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ABSTRACT

This paper considers the consistency property of some test statistics based on
a time series of data. While the usual consistency criterion is based on keeping the
sampling interval fixed, we let the sampling interval take any path as the sample
size increases to infinity. We consider tests of the null hypotheses of the random
walk and randomness against positive autocorrelation (stationary or explosive). We
show that tests of the unit root hypothesis based on the first—order correlation
coefficient of the original data are consistent as long as the span of the data is
increasing. Tests of the same hypothesis based on the first—order correlation
coefficient of the first—differenced data are consistent against stationary alternatives

only if the span is increasing at a rate greater than T*. On the other hand tests of
the randomness hypothesis based on the first—order correlation coefficient applied to
the original data are consistent as long as the span is not increasing too fast. We
provide Monte Carlo evidence on the power, in finite samples, of the tests studied
allowing various combinations of span and sampling frequencies. It is found that
the consistency properties summarize well the behavior of the power in finite
samples. The power of tests for a unit root is more influenced by the span than the
number of observations while tests of randomness are more powerful when a small
sampling frequency is available.

Key Words: Hypothesis testing, unit root, randomness, near—integrated
processes, time series.






1. INTRODUCTION

Foremost among the various criteria which have been proposed to assess the
adequacy of a test statistic is the consistency property. It is generally considered a
necessary condition which insures that a statistic would distinguish a fixed false null
hypothesis from a disjoint true alternative if the sample size is sufficiently large.

More formally, consider a parameterized testing procedure. Let 90 be the null
value of 6 which we want to test and P(f) the power function of the test
considered based on a sample of size T and evaluated at a fixed alternative 6 # 00 .
A test statistic is said to be consistent if its power function Prp(6), evaluated at any
fized alternative 6 # 00 , converges to one as the sample size increases to infinity
when the true value is 4 (e.g., Rao (1973), p. 464). Consistency justifies our belief
that a larger sample leads to a more powerful testing procedure. Of course how
large "sufficiently large" is depends on the particular circumstances.

As stated, the consistency criterion appears straightforward and desirable but
some ambiguity arises when considering a test statistic in the context of a time
series of data. In this case the total number of observation depends upon both the
total span (S) of the available data as well as the sampling frequency (h) via the
relation T = S/h . An increase in the sample size T can be achieved by any of the
following schemes: increasing S (with h fixed), decreasing h (with S fixed),
increasing S and decreasing h, increasing S faster than increasing h or decreasing h
faster than decreasing S.

The requirement of a fized alternative in the definition of consistency has
usually implied that h is treated as fixed since in this case the parametric discrete
time representation of the process is unchanged. Consider, for example, an

autoregressive process of order one with a parameter a A= a, say, when sampled

annually. When sampled quarterly the autoregressive parameter becomes aQ = E* .
Therefore the autoregressive parameter is not fixed as the sampling frequency is
changed. It is argued, accordingly, that to maintain the requirement of a fixed
alternative in the definition of consistency one should only consider increasing the
sample size without changing the sampling interval, by increasing the span one for
one with the sample size.
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This argument is, however, not without ambiguity. Under both the annual
and quarterly schemes the stochastic processes are the same. We simply used a
different framework to represent them. Hence these processes could be represented
using a common fixed parameter. In general one can represent this fixed parameter
by considering a "basic" sampling interval. This could, for example, be the
sampling interval believed to represent the actual timing of the process. Usually,
however, this choice is arbitrary since there is generally no basis suggesting such an
interval. In order to avoid this type of arbitrariness one can view the basic process
as one occurring in continuous time and consider the discrete time representation of
the process in terms of the parameters of this continuous-time process and the
actual sampling interval.

In this context there are no reasons to view the consistency criterion solely as
a sequence of tests with the sampling interval fixed as the sample size increases. It
is useful to consider a more general power function, say PT,h(T)(o)’ indexed by
both the sample size T and the sampling frequency h (or equivalently by T and
S(T)). The sampling frequency, h(T), is indexed by T to highlight the fact that as
T increases h may vary. The criterion of consistency is the same as before, namely
that imp, | PT,h(T)(o) =1 given any fized alternative 6 # 6 (00 being the
true value).

A number of interesting questions can be posed in this more general context.
Do our test statistics have more power if we increase the sample size by decreasing
the sampling interval (keeping a fixed span); for example, by going form annual to
quarterly data ? If the test is consistent considering a sequence of sampling
intervals that goes to zero as T tends to infinity then we should have some reasons
to answer yes. Since in economics the sample size is often increased this way this
aspect of the consistency criterion may provide useful insight. Or consider the -
following problem: is the power greater with 100 years of annual data or 20 years of
monthly data ? If the test is not consistent as h decreases faster than T increases
(i.e. S decreases) then we may have reasons to anticipate that the power would be
greater with 100 years of annual data.
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In this paper, we analyze in detail the general consistency properties of some
statistics for testing i) the null hypothesis of a random walk and ii) the null
hypothesis of randomness, against stationary or explosive first—order correlation.
We study the behavior of the power function allowing any path for the sampling
interval as the sample size increases to infinity.

Section 2 considers the null hypothesis of a random walk against the
alternative hypothesis of either stationary positive autocorrelation or explosive
correlation. We first consider the standard Dickey-Fuller statistics based on the
normalized least-squares estimator in a first order autoregression. It is shown that
this statistic is consistent against the specified alternative processes if and only if
the span of the data increases as the sample size increases, i.e if the sampling
interval decreases to zero at a rate slower than T. Hence the power function can be
said to be influenced more strongly by the span of the data than by the number of
observations per se. A simulation experiment illustrates the usefulness of the
asymptotic results in assessing the behavior of the power function in finite samples.
In this section , extensive use is made of some results originally developed by
Phillips (1987,a,b).

We also consider in Section 2 , the same null and alternative hypotheses but
tested by applying a test of randomness on the first—differences of the data. Here the
power function converges to unity if and only if the span increases at least at a rate

greater than T1/ 2

. This result is interesting because it suggests that, in some
instances, it may be possible to increase the power by simply deleting observations,
for example by using the same span but a longer sampling interval. Furthermore , it
can be said that this procedure is dominated by the Dickey—Fuller procedure in the
sense that the latter is consistent over a wider range of possible paths for the
sampling interval as the sample size increases. Again we provide simulation evidence

to support the usefulness of our asymptotic framework in finite samples.



