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ABSTRACT

This study considers testing for a unit root in a time series characterized by a
structural change in its mean level . Our approach follows the "intervention
analysis" of Box and Tiao (1975) in the sense that we consider the change as being
exogenous and as occurring at a known date. Standard unit root tests are shown to
be biased towards non-rejection of the hypothesis of a unit root when the full
sample is used. Since tests using split sample regressions usually have low power, we
design test statistics which allow the presence of a change in the mean of the series
under both the null and alternative hypotheses. The limiting distribution of the
statistics is derived and tabulated under the null hypothesis of a unit root. Our
analysis is illustrated by considering the behavior of various univariate time series
for which the unit root hypothesis has been advanced in the literature. This study
complements that of Perron (1988a) which considered time series with trends.

Key Words :  unit root , non-stationarity, structural change, hypothesis testing,
functional weak convergence, intervention analysis.






1. INTRODUCTION

Testing for the presence of a unit root has become a problem of great concern
to economists. Theoretical advances by , among others, Dickey and Fuller
(1979,1981), Fuller, Hasza and Goebel (1981), Said and Dickey (1984) , Phillips
(1987) and Phillips and Perron (1988), have permitted the development and
applications of formal tests of this hypothesis . Useful reviews and applications of
these procedures can be found in Dickey, Bell and Miller (1986) and Perron (1988b).
The unit root hypothesis in a time series of data has indeed far reaching
implications with respect to economic theory and the interpretation of empirical
evidence. Since the seminal study of Nelson and Plosser (1982), the view that most
macroeconomic time series are best construed as exhibiting some kind of stochastic
non—-stationarity has become prevalent. It is argued as well that the total variability
of a series over time is explained in greater part by variations in permanent shocks
than by variations in transitory components.

Sometimes, however, a quick glance at the graph of a time series reveals the
presence of a sudden change in the mean level of the series at a given time period.
This change may appear so big and sudden compared to the variability exhibited
over the rest of the sample period that one may wish to isolate its effect and
consider this particular period as an "outlier event" or as exogenous. Following the
"intervention analysis" of Box and Tiao (1975), one may wish to remove a
particular sudden change from the noise function and introduce it in the
deterministic part of the series. The noise function is then analyzed without this
particular "extraordinary event".

As an example, consider the behavior of the U.S. ex—post real interest rate
over the period 1961:1-1986:3 constructed using the rate on three-months treasury
bills deflated by the CPI inflation rate. Figure 1 is a graph of this series. It exhibits
a marked discontinuity in its mean around the year 1980. Before 1980:3, the average
real rate was close to zero ranging from + 4 % to — 6 %. However, over the period
1980:4-1986:3, the average real rate was close to 6 % ranging from 3 to 11 %
approximately. This sudden change in mean can therefore be viewed as
"extraordinary" and sudden, given the general historical pattern of the series.
Furthermore, it can be associated ( with a slight delay) with the often-mentioned



change in monetary policy initiated by the Federal Reserve Bank in October 1979.
In the terminology of Box and Tiao, the change in monetary policy is the
"intervention" which may have caused the sudden change in the mean of the series.

The case of the ex—post real interest rate has not escaped the concern of
economists investigating the prevalence of stochastic non-stationarity. Recently,
Walsh (1987) and Rose (1988) analyzed related series and concluded that they were
characterized by the presence of a unit root. The same appears to hold with the
series analyzed here. Consider a Dickey—Fuller (1979) type regression of the form :

yp=H4t+ oyt 21-‘=1 Ay, ; +e - (1)

Table 1 presents split and full samples Dickey—Fuller statistics for the real
interest rate series . For the period 1961:1-1986:3 and a truncation lag parameter k
equal to 3, the ordinary least-squares estimate of « is 0.872 with a t-statistic for
a=1 of —1.51 : one cannot reject the null hypothesis of a unit root. However if split
samples are considered, a different picture emerges. For the period 1961:1-1980:3
and k=3, & is 0.742 with a t-statistic for a=1 of —-1.92; for the period 1980:4-1986:3
and k=5, & is —0.248 with a t-statistic for a=1 of —2.19. The estimates of the sum of
the autoregressive coefficients are markedly less using any split sample than the
estimate using the full sample. However, the split samples are not large enough to
permit rejection of the null hypothesis of a unit root.

Figure 2 presents a graph of the quarterly U.S. unemployment series. This
series has also attracted some attention , most notably in a study by Evans (1987).
It can be seen that the mean of the series appears to have increased sometime in the
mid-seventies. Evans considers splitting the sample in two episodes with the 1974:1
quarter as the breakpoint. We follow the same strategy. As can be observed from
the split and full samples Dickey—Fuller statistics presented in Table 1 ,a pattern
similar to the case of the real interest rate series emerges. The split sample
estimates of a are below the full sample estimate and none of the cases allow
rejection of the unit root hypothesis. One feature that is different from the real
interest rate case is that the change in the mean of the series is more gradual. We
shall come back to the implications of this difference for our analysis.



