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Abstract

Knowledge of the asymptotic variance of an estimator is important for
large sample inference, efficiency, and as a guide to the specification of
regularity conditions. The purpose of this paper is the presentation of
general formulae for the asymptotic variance of semiparametric estimators. A
particularly important feature of these formulae is a way of accounting for
the presence of nonparametric estimates of nuisance functions. The general
form of an adjustment factor for nonparametric estimates is derived and
analyzed.

The paper illustrates how these results are useful as a guide to
asymptotic inference, efficiency, and the specification of regularity
conditions. The asymptotic efficiency of several types of estimators for a
heteroskedastic partially linear model is evaluated. General regularity
conditions for asymptotic normality are formulated and applied to

nonparametric consumer surplus and policy analysis examples.

Keywords: semiparametric estimation, asymptotic variance, density estimation,

nonparametric regression, kernel estimation.






1. Introduction

Knowledge of the asymptotic variance of an estimator is important for
large sample inference, efficiency, and as a guide to the specification of
regularity conditions. There are some well known formulas for the limiting
distribution of parametric estimators. A classical result dating to the work
of R.A. Fisher is the inverse information form of the asymptotic variance of
the maximum likelihood estimator. A more general formula for the class of
m-estimators was given by Huber (1967).

Estimators for semiparametric models have been of increasing interest in
statistics and econometrics, and it would be useful to have analogous formulas
for such estimators. A particularly important feature of such formulas would
be accounting for the presence of nonparametric estimates of abstract
(i.e. infinite dimensional) parameters. To date, there appears to be no
general result. There are important results for some types of models and
estimators of the abstract parameters, including those of Von Mises (1947) for
estimators that are functionals of an empirical cumulative distribution
function. Formulae for specific estimators have been obtained by Bickel
(1982), Schick (1986), Powell, Stock, and Stoker (1989), Robinson (1988),
Ichimura (1987), and others. Bickel, Klaassen, Ritov, and Wellner (1989)
and Severini and Wong (1987) have obtained some model independent results when
the abstract parameter is estimated by approximate or exact nonparametric
maximum likelihood. Also, Andrews (1989a,b) gives some general regularity
conditions for the case where estimation of the abstract parameters does not
affect the asymptotic variance of parameters of interest. However, each of
these results is specific to an estimation method and/or type of model.
Furthermore, the asymptotic variance calculation for many of the specific

models apparently involves tedious details of specific nonparametric



estimation methpds, such as kernel nonparametric regression. It would be
useful to have general formulae that account for the presence of nonparametric
estimates but did not require becoming embroiled in such details. Such
results could be used as they are for parametric estimators, as a guide to
asymptotic inference, efficiency, and the specification of regularity
conditions.

The purpose of this paper is the presentation of general formulae for the
asymptotic variance of semiparametric estimators that account for the presence
of nonparametric estimates. These formulae are consequences of a simple
result concerning estimators of a pathwise differentiable functional, where
"functional” refers to a mapping from the distribution of the data to real
vectors. As formulated by Koshevnik and Levit (1976), Pfanzagl (1982),
Bickel, Klaassen, Ritov, and Wellner (1989), and Van der Vaart (1988), such
functionals are those where the derivative of the functional along any finite
dimensional, sufficiently regular, family of distributions can be represented
as the expected outer product of the score for the family and the derivative,
a random vector that is invariant with respect to the parametric subfamily.
The simple result referred to above, which was peinted out in Newey (1989a),
is that when the distribution of the data is unrestricted, the asymptotic
variance of any estimator which is asymptotically equivalent to a sample
average and is sufficiently regular is equal to the variance of the
derivative. This result is analogous to those of Von Mises (1947) and Boos
and Serfling (1980) for the derivative of functionals of an unrestricted
distribution function, but applies to a much wider class of functionals.

The key step in applying this result to general semiparametric estimators
is a conceptual one; the derivative must be calculated for the functional that
is the limit of the estimator for an unrestricted family of distributions, not

necessarily satisfying the assumptions of the semiparametric model. That is,



the derivative must be calculated for the functional that specifies how the
estimator behaves under general misspecification. It then follows from the
previously mentioned result that the asymptotic variance of the estimator can
be calculated from the pathwise derivative of the functional that allows for
misspecification. This calculation is a nonparametric analog of Huber’s
(1967) formula for the limiting distribution of parametric m-estimators, which
also allows for general misspecification. Of course, as in the parametric
case, the formula may simplify when misspecification is not present.

Section 2 of the paper discusses pathwise differentiability and presents
the simple result alluded to above. Also, the relationship of pathwise
differentiability to other differentiability notions is briefly considered.
Section 3 discusses calculation of the derivative, including a well understood
example that is discussed for expository purposes. Section 4 considers
estimators that depend on sample averages of nonparametric estimates. The
form of a "correction term" for the presence of nonparametric estimates is
derived. Specific formula are obtained for nonparametric estimates of
derivatives of densities and conditional expectations. These formula give new
results as well as reproduce recent results from the literature. A general
formula for the asymptotic variance of semiparametric m-estimators is also
given.

Section S illustrates one of the important uses of the semiparametric
asymptotic variance formula, which is efficiency evaluation. In this Section
the efficiency of several types of estimators for a heteroskedastic, partially
linear model are compared, without detailed consideration of parficular
nonparametric estimation methods. Section 6 considers more primitive
regularity conditions for asymptotic normality. Several types of
estimators are discussed, including sample averages of nonparametric

estimates and semiparametric m-estimators. A condition analogous to



the Frechet differentiability condition of Boos and Serfling (1980), when
combined with Andrews (1989a,b) stochastic equicontinuity condition, gives
conditions for asymptofic normality that apply when the presence of
nonparametric estimators affects the limiting distribution. Two examples are
considered in detail; nonparametric consumer surplus estimation and the

nonparametric policy analysis problem of Stock (1989).

2. Regular Estimators of Pathwise Differentiable Functionals

This section draws on the literature on semiparametric efficiency bounds;
see Stein (1956), Koshevnik and Levit (1976), Pfanzagl (1982), Begun, et. al.
(1983), and Bickel, et. al. (1989). Therefore, it is necessary to briefly
review some ideas from this literature.

Let F index the distribution of a single observation z4 of a

stationary stochastic process 21, 22, ... , With true value Fo. A
functional of F 1is a mapping

p(F) : ¥ — Rk,
where ¥ is a family of possible distributions of z; that includes FO. A

regular parametric subfamily of ¥ is a subset of ¥ that is i)
parameterized by a finite dimensional parameter 6 and satisfies certain
regularity conditions; 1ii) is equal to the truth FO for some GO.
Regularity conditions include absolute continuity with respect to a carrier
measure for FO and smoothness of the square root of the density with respect

to the parameters in the mean-square sense; see Appendix B. The regularity

conditions may also include additional smoothness restrictions on F that are




necessary for u(F) to be well defined, such as existence of density
functions.
For a parametric subfamily, the paramefer p will be a function u(8)

of B8, 1i.e. (@) = u(Fe) where F_  indexes the distribution corresponding

0
to 6. Let S9 = SO(Z) denote the score for a parametric subfamily at 90’
where 2z is a z; argument that will often be suppressed for notational
convenience. The score can typically be thought of as the derivative of the
log-likelihood for z; it is precisely defined in Appendix B. Let E[o]

denote the expectation at F = F A pathwise differentiable functional is

o
one where there exists a k x 1 derivative vector d(z) such that E[d’d] <
o and for all regular parametric subfamilies p(0) is differentiable at BO

and

(2.1) au(eo)/ae = E[dSé].

In general the derivative d could depend on FO, ¥, and the class of
parametric subfamilies of &, but not on the particular parametric subfamily
of F. It is not unique, but in an important special case discussed below it
is unique up to a constant.

For a simple example, consider u(F) = EF[h(z)], where h(z) 1is some
known function of z and EF[o] denotes the expectation for the distribution

F. Note that pu(e) = Ee[h(z)], vwhere Ee[ol = E_ [e]. Under appropriate

I;‘9
regularity conditions (e.g. see Lemma 7.2 of Ibragimov and Hasminskii, 1981),

differentiation under the integral yields

(2.2) au(eo)/ae = Ih(z)[af(zleo)/aeldz = E[h(z)Sé],

where f(z|6) 1is the (marginal) density of an observation (with respect to

some carrier measure). Thus, by comparison with equation (2.1), d = h(z).



The class of estimators to be considered here are those that are
asymptotically equivalent to a sample average, referred to as asymptotically
linear. An estimator p = un(zl,,..,zn) of By = u(FO) is asymptotically

linear with influence function y(z) (see Hampel, 1974) if

(2.3) VAL - wpl = T 0wz VR + 0 (1), El] =0, Elpyl < =

Under specific dependence restrictions on w(zi) (e.g. see White, 1984) it

will follow from equation (2.3) that

VAl - pyl =5 N0, V), V= Elw’] + Lo EW(z (z,, ) wlzy, u(z)) ).

The purpose of this Section is to give a result that allows one to calculate
¥, and hence the asymptotic variance V of ﬁ, from the derivative.

The results of this Section impose independent observations, so that the
parameters 6 of the marginal distribution of 2z characterize the data
generating process. A local data generating process (LDGP) has for each n,

zi, 1 =1i=n, distributed as Fe , Wwhere VH(Bn—BO) is bounded. An

n
estimator g is locally regular for the parametric subfamily if VH[ﬁ—u(en)]
has a limiting distribution that does not depend on the sequence {Bn}. An
estimator is regular if it is locally regular for all parametric subfamilies
and the limiting distribution does not depend on the subfamily.

Regularity has an important consequence. It rules out estimators that
use more information than that contained in the statement F e %. Such
estimators would have a local bias term that depends on the direction of

approach of en to @6 for some parametric subfamily. For an extreme

0

example, note that the estimator ﬁ =pu is not regular when u(8) is

0

differentiable with non zero derivative, since by a Taylor expansion,

»/H(ﬁ—p(en)) = —[ap(eo)/ae]ﬁ(en—eo) + o(1) has a limit that depends on the




direction of approach of en to eo.
The main result of this Section is based on the following fundamental
property of regular, asymptotically linear estimators. It is a simplified

version of a well known result for parametric models (e.g. see Bickel et. al.,

1989, Ch. 2), that appears as Theorem 2.2 of Newey (1989a).

Lemma 2.1: For an asymptotically linear estimator i, suppose that 1i)

245 .y 2, are independent; 1ii) E[yy’] is nonsingular; 1iii) for all
regular parametric subfamilies u(8) 1is differentiable and Ee[w'w] is

continuous at 6.. Then ﬁ is regular if and only if for all regular

0

parametric subfamilies,

(2.4) 81(8,)/00 = Elys}].

It is possible to use this result to derive a derivative formula for the
influence function when ¥ and the associated regular parametric subfamilies
are sufficiently rich. For a matrix B 1let IBIl = [trace(B’B)]l/z, and for
a constant matrix A with gq rows let ¥ be the mean-square closure of the
union of all random vectors ASe(z) over all A and regular parametric

subfamilies, i.e.