In Section 3 , we consider the null hypothesis of randomness against the
alternative hypothesis of positive serial correlation . The statistic investigated is
simply the first—order autocorrelation coefficient. Here the behavior of the power
function is rather different. The test statistic is consistent against stationary
positive autocorrelation if and only if the span of the data does not increase too fast
(in a sense to be made precise) relative to the number of observations. This behavior
is unlike test for the random walk hypothesis. Here a smaller sampling interval is
preferable. Again, simulation evidence support our asymptotic results.

Section 4 presents a discussion of some issues and proposes simplified
consistency criteria to assess the behavior of power functions in finite samples.
Section 5 offers some concluding comments. A mathematical appendix contains the
proof of some theorems.



2. TESTING FOR A RANDOM WALK
Consider the simple Ornstein—Uhlenbeck diffusion process :
dyt='yytdt+cdwt;—oo<'7<oo;t>0;y0=0; (2.1)

where W, is a unit Wiener process and 7, o are constants. We consider testing for a
random walk, hence our null hypothesis is:

HO: vy=10 det=odwt, y0=0,t>0;

and the alternative hypothesis is :

Hy: =7 ~—0<Y<0,7#0

The class of alternative hypotheses encompasses both stationary ( 7 < 0 ) and
explosive ( 7 > 0 ) processes. In this context, it is straightforward to derive the
following discrete time representations of the process (2.1) in terms of the sampling
interval parameter h:

Yth = % Y(t-1)h T Vin Yo = 0 (2:2)
where oy = exp(7h) and v, ~ N(0, 0'2(exp(27h) -1)/27).

This solution exists and is unique in a mean-squared sense (see e.g. Bergstrom
(1984)). Under the null hypothesis we have v = 0 and o, = 1 for all h . It is
interesting to remark that for any given fixed alternative 7 ¢ 0, oy, converges to 1
as h converges to zero. This implies that when testing H, , the discrete time
parameter o converges to the null value as the sampling interval decreases. On the
other hand, if h increases to infinity, oy, converges to 0 when 7 < 0 and to infinity
when 4 > 0, hence it moves away from the null value of the parameter.

Of course, in practice, only a finite amount of data is available, say T . In
the following we will denote by S the span of the data available, where S = hT . §
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denotes the length, in units of time, of the observed records of data . Therefore, in
discrete time, the index t is in the ranget =0, 1, ..., T=S /h.

A wide variety of statistics have been proposed to test H0 . We shall
concentrate on two simple onmes that are representative of broader classes of
statistics . Consider first, the following regression estimated by ordinary
least—squares:

Yin = S ¥(-n)n t Gtn

The statistic T(&, — 1) has been frequently used to test H, and the critical
values under the null hypothesis have been tabulated by Dickey (1976) (see also
Fuller (1976)). The same regression can be applied to the differenced series , say,
Xp = yth—y(t—l)h to test HO . In this case testing the null hypothesis is
equivalent to testing @ = 0 since under this null hypothesis the sequence {xth} is
ii.d., while under the alternative it is correlated. This statistic is asymptotically
~ equivalent to the usual first-order autocorrelation coefficient denoted by :

_ 4T T 2
Ry =Z{—o X Xt-1)n / 1 %th -

We shall be concerned with the asymptotic behavior of the normalized statistic
1/2
T/"Ry -

These statistics have been chosen to represent the following class of tests: a)
tests of a random walk based on the original series {y, }; b) tests of a random walk
based on a test of randomness applied to the differenced series {Xth} . Many other
statistics in these classes are available . An extensive Monte Carlo experiment with

a wide class of statistics is presented in Perron (1988) ; their behavior correspond to
that of the statistics analyzed here .



2.1 Testing for a Random Walk Using T(d, —1).

In order to analyze the limiting distribution of the statistics under the null

00
n=I

hypothesis, we specify a triangular array of random variables {{ynt}'{‘_ﬂ_l}
First consider the process under the null hypothesis of a random walk. For a given

n, the sequence {ynt}’fn is generated by (2.2) with y=0:
Ypt =Vpt—q t s t=1.T) (2.3)

where the innovation sequence {unt}%‘; 1 s iid. N(0, o2h o) Tpandh are
related as Tnhn = Sn with T €Z. We require T, —o0as n—o00 but do not

impose any prescribed path for h and S_. The sequence {{unt}’{“}olo is called a

triangular array of i.i.d. N(0, a2hn) variates and {{ynt}’f”}olo a triangular array of

random walks.

Each row of the triangular array {{ynt}’fn}olo is a sequence of random
variables generated by a random walk in discrete time with a sampling interval h n
In this framework, we can formally analyze the limiting behavior of the statistic

T(&, - 1) as T increases but without imposing any conditions on h and S . For any

given n , we let Tn(d11 — 1) be the standardized least squares estimator in a
first—order autoregression based on a sample of size TIl sampled at frequency h11 .
The asymptotic distribution of the statistic is contained in the following lemma :

LEMMA 1: If {{ynt} ’El‘n}olo i8 a triangular array of random walks for which the

innovation sequences {{u nt} {“}010 i8 a triangular array of i.i.d. N(0, o‘ghn)
variates, then as n- o0 :

T (& - 1)= (1/2)(w(1)* - 1)/ fo L wr)2ar

where w(r) is a standard Wiener process, defined on C[0,1], and "=” denotes weak
convergence in distribution.
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This Lemma slightly generalizes results obtained by Phillips (1987a) which
considered the limiting distribution of T(&n —1) when h is fixed or when § is fixed .

This Lemma implies that , when y(0) = 0, the limiting distribution of T (& - 1) is
invariant with respect to possible paths for hIl and Sn ; it is the same as long as T
increases to infinity L

To analyze the limiting distribution of the statistic under the alternative
hypothesis we shall again consider a triangular array of random variables

{{ynt}rf_f__ 1}01?:1. For a given n, the sequence {ynt}rfgl is generated by (see

equation 2.2) :
Vot = exp('yhn)ynt__1 +u,,¥=0,t=1., T,; (2.4)

where the innovation sequence {unt}rfil is i.i.d. normal with mean 0 and variance

o2 [exp(2'yhn) - 1] [27 .