Figure 3 presents a graph of the Grilli-Yang real commodity price index over
the period 1900-1983. This series has been analyzed by Cuddington and Urzia
(1989) who investigated issues of persistence . As they point out the series exhibits a
marked change in mean in the year 1920. Table 1 shows that the unit root
hypothesis cannot be rejected using the full sample estimates. It can however be
rejected using the 1921-1983 sample at a high confidence level but not with the
1900-1920 sample ( due to a lack of power given only 21 observations).

These examples suggest the following line of investigation. First, on the
supposition that the series is stationary except for this change in the mean, what are
the properties of tests for a unit root as obtained, for example, from regression (1) ?
Second, given that the use of split samples often implies tests with low power, can
we derive test statistics for the null hypothesis of a unit root which allows the use of
the full sample and which permits the presence of such a change in the deterministic
component ? The first issue was also analyzed, in a different framework by Chen
and Tiao (1989). They consider random level shift ARMA (RLARMA) models and
show how standard Box-Jenkins model identification procedures would suggest an
integrated process with the usual diagnostics indicating no mispecification. Their
analysis suggests that estimated ARIMA models would produce forecasts with
substantially higher mean-squared error than an estimated RLARMA if the rate of
occurrence of the shifts is small. Our analysis deals with the first issue differently
and puts more emphasis on the second point .That is, we concentrate on the issue of
deciding whether a particular series is characterized by stationary deviations around
a shifting mean function or by an integrated process in the important case where
only one shift occurs in the series.

The plan of this paper is as follows : Section 2 investigates the behavior of
the OLS estimate of a in regression (1) when the data is supposed to be stationary
except for a sudden change in the mean. We provide Monte Carlo evidence on the
finite sample behavior and derive the limiting distribution which shows a
non-vanishing bias. Section 3 proposes test statistics which allow such a change and
derives their limiting distribution under the null hypothesis of a unit root. Our
method is illustrated analyzing the series described above.



9. EFFECTS OF A CHANGING MEAN ON TESTS FOR A UNIT ROOT

Under the null hypothesis, the series {yt} (of which a sample of size T+1 is

available) is a realization of a time series process characterized by the presence of a
unit root. However, the usual characterization is generalized to allow a one-time
change in the structure of the series occurring at a time Ty (1<TB<T). This

hypothesis can parameterized as follows :
¥y = 1D(TB), +¥;_1 + W4 (t=1,...,T) (2)

where D(TB),=1 if t=Tg+1 and 0 otherwise; y0=y(0) either a fixed constant or a
random variable . The conditions on the sequence of innovations {w,} are specified

such that we can use a functional central limit theorem for partial sums
{St=2§=1wj}. The reader can refer to Phillips (1987) and Phillips and

Perron (1988) for further details concerning these conditions. They are general
enough to permit a series {Wt} generated by any finite order ARMA(p,q) process

with Gaussian innovations.

Under the null hypothesis (2), the mean of the series {yt}, when conditioning
upon the initial observation Yor is given by Yo up to time TB and by Yot

afterwards. Under the alternative hypothesis that the series does not contain a unit
root, the model is given by :

Yy =4+ 1DU, + ¢, (t=1,...,T) (3)

where DU, =0 ift < Tgand 1 otherwise. Again , the conditions on {et} are general

enough to permit an ARMA(p+1,q) representation consistent with the process (2).

To assess the effects of a shift in the level of the series on tests for the
presence of a unit root, we first present a small Monte Carlo experiment. We
consider the behavior of the least-squares estimator & in the following regression :



yt=ﬁ+ &yt—-1+ét' ‘ (4)

_ The above regression is one that would be used to test for a unit root (a = 1)
if the errors were uncorrelated. Suppose, however, that the series is generated by (3)
with p=0, Tg=50 , T=100 and et~NID(0,1). We generated 10,000 replications of

such a series and for each replication calculated & in (4). This exercise was
performed for 7=0,1,2,5, and 10. Figure 4 presents the cumulative distribution
function (c.d.f.) of &in each case. The experiments reveals that as the magnitude of
the change in the meau, i.e. 7, increases, the c.d.f. of & becomes more concentrated
at a value ever closer to 1. The corresponding means and variances of the sample of
& generated are shown in Table 2.