#={ceR: El’al <w, 3A. S.. s.t. E[lo-AS 12
J SACH

0 1 = o(1)}.

Also, let % = {a : E[a] = 0, E[o’a] < w}. The following result was noted in

Newey (1989a), and is formally proved here.

Theorem 2.1: Suppose that ﬁ is asymptotically linear and satisfies the
hypotheses of Lemma 2.1 for a class of parametric subfamilies such that ¥ =

9. Then d exists and y = d - E[d].



The hypotheses state that the set of linear combinations of scores for all
regular parametric subfamilies is rich enough to be able to approximate any
mean zero vector, which should be interpreted as a condition that the scores
associated with ¥ and its parametric subfamilies are unrestricted, except
for regularity conditions. The conclusion means that there is only one
possible influence function, given by d-E[d]l; thus, all asymptotically
linear, regular estimators of ﬁ are asymptotically equivalent. Such a
result is natural when ¥ 1is not restricted, since u(F) is exactly
identified. Henceforth, d-E[d] will be referred to as the influence
function of a functional satisfying the hypotheses of Theorem 2.1.

To apply this result to derive the variance of ﬁ when ¥ is
restricted, it is necessary to work with an extension of the functional
p(F). Suppose that ¥ does not satisfy the hypotheses of Theorem 2.1, but
that there is % > ¥ and an extension f(F) of u(F) to all of ¥ (i.e.
p(F) = u(F) for F e ¥) that does. Then if fi(F) is pathwise
differentiable with derivative d and ﬁ is a regular estimator of
ﬁ(F) for a class of parametric subfamilies satisfying the hypotheses of
Theorem 2.1, it follows that the influence function of g is d-E[d]. The
regularity condition on ﬁ as an estimator of p(F) means that local bias

must be absent as F approaches F along any path allowed in %, so that

0
1(F) should be interpreted as the limit of I under any distribution in ¥&.
That is, for a general semiparametric model the influence function of ﬁ will
be the influence function for the functional that is the limit of the
estimator under misspecification, i.e. when F ¢ ¥. Of course, when F € &,
the resulting formula may simplify.

Although the hypotheses of this theorem include independence of the

observations, ¥ =d - E[d] should still hold under dependence, where d is

the derivative of an extended functional for the marginal distribution of z;



see Section 6 for results that allow for dependence.

For Von Mises (1947) functionals, which are those defined for all
distribution functions, there is a Gateaux derivative formula for the
influence function of an estimator: see Boos and Serfling (1980) and Serfling
(1980). The Gateaux derivative is related to the pathwise derivative, and
this relationship will be helpful for relating the results here to those of
Section 6. The functional u(F) is Gateaux differentiable at FO in the

direction F1 if for Hg = u(FO),

(2.5) Au(FO,Fl-Fo) =1 [u((l—A)FO + AFl) - uO]/A

W

exists. Also, A 1is linear if there exists &(z) such that for all Fl’

(2.6) Au(FO,Fl-FO) = IS(Z)d(Fl-FO)(Z) = EF1[6] - E[8],

and &8(z) is referred to as the Gateaux derivative.

To relate the Gateaux and pathwise derivatives, note that the right hand
side of (2.5) is the right derivative of the functional for a parameter 6 =
A, for a parametric subfamily consists of a convex combination of Fl and
FO. If such a subfamily is regular (see Bickel, 1982, for conditions), then
for densities fo(z) and fl(Z) with respect to a carrier measure for FO,

the score for 6 is

(2.7) Sg = aln[(l—e)fo(z)_+ efl(z)]/66|9=0 = {[fl(Z)/fO(Z)] - 1}.

In this case equation (2.1) for the pathwise derivative is

(2.8) Bu(e)/ael9=0 = E[d{[fl(z)/fo(z)] -1} = E. [d] - Eld].
1

Thus, the Gateaux derivative coincides with the pathwise derivative for

convex combination parametric subfamilies; compare equation (2.6). Note



though that the definition of the pathwise derivative does not require that
the subfamilies take this form. In fact, other types of parametric
subfamilies may be more convenient for calculation of the pathwise derivative.

If the pathwise derivative calculation fails because u(F) is not
pathwise differentiable, then no vn-consistent, regular estimator exists; see
Chamberlain (1986a) and Van der Vaart (1988). However, there are examples of
pathwise differentiable functionals that have no vn-consistent estimator; see
Ritov and Bickel (1987). Apparently, smoothness conditions in addition to
those for pathwise differentiability are often required for Vﬁ—consistency.
Such smoothness conditions will be discussed in Section 6.

The hypotheses of Theorem 2.1 are not primitive, but do result in a
general formula for the influence function 6f an asymptotically linear
semiparametric estimator, even when it depends on nonparametric estimates of
functions. The point of Theorem 2.1 is to formalize the statement that "under
sufficient regularity conditions" the influence function of a semiparametric
estimator is the pathwise derivative, minus its expectation, of the functional
that is the limit of the estimator under general misspecification. Of course,
the usefulness of this formula depends on the simplicity of the pathwise
derivative calculation. Some interesting examples where it is quite easy to

find the derivative will be discussed below.
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3. Calculating the Derivative

3.1 Specifying the Form of Parametric Subfamilies

One method of calculating d is based on parametric subfamilies of some
specific form. By the conclusion of Theorem 2.1 d is invariant to the form
of the subfamily such that ﬁ is regular and the richness hypothesis is
satisfied. One example of a useful class of parametric subfamilies, that has

been considered by Chamberlain (1986a) and others, has densities of the form

(3.1.1) f(zle) = fo(z)[l + 0’ {s(z)-Els(z)]}], 90 =0,

where s(z) is bounded. Integration of f(z|6) to one follows by the mean
normalization of s(z) and nonnegativity for 6 close to 60 by boundedness
of s(z). It is easy to show that this subfamily is mean square differentiable
and that the richness hypothesis is satisfied, even under rather strong
smoothness restrictions on s(z). Let q denote the dimension of 2z and let

C:(Rm) denote the set of functions with domain R™ that have compact support

and continuous partial derivatives of all orders.

Lemma 3.1: If s(z) 1is bounded then f(zIE))l/2 is smooth with score

(3.1.2) S9 = 1(f0(z) > 0){s(z)-Els(z)]}.

In addition if E[y’y] < o, then Ee[w’W] is continuous at 90 =0, and ¥

= ¥, even if each s(z) is restricted to be in C:(Rq),

This result also states another convenient feature of this family, that the
continuity condition for E6[¢'¢] is automatically satisfied.

Other types of parametric subfamilies, such as exponential families, may

11




also be useful for calculation of the derivative in particu;ar models. - Also,
it will often be possible to calculate the derivative by using general
properties of scores, without imposing particular functional forms or specific
regularity conditions. Indeed, regularity conditions for pathwise
differentiability are somewhat unessential when the formula is only used as a
guide to furfher results. Here, regularity conditions will be spelled out in

some, but not all, of the pathwise derivative calculations.

3.2 An Example

The pathwise derivative formula for the influence function can be
illustrated by considering a well understood but important example, U and V
statistics. Although Serfling (1980) has given a Gateaux derivative
interpretation of the influence function, a brief discussion of the pathwise
derivative is useful for expository purposes.

Suppose that the observations are independent. For a bivariate function

a(z,z) of ze RY, 2z eRY consider
(3.2.1) L. =%.2y. " la(z,,z.) + alz.,z,)l/n(n-1)
e My i=1&j=1+1 1’%; 1'% ’
~ - n n 2
By = Zi=1z.=1a(zi,zj)/n .

The statistic ﬁU is a U-statistic, introduced by Hoeffding (1948), and ﬁv

is a corresponding V-statistic. ﬁU is an unbiased estimator of

(3.2.2) u(F) = fla(z,z)dF(z)dF(z),

and EF[IﬁU-ﬁVI] = (l/n){EF[IﬁUI] + E[|a(21,22)|]} = o(1/v¥n), so that ﬁv is

asymptotically equivalent to ﬁU' Thus, it is natural to take the functional

12



estimated by both ﬁU and ﬁv to be u(F). Consider a parametric subfamily,
for which the functional will be u(8) = [i(8,8), where p(e,8) =
IIa(z,E)dFe(z)dFé(i). By iterated integration and differentiation under the

integral, au(e,eo)/ae|e=eo = ¢‘3E9[.I'a(z,z)dl’-’o(z)]/36|6=90 =

E[Ia(z,i)dFo(E)}Se(z)’] = E[E[a(zl,zz)Izllse(zl)’], and similarly

au(eo,e)/ae|e=90 = E[E[a(zz,zl)lzllse(zl)]. Then the chain rule gives
(3.2.3) au(eo)/ae = 6“(9,90)/36|9=60 + auteo,e)/ae|9=eo = E[dSe],
d(zl) = E[a(21’22)|21] + E[a(zz,zl)lzll,

The formula y(z) = d(z) - E[d(z)] reproduces the well known "projection"
form for the influence function of U and V statistics.

This formula for the influence function may simplify when FO takes on
certain values. For instance, suppose that z = (e,x), where € and x
are independent, and consider a(z,z) = ale,%), .so that ﬁv =
Ziglzjgla(ei,xj)/nz. This example is important for bootstrap m-estimation of

nonlinear simultaneous equations models; see Newey (1989b). By € and x

independent, the influence function reduces to
(3.2.4) y(z) = Ela(e,x)Ix] + Ela(e,x)|e] - 2E[a(e,x)].

Note that by independence of x and e, ﬁv is also an estimator of
Ela(e,x)]. However, the influence function for this functional is
a(e,x)-E[al, which is not equal to (z). Thus, this example illustrates the
importance of working with the functional that gives the limit of the
estimator under general misspecification in the distribution of Z. By the

V-statistic structure of ﬁv, the right functional is that of (3.2.2).

13




4. Expectation Functionals and Semiparametric M-Estimators

An interesting class of examples are those where ﬁ is a sample average

that depends on a nonparametric estimate of a function, say

(4.1) & =Y, alz,hx;))/m,

where a(z,h) 1is a known function, x is a subvector of z, and h(x) is a
nonparametric estimate of ho(x). Such estimators are of interest in their
own right and play a key role in asymptotic distribution theory for
semiparametric m-estimators.

To calculate the influence function of ﬁ via the pathwise derivative,

note that if the limit of h(x) is h(x,F) then L is a sample analog of

(4.2) p(F) = EF[a(z,h(x,F))],

For a parametric subfamily, u(e) = Ee[a(z,h(x,e))], where h(x,8) = h(x,Fe).

By differentiation under the integral and the chain rule,

(4.3) au(eo)/aer {aEe[a(z,hO(x))]/ae + aE[a(z,h(x,G))]/ae}Ie=9

o]

ElagS,] + El8a(z, h(x))/8h{3h(x, 6,)/50}]

+

E[aOSB] E[H(x)ah(x,eo)/ae], H(x) = E[aa(z,ho(x))/ahlx],

where ao(z) = a(z,ho(x)). The pathwise derivative will exist if there exists

«(z) such that for all parametric subfamilies,

(4.4) E[H(x)ah(x,eo)/69] = E[aSe].