By analogy with the stochastic process described previously we refer to the
sequence {{ynt} 1“}010 as a triangular array of first—order autoregressive processes

with {{unt}ln}olo a triangular array of i.i.d. variates. This class of processes can
accommodate stationary sequences (v < 0) as well as explosive ones (7 > 0). We do
not consider the case 7 = 0 since it was analyzed in Lemma 1.

Our next Lemma concerns the limiting distribution of T (& —1) under (2.4)
when y(0) = 0 . Its proof is presented in the mathematical appendix .
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LEMMA 2 : If {{ynt} %’n}o;) is o triangular array of random variables defined by
(2.4), thenasn- o0 :

a) IfS -+ 0asn-o00:
A 2 1 2 )
TGy = )= (/) (()° - 1)/ [ L ute)er

b) IfS, =5 foralin:

-1
n 1 1
T (&, —1)=c+ { fo Jc(r)gdr} { fo J (1) dw(r)}
where ¢ =4S and J (1) = fr ((T8)e dw(s) ;
¢ 0
c) IfSn-aoo asn-00 and 7y<O0:
ST (6. - a )= N0, - 210°)
n nn n ! o)
" -1 N
Tn(an —1)s-00 and S, Tn(an —1)a7;
d) IfSn-»oo asn-00 and y> 0:
-1 »
(27Sn) ezp('ySn) Tn(an - an)=> Cauchy,

. 1 ya
Tn(ozn—l)-»+oo, and S Tn(an—l)a v.

Lemma 2 provides the limiting distribution of the standardized least—squares
estimator under the alternative hypothesis, allowing the sampling interval to
decrease as the sample size increases to infinity.

Part (a) considers the case where both the sampling interval and the span
decrease to zero as the sample size increases to infinity. By comparing this result
with that of Lemma 1, we observe that the limiting distribution is the same under



—10—

both the null and the alternative hypotheses. This result holds for any alternative
~ # 0 whether negative or positive. Therefore, in this case, the power of a test of the
random walk hypothesis (70 = 0) converges to the size of the test as the sample size

increases. The test statistic T (& - 1) is therefore not comsistent against a
first—order correlation alternative if the span decreases as the sample size increases.

Part (b) considers the theoretically interesting case of a fixed span. Here the
sampling interval h converges to zero at the same rate as the sample size increases
to infinity. The limiting distribution derived in this case is equivalent to the
so—called ’continuous records’ asymptotics. Therefore the results obtained not only
apply to a limiting sequence of test statistics as h — 0 but also represents the exact
distribution when a continuum of data is available (see Phillips (1987a)). In this
case the limiting distributions under the null and the alternative hypotheses ‘are
different and so the limiting power of the tests does not converge to the size of the

test as the sample size increases. However, Tn(éLIl —~1) is bounded in probability
under both the null and the alternative hypotheses, hence the test is not consistent .

Let X . denote the random variable f 1; (r)2dr - f 1y (r) dw(z); . Then
c 0 © 0 ¢ )

with 4 < 0, the limiting power function of a size—§ one—tailed test is given by :

limp, o PT,h(T)(7) =lm _ . Prob [Tn(&n ~-1) < Sﬂ]

= Prob [’yS + X'yS < éﬂ]

= X «<8,-
Prob[X,y <8y 73]

where 6,3 is the B % point of the distribution of (1/2) (w(l)2 -1 f 1 w(r)2dr)_1
0

which can be obtained from the work of Dickey (1976) (see the tabulated values in
Fuller (1976) and Evans and Savin (1981)). The same principle holds when 7 >0
except that the inequality sign is reversed and § 3 is the (1 — ) % point. A
calculation of the exact power function of the test in this case can be obtained by

deriving the exact cumulative distribution function of X S (see Perron (1987b)).
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Parts (c) and (d) consider the case where the sampling interval converges to

zero but the span increases to infinity. In that case, T (& - 1) converges to — oo
if the alternative is stationary (7 < 0) and to + oo if the alternative is explosive.
The power of the test therefore converges to one in each case.

When the sampling interval of the data, hn , increases with n we adopt a
rather different approach to prove the consistency of the test statistic T (&, —1).
Consider first the case where ¥ < 0 (stationary alternatives) . Note that Tz(&n -

a)/(1 - a2)* converges to a N(0, 1) as n — oo for any fixed a < 1. In our case
a=o, = exp(7h n) and o, — 0 as h — co . Since the convergence is uniform in a
neighborhood of & = 0, it also holds as o, — 0. To prove consistency we proceed
as follows:

Pr, {Tn(&n “1) < ﬂ}

[ m1/2) 4
T /(& — a)
=pr |8 & 0n . 1 T (1-a )+ T 15
an (1 _ a2)1} (1 _a2)=} n n n IB
. n n
T111/2(dn - ay
=Pr < d_t, say,
%n (1 —az)% .
n
= @(lim  d ), asn—oo.
. . 1/2 . 1/2
But, hmn—»oodn=hmn—»ooTn/ (l—an)=hmn_)ooTn/ [l—exp("/hn)] = 00

(since v < 0) and therefore

4

Pr n{Tn(&n—1)<8ﬂ}—>1,as n — 00
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and the test statistic is convergent. A similar result can be obtained when <4 > 0 by

using the fact that aT“(&n -a)/ (a2 —1) converges to a Cauchy random variable for
any a > 1if y(0) = 0.

The results of Lemma 2 and the above discussion permits us to state the

following result about the limiting power of the statistics T (& ~1) as n — oo
when testing < = 0 against an alternative v#0 .

THEOREM 1: The statistic Tn(&n — 1) for testing the null hypothesis v = 0 is
consistent against an alternative hypothesis v # 0 if and only if the span of the data
increases as the sample size increases ; that is :

lz'mn_’ . PTn’th) =1 iff Sn—» 00 a8 m- 00 ;
When the statistic is not consistent we have :

i) IfS -0 as n-o0: lz'mn_,ooPTn)Sn(’Y):ﬂ:

where [ is the size of the test , and :

i) IfS, =S foralin:

a)ify<0: limn—»ooPT S (v) = Prob [5(75<8ﬁ—'75]
non

. —1
where X, = {./;1 Jc(r)gdr} {f01 Jc(r)dw(r)} with ¢ = 45, and 85 is the

-1
f—percentage point of the distribution of (1/2) [w(l )2 - 1] { f I w(r)gdr} .
0

b)if 7> 0:bimy oo Pp_g (1) = Prob (%5285 -9 -
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Theorem 1 illustrates in a formal way the idea that the power of a test of the
random walk hypothesis depends much more on the span of the data than on the
number of observations per se. Indeed , given these theoretical results on can expect
several features related to the behavior of the power function in finite samples : a)
the increase in power should eventually decrease and become marginal as the
number of observations is increased keeping a fixed span ; b) the power should
eventually decrease if more observations are added while reducing the span of the
data ; c) a longer span of data given a fixed number of observations should yield a
higher power ; and d) it may be possible that the power function be higher with less
observations when these fewer observations are spaced at longer intervals.