What emerges from this simulation experiment is that if the magnitude of
the change is significant, one could hardly reject the unit root hypothesis even if the
series would consist of i.i.d. disturbances around a deterministic component (albeit
one with a shift in mean). In particular, one would conclude that the shocks have a
permanent effect. Here, the shocks clearly have no permanent effect, only the
one-time shift in the trend function is permanent. The problem is one of model
mispecification.

To analyze the effect on the distribution of & of an increase in the sample
size with a shift of a given magnitude, we derive below the asymptotic limit of @ To
carry out the asymptotic analysis, we require that the pre-break and post—break
samples increase at the same rate as the total number of observations, T, increases.
To this effect we assume, for simplicity, that Tg = AT for all T. We refer to A as

the "break fraction". The asymptotic limits are taken as T increases t0 infinity in a
sequence that ensures an integer value for Tg for a given A. This type of increasing

sequence is assumed throughout the paper.

Given these specifications and the "mixing conditions" imposed on the
sequence {et} , it can be shown , following Perron (1988a), that as T T oo :

a— [ M1-2)72 + 2, J/[ 1272 + 02 ] (5)



where p; = lim, | OOT_l)J}‘E(etet_l) , 03 = limp, | OOT_IErfE(e%), and "—" denotes

almost sure convergence.

What the result in (5) shows is that & is not a consistent estimate of the true
first—order correlation coefficient of the non—deterministic part of the series {yt}’

Py crg, unless 7 = 0. In particular, & converges to a value greater than pJaé. This

limit value approaches one as 7 increases. However, since & does not converge to 1
for any fixed 7, the usual test statistics for testing that a = 1, such as T(a - 1) or
the t-statistic on & would eventually reject the null hypothesis of a unit root.
Nevertheless, added to the general poor power properties of tests for a unit root
against stationary alternatives is now the consideration that the limit of & is
inflated above the true first—order correlation coefficient of the stochastic part.

The simulation experiment along with the asymptotic result point to the
need to develop alternative statistical procedures that could distinguish a process

with a unit root from a stationary series around a deterministic function with a
break.



3. TESTS WHICH ALLOW FOR A CHANGE IN MEAN

In this section, we extend the Dickey—Fuller testing strategy to ensure a
consistent testing procedure when a time series is subject to a shift in its mean. We
shall present several ways to do so , all of which are asymptotically equivalent, and
discuss the main differences between each.

Consider first subtracting a mean from the raw series {yt} by allowing a
change at time Tp. Let {§,} be the residuals from a regression of y, on a constant
and DU,. Furthermore, let & be the least squares estimator of a in the following

regression :
=09, +8 (t=1,...,T) (6)

Up to this point the extensions from the no break model are straightforward
enough. However, matters are not so simple concerning the distribution of the
statistics of interest, namely the normalized bias T(& — 1) and the t-statistic for
testing the null hypothesis that a = 1, t . Needless to say, the only manageable

analytical distribution theory is asymptotic in nature. But two features are added
over the standard Dickey—Fuller approach : a) the presence of the extra regressor
DU, and b) the split sample nature of this extra regressor. To this effect we derive

the asymptotic distribution of T(& - 1) and bz, under the null hypothesis of a unit
root. As in Section 2 we require that the break point TB increases at the same rate
as the total sample size T. Again for simplicity , it is assumed that TB=AT with
both T and Tp integer—valued.

The method of proof is similar to that of Phillips (1987) and Phillips and
Perron (1988). We use weak convergence results that hold for normalized functions
of the sum of the innovations when the latter are assumed to satisfy some
appropriate "mixing conditions". The limiting distributions obtained under this
general setting are then specialized to the i.i.d case. The asymptotic distribution in



the i.i.d. case are evaluated using simulations of functionals of Wiener processes and
critical values are tabulated. We then show how the results can be extended to
innovations {et} that follow the general ARMA(p,q) process .

We let w(r) be a unit Wiener process defined on C[0,1] , the space of all real
valued functions defined on the interval [0,1] , and 0% = limqp ooE[T"IS%],

Sp= 2}‘et and o = limT_’ooE[T'lil}‘e%]. Denoting by "=" weak convergence in

distribution, then for0 < A < 1:

T(a-1)= H/K (7)
b= (o/o,) B/AL-NK]Y? (8)
where H = [(1-0)3/2] [w(1)? - 63/02 ] - (1-Nw(1) f § w(z)dr

+ [w(1) - W] [ f§ wx)dr =2 f g wir)dr]
and
K = (-0 [ w(n)ldr- [} w(r)dr]? - (1A § wir)dr)?