Then d(z) = ao(z) + a(z), and the influence function is

14



(4.5) y(z) = ao(z)—E[aO] + a(z)-Ela(z)].

This influence function has an interesting structure. The leading term
ao(z)—E[aO] is the influence function for a sample average, which would be
correct if hO(x) were used in place of h(x) in f. Thus, the second term
is an adjustment term for the estimation of ho(x), a nonparametric analog of
adjustments that are familiar for two-step parametric estimators. It can also
be interpreted as the pathwise derivative of the functional Efa(z,h(x,F))].

When F0 has a specific structure, the influence function function may
simplify. In particular, if H(x) = 0, then af(z) = 0, and no adjustment
for estimation of ,h is present. This condition can be interpret as meaning
that small deviations away from ho(x) do not affect E[a(z,h{x))|x]; the
first term in a Taylor expansion of E[a(z,h(x,6))|x] around 90 is
H(x)ah(x,eo)/ae. For instance, suppose that a(z,h) = xe/h, with Ele|x] =
0, as in Carroll (1982) and Robinson (1987), where x are regressors, ¢ is
a disturbance, and h indexes the conditional variance of &£ given x.

Then H(x) = Elxed[1/h)(x)1/8hlx] = ~{x/h,(x)?}Elelx] = o.

To calculate the adjustment term a(z) when H(x) # 0, a solution to
equation (4.4) must be found. The form of this solution will depend on the
nature of h(x). Here two examples will be considered, one where h(x) is a
derivative of a density function f(x) for x and the other where h(x) is
the derivative of a conditional expectation of some variable w given x.
Combinations of these cases will also be discussed.

The following notation will be used for derivatives. For u e Rp, a

function v(u), and a vector A = (A ,Ar)’ of nonnegative integers, let

10

IA] = ijllj and denote a partial derivative by

15




A A

IMv(u)/6u11oooaurr.

Dlv(u) =3

Consider first the case where h(x) = Dkf(x) for the density function
f(x) of x. Note that h(x) = f(x) is included as a special case where A =
0. It is well known that under appropriate regularity conditions the score
can be decomposed as a sum of marginal and conditional scores, Se(z) =
Se(x) + Se(ilx), where z are the components of 2z other than x, and that
E[SB(Elx)Ix] = 0. Assuming that H(x) is continuously differentiable to
order IAI,' and f(x|8) and its derivatives are zero on the boundary of the

support of x, by differentiation under the integral and integration by parts
(4.6) E[H(x)3{D"f (x|6)}/06] = EH(x)D™ 3£ (x10,)/80) ]

= A JAl A

= IH(x)fO(x)D {af(xleo)/ae}dx = (-1)'"' D {H(x)fo(x)}[Bf(xlec)/ae]dx

- E[(-1)’A’D*{H(x)fo(x)}se(x)l = EleS,], a(z) = (—1)|A|DA{H(x)fo(x)}.

For instance, if A =0 and a(zf) =f, then H(x) = 1, «(z) =
(—1)ODOfO(x) = fo(x), and y(z) = 2{f0(x)—E[f0(x)]}, a familiar result for

the functional EF[f(x)] = If(x)zdx.

Consider next h(x) 'DAg(x), where g(x,F) = EF[wlx] for some variable

w. Differentiating the conditional likelihood f(w|x,8) under the integral,
ag(x,eo)/ae = afwf(wlx,eo)dw/ae = Iwaf(wlx,eo)/aedw = E[wSe(wlx)lx]

= E[{w-go(x)}se(wlx)lx].

Then by an argument like that for equation (4.6),

(4.7) E[H(x)a{DAg(x,eo)}/ael = E[H(x)Dh{ag(x,eo)/ae}]

16




PH(x)E, ()0 58 (x, 8,)/80}dx = (-1)lAlIDA{H(x)fO(x)}ag(x,eo)/aedx

= E[(-l)IAIDA{H(X)fO(x)}E[{w-go(x)}Se(w,X)IX]/fO(x)] = E[aSB],

«(z) (-1)'A'DA{H(x)fo(x)}{w—go(x)}/fo(x).

For instance, if a(z,h) = w(x)ag(x)/ax1 for a fixed weight function w(x),
so that u(F) 1is a weighted average derivative functional with known weight,

(1,...0)’

then H(x) = w(x), a(z) = (-1)[D {w(x)f(x)}]{w-gO(X)}/f(X), and

(4.8) u(z) = w(x)ag(x)/axl—uO - {w(x)af(x)/axl/f(x) + aw(x)/axl}{w—go(x)},

reproducing a result of Newey and Stoker (1989).
Regularity conditions for pathwise differentiability in these examples

include smoothness conditions such as the following:

Assumption 4.1: a(z,h) 1is continuously differentiable in h, x has a
density fo(x) with respect to Lebesgue measure, and fo(x) and H(x) =

E[aa(z,ho(x))/ahlx] are continuously differentiable to order |[A].

The following Assumption is a useful regularity condition in the density

derivative case.

Assumption 4.2: For any s(x) e C:(Rr) there exists a function A(z) and
a neighborhood ¥ of zero such that for &(x,6) = DAfO(x) + GDA[E(x)fO(x)],

supeeﬂ[la(z,atx,e)n2 + |8a(z,8(x,0))/8h|] = A(z) and E[A(2)] < o

Theorem 4.1: If Assumptions 4.1 and 4.2 are satisfied then there exists a

class of parametric subfamilies such that the hypotheses of Theorem 2.2 are

satisfied with influence function for u(F) EF[a(z,f(x,F))] given by y(z)

0 A ooy,

= a(z,fo(x))—E[a] + a(z)-Elal, where a(z)
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The following assumption is useful in the regression derivative case.

Assumption 4.3: w has a conditional density fo(wlx), with respect to some
measure, that is continuously differentiable to order JA], and for all A
with |JX| = |Al, and all x there exists a neighborhood ¥ of zero such
that I(1+Iw|)supaeﬂlugf(wlx+a)ldw = 0. There exists C > 0 and A(z) such
that suplslsC[Ia(z,Dhgo(x)+6)|2+|6a(z,Dth(x)+6)/ahI] = A(z) and E[A(Z)] <

03

Theorem 4.2: If Assumptions 4.1 and 4.3 are satisfied then there exists a
class of parametric subfamilies such that the hypotheses of Theorem 2.2 are

satisfied with influence function for w(F)

EF[a(z,g(x,F))] given by y(z)

= a(z,fo(x))—E[a] + a(z)-Elal, where o(z)

(-1) IMDA{H(x)fO(x)}(w-go(x) /£ ().

These formulas can easily be generalized to the case where nonparametric
estimates of several functions are present. Suppose that a depends on s
functions hj(xj)’ (j=1,...,s), of subvectors X5 of z, as

a(z,hl(xl),...,hs(xs)). Then equation (4.3) generalizes to

_ s
- (4.9) au(eo)/ae = E[aOSQ] + Zj=1E[Hj(X)6hj(xj,90)/39],
Hj(x) = E[aa(z,hlo(xl),...,hso(xs))/ahjlx].

The derivative will have an outer product form if for some aj(z),

(4.10) E[Hj(x)ahj(xjieo)/ael = E[aJSe], (j=1,...,s),

in which case d(z) = ao(z) + 3 s

j=1aj(z) and
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(4.11)  y(2) = aj(2)-Ela,] + Zjil{ocj(z)-E[ocj]).

This influence function has a structure analogous that previously discussed,
only there are multiple adjustment factors, one for each function that is
estimated. When hj(x) i1s a partial derivative of a density or a regression
function, then the corresponding aj(z) can be calculated from equation (4.6)
or (4.7) respectively, with x, H(x), fo(x), go(x), and w indexed by j.
For the weighted average derivative functional, if the weight is w(x) = fo(x)
and fo(x) is estimated nonparametrically, then an additional correction term
aw(z) = (-1)ODO{E{alw(x)ago(x)/axl]/6w|x]f0(x)} = w(x)ag(x)/ax1 is present,

and ww(z) = w(x)ago(x)/ax must be added to the right-hand side of

1~ Mo
equation (4.8) to obtain the correct influence function, reproducing a result
of Powell, Stock, and Stoker (1989). Note that because ww(z) is perfectly
correlated with the first term in equation (4.8) and the first term is
uncorrelated with the second, estimating the weight w(x) = fo(x) rather than
using the true density as a weight increases the asymptotic variance.

A particular aj(z) will be zero if Hj(x) = 0. For instance, if
a(z,hl,hz) = [wl-gl(X]][wz—gz(x)] for E[wjlx] = ng(X)’ (j=1,2), then
HI(X) = —E[wz—goz(x)lx] =0 = —E[wl-g01(x)lx] = Hz(x). Thus, no adjustment
for nonparametric estimation is indicated for the sample cross product of two
nonparametric residuals from regression on the same set of variables X, a
result for kernel estimators due to Robinson (1988). When Wy = Wy,
go(x) solves ming(x)E[(w-g(x))Z], this result follows by applying the

where

2 _ _ 2 _
envelope theorem; aming(x)Ee[(w g(x))"]/60 = 6E9[(w go(x)) 1786 =
2
E[(w go(x)) Se].
For brevity, regularity conditions for the vector h case will not be

given. It would be straightforward, but notationally cumbersome, to combine

19




Assumptions 4.1 - 4.3 to formulate regularity conditions.

These results should prove uéeful in many new examples. For instance, as
suggested by Pagan (1988) the functional pu(F) = E[s(x)z], where X is a
scalar and s(x) = [8f(x)/8x]/f(x), which is the location information for a
density F, may be of interest for assessing the efficiency gain from using
adaptive estimation. If x 1is a parametric residual, then p(F) will be a
measure of the asymptotic efficiency of an adaptive estimator. Calculating as
above for hy(x) = £(x), h,(x) = o (x)/0x, H (x) = -25(x)%/£,(x), and
H2(x) = Zs(x)/fo(x), and noting that by the usual information equality

Elds(x)/8x] = -E[s(x)zl, the influence function for u(F) is

(4.12)  y(z) = -s(x)% - 28s(x)/3x - .

Another important class of examples are semiparametric m-estimators
that depend on nonparametric estimates of some function. A general
formulation of such estimators, which is like that of Ritov (1987) or Andrews
(1988a), is the following. Let h(z,u) be a nonparametric estimate of some
function h(z,u) that can depend on p, and let m(z,u,h(z)) be a fixed

function of 2z, pu, and h. A semiparametric m-estimator is one which solves

an asymptotic moment equation
n A A PN _
(4.13) Zi=1m(zi,u,h(xi,n))/VH = op(l).

The general idea here is that ﬁ is obtained by a procedure that first
"concentrates out" the nonparametric function h(z,u). An early and important
example is the Buckley and James (1979) estimator for censored regression; see
also Horowitz (1986) and Ritdv (1987).