To assess the significance of these theoretical results we conducted a
simulation experiment similar to the one performed in Shiller and Perron (1985).

We simulated the power of the statistics T(a —1) for the null hypothesis of a
random walk , T = 0) against a stationary alternative v = — 0.2 . Each series was
generated by the following process :

;) = exp('yS/T) Yi-1 + u, (2'5)

where Yo =0 . We specify u, o~ N(0, 1), without loss of generality, since & is
invariant with respect to the variance of the innovation when Yo = 0. We
simulated 10,000 replications for each of the following values of S and T : 8, 16, 32,

64, 128, 256, 512. The critical values of T(& — 1) under the null hypothesis were
also simulated using 10,000 replications of a random walk model. The size of the
tests was set at 5 %, and we considered only one—tailed tests against stationary
alternatives.

Tables 1 presents the results . The values obtained clearly show the relevance
of the asymptotic properties in assessing the behavior of the power function in finite
samples . The infinity row in Table 1 is the limiting power of the test as the span
increases to infinity keeping T fixed. As can be verified from equation (2.5), this is
simply the power of a test of the random walk hypothesis against the alternative of
randomness, since limg | exp (78/T) = 0.
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In Table 1, the power values obtained for the statistic T(& — 1) show that the
power increases with the sample size keeping the span fixed but that it tends to
level off as T increases. When both S and h decrease the power decreases . The
power is always higher for a given sample size if the span is larger. Finally they are
instances where fewer observations lead to higher power if the span is
correspondingly higher. Consider for example 16 observations and a span of 64 units,
the power is 0.74, while it is 0.155 with 64 observations and a span of 16 units.
Other, more extreme, examples can be obtained from the Table.
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2.2 Using a Test of Randomness on the First—Differenced Data.

We consider a sequence of statistics {Rn}ol0 where,for a fixed n, Rn is the
first—order correlation coefficient of the first—differences of the data :

_ «Tx Tn .2
Ry =2 2o Xng Xn(4-1) [ 55 2%

where x |, =y , — Ya(t-1) and y_, is given by (2.4) . In this section, we consider
the case where 7 < 0 and study the limiting power function of the statistic Rn
which tests for a random walk against the alternative that the process {ytn} is
stationary and positively correlated. Under these conditions, it is easy to verify
that R_ is invariant with respect to the variance of the errors {utn} when y(0) =0 .

We may, without loss of any generality, set o2 in (2.4) such that {unt} ~iid. N(O,
1). For simplicity of notation we simply write u, instead of L.
If {y,} follows the stationary process (2.4) then the first differences {x;} are

an ARMA(1, 1) with a moving—average parameter on the unit circle, i.e.
x

nt = % ¥nt—1 T U ~ Y4 - (2:6)

Now {xnt} has the following infinite moving average representation:

00
ot =2 Bni Vi

with =1 and =(a -1 a 1 forall i > 1. Since 02? =0 and

no = Bni = \% n =" i=0gni"“
00

. 2 2,2
iEO ig;=(a,-1)/(1 — o), we have::

1
Tt [Rn _ pn(l)] / o (R )= N(0, 1) (2.7)

uniformly in o in the range [0,1] . Here p, (1) is the true first—order autocorrelation

coefficient of the x4’ and 0121(Rn) is the variance of the statistic Tf’an . A simple
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calculation yields :
py(1) = (e, - 1)/2. (2.8)

Now the variance of T’*Rn is approximately given by (see e.g. Priestley
(1981), p. 332) :

Var(TiR,)~ % _[hm + oyt + 1)y -1) + 2620152

- 19, (o, (m)p,(m -1)|

where p (m) is the mth autocorrelation coefficient of the series {xnt} . Since

pp(m) = al::'"lpn(l), we obtain :

Var(THR )~ 1~ (o ~ 1)% (o, -2) / [2(1 + an)] . (2.9)

The derivation of (2.8) and (2.9) was valid for la | < 1. Note, however,
that when o =1, we have TERn = N(0, 1) . Therefore the limiting distribution

(2.7) is also valid with o, =1 since (2.8) and (2.9) yield pp(1) = 0 and Var(T’}Rn)
~1, wheno =1. Therefore (2.7) is valid uniformly in a, over the range (0, 1)
including both end—points.

The power of the statistic TiRn is given by Pr, [T;%l R < b] where b is
n
the lower f percentage point of the standardized normal distribution, with 4 the size

of the test. We obtain the limiting power function as follows :

- 3
iy oo Prg [Ti R, <]

% Ry —m®] _ [o- 1 50)

1o ay o (R)) o, (R,)
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4

T? R — 1

L [ L pn( )] <dIl , say ,
n o (R.)

=& (lim  d).

in view of (2.7), with ®(e) the standardized normal distribution function. Consider
first the case where h = h for all n. It is clear that the limiting power function is

one since p (1) = (@ -1)/2 <0 for all n and o (R)=1-(a- 1)2 (o -
2)/[2(1 + )] for all n with o = exp(~h) .

Consider now the case where hn — 00 as n — 00 . In that case a, =0,

py(1) = - (1/2) and o (R)) — ﬁ . Then lim  ~d = -oo and again the
limiting power function is one.