+2(1-3) [ § wr)de [} wr)dr

The method of proof is similar to that of Perron (1988a) and is therefore
omitted. Details can be found in the working paper version of this study available
upon request. Equations (7) and (8) provide a representation for the limiting
distribution of the normalized least-squares estimator and its t—statistic. These
limiting distributions are functions of the parameter A, the ratio of the pre-break
sample size to total sample size. It is easy to verify that when X is either 0 or 1, the
limiting distributions are given by :

T(a-1)= H' /K’

tz = (o/a,) H’/(K’)ll2



where H =1/2 [w(l)2 - o3/o?] - w(l)fé w(r)dr

and K’ = f(l) W(r)2dr - [f(l) w(r)dr]2

These latter asymptotic distributions were derived by Phillips and
Perron (1988) in the specific case where no dummy variables are included. When
A=0.5, the asymptotic distributions in (7) and (8) also correspond to the asymptotic
distributions of the statistics T(a& d " 1) and 7 ud when d=2 which have been

analyzed by Dickey, Hasza and Fuller (1984) in the context of testing for a seasonal
unit root in univariate time series.

The expressions for the limiting distributions in (7) and (8) depend on
additional nuisance parameters, apart from A, namely o2 and aé. As in Phillips

(1987) and Phillips and Perron (1988), o2 is the variance of the innovations and o2

is , in the case of weakly stationary innovations, equal to 27f(0) where f(0) is the
spectral density of {e,} evaluated at frequency zero. When the innovations {e} are

martingale differences, o2 = o? and the limiting distributions are invariant with

respect to nuisance parameters, except A.

Therefore when o2 = aé , percentage points of the limiting distributions can

be tabulated for given values of A. Furthermore, in this case, as pointed out by an
associate editor, the limiting distributions are symmetric around A = 0.5. Hence, the
asymptotic distributions are the same for A and (1 —A) and only one set of critical
values needs to be tabulated. To see this it is more useful to write the asymptotic
distributions as (with 02 = 02 ) :

T(a-1)= H*/K* and t, = H¥/(A(1 - \NK*)/2

2

‘where H* = A N +(1-,\)N2 and K* = A D, +(1—A)2D . with

N, = f r)dw,(r) , (1) d( )2dr , w. fO r)dr is the
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demeaned version of the Wiener process w;(r) ; and w,(r) , w,(r) are independent

Wiener processes. Hence, the limiting distributions involve linear combinations of
functionals of independent Wiener processes , the weight of the linear combination
depending on the ratio A. The asymptotic distributions are also symmetric in the
general case where o? ¢ o2 if additional conditions are imposed on the limiting

variances in each subsamples.

Tables 3 and 4 present selected percentage points that permit hypothesis
testing. The critical values in the asymptotic case are obtained via simulation
methods as in Perron (1988a). We use 20,000 replications of the functionals involved
in the limiting distribution (7) and (8). The reader is referred to that paper for more
details. To assess the adequacy of the asymptotic approximation we have also
included in these tables critical values of T(& - 1) and t in the finite sample case.

These were obtained using 5,000 replications of (6). In general the asymptotic
distribution is an adequate approximation to the finite sample distribution.

Several features are worth mentioning with respect to these critical values.
First, as expected, for a given size of the test, the critical values are larger (in
absolute value ) than the standard Dickey-Fuller critical values in the left tail of
the distribution (see Fuller (1976)). One would therefore expect a loss in power
when the alternative is a stationary process. This feature could imply that when A is
close to 0 or 1 , a more powerful testing procedure could be obtained by applying
the Dickey—Fuller statistics on the larger sub—sample. A case in point is the example
of the Grilli-Yang commodity price index discussed in the Introduction. As Table 1
showed , the unit root hypothesis is easily rejected using the 1921-1983 sample
(with a p—value lower than 0.01). As we shall see in the next section, one can still
reject the unit root hypothesis using a test allowing for a changing mean but at a
lower significance level (the exact p—value depending upon the statistic used).

Second, again in the left tail of the distribution, the critical values attain a
- maximum (in absolute value) around the value A=0.5, i.e. for a break at
mid-sample. Critical values of the statistic are smallest when A is close to 0 or 1.
This is to be expected since as previously mentioned, the critical values are identical
to those of Dickey and Fuller when A = 0, 1.
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These sets of results can be used to perform hypothesis testing. One simply
picks the critical value corresponding to the sample value of A at the chosen
significance level. Since we only provide critical values for a selected grid of A’s, the
procedure suggested is to choose the critical value corresponding to the value of A
nearest its sample value, i.e. TB/T. Given that the differences in the critical values

over adjacent values of A in the tables are not substantially different, this procedure
should not produce misleading inferences.