By the usual method of moments reasoning, ﬁ ié a sample analog of the

functional u(F) that is implicitly defined by
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(4.14) EF[m(z,u(F),h(x,u(F),F))] =

where h(z,u,F) 1is the limit of h(z,u) under a general distribution F.
For a parametric subfamily Ee[m(z,u(e),h(x,u(e),e))] = 0 corresponds to
(4.14). Assuming that Ee[m(z,u,h(x,u,e))] is differentiable in u and o,

that M = 6E[m(z,u,h(x,u))]/6u|#=“ is nonsingular, differentiation under the
0

integral and the implicit function theorem give
___1 ‘
(4.15) au(eo)/ae = -M {E[mOSG] + E[{amo(z,ho(x))/ah}aho(x,eo)/ael}

= -M—l{E[mOSé] + E[Hm(x)aho(x,eo)/ael}, Hm(x) = E[amo(z,ho(x))/ahlx],

where ho(x,e) = h(x,uo,eo), ho(x) = ho(x,eo), and mo(z,ho(x)) =

m(z,uo,ho(x)). Assuming that there exists am(z) such that

(4.16) E[Hm(x)aho(x,eo)/ael = E[amSé],

the pathwise derivative is d(z) = -M—l[mo(z,ho(x)) + am(z)]. Noting that

E[mo(z,ho(x))]

0 holds by equation (4.14), the influence function is

(4.17) y(z)

—M-l{mo(z,ho(x)) + a_(2)-El 1}

This influence function is quite similar to that of equation (4.5). This
similarity can be explained by the usual Taylor expansion argument for
m-estimators. Assuming m(z,u,h(x,p)) is differentiable in g, let M(u)

= Zizlam(zi,u,ﬁ(xi,u))/au/n. Expanding around My and solving gives

-G WAL, P

(4.18)  Vali-py) 1oy (2, B (x,)) /0] + ~H(D) 1op(1),

Y e h

i=1 0 h (x ))/nl + o (1),
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where p 1is the intermediate value and the final equality will follow from
consistency of ﬁ and uniform convergence of ﬂ(u). Thus, we expect the
influence function for ﬁ to be —M—1 times the influence function for
Zizlmo(zi,ﬁo(xi))/n, which is an estimate of the functional p (F) =
EF[mO(Z’hO(X’F))]' This is exactly the structure of equation (4.17). A
correction term am(z)—E[am] for the estimation of ho(x,F) is included.

This correction term can be interpreted as the pathwise derivative of the
functional E[mo(z,h(x,F))]. All the previous results apply to its
calculation. If Hm(x) = 0, then am(x) = 0. If ho(x,F) consists of
density and regression derivatives, then am(z) will be the sum of components
that can be obtained from equations (4.6) and (4.7) as appropriate.

Finding the influence function for a semiparametric estimator also
requires calculation of M. Although finding M may be difficult when
h(x,p) varies with p, the following result from the semiparametric
efficiency iiterature is useful. As noted in Newey (1989b), M =
-E[{mO + am-E(am)}S’], where S 1is the efficient score for u in a
semiparametric model with independent observations and likelihood f(z|p,h),
and A us an unknown function; see e.g. Newey(1989a) for exposition. Thus,
when o and the efficient score exist in closed form, M can be calculated

from this outer product formula.

5. Efficiency Comparisons for the Heteroskedastic Partially Linear Model.

The pathwise derivative can be used to compare asymptotic efficiencies
of different estimators, without detailed consideration of particular

nonparametric estimation methods. Such comparisons can be used to suggest a
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relatively efficient estimator, for which specific regularity conditions might
be worked out. To illustrate this procedure, and provide further examples,

consider the model

(5.1) y =r'uy + hy(x) + ¢, ElelX] =0, E[®X] = 02(X), X = (r’,x')",

where ho(x) and GZ(X) are unknown. This is a heteroskedastic version of
the partially‘linear model introduced by Engle et. al. (1986).

Estimators of Hq have been considered by N. Heckman (1986), Rice
(1986), Schick (1986), Robinson (1988), Chamberlain (1986b), and Andrews

- (1988). An estimator analogous to that of Robinson (1988), can be formed as

the solution ﬁl of
n A A A -
(5.2) Zi=1m(zi,ul,gr(xi),gy(xi))/n =0,
m(z,u,gr,gy) = (r-gr)(y—gy—{r-gr} K,

where ér(x) and éy(x) are nonparametric estimators of the conditional
expectations gr(x,F) = EF[rlx] and gy(x,F) = EF[ylx] of y and r given
X, respectively; Robinson (1988) considered kernel estimators. Evidently,
such an estimator is a semiparametric m-estimator, so that its influence
function can be calculated as in Section 4. Since the nonparametric estimates
do not dépend on u, M= E[am(z,uo,E[rlx],E[ylx])/Bu] = -E[Var(r|x)]. Also,
since EF[m(z,uo,gr(x,F),gy(x,F))] is a linear combination of covariances
between nonparametric residuals, it follows from the discussion in Section 4
that am(z) = 0. Thus, the influence function of ﬁl is y(z) = -M-lm =

0
{E[Var(rlx)]}_1(r-E[rlx])e, so that the asymptotic variance of ﬁl is

(5.3) Q, = Elw’ ] = M 'E[0®(X) (r-Elr |x]) (r=E[r|x])* 1ML,

A lower bound for the asymptotic variance of estimators of uo was
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derived by Chamberlain (1987). To describe the bound, consider w(X) > 0

with E[w(X)] < @, and let E?IO] = EF[w(X)(°)]/EF[w(X)]. For any event «

that is measurable with respect to x, E;[l(d)EF[w(X)(o)Ix]/EF{w(X)lx]}

EF[w(X)EF[l(A)w(X)(o)|x]/EF[w(X)Ix]]/EF[w(X)] = EF[I(A)w(X)(o)]/EF[w(X)]

Ew[l(d)(o)]. Thus, Eg[olx] has the explicit representation

(5.4) E‘I_:‘[olxl = Eplo(X) (o) Ix1/EL [w(X) Ix].

Chamberlain’s (1987) formula for the bound can then be written as

* -2 o2 o2 -1
(5.5) Q = {Elec “"(X){r-E [rIx]I¥{r-E° I[rix]}‘1} ".

»*
In general, Q1 # (Q , although equality occurs if az(X) is constant. This

result is analogous to the inefficiency of ordinary least squares under
heteroskedasticity.

2

One possible correction is to weight by o (Xi). Consider mv(z,u,gr,g )

y
= ¢_2(X)(r—gr)(y-gy-{r—gr}’u), and ﬁz obtained as the solution to equation
(5.2) with m® replacing m. To calculate the influence function of ﬁz,
note that EF[m(z,uo,gr(x,F),gy(x,F))] is no longer a covariance between

nonparametric residuals, and a correction term term for the estimation of 8.

and gy is required. Calculating expected derivatives as in Section 4,

(5.6) H (x) “Ele 2(X){r-Elr|x]}|x],

ny E[am(z,uo,E[rlx],E[ylx])/agYIX]

1]
]

H (%)

r E[am(z,uo,E[rIx],E[ny])/agrlx]

—Hmy(x)uo.

Applying equation (4.7) to each of these terms gives am(z) =
Hmy(x){y—E[ny]—{r—E[rlx]} “O} = Hmy(x)e. Noting that M =
E[am(z,uo,E[rlx],E[ylx])/au] = E[o_Z(X){r—E[rlx]}{r-E[rlx]}’] and E[am] = 0,

it follows that the influence function is y = M_l(mo+am) =
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M_l{w(X)(r-E[rlx])+Hmy(x)}e. The corresponding asymptotic variance is

(5.7) @, = M_lElwz(X){w_z(X)(r—E[rlx])+Hmy(x)}{¢_2(X)(r-E[rIx])+Hmy(x)}’]M_l.

In general, QZ * Q*, although equality occurs if O-Z(X) is a function only
of x; then Ev-a[rlx] = E[c-z(x)rlx]/E[o—z(x)Ix] = E[r|x], and Hmy(x) =
o 2(x)Elr-Elr|x]1x] = 0.

In practice, ¢2(X) would have to be estimated, leading to the presence
of an additional term that corrects for its estimation. Recall that to apply
Theorem 2.1 it is necessary to specify the limit of the estimator under
misspecification. Consider weighting by a nonparametric estimator of the
conditional variance Z§(X) of y given X, say fZ(X) = éyz(X)—[éyl(X)]z,
where éyj(X) is a nonparametric regression estimator of EF[yjIX], which
will be consistent for 02(X) when the model is correct. Then a version of
ﬁz with an estimated weight could be obtained from equation (5.2) with n®
replacing m and le(X)2 replacing 02(X). The influence function

ad justment for estimation of UZ(X) depends on
_ 2 2
(5.8) HE(X) = E[amo(z,E[rlx],E[le],o (X))r8="|X]

= -E[(r-E[r|x])e/(¢2(X))2IX] = o,

by E[el|X] = 0. Thus, just as in the parametric linear model, no adjustment
for estimation of ZZ(X) is required.

The form of an efficient estimator is suggested by the presence of
-2
joud [rix] 1in the bound. In addition to weighting by & 2(X), consider

replacing the nonparametric estimators of E[r[x] and Ely|x] in equation
(5.2) by estimators of Eo—z[rlx] and Eo_z[ylx]. By equation (5.4), 22(X)
can be used to form estimators éi(x) and éf(x) of E§_2[ylx] and
Eﬁ_z[rlx] respectively, as ratios of nonparametric regressions of EZ(X)y on
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x and of fZ(X)r on X to a nonparametric regression of fZ(X) on X,
respectively. An estimate of u can then be obtained from the solution to an

equation analogous to (5.2),

n s> > o2 -
(5.9) Zi=1m(zi,n ,gr(xi),gy(xi),z (Xi))/n = 0,

m(z,u.gf,gi,zz) = (r-gf)(y—gi—{r-gf}’u)/zz.

This estimator can be motivated by the weighted least problem

-2

(5.10) Ele 2 (X){y-r’ g-h(x)}2] = Cmin B [{y-r’ u-h(x)}21,

mlnu,h(x) i, hix

where C = E[v_Z(X)]. By analogy with the parametric case, one would expect

that the optimal estimator of pu solves a sample analog of this equation.
-2 2
For a given u the solution for h is h(x,p) = E° [(y-r‘um)ix] = EC [ylx]
-2
- [rIx]’u. Thus, the first order conditions for iU are

-2 -2

-2
Ele”2(X) (r-E° [rlx]){y-E° [ylx] - (r-E° [rix])‘u}] = o.

Equation (5.9) is a sample analog of this equation. The presence of E° [ylx]
-2
and E° [rIx] provides an optimal way of “concentrating out" hi(x).

%
To calculate the influence function of 4, note first that M
o2 o2 2 * -1 o2
E[am(z,po,E [rix],E" Iylx],e”(X))}/8u] = -(Q ) °. Also, E° [e|x]
-2 -2
so that y—Ev [ylx] - {r-g% [rlx]}’uO = g, and

I
(=]

o2 o2 2 b
Hmr(x) = Elam(z,uo,E [rix],E° [ylx],o (X))/agrlx]
2 -2 o2
{-Ele/e"(X)|x] + Elo “(X){r-E [rIX]}IX]}né

-2 -2

{(-E[Ele/0%(X) |X]|x] + Elo 2(X) |x]E® [{r—E° [r1x1} %]}y = o,

2
H (x) = E[am(z,uo,EG [rix],E°

2
[ylx],az(X))/ag§|x]
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-2 o2
Ele “(X){r-E° I[rl|x]1}|Ix]l = 0,

o2 o2 2 2
H _(X) = E[am(z.uo,E [rix],E® [ylx],e“(X))/82"|X]

2
= -E[{r-E° [rlx]}e/(c%(X))?IX] = oO.