If, on the other hand, h, —» 0 asn — oo, wehave:a —1, pn(l) — 0 and
o (R,) — 1. However,

lim T}y (1) =lim _ T} [exp(»,hn) - 1] /2
—-o00 if h_= O(Ti) forany a>-1/2
—0 if h =0(T%) forany a <—1/2

—yf2 if b_=0(T;1/?).
The implication of these results for the behavior of the power function as the

sample size increases allowing any path for the sampling interval are summarized in
the following theorem.
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THEOREM 2 : Consider {{ynt} {“}010 a triangular array of random wvariables

defined by (2.4) with v < 0, and {Rn}°1° a sequence of test statistics, where R, is
the first—order correlation coefficient of the triangular array of first—differences of

Ynt - Suppose that we test the null hypothesis that v = 0, then Trlz/ QRn s a
consistent test, as n- oo , under any alternative that v < 0 if, and only if, h’n =

O(T‘Z) foranya > - 1/2. Ifh, = O(TZ) for any a < — 1/2, then the power of the
test converges to its size. Finally, if h’n =0( T;I/ 2 , the power of the test converges

to ® (b — 7/2) where ® is the standardized normal distribution and b its associated
f percentage point, such that ® (b) = (8, the size of the test.

Theorem 2 states that the statistics Tl’}an is a consistent test of the random
walk hypothesis against stationary positive autocorrelation if, and only if, the

sampling interval decreases at a rate less than T% as T, the sample size, increases.
Alternatively, it is consistent if the span of the data increases at a rate higher than

T as the sample size increases.

These results are to be contrasted with the ones obtained for the statistic

T(& — 1) which was consistent as long as the span was at least increasing, and this,
at any rate in relation to the sample size. This implies that a test based on the

original series {y,}, such as T(a - 1), is consistent over a much wider range of
possible paths for the span or the sampling interval than is the case for a test based

on the first—differenced series such as TiR . According to a more general
consistency criterion, the statistic T(& — 1) can be said to dominate the statistic

TR . A most interesting feature of this result is that more observations need not
lead to a higher power if the span is kept fixed. Indeed as more observations are
added the power will eventually decrease towards the size of the test. This implies
that in some instances it may be possible to increase the power of the test by simply
deleting some of the available data keeping the observations associated with a longer
sampling interval.
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We also conducted a simulation experiment to assess the relevance of these
asymptotic results as a guide to the finite sample behavior. The framework is the
same as in section 2.1 and the results are presented in Table 2. The results clearly
show the relevance in finite samples of the fact that R has a power which converges
to the size of the test as h — 0 . Indeed, for any given span, the power initially
increases with the sample size until it reaches a maximum at a value of T between
16 and 64 (increasing with S) and then declines steadily as T is further increased.
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3. TESTING FOR RANDOMNESS.

Consider the following continuous—time diffusion process :

dyt='yytdt+a(c+ |2'y|)1/2dwt ;-0 <7< ;t>0;y,=0 (3.1)

where w, is again a unit Wiener process and 7, o and ¢ ( > 0) are constants. The
discrete—time representation of the process A sampled at an interval h is given by :

Vip = ahy(t—l)h + vy (t=1,2,...,T=S/h) ; Yo=0 (3.2)

with oy = exp(7h) and v,y ~ N(0, o*(c + |27])(exp(27h) — 1)/27) . As 7+ -
(3.2) becomes :

Vi = e (t=1,2,...,T=S/h) ; (3.3)

with e, ~ N(0, (¢ + 1)02) . Hence (3.3) represents a process where the series Yy i
random. The parameter c is arbitrary and is simply introduced to avoid degeneracy
of the process when 7 = 0 . In this framework, the null and alternative hypotheses
are nested within the model (3.2) in such a way that we have the following
specifications :

HO:'y:—oo ; and H1:7="y ,—00 << 00 .

The class of alternative hypotheses permitted includes stationary first—order
processes, a unit root process and explosive first—order difference equations.

To test the null hypothesis of randomness we consider the OLS estimator in a

first—order autoregression which we denote as & = Erfythy(t—l)h / Erfy %—l)h It
is , for our purposes , asymptotically equivalent to the usual first—order

autocorrelation coefficient of the data ; using & allows us to directly apply the
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results of Section 2.1. Furthermore, it is easy to see that & is invariant with respect
to the variance of the innovation process given that we specify a zero initial

condition. Hence, we can, without loss of generality, choose 02 such that such that

vip, ~ N(0,1) for all hin (3.2).

We again consider a triangular array of random variables {{ynt}ln}olo
defined under the null hypothesis by :

Yot =Vt 5 Vot © N0, 1) (3.4)

and under the alternative hypothesis by :

Yt = exp('yh) Yot + Vot Vot ¥ N(011) (3'5)

with y(0) = 0 . Then we consider a triangular array of test statistics

1/2. o0 1/2 . -1/2T
{{Tn/ an}l“} ] defined for a fixed n by Tn/ & =T, / iy Yot Yot /

Tgli)r{;lyit_l . Under the null hypothesis T;}I &n = N(0,1) as n — o0, 1o

matter what is the path of h or S as n increases . Recall that we specify T = ®
as n -+ 0o with Tn = Sn/hn .

Now we can use the results of Lemma 2 to characterize the behavior of le &n
under the alternative hypothesis allowing h_ = to decrease as n increases. This is
possible given the invariance of the statistic with respect to the variance of the

innovations.

First, we have that, if Sn =S forall n orif Sn — 0as n — o0,

T (&, —1) is bounded in probability. Therefore &, — 1 and TI*I& L — 00 as
n— oo . Since we consider only testing for randomness against positive
autocorrelation, the relevant rejection region is bounded below by the upper

(1 - B) % point of the normal distribution and the test statistic T;}l a, is therefore
consistent when either S =3 forall n or 5, -0 as n—00.
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When Sn increases to infinity and hn decreases to zero we have, from Lemma
2 (parts (c) and (d)), that S;lT o(&, —1) — 7 for both stationary and explosive
alternatives. Since S;lTIl = h;l which increases to infinity, we have & — 1 and
Ti&n — 00 as n — oo . Therefore as long as the sampling interval decreases,

T;}l&n is a consistent test of the randomness hypothesis against positively correlated

alternatives.