3.1 Extensions to more general error processes

Inferences based on regression (6) with critical values given in Tables 3 and 4
are valid only in the case where the innovation sequence {e,} is uncorrelated. When

there is additional correlation, as would often be expected, extensions are necessary.
The first extension concerns the way in which the dynamics of the process are
reflected in the change in the mean of the series. Insights into this problem can be
obtained using the literature on specification of time series processes in the presence
of outliers (see, e.g., Tsay (1986) and Tiao(1985)). As stated in equations (2) and
(3) the model corresponds to the case of an "additive outlier". In the case of a unit
root process , there is a single outlier at time TB which instantaneously changes the

level of the series in a permanent way. In the case of a stationary process, there is
also an instantaneous change in the level of the series that is permanent. This
implies that the change in the mean of the process is not affected by its dynamics.

On the other hand , the change in the mean of the series need not be
instantaneous and may be affected by the dynamic specification of the noise process.
In analogy with the literature on outliers in time series such a case can be modeled

by an "innovational outlier" model. Under the null hypothesis this model takes the
form :

7, =¥,y + AL TBL) vy + D(TB), ] (t=L..,T) (9)

where we specify an ARMA(p,q) process for e, of the form A(L)e, = B(L)v, with
A(L) and B(L), pth and qth order polynomials in L, respectively, and v~ ii.d.
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(0, 02). Under the alternative hypothesis that the process does not contain a unit

root , the process (3) becomes :

y, =+ AL)IB(L) [v, + U] (t=1,..T) (10)

Equations (9) and (10) specify that the change in the mean of the series is not
instantaneous but depends upon the dynamic specification of the error process. The

immediate impact of the change is given by < and the long term change is
-1
A(1) "B(1)y.

The rest of this section specifies the appropriate testing procedure to be used
in what we shall refer to as the "additive outlier model" and the "innovational
outlier model". In each case, however , the asymptotic distributions of the test
statistics are the same and require only the critical values in Tables 3 and 4.

3.2 The "additive outlier model".

The first approach adopts the procedure suggested by Dickey and Fuller
(1979) and Said and Dickey (1984) which adds extra lags of the first differences of
the data as regressors in equation (6). This extended framework is characterized by
the following regression (again estimated by OLS) :

§,=af,_; + z“J?=lchyt_j +v, (t=k+1,...,T) (11)
where Aj'rt =¥, - ¥4

In the above representation , @ is the sum of the autoregressive coefficients
and the test is again that @ = 1. The parameter k specifies the number of extra
regressors added. In a simple AR(p) process, k = p. In a more general ARMA(p,q)
process with p and q unknown, k must increase at a controlled rate with the sample
size. We denote by a* the OLS estimator of o obtained from regression (11) and by
b+ its associated t-statistic for testing the null hypothesis that & = 1. Arguments

similar to those developed by Said and Dickey (1984) can be used to show that the
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limiting distribution of the t-statistic t ¥ is the same when the innovation sequence
is an ARMA(p,q) process and regression (11) is used as it is when the t—statistic by

from regression (6) is used and we have i.i.d errors, provided k increases at a
suitable rate with the sample size. The reader is referred to Said and Dickey (1984)
for the exact set of conditions under which this equivalence holds.

The second approach considers extensions to the procedure suggested by
Phillips (1987) and Phillips and Perron (1988). It is useful first to write the limiting
distributions in (7) and (8) in a different, more compact form. To do so we adopt
the framework suggested by Ouliaris, Park and Phillips (1988). Define w*(r) to be a
stochastic process on C[0,1] , the space of all real valued continuous functions on the
interval [0,1], such that w*(r) is the projection residual of a Wiener process w(r) on
the subspace generated by the functions {1, du(r)} where du(r) = 1ifr > A and 0
otherwise. Adopting this notation, an alternative representation of the limiting
distributions in (7) and (8) is given by :

T(a-1) = (f 5 wh@)dw() + 6)(f§ w*@)dr) ™
1= (00 )([ E wH(e)dw(r) + 6)( [ wr(r)ar) /2
where § = (o2 - g2)/(20?).

Now define 42 and &é to be, respectively, any consistent estimator of o2 and
o2 based on the estimated residuals from regression (6) (see, among others, Perron
(1988b) for a discussion about the construction of such estimators ). Also define s%
to be the residual sum of squares from the regression of y, ; on a constant and DU,.

We then define the transformed statistics as :

2(a) = (&~ 1) - (52 - 52)/(283) ()

2(t5) = (5,/8)t - T(32 - 53)/(2354) (13)
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Following Ouliaris, Park and Phillips (1988), it is straightforward to show
that :

2(8) = ([ § wH(D)dw(D)( [ 5 wH(r)dr) ™ (14)
2(t5) = (f L w@aw@)( [} wr)an) /2 (15)

The limiting distributions in (14) and (15) are those whose critical values are
presented in Tables 3 and 4 derived using the representations given by (7) and (8).