Thus, no adjustment is required for the estimation of the nonparametric
components. Therefore, the influence function of this estimator is
Yy = Q*G_Z(X){r—Eo-Z[rIX]}s, with corresponding asymptotic variance matrix
equal to Q*, the bound.

In summary, the pathwise derivative formulas suggests that if the
sample moments are weighted by an estimator of the conditional variance of vy,
and estimators of corresponding weighted conditional expectations are used in
the moments, then the resulting estimator will be efficient. It should be

possible to work out regularity conditions for such an estimator, although

this task is beyond the scope of this paper.

6. Formulating Regularity Conditions for Asymptotic Normality

The pathwise derivative provides a guide to the specification of
regularity conditions for asymptotic normality. At the very least, the
derivative formula for ¥(z) can be used as a starting point for the
verification of equation (2.2). Furthermore, by imposing a nonparametric
interpretation of the derivative, it is possible to formulate general
regularity conditions for asymptotic normality, for several different types of

estimators.

One type of estimator for which general regularity conditions can be
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formulated takes the form f = u(f) for some functional kL and estimator F

of the distribution of F. An example of such an estimator is

n

(6.1) po= J‘Zé(x)dx, glx) = Liog

WK ((x=x,)/0) /L, 1 K ((x-x,)/0),

where x 1is a scalar and K(u) a kernel satisfying JK(u)du = 1, so that
g(x) is a kernel estimator of go(x) = E[w|x]. If w were demand and x

price, then -ﬁ would be a nonparametric estimator of the expected change in

b

consumer surplus for a price movement from a to b. For la =1(a = x = b)
let

~ b b b
(6.2) p(F) = IaEF[wlx]dx = EF[law/f(x)] = Ia[fwf(w,x)dw)/ff(w,x)dw]dx,

where f(w,x) is the joint density of w, x and f(x) the marginal
density of x. It is easy to check that ﬁ = u(f) for a kernel density
estimator f(w,x) = Zizlk((w—wi)/w,(x-xi)/o)/nvz such that J[K(v,u)dv = K(u)
and J[vK(v,u)dv = 0.

The following Assumption will be sufficient for asymptotic linearity of

estimators of this type.

Assumption 6.1: There exists a set of measures ¥ and a functional [i(F)
defined on % such that 1) FO e ¥, My = ﬁ(FO), and there exists F such
that with probability approaching one F € ¥ and p= w(F); 1ii) For F e 7,

1/

lﬁ(F)-uo - Id(z)d(F—FO)I = R(F,FO); iii) n 2R(I?,FO) = op(l); iv)

va{fd(z)df - zi‘__‘ld(zi)/n} = o, (1).

If F 1is a linear space with norm Hell and R(F,FO) o(HF—FOH), then
condition ii) implies that d is the Frechet derivative of n(F), although
1i1) may impose a strong condition on the remainder R(F,FO). Sufficient

conditions for iii) are R(F,FO) = O(HF—FOHZ), corresponding to a Lipschitz
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derivative in finite dimensional spaces, and nl/4

II?‘-FO I bounded in
probability, which is a familiar convergence rate for semiparametric problems;
€.g. see Schick (1986). In general one expects that d(z) satisfying iii)
will be a pathwise derivative of the functional R(F); a Frechet derivative
is also a Gateaux derivative and, as discussed in Section 2, the Gateaux
derivative-is the pathwise derivative for parametric subfamilies consisting of
convex combinations of densities.

Condition v) says that the the integral of d(z) over the estimated
measure F must approach the integral of d(z) over the empirical measure at
a vn rate. The validity of this condition will depend on the exact nature of

F. 1f F isa smoothed empirical measure, such as a kernel density function,

then condition iv) specifies a convergence rate for smoothing bias. To see

this suppose that F has density f(z) = Ziglk((z—zi)/v)/naq with JfK(u)du

1. Then by a change of variables u = (z-zi)/v,

(6.3) fa(z)df - 3,2 a(z,)/n = Loy la(z;-uo)-a(z, ) K (u)du/n,

a bias term that is familiar from work on kernel-based semiparametric
estimators; e.g. see Robinson (1988) or Powell, Stock, and Stoker (1989).
This term will be op(l/VH) under certain smoothness conditions and a
sufficiently fast rate of convergence of ¢ to zero; e.g. see Lemma B.S5.

Assumption 6.1 delivers the following result:
Theorem 6.1: If Assumption 6.1 is satisfied then

Vali-ug) = ;2 {d(z,)-E[d]}VA + o, (1).

It is interesting to note that none of the conditions of Assumption 6.1
require independent observations, so that this result allows for dependence.

Each of the conditions i) - iii) pertain to the marginal distribution of =z
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and its estimator F. Some dependence restrictions may be useful for
verifying iv).

Asymptotic normality of ﬁ will follow from asymptotic linearity in the
way discussed in Section 2. To carry out asymptotic inference it is helpful
to have a consistent estimator of the asymptotic variance, which can be
constructed from a sufficiently well behaved estimate of the influence
function. For example, if the observations are independent and @i is an
estimator of w(zi] such that Zigluﬁi-W(zi)uz/n = op(l), then Zizlﬁiﬁi/n
will be consistent; e.g. see Powell, Stock, and Stoker (1989). For dependent
observations, one could use a weighted autocovariance estimator, as in Newey
and West (1987). Further details and primitive regularity conditions for
consistency of asymptotic variance estimators are beyond the scope of this
paper.

It is straightforward to use Assumption 6.1 to specify conditions for
asymptotic linearity of p = I:é(x)dx from equation (6.1). To do so it is
useful to impose some restrictions on the kernel. Note that the estimator
depends only on z = (w,x). For a vector u e RY let A denote a vector of

A

nonnegative integers as in Section 4 and uA = szlujj'

Assumption K: XK(z) 1is an even function of z and there are integers

k=21 and £ = 0 such that K(u) = JK(v,u)du, JvK(v,u)dv = 0, IK(u)Zdu < o,
JK(u)du = 1, IuAK(u)du =0 for all 1 = |A] = k-1, and for all |A| = ¢
and € (t) = fo 't UMK (w)du, FIDMK (W) ldu < w, FIE, (£)1dt < w.

The absolute integrability of the Fourier transform of the kernel and its
derivatives is useful for obtaining uniform convergence rates for kernel
regression derivatives analogous to those of Bierens (1987).

It is also useful to impose the following restriction on the
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distribution of the data.

Assumption X: z, are i.i.d., E[w2] < o, X 1is continuously distributed
with density fO(x) that is continuously differentiable to order { = 2 with
bounded partial derivatives, go(x) = E[w|x]  1is continuously differentiable

to order £ 2 2 and DA[fo(x)go(x)] is bounded for all Ja| = §.

The independence assumption could be relaxed if sufficient other conditions
for uniform convergence rates for kernel density and regression estimators

were imposed.

Theorem 6.2: Suppose that Assumptions K and X are satisfied with £ =0 and
L=k =3, fo(x) >0 for x € [a,bl, and ¢ = o(n) such that o(n)én — 0,
o(n)4n — ®. Then for yY(z) = 1(a5x5b)f0(x)_1[w—go(x)] and @i =

- - £ -1 —A
1(a_xi_b)f(xi) [wi g(xi)],

VRLIZE GO - [Dg Gax] -5 Neo, EWPD), 1" #%m 25 EyP.

Another important type of estimator is of the form

n

(6.4) u = Zi=1a(zi,h(xi))/n,

which was discussed in Section 4. This estimator will often not be a special
case of (6.1), because the sample average corresponds to the empirical
measure, while h(x) often corresponds to some other estimate of the
distribution of 2z, such as a kernel. Nevertheless, general regularity
conditions can be formulated by combining Assumption 6.1 with Andrews

(1989a,b) stochastic equicontinuity condition. Let

A(h) = 1,2, laz;, hix;))-alz;, hy(x;,))]/n - fla(z,h(x))-a(z, hy(x))1dF,(2)}.

31




Assumption 6.2: There exists a set # of functions of x and a pseudo-metric
pR(hl’hZ) on ¥ such that 1) ho(x) € ¥ and h(x) e ¥ with probability
approaching one; 1ii) pu(ﬁ,ho) = op(l); iii) for all €, m > 0 there exists

T *
8 > 0 such that lim  Prob (SUP{heR:pﬂ(h,hO)SS}VHIA(h)I > 1) < € where

»*
Prob denotes outer probability.

Part iii) is a stochastic equicontinuity condition, for which Andrews
(1989b) gives a number of primitive conditions. They typically involve
smoothness restrictions on a(z,h(x)), as well as existence of sufficient

moments.

Theorem 6.3: If Assumption 6.2 is satisfied and Assumption 6.1 is satisfied

for p* Ia(z,ﬁ(x))dFo(z), then for the derivative «(z) of the functional

p(F) from Assumption 6.1,

Va(i-py) = Zigl{a(zi,ho(x))-E[aO] + a(z,)-Elal }VE + o, (1).

To interpret this result, note that the influence function for ﬁ includes
an adjustment factor «(z)-E[«] for the estimation of hA. One expects this
ad justment factor to correspond to that considered in Section 4; the natural
choice for the functional of Assumption 6.1 is p(F) = Ia(z,h(x,F))dFo(z) =
Ela(z,h(x,F))], for which the pathwise derivative is the ad justment factor
discussed in Section 4.

Unlike the results of Andrews (1989a,b), this result allows the
nonparametric estimates to affect the limiting distribution of ﬁ, and

specifies the way in which they do. Andrews imposes the condition that

(6.5) «(z) =0, VnR(F,F) = op(1L

Following earlier discussion, one expects that a necessary condition for
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(6.5) would be that the pathwise derivative of Ela(z,h(x,F))] 1is zero.

For an example of Theorem 6.3, consider the functional

(6.6) u(F) = E[1(@) {g(x ,F)-g(x,F)}], glx,F) = E lwlx],

»*
where 4 1is a bounded set of possible values for x and x -is some

function of x. A version of this functional without the 1(4) term was
considered by Stock (1989), who interpreted it as the effect of a policy shift
from x to x* on the average value of the variable w. The 1(«4) term is
present for technical convenience, but also has the effect of excluding
outlying values of x.

An estimator of p(F) is given by

-~ A, % -
(6.7) = Zigll(xiedl[g(xi)-wil/n, g(x) = ijleK((x—xj)/o)/nglK((x—xj)/o).

This is somewhat different than Stock’s estimator, where W, was replaced by
é(xi). Theorem 2.1 would lead us to expect that both estimators of u(F) in
equation (6.6).