Consider now the case where both S 1 and h 1 increase with n . We proceed
as in section 2.2 using a local power property argument. Consider first a test
against stationary alternatives (y < 0). Let b be the (1 — §) percentage point of the
standardized normal distribution. The power of the test is given by

-} n
Pran {Tn &, > b}
I;}l(&n an) (b - 131 an)

= Pr >
%l (1 - ai)’} (1 - ai)%

'T*& -a
Pra n( n . n) > dn 1
n| (1-af)t

say,

= &(lim_ , d)

where & is the standardized normal distribution function. Now o = exp(7h )
— 0 and Tzan—->0 as n — oo if h_=0(ln T%) for any a < —1/(27) . This

n
shows that, in this case, lim 1 = 00 d n= b and

. 5 _
llmnaooPran [Tnan>b] =pf

where (is the size of the test.
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If hn=0(lnTa) for any a >-1/(27) then a - 1and Tflan—»oo asn

n-o (44

— o0, hence lim__ _ Pr [Tfla > b] = 1. Finallyif h =0 (ln T%) for a
n

n
=-1/27),Tia_—1 and Pr, [lean>b —&(b-1).

When testing for randomness against an explosive alternative the result is
rather different. Under the hypothesis that a, > 1we have

Tay ~
a (a, -a)
lim Pr n 1 L

> y| = C(y), say,
=00 ay (aI21 -1)

where C(y) is the probability that a Cauchy variate is greater than y. This result
holds uniformly in o, for a > 1, and we can therefore obtain the desired result:

N
an“(an - an)

a
>
2 = 2
%y (a; - 1) (a; - 1)

.

Ta, A
ann(an - an)

«a 2 2 n|?
(a; - 1)

= C(lim |, d ).

. . Th+1 2 .
But hmn - 00 dn = hmn 4 00 {- an“ /(OLIl -1)} = hmn 500 {- eXP(’YSn + ’Yhn)

[ (exp(27h ) — 1)} = - oo since S_ increases faster than h . Thereforeif y> 0,
lim 0 - 0o Pran [TI‘}1 &n > b| = 1 which shows the consistency of a test of

randomness against explosive alternatives when both the span and the sampling
interval increase.
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It only remains to analyze the case where = 0. As shown in section 2.1,
Tn(ézn —1) has a non degenerate limiting distribution regardless of the path of S,

or h - Therefore &n — 1 and Tz &n — 00 , which shows consistency. When the
sampling interval h 1 is fixed for all n , we obtain the usual consistency result for
any alternative value of 7 . We summarize our results on the consistency of a test
of randomness against correlated alternatives in the following theorem.

THEOREM 3 : a) The statistic TZ Ezn , for testing the null hypothesis of
randomness, i3 consistent against the alternative hypothesis of stationary positive
autocorrelation (— oo < 7 < 0), if and only if the sampling interval is not increasing

at a rate greater than In( T_I/ (27) ) as the sample size increases. If the sampling
interval increases at a faster rate with the sample size, the power of the test converges
to its size. That s, for 7<0:

im, | o PTn, "nm =1 iff h =0(nT? foranya<-1/(29);

bm. | o PTn)hn('y) =p if h, =0 (InT?) for any a > — 1/(27) ;

and

bm. | o PTn’hn(’Y) =® (b-1) if h, =0 (nT*) fora=—-1/(2y);
where [ is the size of the test, ® the standardized normal distribution and ®(b) =4 .

b) The same statistic be ?xn 18 consistent against the alternative hypothesis of
ezplosive positive autocorrelation or against the random walk hypothesis (v > 0),
regardless of the path taken by the sampling interval as the sample size increases.

The practical implications of these results are as follows. In a test of
randomness against stationary positive autocorrelation, the power function is
greater if the sample size is increased by reducing the sampling interval rather than
by increasing it. It may even be the case that a smaller sample size yields a greater
power than a larger one if the former is associated with a small sampling frequency.
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To assess the significance of these theoretical results we conducted a
simulation experiment similar to those in Section 2. We generated 10,000 replication
of (2.5) with 7y = — 2.0, hence analyzing the case where the alternative is a
stationary process. The critical values under the null hypothesis were taken from the
asymptotic standard N(0,1) distribution since it provides an adequate
approximation even if the sample size is quite low.

The results in Table 3 are quite striking. Clearly, the power of the test
converges to 1 as h — 0, whenever S is fixed or decreases. Overall, it is apparent
that the power increases whenever h decreases. On the other hand, the decrease in
the power is quite dramatic when h increases. The infinity row corresponds to the
theoretical case where an infinite span would be available with a fixed number of
observations. As the span increases to infinity with a fixed T and 7 (< 0),.the
process (2.5) is a random one, hence the power is equal to the size of the test. This
is basically the intuitive reason why the power decreases as the sampling interval
increases. In that case the discrete-time representation of the process under the
alternative hypothesis gets closer and closer to the discrete—time representation of
the process under the null hypothesis.
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4. SIMPLIFIED CONSISTENCY CRITERIA

In general deriving the limiting power function for any possible paths for the
sampling interval as the sample size increases can be a complex task. Accordingly ,
it may be desirable to consider special cases of the general consistency criterion that
are easier to derive and yet can still provide interesting information about issues
concerning frequency versus number of observations. Consider the following cases :

Definitions :
a) Small-h consistency :

A test is small-h consistent if limg | _ [limy 4 PS,h( Hl=1.
b) Large—S consistency :

A test is large-S consistent if limp, | [limg , PS,T(0)] =1.
¢) Small-S consistency :

A test is small-S consistent if limg |  [limy _ 4 PS,h(g)] =1.

In each cases the limiting operations are taken sequentially. Determining
whether a test statistic satisfies one or more of these criteria is relatively easier than
analyzing the consistency properties for any possible paths for the sampling interval
as the sample size increases. Yet these simple criteria summarize quite well the
behavior of the power function in finite samples when considering various sampling
intervals as the number of observations is changed. For example, if a test is small-h
consistent and large-S consistent but not small-S consistent, we can infer that a
larger span of data is preferable in terms of power, and that the power eventually
decreases as the span decreases. On the other hand, if a test is small-S consistent
but not large-S consistent, a smaller span is preferable. Let us consider the behavior
of these simplified criteria with respect to the statistics and models considered in
this paper.
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Consider first the use of the statistic T(&— 1) when testing for a random walk.
The limit of the power function as S - co when T is fixed is, in discrete time , the
power function of a test of the random walk hypothesis against the alternative that
the process is random ( since @ = exp(yS/T) - 0 as S - oo ). This power function is
increasing with T and converges to one as T -+ oo . Hence the statistic is large-S
consistent. Consider now the other two criteria. Both involve first the limit of the
power function as h -+ 0 keeping S fixed. Now it can be shown that this power
function converges to one as S + co and converges to the size of the test as § - 0 .

