important, but does not depend on "irrelevant” details of
the extensive form. I would argue that the strategic independence captured by
the definition of the NFS is a good candidate for this more fundamental property
of a subgame.

The argument is that when a player is making a decision which only matters
under certain circumstances, then in making thaf decision, the player should

reason as if those circumstances held. So, consider that some player is making
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some decision about his strategy choice, for example, the weighting to give one
of his pure strategies, or the relative weighting to givé one group of his
strategies compared to another, and ask two questions: (a) for what pure strategy
choices by the remaining players does this decision matter? and (b) what is
relevant about the remaining player’s choices among these strategies for this
decision? Now, for each of the remaining players, conduct the same experiment
for the choices identified in the last step. That is, ask what strategies for
the other players make these choices relevant, and what choices by the remaining
players over these strategies are relevant. One could imagine iterating this
procedure, at each stage asking what strategy sets, and choices over those
strategy sets, are relevant to the choices identified at the last stage.

An important property shared by extensive and normal form subgames is that
they are fixed points of this reasoning. Assume that M is a NFS, and consider
the problem of players choosing the 1;. This decision matters only when all the -
playefs are choosing ffom t;, and the only choice that matters is the choice
among the 1;. Put differently, to make my choice of how my strategy will project
onto M I need only consider your choice of how your straﬁegy will project onto
M, and vice versa. There is thus a strong strategic independencé between the
subgame and the game as a whole.

There are at least two interesting applications of the NFS to understanding
games and their solutions. The first of these is to the question of subgame
consistency. Loosely, a solution concept is said to be subgame consistent if
the restrictions it requires of the solution as a whole are also satisfied when
the solution is restricted to the subgame. As an example, subgame perfection
can be thought of as the minimally restrictive strengthening of Nash equilibrium

which satisfies subgame consistency in a given extensive form. Subgame
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consistency is one possible desiderata for solution concepts (see for instance
Hillas, 1989). A major application of the idea of subgame consistency and other
"backwards induction-like" properties has been as a desiderata for stability.
As the entire concept of stability presupposes that the RNF contains all that
is relevant about a game, it is somewhat problematic that both the definitions
and the motivations for these various backwards induction properties of stability
rely on the extensive form.

The introduction of a definition for a subgame depending only on the normal
form is thus useful in two ways. First, the discussion of the preceding
paragraphs as to the strategic independence of the NFS suggests that the
projection of our strategies onto a NFS should be in some way reasonable, i.e.,
that a reasonable strategy for N should also satisfy some reasonableness criteria
when projected onto M. This provides an argument for subgame consistency (and
backwards induction in general) which is phrased purely in terms of the RNF.
Second, solution concep£s defined in terms of the normal form, such as stability
or propernéss, can now be judged on their subgame consistency without reference
to any particular extensive form.

A second application of the NFS is in defining solutiop concepts. As an
example, one could think about defining normal form subgame perfect equilibria.
This sort of application, both of the NFS and related structures, is a major
focus of Mailath et al.

Two interesting problems, both of which are mirrored in extensive form
analysis, arise when taking about normal form subgame consistency or about
solution concepts using the NFS.

First, as normzl form strategies are currently defined, it is not always

meaningful to speak of a strategy’'s projection onto a given NFS: one or more of
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the players may not be putting any weight on qny strategy in :;. This is in
contrast to the extensive form, where we specify not only what is chosen at
relevant information sets, but what is chosen at irrelevant ones as well.

A normal form analog to this specification of strategies "out of
equilibrium"” might involve a sort of normal form sequentiality in which
strategies are not only specified by the weight they put on any given pure
strategy, but also by the relative weights they put on the elements of subsets
of the pure strategies, even though the total weight given to the entire subset
may be zero. Specifying strategies in this way would remove any problems with
what one meant by the projection of a strategy profile onto the NFS. We hope
to develop and extend this idea in Mailath et al.

Second, it is entirely possible that some NFS being reached may be
inconsistent with rationality common knowledge. Thus, in the experiment of the
last paragraph, asking a player to make his decision on the hjpothesis that it
matters may also require ﬁhat the player hypothesize that his opponent is.
irrational (or that rationality common knowledge has been violated at some higher
level). What is would mean for a solution to have a "reasonable" projection onto
such a NFS is thus unclear. This observation is interesting in light of Reny’s

(1988) contention that the difficulties of common knowledge of rationality do

not occur in simultaneous (i.e., normal form) games.

VI
Some Other Implications
This paper suggests that equality restrictions on payoffs are important.
In fact, I would go so far as to suggest that both the normal and the extensive

forms are incomplete representations of games, and that this is the true source
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of much of the debate concerning their relat.ve merits. The missing component
of both descriptions is an explicit description of the equality restrictions that
the modeler is willing to assume exist across the payoffs to different
strategies. The extensive form already incorporates one such restriction which
is commonly made and which the normal form fails to capture: the payoffs
associated with strategy profiles do not depend on "out of equilibrium” behavior.
However, changing the particular extensive form used changes the restriction
implied. By incorporating these restrictions explicitly, the problem is
resolved.

A similar point applies to the subgame. I have argued that the subgame
can in fact be more properly viewed as a set of restrictions on the payoff
function. The extensive form implicitly captures these restrictions for
conventional subgames. However, seemingly innocuous changes to the extensive
form have thé effect of creating and destroying subgames. By imposing these
restrictions explicitly, we again lose our dependence on a specific extensive
form. °

Recognizing the importance of these restrictions also has implication for
métrics on games. A common metric used for normal form games is the euclidean:
if the payoffs in two normal form games of the same dimensions do not differ very
much, then the two games are said to be close to each other. However, the two
games may satisfy very different equality restrictions on their payoffs.
Arbitrarily small changes as measured by the euclidean metric are very large

changes in terms of the underlying structure of the game.
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VII
Conclusions

An important "structural feature" of extensive form games is the subgame.
This paper demonstrates that there is a close relative to the subgame depending
only on the RNF. Thus, at least as concerns subgames, the structural information
of extensive form games is captured by the RNF. This lends support to the
contention that the RNF contains all the strategically relevant information of
a game.

The existence of a normal form subgame, and therefore normal form analogs
to backward induction and subgame consistency, removes any inconsistency in
asking that these should be important properties of normal form solution
concepts.

The normal form subgame also suggests some interesting new normal form
solution concepts, the most obvious of which is normal form subgame perfection.
Less obviously, the question of the projection of a solution onto a given normal
form subgame leads us to the idea that the description of normal form equilibrium
strategies is incomplete. This paper suggests that a natural analog to
specifying behavior at irrelevant nodes is to specify the relative probabilities
within subsets of a player’s strategies, even though the total weight given that
subset may be zero.

Finally, this paper emphasizes the more general point that normal form
games do have structure, and that one aspect of this structure is equality
restrictions in the normal form. Thus, rather than being viewed as mnon-
genericities, equalities in the normal form should be taken as suggestive of

underlying structure in the strategic problem being modelled.
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