To calculate the influence function for u(F), note that pu(F) =
EF[-l(a!l){g(x*,F)-w}], which has the form considered in Section 4. Thus, the
pathwise derivative should be d = 1(&)(go(x*)—w} + a(z), where a(z) 1is the
pathwise derivative of Ell(&){g(x*,F)—w}]. Let f;(x) denote the density of
X and 3(x) = £,(x)/E,(x). Note that E[1(d)g(x,F)] = E[1(4)7(x)glx,Fl.

Thus, by equation (4.7) for H(x) = y(x), a(z) = 1(4)7(x)[w-g0(x)], and

(6.8) w(z) 1(xe£){go(x*)-w - 70 lu-gy ()1} - p

0

1(xe4){g0(x*)—g0(x) - [r(0-11lw-gy (O 1) - ng

The following Theorem makes use of Assumptions 6.1 and 6.2 in the
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specification of primitive regularity conditions for this to be the influence

function.

Theorem 6.4: Suppose that Assumptions K and X are satisfied with £ =%k>2r
* *
and r = ¢ > (r+1)/2, x = t(x), fo(x) is continuous differentiable with
bounded derivative, the boundary of 4 has Lebesgue measure zero, there is a
bounded, convex, open set W containing the closure of dut(d) and € > O
such that fo(x) >e€ for xe€ W, and ¢ = co(n) with v(n)4rn — o, 0(n)2£n
R n * r - R n -
— 0. Then for f (x) = Zi=1K((x~xi)/¢)/o n, ¥(x) =1 (x)/f(x), and d(z) =

1(xed){E(x )-w=5(x) [W-§(x)1},

(6.9)  VAli-uy) -5 N0, EW?D, £,28(z)%m - (3,1 a(z,)/m1% s LA,

This result differs from Stock’s (1989) in that the estimator is centered at
the truth and the convergence in distribution is unconditional rather than
conditional on the X; observations. The unconditional nature of the result
explains the presence of the term Var(go(x*)—go(x)) in the asymptotic
variance E[Y’] = Var(g,(x )-gy(x)) + El(3(x)-1)%Var(wlx)], which is not
present in Stock’s (1989) variance measure; here it accounts for the
variability of Zigl[go(x;)-go(xi)]/n as an estimator of Hy-

In Section 4 results for sample averages of nonparametric estimates
were used to derive results for semiparametric m-estimators. Similar
reasoning allows one to use Assumptions 6.1 and 6.2 in the specification of

regularity conditions for semiparametric m-estimators.
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Theorem 6.5: Suppose that i) p = By * op(i); ii) m(z,p, hix,p)) is

continuously differentiable in p; 1iii) for any p = pu. + op(l), M(p) =

0
Ziglam(zi,ﬁ,ﬁ(xi,ﬁ))/au/n =M+ op(l) and M is nonsingular; iv) the
hypotheses of Theorem 6.2 are satisfied for al(z,h) = m(z,uo,h), h(x) =

ﬁ(x,uo), and a(z) = o« (z). Then

(6.10)  VE(i-u,) = -M‘lzijl{m(zi,po,ho(xi)) + o (z))-Ele 1}VA + o (1).

In a particular model, Assumptions 6.1 and 6.2 may not provide the most
convenient approach to specification of regularity conditions. Specific
models and estimation methods can lead to simple arguments that do not
require the generality of Assumptions 6.1 and 6.2. An example is Newey
(1989¢c), which makes use of in sample properties of series nonparametric
regression estimators. Nevertheless, the pathwise derivative formula should
prove useful, even in such specific circumstances, since it gives the form of
the influence function, a convenient starting point for showing that the

estimator is asymptotically equivalent to a sample average.

7. Conclusion

This paper has considered a pathwise derivative formula for the influence
function of a semiparametric estimator. For several examples of interest this
result yields the form a correction factor for the presence of nonparametric
estimates. Examples of the use of this formula for asymptotic efficiency
comparisons and the specification of regularity conditions were given.

The pathwise derivative could be used to compute the asymptotic variance
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of other types of estimators than those considered here, such as those that
maximize some objective function. Also, one could derive the form of
adjustment factors for nonparametric estimators other than density and
regression derivatives. An important class of estimators not considered here
are those with partially observed data, such as censored regression. The
semiparametric efficiency literature suggests that it may be somewhat harder
to derive the pathwise derivative for in such models, although results such as
those of Ritov and Wellner (1988) should prove useful.

The generality of the regularity conditions of Section 6 deserves further
investigation. As cgrrently formulated they seem best suited to kernel
regression and density estimators, which have natural smoothed empirical
measure interpretations. It would be useful to know if they could be
applied or generalized in order to encompass other types of nonparametric

estimators. This research is currently under way.
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Appendix A: Proofs of Theorems

Throughout the appendix C will denote a generic constant that will be

different in different uses.

Proof of Lemma 2.1: Consider an LDGP with parameter en and let En[o]
denote the expectation taken at en. Since LDGP’s for regular parametric
subfamilies are contiguous to the process with 8, = 6, Vﬂ(ﬁ—uo) = Zi:1wi/VH
+ op(l), also holds under the LDGP, where wi = w(zi). Then by addition of

appropriate terms,

(A.1) VARG ) = T,0 0 -E WDAVR + VRl ) + VRE Y] + o (1),

where poo= u(Bn). Let f(6) denote the likelihood for a single observation,
where the =z argument is suppressed for notational convenience, and let fn =

= . a.s.
f(en) and fo = f(eo). By regularity fn _— f so that for Kn — o,

0’
note that 1(n¢uzxn)nwu2fn 2% 0. Also, 1(uwuan)uwu2fn < nwuzfn 25
HWHZfO and by the continuity hypothesis, fﬂwﬂzfndz converges to IHwHZfodz.

Then by the dominated convergence theorem of Pitman (1978),

(A.2) Il(kuan)HwHandz Y

It follows similarly that Varn(W) = En[ww’] - EHIW]En[w’] — E[lyw’ ], so that

by eq. (A.2) the Lindbergh-Feller conditions are satisfied and

(A.3) Eioy W E WHAR L5 NGO, Elyy’ D).

By continuity, fuwﬂzﬂ(e)dz is bounded on a neighborhood of 6 so that by

O’
Lemma 7.2 of Ibragimov and Hasminskii (1981), Jyf(e)dz 1is differentiable

with derivative at 90 equal to E[WSé]. Thus,
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VHEn[w] = vn{E[y] + E[wSé](Bn-eo) + o(uen—eou)} = E[wSé]VH(en—eo) + o(1).

Also, by u(8) differentiable,

(A.4) Vﬁ(u-un) = VH{[-au(eo)/ae](en—eo) + o(nen—eou)}_
= [-6u(eo)/ae]VH(en—eo) + o(1).

Since VR(ii-,) 2, N(O,Elyy’]) for 8 =86, it follows from (A.1), (A.3),

0’
and (A.4) that the limiting distribution of Vﬂ(ﬁ~u(9n)) exists and does not

depend on the sequence {en} if and only if

(A.5) {au(eo)/ae - E[WSé]}VH(en—OO) = o(1).

This equation holds for all sequences such that Vﬂ(en—eoj is bounded if and

only if au(eo)/ae - E[wSé] = 0. m

Proof of Theorem 2.1: By Lemma 2.1, the definition of differentiability, and

?> 9,

(A.6) E[(w-d+E[d])Sé] = E[ysy] - Eldasg] = 6u(6,)/88 - ou(8,)/88 = 0.

Note that y-d+E[d] € #. Consider sequences Aj’ S such that Ajsej

8J

converges in mean square to y-d+E[d]. It then follows that

2, _ 5. ~ , _
(A.7) E[lly-d+E[d]N"] = llmj_amE[(W d+E[d]) Ajsej] = 0. "

Proof of Lemma 3.1: In the hypotheses of Lemma B.2, 6 = 73 and A(z,0) =
1+0’{s(z)-Els(z)]}. Note that by s(z) bounded and fo(z) independent of
any parameters, the remainder of the hypotheses of Lemma B.2 are satisfied

Wwith A(z) = C. The first conclusion follows by the conclusion of Lemma B.2.
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The second conclusion is a trivial consequence of EG[W'W] = Ely'yl +
E[y’y{s(z)-El[s(z)1}'19, where the finiteness of the second expectation
follows by s(z) bounded. Let loI2 = {E[(o)2]}1/2. The last conclusion
follows by Lemma A2 of Chamberlain (1986a): That result implies that for any
> 0 there exists s(z) in C:(Rq) with (E[Ila—sllzl)l/2 < €/2, so that by
the triangle and Cauchy-Schwarz inequalities, IIIo—{s—E[s]}III2 = IIIa—sIII2 +

|l|E[o-—s]III2 = e + Ino—sulz = e, .

Proof of Theorem 4.1: For s, (x) e c:(mr), 5,(2) € c:(mq), let §(x) =

sl(x)—E[sll, 52(2) = sz(z)-E[szlx], and consider

(A.8) f(z,el,ez) = fo(z)[1+92§2(2)][1+91§1(x)], 6, = 0.

Note that s, and S, are bounded, E[§1] = Els

1 2 ] =0, and E[slszl =

2
E[§1E[§2|x]] = 0. It then follows analogously to the proof of Theorem 3.1
that this parametric subfamily is smooth, with S9 = (§1,§2)’. Also, by

Assumption 4.2 iii), E[y’yY] < », so that Ee[w’w] is continuous. Consider
any o € ¥, and let s, = Ela|x], 4, =00 . Let € > 0. Since E[oX] = 0,

it follows by Lemma A2 of Chamberlain (1986a) that there exists s, such that

1
lox—sll2 < €/3, and that there exists s, such that Iaz—szlz < €/3. Then

2€/3. Thus,

A

Iaz—szl2 = loz—sz-E[oz—szlx]I2 = e/3 + IE[az-szlxll2

Io—(sl+52)l2 = on-sll2 + Iaz-szl2 <€ implying ¥ =¢ by € arbitrary.

It now suffices to show differentiability of u(8) and to verify the formula

for «f(z).
Integrating with respect to the components z of 2z othér than x
gives f(x,0) = [1+elsl(x)]fo(x){1+92E[szlx]} = fo(x)[1+9131(x)]. Then by the

definition of §1, th(x,e) = DAfO(x) + Gth[fO(x)gl(x)], so that

(A.9) n(e) = Eela(z,u"fo(x) + eluA[fO(x)él(x)])].
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It then follows by Assumption 4.2, continuity of EglA(2)]  (by §1 and §2

bounded), and Lemma B.1 that u(e) is differentiable at 0O with derivative
(A.10)  81(0)/86 = ElaSy] + (Ela,DM£,(x)5, (x)}1,0)”

= ElaSy] + (EIHGDM(£y(x)5, (60}1,0), H(x) = Ela |x],

where a = 6a(z,h0(x))/6h, Note that §1(x) and all its derivatives are
zero outside a compact set, which can be chosen to be a cube without loss of
generality. It follows that fo(x)gl(x) and each of all its derivatives to

order [A| are zero outside a cube. Then repeated integration by parts gives
(A.11) E[H(x)DA{fo(x)él(x)}] = I{H(x)fo(x)}DA{fO(x)gl(x)}dx

= I(—l)IAIDA{H(x)fO(x)}fO(x)él(x)dx = Elo 1.