Hence T(& — 1) is small-h consistent but not small-S consistent. The simulation
results presented in Section 2.2 attest to the usefulness of these criteria as guides to
the behavior of the power function in finite samples.

Consider now using a test of randomness on the first—differences of the data to
test for a random walk against stationary alternatives. Since the limit of the power
function is the size of the test as h -+ 0 keeping the span fixed , it is the case that
here the test is neither small-h nor small-S consistent. Hence using these simple
criteria , one would expect this test to have a power function declining as the
sample size increases if the span does not increase sufficiently rapidly. For the same
reason as before the test is however large-S consistent ; hence we can expect
increasing power if the sampling interval increases with the number of observations.
These implications are confirmed by our simulation experiment.

Finally , let us analyze the behavior of the first—order autocorrelation
coefficient when testing for randomness. Consider first the case of non—stationary
alternatives (7 > 0). The statistic satisfies all the criteria: large-S consistency,
small-h consistency and small-S consistency. The test is small-h and small-S
consistent because its power converges to one as the sampling interval tends to zero.
for any fixed span. Now the limit of the power function as the span increases
keeping a fixed sample size, when < = 0, is simply the power function (in finite
samples) of a test of randomness against a random walk hypothesis. This power
function converges to one as the sample size increases, so we have large-S
consistency against an alternative that v = 0. When < > 0, the discrete time
value of the autoregressive parameter diverges to infinity as the span increases. The
test is therefore also large—S consistent in this case.
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Consider now the case of stationary alternatives (4 < 0). The test is again
small-S and small-h consistent since the power function converges to one as the
sampling interval decreases (for any given fixed span). However, the test is not
large-S consistent. As the span increases with a fixed sample size the discrete time
value of the autoregressive parameter tends to zero (i.e. a = exp(9S/T) — 0 as
S — o0 if 7 < 0). Therefore the power is given by the size of the test for any
sample size and the test is not large-S consistent.
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5. CONCLUDING COMMENTS

This paper considered the consistency criterion for a test statistic in a more
general framework than usual. Standard practice considers a test statistic
consistent if its power against fixed alternatives converges to one as the sample size
increases but constrains the sampling interval to remain unchanged as the sample
size increases. While this criterion is useful and can be regarded to be a minimal
property of a satisfactory test, it cannot shed light on some important features of
the test when the sampling interval is changed at the same time as the sample size
increases.

To answer some of these interésting practical questions we considered the
consistency criterion under all possible paths of the sampling interval as the sample
size increases. We analyzed in detail the properties of three commonly used test
statistics: a) the normalized least—squares estimator in a first—order autoregression
as a test of the random walk hypothesis; b) the first—order correlation coefficient of
the first—differences of the data as a test of the random walk hypothesis ; and c) the
first—order correlation coefficient as a test of randomness . Some of the results
obtained are: 1) the normalized least-squares estimator is a consistent test of the
~random walk hypothesis as long as the span increases with the sample size (whether
the alternative is stationary or explosive); 2) the first—order correlation coefficient of
the first—differences of the data is a consistent test of the random walk hypothesis
against stationary alternatives as long as the span of the data increases at a rate

greater than T’}, where T is the sample size. In this sense the normalized
least—squares estimator dominates the latter test statistic since it is consistent over
a wider range of possible paths for the sampling interval. And 3) the first—order
correlation coefficient is a consistent test of the hypothesis of randomness against
stationary alternative as long as the sampling interval is not increasing too fast. If
the alternative is explosive, then the test is consistent whatever the path for the
span or the sampling interval.

We introduced three summary measures of the consistency properties as well:
large-S, small-S and small-h consistency. These were found to adequately capture
both the asymptotic and finite sample properties of the statistics considered. The
normalized least—squares estimator is both large~S and small-h consistent but not
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small-S consistent. Therefore when tesfing the random walk hypothesis with this
statistic a large—span of data is to be preferred, (in some cases) even if this entails
less observations than would be possible at a smaller sampling frequency. The
first—order correlation coefficient as a test of randomness is both small-h and
small-S consistent but not large-S consistent (against stationary alternatives). In
this case, a smaller sampling frequency is to be preferred, in some instances, even if
this entails a smaller sample size. The first—order correlation coefficient of the
first—differences is only large-S consistent but not small-h nor small-S consistent as
a test of the random walk hypothesis. The result implies that a greater number of
observations may lead to a test with smaller power if the span is not increased
sufficiently.

The paper has considered only a few (though important in practice) test
statistics in a specialized framework. The results, however, can be extended in
several directions. Perron (1988) analyses the consistency properties of some
thirteen different test statistics through Monte Carlo methods . What emerges from

these sets of additional results is that the consistency properties of T(& — 1) derived
in Section 2 also apply to any test of the random walk hypothesis using the original
series (as opposed to a test of randomness on the first—differences). With respect to
tests of randomness on the first—differenced data , the simulations suggest that the
result obtained in Sections 2.2 and 3 also apply to a wide class of statistics.

Indeed, it is not difficult to generalize the results of Sections 2.2 and 3 to any
test statistic which has a non-degenerate limiting distribution under a local

alternative ; i.e., for which limp | _ Pr_ [ TY/2{ X_- wa)}/o(a) <b] = & (b)
uniformly over 0 < o < 1. Since tests of randomness usually satisfy this property,
the results of Sections 2.3 and 3 apply to most tests of randomness and tests of the
random walk hypothesis using differenced data. For these reasons, the results of the
present study indicate that, under the framework and hypotheses considered, tests
of the random walk hypothesis should be based on a statistic using the undifferenced
series since they dominate, in terms of a more general consistency criterion, those
based upon the differenced series. Of course, this result is contingent upon the
specific class of alternative hypotheses considered.
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Finally, there is ample scope for further research by analyzing more complex
models based on a time series of data; for example, models with lagged dependent
variables and exogenous regressors as well as models with time averaged data. The
major practical problem to be addressed in this context is to see whether it is worth,
in terms of power and efficiency, increasing the sample size if this entails a fixed or,
even more realistically, a reduced span. For example, is it better to have 100
annual observations, 150 postwar quarterly observations, or, say, 250 monthly
observations. Some answers to these questions can be given using the approach
suggested in this paper.
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FOOTNOTES

1. This results do not hold if y(0) # 0 and the reader is referred to Perron (1987a)
for details. In this case the asymptotic distribution is the same if the span S is
strictly increasing as the sample size increases . Here the effect of y(0) becomes
negligible since the observations do not become "too close" together. Such is not

the case when considering the distribution of Tn(&n — 1) with a continuum of data,
i.e. when S is constant or decreases with n . It is interesting to note, in particular

that if S decreases to zero as n increases and y(0) # 0, T (& — 1) becomes
degenerate at 0.
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MATHEMATICAL APPENDIX

The proofs of Lemmas 1 and 2 are simple modifications of developments in

Phillips (1987a,b). To prove Lemma 1, we first note that Exn is invariant with
respect to the variance of the innovations {u .} in (2.3) given that we specified y,
= 0. Hence, without loss of generality, we can set u , ~ N(0,1) for all n. {ynt} is
then not a function of h  and the usual result carries over, see Phillips (1987a).