3.3 The "Innovational Qutlier Model"

Testing the null hypothesis of a unit root in the "innovational outlier model"
specified by equations (9) and (10) can be achieved by considering the following
regression estimated by OLS :

y, = 4+ DU, + dD(TB), + ay, _, + %=1chyt_j +v,. (16)

We denote by & the OLS estimator of a in (16) and by t, its associated

t—statistic for testing @ = 1. Equation (16) is similar to the two steps regression
procedure given by (6) and the prior detrending . However, it involves only a one
step regression by estimating the trend function and the dynamics of the process
simultaneously. Such a specification implies that the change in the mean of the
series does not occur instantaneously and its effect on the level of A depends on the

dynamics of the process. From standard arguments used in proving (7) and (8) and
the results of Said and Dickey (1984), it is clear that the asymptotic distribution of
t, in (16) is the same as the asymptotic distribution of t x in (11), hence the

critical values from Table 4 can again be used for inferences.
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4. APPLICATIONS AND DISCUSSIONS

We applied our testing procedure to the three series discussed in the
introduction . Results are presented in Table 5 for the statistics t ot Yo Z(@) and

Z(t a) applied to the real interest rate series, the unemployment series and the terms
of trade index series. For the statistics Z(@) and Z(t ) we need consistent estimators

of 02 and ¢2. We used 5 = T_IE’{ét, where &, are the residuals from regression (6).

To construct a consistent estimator of o2 we follow a procedure similar to that of
Newey and West (1987), using a triangular Bartlett window. The statistic takes the
form :

R, -1l T ..
g2=T "51& +2T Y _r) Et=r+1etet—r

where uw(7,{) = 1 - [7/(1 + £)] and ¢ is the truncation lag parameter. Since there is

no general agreement on the appropriate choice of £, we present the results for
various values of this parameter. The parameter k in the construction of the t o and

t, statistics is chosen by a test of significance on the lagged first—differences of the

data in the appropriate regression.

Consider first the ex—post real interest rate series. The sample is 1961:1 to
1986:3 and the "time of break" is 1980:3. Therefore A = 79/103 % 0.8 and from
Tables 3 and 4 the 5% critical values for the Z(&) statistic is ~18.02 and for the
Z(t5), t, and t o+ Statistics it is -3.23. Using the "additive outlier method", the

results are mixed. One can easily reject the null hypothesis of a unit root using
either the Z(@) or Z(t &) Statistics but not with the extended Dickey-Fuller t o The

latter result is however quite sensitive to the value of k chosen. The t o+ Statistic

with k=2 (not reported) yields essentially the same estimate of a* but the
t—statistic jumps to —3.69 which is highly significant. We have reported the results
with k=3 because the third lag of the first—differences was significant using
conventional significance level. Using the "innovational outlier method" the
t—statistic ¢ & is —3.71 which permits rejection at the one percent level. Furthermore
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the estimate of the sum of the autoregressive coefficients is very low at 0.530
suggesting a rather different picture than the one obtained when no break is
allowed.

Consider now the unemployment rate series. The sample is 1948:1 to 1988:3
and the "time of break" is 1974:1. Therefore A = 103/163 % 0.6 and the 5% critical
values are, respectively —18.97 and -3.35 for the normalized least—squares estimator
and its t-statistic. Using the "additive outlier method" the result are again mixed.
Here the extended Dickey—Fuller statistic to* permits rejection at even the 1% level

but, for most values of the truncation lag parameter ¢, the Z(&) and Z(t 5) Statistics

do not permit rejecting the null hypothesis of a unit root. Using the "innovational
outlier method" the unit root hypothesis is easily rejected at even the 1% level.
These results are to be expected given that the smooth transition to a higher mean
for the unemployment series suggests, if anything, that such a change would better
be modeled by an "innovational outlier model". Our results agree with those
reached by Evans (1987) using a similar methodology.

Finally, consider the terms of trade index series. The sample is annual from
1900 to 1983 and the "time of break" is 1920. Hence A = 21/84 = 0.25 and the 5%
critical values for A = 0.30 are -18.55 and -3.30. For this series, the null hypothesis
of a unit root is easily rejected considering the "additive outlier method" with either
of the three statistics Z(a), Z(t Zx) and t 4 . The estimated sum of the autoregressive

coefficients is quite low at 0.498 suggesting a behavior quite different from a unit
root process. The unit root hypothesis is not rejected using the "innovational outlier
method" since the t-statistic is estimated at —2.46. This may be due to the poor
power properties of this testing procedure when a large value of the truncation lag
parameter is used ; here k = 8. However, it is most probably due to the small
sample bias introduced by using an "innovational outlier method" when the
"additive outlier method" appears more appropriate (by inspection of the very sharp
drop in Figure 3). Hence , contrary to Cuddington and Urzia (1989) we would favor
- rejecting the null hypothesis of a unit root for this terms of trade index series.