Noting that E[a§2] =0, 8p(0)/de = El(a+a)Sy] = 0. m

Proof of Theorem 4.2: For sl(x) € C:(Rr), sz(w,x) € C:(Rr+1), s3(z) €
P ~ = - jod = - s =
CC(R ), let sl(x) SI(X) E[sll, sz(w,x) : sz(w,x) E[szlx], 53(2)

s3(z)-E[s3lw,x], and

(A.12) f(2’61’92’63) = fo(z)][1+e3§3(z)][1+62§2(w,x)][1+91§1(x)], 8, = 0.

It follows as in the proof of Theorem 4.1 that this is a smooth parametric
subfamily, with S; = (§1,§2,§3)', and % = ¢. It now suffices to show
differentiability of pn(@) and to verify the formula for alz).

As in the proof of Theorem 4.1, the marginal densities of (w,x) and x
respectively are fO(w,x)[1+92§2(w,x)][1+61§1(x)] and fo(x)[1+61§1(x)].
Thus, g(x,8) = Ee[wix] = E[w{1+62§2(w,x)}|x] = go(x) + BZA(X), Alx) =

E[w§2|x]. By Assumption 4.3 and repeated application of Corollary 5.8 of
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Bartle (1966), it follows that E[sz(w,xllx] is continuously differentiable

to order |A| and is zero outside a compact set. It follows similarly that

A(x) has the same properties. Thus,

(A.13)  u(e) = Ee[a(z,DAg(x) + elDAA(x))L

By DAA(X) bounded, for any C > O there is an open set containing zero such
that |91DAA(X)| = C for all 91 in this neighborhood. Then by Assumption

4.3 and Lemma B.1, u(@) is differentiable at 0 with derivative

(A.14)  8u(0)/86 = Elas,] + (E[ahDAA(x)], 0)’

= E[aSO] + (E[H(x)DAA(x)], 0)’, Hx) = E[ahlx]°

Note that A(x) = E[w§2|x] = E[(w—g(x))gzlx]. It then follows from

integration by parts as in the proof of Theorem 4.1 that
A _ A _ Al A
(A.15) E[H(x)D"A(x)] = J{H(x)f(x)}ID"A(x)dx = J(~-1)""'DMH(x)Ff (x)}A(x)dx

= ELC-1) M DM G0 e 0 1 08 ()] = Elas,].

Also, by Ela(z)|x] = 0, E[a§1] =0, and by a(z) measurable with respect

to w and x, E{a§3] = 0, so that 48u(0)/ae = E[(a+a)Se] = 0. =

Proof of Theorem 6.1: With probability approaching one,
A n
(A.16)  Vhlp-py - T,_,{d(z,)-Eld]}/n|

= VRli(F)-py - Jd(2)d(F-F,)| + VAIfd(z)df - ¥;0,d(z;)/nl

=< VER(?,FO) + 0 (1) = o_(1). .
P p

Proof of Theorem 6.2: The proof proceeds by verifying Assumption 6.1. Take
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4 = [a,bl, - note inf[a b]fo(x) > 0 by continuity and compactness, and take
¥ as specified in Lemma B.3. Let F be absolutely continuous with density
£(z) = Ziglk((z—zi)/o)/cz, and note that the marginal density of x for

this distribution is f(x). By Lemma B.4 with, r =1, A =0 and by 1/¥ne =

(n<r2)_1/2 = (h¢4)—1/2

= 0(1) and o = o(1), f(x) converges uniformly to
fo(x), implying that Fe% with probability approaching one. Since for F
€ ¥, 1(a5xsb)E?[wlx] = 1(a=x=b)g(x), condition i) follows. Condition ii)
follows by Lemma B.3 with w(x) = 1/f0(x), 4 = [a,b], and R(F,FO) in

equation (B.1). Also, note that n'’%/[vie] = 1/[nl’% 4y-14

174 3 174 1/4
[e2d = < =

o(1)

c]l = (no

and n (nclz) (noe) o(1). Then from Lemma B.4 with { = 3

it follows that

1/4 - /4 -
417y nfsup, 1RGO, G| = 0 (1) nt sup, 4180 =g, ()| = o (1),

Then condition iii) follows by Lemma B.3. Also, by Lemma B.6 with w(x) =

172 _

1/f0(x) and 4 = [a,b] it follows by VH¢3 = (n06) o(1) that condition

iv) is satisfled, implying VA(i-uj) = Zizlw(zi)/VH + 0 (1) by Theoren 6.1.
The first conclusion then follows by the Lindbergh Levy central limit theorem.

For the second conclusion, note that by fo(x) is bounded below on « =

[a,b], so that by eq. (A.17) and E[w?] < .
n - 2 . a -2 - 2
zi=1|wi-wi| /n = Clinf f(x)] [supﬂlg(x)—go(x)|

+ supdlf(x)—fo(x)Izzizllwi—go(xi)|2/n] = op(l).

The conclusion then follows similarly to the consistency argument for the

asymptotic variance estimator in Powell, Stock, and Stoker (1989). ]

Proof of Theorem 6.3: With probability approaching one,
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(A.18)  VAlit-uy - L7 {ay(z,)Elagl+alz))-Elal}/n] = T, + T,

T, = Vﬁlzigl{a(zi,ﬁ(xi))—ao(zi)-fa(z,ﬁ(x))dFO+E[aO]}/nl,
T, = VAlfa(z,h(x))dFy-Elag] - L2 {«(z,)-Elal}/n|

= VRl - I;0, {e(z,)-Elal b/l

It follows as in Andrews (1989a) that T1 = op(l), while T2 = op(l) follows

from Theorem 6.1 (compare eq. (A.16)), giving the conclusion. |

Proof of Theorem 6.4: The proof proceeds by verifying the hypotheses of
Theorem 6.3 for [ = Zigll(xied)é(x:)/n and My = E[l(xed)go(x*)].
Consider ﬁa = Il(xe&)y(x)é(x)fo(x)dx. Let p(F) = E[1(xe&)7(x)g0(x)] and
let ¥ be as specified in Lemma B.3, noting that infdfo(x)“> 0 by < W
Specifying F as in the proof of Theorem 6.2, it follows analogously to the
arguments given there that by 1/vno’ = 1/{n<r2r}1/2 = o(1) that
supxlf(x)—fo(x)l = op(l), and Assumption 6.1 i) is satisfied. Also, it
follows analogously to the proof of Theorem 6.2 that Assumption 6.1 ii) is
satisfied by Lemma B.3, with w(x) = y(x) and . R(F,FO) given in eq. (6.1).
Also, for large n, n1/4/[Vﬁvr] = (no‘[h.)_l/4 = o(1) and n1/4a£ = (no‘u)l/4
= (mrzg)l/4 = o(1). Then eq. (A.17) holds by Lemma B.4, so that Assumption
6.1 iii) follows by Lemma B.3. Also, by Lemma B.6 with w(x) = 7(x) and 4« =
[a,b] it follows by Vﬁb} = (n02£)1/2 = o(1) that condition iv) is
satisfied. Thus Assumption 6.1 is satisfied for ﬁa and «(z) =
1(xe&)7(x)[w-go(x)].

To check Assumption 6.2, let X be the set of functions with domain W

such that for all A with |[A| = ¢, supwJDAh(x)I = supwJDAgo(x)|+1. Note

that for each such 2, go(x) is differentiable to order |A| + 1, that for
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1/Vﬁvr+lk| - (n02r+2IA|)—1/2 < (n04r)—1/2

large n, = 0(1) and of_lkl =

o(1), so that by Lemma B.A4,

supwJDké(x)—DAgo(X)I = Op(l), Al = L

Thus, g(x) € ¥ with probability approaching one, so that Assumption 6.2 i)
is satisfied for h(x) = g(x) and hO(X) = go(x). Let a(z,h) = 1(xed)h(x)

_ _ 2, .1/2 _
For hl’ h, € ¥, let pR(hl’hz) = {lea(x,hl) a(x,hz)] dx} <

2
Csupthl(x)—hz(x)l. It follows from Lemma B.4 that pR(h,ho) <
CsupwJé(x)—gO(x)I = op(l), giving Assumption 6.2 ii). Assumption 6.2 iii)
then follows by Theorem II.7 of Andrews (1989b). It now follows from Theorem

6.3 that for 1, = 1(x, ed)
n . * *
Zi=1{lig(xi) - E[Iigo(xi)]}/VH
* *
= Loy {15 Talx) + 000 fwy-gg ()] ~ED1,8, () 1IVE + o, (1).

The first conclusion then follows by subtracting the term
n _ «n _ _
Lieg (1w ELL Wy DVE = T {1, Twy-g (%)} + 8o(x;)-E[1,w,1}/¥n and by the
Lindbergh-Levy central limit theorem. To show the second conclusion, note
*»*
that E[Y®] = Var(d) for d(z) = 1(xed){g, (x )-w=y(x) [v-g, (x)]}. Also, by
¥ 0 ~
Lemma B. 4, supxlf (x}-f (x)| = op(l), so that supxedly(x)—x(x)l =
. A% * “ . N .
[(supxlf (x)—fo(x)l) + C(supxlf(x)-fo(x)l)]/1nfxedlf(x)| = op(l). Noting that
7(x) 1is bounded on 4, it follows that
n - 2, . Ao 2
Zi=1|d(zi) d(zi)l /n = Squer(d)Ig(X) go(x)l

+ supx&dlg(x)Izsupxadlé(x)—go(x)|2

* SUR 15007 GO 11T, 1wy gy () 1P/m] = 0 (1),
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The conclusion then follows similarly to the consistency argument for the

asymptotic variance estimator in Powell, Stock, and Stoker (1989). =

Proof of Theorem 6.5: Follows the conclusion of Theorem 6.2 for ﬁ =
Ziglm(zi,po,ﬁ(xi))/VH from a standard Taylor expansion argument; see equation

(4.16). n

Appendix B: Useful Lemmas

It is helpful to define smoothness in the root-likelihood/mean-square
sense. Following Ibragimov and Hasminskii (1981, Ch. 7), suppose that ?e =
{f(zle) : @ € ®} is a family of densities f(z|8) with respect to some carrier

measure, and let dz denote integration with respect to that measure.

Definition A.1: ?9 is smooth if © 1is open and i) f(z|6) is continuous on ©
a.s. z; ii) f(zIG)l/2 is m.s. differentiable with respect to 8 on @ with
derivative D(z,8), i.e. IHD(z,B)szz is finite on ©® and for each 6 and
8, — 8, I[f(zlei)llz—f(zle)l/z—n(z,9)' (ei-e)]zclz/uei-eu2 — 0; 1iii) D(z,8)
is m.s. continuous. Also, for smooth ?e the score is defined by S9 =
2<>1(f(zle)>O)D(z,(-))/f(zle)l/2 and the information matrix by ISGSéf(zle)dz. ?9
is regular if it is smooth and the information matrix is nonsingular on .
See, for example, Ibragimov and Hasminskii (1981) for further details.

The following two lemmas are useful for the proof of Theorems 4.1 and 4.2.