To prove Lemma 2, we again note the invariance of &n with respect to the
variance of the innovations . Hence, without loss of generality , we set u , ~ N(0,1)
for all n in (2.4). Consider first the case where S| = § for all n and write (2.4) as:

Ing = exp(75/ Tn) Ynt-1 T+ Unt
=exp(c/T )y, 1 + Uy (A.1)
where ¢ = 4S. (A.1) corresponds to the near-integrated process analyzed in Phillips

(1987b,1988) and others. Since T - oo as n - oo, we can apply Phillips (1987b)
result for the least—squares estimator :

T (&, - o) = {3107 f I )dw()} (A.2)
Given that :
T (&, -1) = T, (& - a,) + T (e, - 1) (A.3)

and T (o, - 1) = T (exp(c/T,) —1) -+ cas T - 0o, we have :

T (& -1)= c+ {f§ 3,02y [§ I (D)dw(x)} .

This proves part (b). To prove part (a), note that as S g 0 we have ¢ - 0 and,
hence, J (r) - w(r). Therefore , if S + 0 as n - oo, we have:



—36—

- 1 2,41 1
T (&, -1)={ [ w@)dr}™ {f§wlt)dw(n)} -
This proves part (a) using Ito’s formula. To prove parts (c) and (d), we first remark

thatifSn—oooa,sn—»oo, then ,in (A.2), c+—-00if y< 0 and ¢~ + o0 if 7> 0.
To provide the proof, we need the following lemma proved in Phillips (1987b).

LEMMA A.1: Define J (1) = f 6 exp((r—s)c)dw(s) with w(s) a unit Wiener process
defined on C[0,1], then :

ijJasc-+—o0:

a) (-2¢) [ 53 ()% 15

b) (2012 [13 (r)aw() = N(,1) ;

ii)asc~++o00:
2
¢) (2¢)“exp(—2c) f (1) J C(r)2dr = 172 ;

d) (2c)exp(c) [ 5 I (D)dw(r) = n¢ ;

where 7 and ¢ are independent N(0,1) variates.

Consider first the limit of (A.2) as ¢ + — 00. Using Lemma A.1, we have :

(<20) 21 (& - a )= N(0,1).

Noting that ¢ = 'ySn , we deduce :

-1/2 ~ 2
s, 21 _(a - a ) = N(0, 270%)

Now since h = T_/S _1is decreasing asn - oo, we have:
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-1 —1
S, T, (exp(¥S, /T )-1)-7 as S 'T -00. (A.4)

Then , using (A.3) and (A.4) we deduce that S;lTn(Zzn —~1) -+ v and, given that 7 <
0, Tn(an —1) > — 00, as n -+ 00 . To analyze the case where vy > 0, first use Lemma

A.1 to note that :

(248,) Yexp(248,)T (&, — ) = Cauchy (A.5)

upon replacing ¢ by 7S . Using (A.3) through (A.5) and the fact that
S} (278, )exp(-278,) + 0 as S_ - 0o , we have S_'T (&, 1)~ yand T (& ~ 1)~

+ o0, given that v > 0.



TABLE 1

Power of a one—tailed test with the statistic T(a —1)

H0:7=0;H1:'y=-—0.2

Number of observations : T = S/h

S 8 16 32 64 128 256 512
8 0.101 0.095 0.101 0.105 0.107 0.108 0.111
16 0.169 0.171 0.182 0.174 0.183 0.187 0.197
32 0.320 0.366 0.398 0.416 0.436 0.423 0.439
64 0.555 0.731 0.825 0.869 0.899 0.896 0.891
128 0.700 0.947 0.996 1.000 1.000 1.000 1.000
256 0.724 0.988 1.000 1.000 1.000 1.000 1.000
512 0.728 0.991 1.000 1.000 1.000 1.000 1.000
INF 0.737 0.991 1.000 1.000 1.000 1.000 1.000




Power of a one—tailed test with the statistic T

TABLE 2

H0:7=0;H1:'y=—0.2

Number of observations : T = S/h

S 8 16 32 64 128 256 512
8 0.035 0.055 0.058 | 0.058 0.058 0.059 0.061
16 0.059 0.072 0.070 0.071 0.068 0.061 0.057
32 0.090 0.116 0.109 0.096 0.080 0.068 0.062
64 0.169 0.231 0.204 0.160 0.127 0.104 0.086
128 0.231 0.429 0.447 0.364 0.260 0.186 0.139
256 0.254 0.588 0.758 0.728 0.595 0.420 0.274
512 0.261 0.630 0.905 0.970 0.953 0.858 0.656
INF 0.254 0.631 0.919 0.998 1.000 1.000 1.000




TABLE 3

Power of a one-tailed test with the statistic T1/ 2&

HO:'7=—00;H1:7=—2.0

Number of observations : T = S/h

8 16 32 64 128 256 512

8 0.083 0.392 0.956 1.000 1.000 1.000 1.000

16 0.050 0.115 0.651 0.999 1.000 1.000 1.000

32 0.047 0.057 0.185 0.898 1.000 1.000 1.000

64 0.050 0.047 0.064 0.286 0.994 1.000 1.000

128 0.049 0.048 0.047 0.065 0.455 1.000 1.000

Z » " wm

256 0.051 0.045 0.049 0.052 0.074 0.703 1.000

512 0.048 0.046 0.048 0.051 0.048 0.092 0.921

1024 0.049 0.048 0.044 0.046 0.048 0.047 0.110