These applications shows how the unit root hypothesis is sensitive to minor
changes in the specification of the deterministic component of a time series. As in
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the previous study of Perron (1988a) it appears that many macroeconomic time
series are better construed as stationary fluctuations around a deterministic
component which occasionally (but rarely) change in a dramatic way. Only these
one time changes appear to have any permanent effects.

The present study provides critical values for testing for a unit root when a
time series is subject to a more or less sudden change in its mean. It is important to
understand the nature of the postulated behavior needed to implement the test. In
the spirit of the Box-Tiao intervention analysis, we view these changes as
exogenous, i.e. as due to factors other than the stochastic structure of the noise
process. It is therefore part of the maintained hypothesis and must be permitted
under both the null and alternative hypotheses. Inference is conditional on such a
change.

Issues of concern may arise over the choice of the break point TB. Usually,

visual inspection is sufficient since the method is better suited for sudden changes.
However, more formal methods can be developed using, for example, CUSUM
analysis or the behavior of the recursive autocorrelation coefficients. Also, MacNeill
(1978) has presented a methodology for dealing with changes in general polynomials.
His analysis postulates uncorrelated errors in the polynomial regression and hence
cannot be used to address the issue of concern in the present paper, namely whether
the series are characterized by stationary or nonstationary fluctuations around a
possibly changing trend function . While it appears possible to extend MacNeill’s
analysis to allow for serial correlation in the residuals , it is less transparent how it
could be extended to allow for possible nonstationarity of the unit root type. Future
work along these lines is clearly desirable.

The charge of data mining could be raised in that the choice of Ty is

selected after a look at the data and that , in this sense, the inference might be
biased in favor of the alternative hypothesis. However, such an argument overlooks
the fact that the inference is conditional upon such a change and that it is imposed
under both the null and alternative hypotheses. The question that can be answered
using the methodology described here is really in the spirit of the Box-Tiao
intervention analysis : if we choose to overlook a particular event that occurred
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during a very short period , is the remaining noise in the series consistent with the
hypothesis that a unit root is present ?

Since the procedure is conditional upon a given exogenous change, the
method purposefully does not explain such a change nor does it provide a stochastic
structure describing their occurrences. However, for the change to be plausibly taken
out of the noise function, it is preferable to relate it to "major" events that are
known to have occurred and may have caused the structural change in the behavior
of the series. In some of the cases considered in this paper, these major events are
the change in monetary policy by the Federal Reserve in October 1979 for the real
interest rate and the oil price shock of 1973 and the ensuing slowdown in growth for
the unemployment rate ( or the change in monetary policy with respect to higher
rates of inflation that occurred at this time).
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Table 1 : Split and Full Samples Dickey-Fuller Statistics

k

regression: Yy =B+ &yt_l + X 1=161Ayt—i + ét

Series/Period k I tﬁ ! ts
a) Real Interest Rate

1961:1-1986:3 3 0.247 0.91 0.872 -1.51

1961:1-1980:3 3 -0.028 -0.11 0.742 -1.92

1980:4-1986:3 5 7.02 2.04 -0.248 -2.19
b) Unemployment Rate

1948:1-1988:3 9 0.212 2.06 0.963 -2.10

1948:1-1973:4 9 0.473 2.49 0.900 -2.54

1974:1-1988:3 6 0.682 2.26 0.905 -2.33
c) Terms of Trade Index

1900-1983 0 0.019 1.26 0.838 -2.64

1900-1920 4 0.126 1.31 0.784 -0.94

1921-1983 6 0.033 2.13 0.171 -4.15




Table 2 : Mean and Variance of &

Mean Variance
7=0.0 -0.008 0.0100
7=1.0 0.186 0.0131
1=2.0 0.478 0.0065
1=5.0 0.828 0.0006
r=10.0 0.923 0.0001

Note : Empirical mean and variance of & obtained from 10,000 replications,
where @ is the OLS estimate in the regression Vo=h+ay, ; + é,. The
data were generated by : ¥y = 7DUt +e, (t=1,...,100), DU, =1 ift > 50
and 0 otherwise ; e, isi.i.d. N(0,1).