They are proved in Newey (1989d).
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Lemma B.1: Suppose that 6 = (9’,9&)’ such that i) f(z|@) is smooth;
ii) a(z,8) 1is continuous in 6 at each © (a.s. z) and differentiable in
91 with derivative that is continuous in © at each ©; iii) there

exists A(z) such that Ila(z,e)ll2 = A(z), W8a(z,0)/80 1 = A(z), and

1

E[A(z)|68] is continuous in ©. Then Ee[a(z,e)] is differentiable in 91
with continuous derivative G(8) = Ee[a(z,e)Sl(z,e)’] + Ee[aa(z,e)/aell,
where Sl(z,e) is the score for 91. Also, liG(e)1l = 2E[b(z)[e8] + tr[I(e)],

where 1(0) 1is the information matrix for .

Lemma B.2: Suppose f(z|B) is smooth, with score S’3 at BO. For @ = (B',n")’,
let A(z,8) be bounded, bounded away from zero, continuously differentiable

in an open ball © containing 6 _ = (Bé,o’)’, with W3A(z,8)/86l = A(z) for 6 €

0
®, such that IA(z)Zg(zIB)du exists and is continuous on ©, A(z,8,0) = 1, and
JE(zIB)A(z,8)du = 1. Then f(z|8) = f(z|B)A(z,8) is smooth with score Se =

(Sé,A;)’ at 90, where An = 1(£(ZIBO)>O)6A(Z,90)/6n.

The next Lemma works out the form of the remainder in Assumption 6.1 ii) for

a functional that includes as special cases the examples of Section 6.

Lemma B.3: Suppose that for a set d, Assumption X is satisfied, w(x) is
bounded on 4, and infdfo(x) >0. Let ¥ be the set of distributions

that are absolutely continuous with respect to x with density f(x) >

inf f,(x)/2 for all x e 4, R(F) El1 w(x)g(x,F)], and d(z) =

ldw(x)[w—go(x)]. Then Assumption 6.1 iii) is satisfied with

(B.1) R(F,F,) = Clsup jlg(x,F)-g,(x) 1% + sup 4| (x)-£ o (x)1°1.

Proof: Since EIl[d(z)] = 0,
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(B.2) IM(F)-M(FO) - EF[d(z)]l

]

IE[14w(x){g(x,F)-g0(x)}] - EF[lﬂw(x){g(x,F)—go(x)}]|

IEllgw(x){g(x,F)-go(x)}{l - [f(x)/fo(x)]}]l

1A

Supa{lw(x)l|g(x,F)-g0(x)|l1 - [f(x)/fo(x)]l

1A

Clsup ,lg(x,F)-g (x)|% + sup I£(x)-f.(x)1%]. =
P 0 o 0

The following Lemma is a generalization of Theorem 2.3.1 of Bierens (1987)
that gives uniform convergence rates for derivatives of regression and density
functions. It is useful for checking Assumption 6.1 i) and iii) and the
stochastic equicontinuity condition for the examples of Section 6. Let é(x)

be as defined in the text and let f(x) = ZiglK((x—xi)/o)/nor.

Lemma B.4: Suppose that for some A Assumption K and X are satisfied with £
= [Axl, k=¢§-IAl >0, and ¢ = o(n) such that o¢(n)'vi — «© and c(n) —

0. Then for any e > 0,
Az A _ r+(al -1l
(B.3) Spp{xemr}lD £(x)-D"f,(x)| = op(1/[VEb 1) + Op(v ),

Ar ooy A _ r+|a| £-1al
sup{xeRr:fo(x)ze}ID g(x)-D go(x)| = = Op(l/[Vﬁc 1) + Op(v ).

Proof: Let R(x) = L7 wK((x-x,)/0)/e"n, hj(x) = g (x)f,(x). Note that

PMh(x) = ZiglwiDAK((x-xi)/cr)/o'rHMn°

Fourier inversion formula gives

Following Bierens (1987, p. 114), the

(B.4) D*hex) = Zizlwifexp(-it’[x-xi]/o)EA(t)dt/[(2n)ror+lkln]

r

- fziglwiexP(it'xi)exp(—it’x)§A(¢t)dt/[(zn) wlhln]’
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so that
An An
(B.5) E[supxID h(x)-E[D"h{(x)1]

= (2n)-r¢‘|A|IE|2121[wiexp(it’xi)—E[wiexp(it’xi)]}/nlIEA(wt)Idt

172

= Co_IAII{Var(Zizlwicos(t’xi)/n) + Var(Ziglwisin(t’xi)/n)} IEA(ot)Idt
= CEEWS 1Y%/ [Var IAI]IIEA(ot)Idt C/[V“v'l'*rlflgh(t)|dt
= 0(1/Ivas!2*Tyy.

Also, note that go(x)fo(x) is continuously differentiable to order k&, with
bounded derivatives. Then by a change of variables, integration by parts, and

a Taylor expansion in ¢ around zero

(B.6) IEDM ) 1-0Mh, G0 | = |58, (£ o (w) (DK ((x-w)/e) /6" 1A Jau - Dhy ()|

10 pg g xroud £ (erow) DK (w)au - DMy (0|

]

IIDA[gO(x+¢u)fo(x+0u)]K(u)du - tho(x)l

|le'<£_IMC(A)DA[DA[gO(x)fO(x)]]J'uAK(u)dul

A

v oF g i SO 0 (g (e £ (xsr) 111 1K Cw)

< cot 1M,

where the third equality holds by K(u) an even function (meaning that the
(—1)IAI integration by parts term can be ignored) and the last inequality by
boundedness of DA[go(x)fO(x)] for |A|l = {. Combining equations (B.5) and

(B.6), it follows by the triangle and Markov inequalities that
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An i A _ r+(Al -1
(B.7) sup{xeﬂr}lD h(x)-D"ng(x)| = Op(l/[Vﬂo 1) + Op(o ).

Applying this equation with wi = 1 gives the first line of (B.3). To
obtain the second line, note that it follows by varying the value of A in
eq. (B.7) and the first line of (B.3) that the same results hold when A is
of smaller order than that give in the statement of the Lemma. In particular,
Supxlf(x)-f(X)l = Op(l/[Vﬁvr]) + Op(o}) = op(l), implying {x : f(x) > e}

€ {x : f(x) > €/2} with probability approaching one. Then since Dlé(x) =
Dl[ﬁ(x)/f(x)], and the denominator is bounded below by &/2 on the set

{x : £(x) > €} with probability approaching one, the second conclusion then
follows from equation (B.7) applied to h(x) and f(x) for each partial

derivative on the left-hand side of order up to A. =

The next Lemma is useful in verifying iv) for kernel estimators when d(z)

need not be smooth but the density of the data is restricted to be smooth.

Lemma B.5: Suppose that Assumptions K and X are satisfied for k = { and for

some al(z), az(x), h(x) = E[allx] is continuously differentiable to order

L, az(x) is continuous a.s. on Rr, there is a neighborhood N of 0O such
2 2 2

that E[E[oc1 Ix]fsupaeﬂlaz(x+ou)l K(u)“dul] < ® and

IsupoENIaz(x)DA[g(x+ou)f(x+0u)]uAK(u)Idudx < w for all |A| =k, and for

all |A] < k, IIQZ(X)DA[g(X)f(X)IIdx < w. Then for ¢ = c(n) — O,

(B.8) Eiglal(zi){focz(x)[K((x—.xi)/o')/crr]dx -y (3 IR = 0 (1) + 0(vro®).

Proof: Let
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(B.9) 3(z;,0) = al(zi){faz(x)[K((x—xi)/w)/wr]dx - o, (x,)}

= alfzi)f[az(xi+ou) - az(xi)]K(u)du,
where the second equality follows from the change of variables u = (x—xi)/w
and by JK(uldu = 1. Note that az(x+0u) is continuous at ¢ =0 for all u

. . 2 2
with probability one. Also, Iaz(x+ou) az(x)l = 4sup@eﬂla2(x+ou)l . Then

the dominated convergence theorem gives

(B. 10) E[S(zi,o)Z] < CE[E[al(z)zlx]flaz(x+¢u)-a2(x)I2K(u)2du] - 0.

Note that K(x) is a kth order kernel by X(z) a kth order kernel. By a

Taylor expansion in ¢ around ¢ =0, for o — O,

(B.11) IE[S(zi,w)]l = Ifg(x)az(x+0u)K(u)f(x)dudx - Ig(x)az(x)f(x)dxl

U'ocz(x) {Jlg(x-ou)f (x-cu) - g(x)f(x)1K(u)du}dx|

1A% (W) durax|

1A

A
II“Z(X){I215|A!<k<(A)D [g(x)f(x)]e

+

|Foy GOUIL 5 | gD BT, 3, WIWE (x45 (4, x, ww) 1oFu K (u) dubax

< CokZIAI=kfsup06NIaz(x)DA[g(x+¢u)f(x+0u)]uAK(u)Idudx = Cvk,

where 0 = o(x,u) s ¢ and C(A) denote the Taylor expansion coefficients.

Then by 1) and the Chebyshev and Cauchy-Schwarz inequalities,

(B.12)  |x,2,8(z,, o)A = IT;2,{8(z;,0)-El3(z,, @) 1}V + VRIE[S(z,,0)]]

Op([Var(S(zi,o))]l/z) + 0vRe™) = 0 (18(z;,0)1,) + 0 (Vack)

0,(o(1)) + o(vao®) = 0 (1) + o(vao™). .
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The following Lemma specializes the previous Lemma to the Section 6 examples.

Lemma B.6: Suppose that Assumptions K and X are satisfied with k ={ and
w(x) is continuous on 4 that is bounded with boundary that has Lebesgue
measure zero. Then for z = (w,x) and «(z) = 1(xed)w(x) [w-g(x)], if Vﬁb#

= o(1),

(B.13) ;7 {fa(2) [K((z-2,)/0)/0" " az - alz)}/VF = o, (1).

Proof: The proof proceeds by checking the hypotheses of Lemma B.S5. Consider
first al(z) = w, az(x) = 1(xed)w(x). Note that az(x) is continuous a.s.
by the boundary of « having measure zero, and that it is bounded and zero
outside a compact set. Thus, the first dominance condition of Lemma BS is
satisfied by E[w2] < . The second and third dominance conditions are
satisfied by boundedness of Dl[fo(x)go(x)], Then by Iw[K((z—zi)/o)/o]dz =
I[I(wi+v¢)K(v,(x-xi)/c)dv]dx = wiIK((x—xi)/c)dx and the conclusion of Lemma

BS,
Zizl{fl(xead)w(x)w[i(((z—zi)/o~)/<rr+1]dz - 1(x ed)ulx, v, }/va

_«n _ r _ -
= Lj=q¥; (1 (xed)o(x) [K((x x;)/0) /0" Jdx 1(xieﬂ)w(xi)}/VH op(l).

It follows similarly for al(z) =1 and az(x) = l(xéﬂ)w(x)g(x) that
,Zizl{fl(xed)w(x)go(x)[K((z—zi)/o)/or+1]dz - 1(xied)w(xi)go(xi)}/VH

= 1
op( ),

so that the conclusion follows by the triangle inequality. ]
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