Table 3 : Percentage Points of the Distribution of T(& - 1)

T1.0%  25%  5.0% 100% 90.0% 95.0% 97.5% 99.0%

2=0.1, 0.9
T=50 -21.76 -18.07 -15.04 -12.09 -1.12 -0.33  0.30  0.99
T=100 -21.85 -18.77 -16.14 -13.00 -1.09 -0.28 045  0.98
T=200 -22.32 -18.80 -15.99 -12.72 -1.02 -0.20 035  1.04

=00 —23.79 -19.96 -16.64 -13.36 -1.17 -0.34 027  1.00

2=0.2, 0.8
T=50 —22.95 -19.33 -16.51 -13.68 -1.44 -0.51  0.14  0.78
T=100 -24.19 -20.08 -17.20 -14.33 -1.52 056  0.18 0.9l
T=200 -24.76 2023 -17.05 -1421 -1.37 -053 0.6  1.10
T= -25.03 -21.12 -18.02 -1469 -1.55 -0.61  0.10  0.90

2=0.3, 0.7
T=50 -23.79 2010 -17.04 -1412 -1.81 -0.79 -0.03  0.76
T=100 2478 -20.76 -17.69 -1484 -192 0.8 —0.08 073
T=200 -25.11 -21.01 -18.34 -1506 -1.72 -0.78 —0.01  0.95
T=00 -25.90 -21.66 -18.55 -1537 -1.94 -0.93 -0.14  0.71

A=0.4, 0.6 |
T=50 2433 -19.83 -17.00 -14.40 -2.07 -1.00 -0.32  0.80
T=100 -23.98 -21.09 -18.11 -1506 -2.07 -1.11 -0.27  0.58
T=200 2490 -21.78 -18.50 -1521 -2.13 -1.10 025  0.57
T=00 2621 -22.24 -18.97 -1571 -2.24 -1.19 -0.36 054

A=0.5
T=50 2345 -20.10 -17.50 -1457 -2.18 -1.18 -0.20  0.89
T=100 -25.38 2111 -1841 -1520 -2.34 -129 -037  0.54
T=200 -25.10 -21.39 -18.50 -1541 -2.27 -1.17 -0.32  0.71
T=00 -26.07 -22.06 -18.95 -1576 -2.39 -1.35 -0.52 038

Note : The entries for A = 0.5 and T = oo are taken from Dickey, Hasza and Fuller (1984),
Table 6 . The other entries corresponding to T = oo were obtained using 20,000
simulations based on the asymptotic distribution (7). The remaining entries,
corresponding to the finite sample cases, were obtained by directly simulating

T(&— 1) from (6). In each cases , 5,000 replications of a unit root process with i.i.d.
N(0,1) innovations were used.



Table 4 : Percentage Points of the Distribution of ts

0% 2.5% 50% 10.0% 90.0% 95.0% 97.5% 99.0%

|—-‘|F

A=0.1, 0.9
T=50 -390 -346 -3.12 276 051 015  0.15  0.48
T=100 -3.77 -340 -3.09 278 051 -0.15 021  0.60
T=200 -358 -3.32 -3.06 -275 048 -0.14 021  0.57
T=00 -3.67 -3.37 310 278 -0.55 -0.17  0.14  0.53
A=0.2, 0.8
T=50 404 -365 -3.30 292 -060 024 006  0.36
T=100 -3.86 -354 322 291 -064 025 005 045
T=200 -3.85 -3.50 -3.20 289 063 -0.24 007  0.52
=00 -3.80 -349 -3.23 292 -067 -028 004 044
A=0.3, 0.7
T=50 4.14 -376 -339 -3.05 -0.66 -0.32 -0.01  0.34
T=100 -4.05 -366 -3.33 -3.02 -0.73 035 -0.03 034
T=200 391 -358 -334 -300 071 033 -0.00  0.39
T=00 38 -3.56 -3.30 299 -0.76 -0.40 -0.06  0.31
A=0.4, 0.6
T=50 411 -371 -343 -3.08 -0.74 -0.37 -0.11  0.26
T=100 403 -368 -338 -305 -0.74 -042 -0.10  0.23
T=200 395 -365 -334 -3.02 076 -043 -0.11  0.32
T=00 -3.92 -360 -3.35 -305 -0.81 -046 -0.15  0.22
A=0.5
T=50 4.09 -3.72 -345 -3.08 077 041 -0.07  0.31
T=100 404 -370 -3.38 -3.08 -0.82 -049 -0.15 - 021
T=200 412 -361 -3.34 -303 079 -045 -0.11  0.30
T=00 -390 -360 -3.34 -3.04 084 050 020 0.15

Note : The entries for A = 0.5 and T = oo are taken from Dickey, Hasza and Fuller (1984),
Table 7 . The other entries corresponding to'T = oo were obtained using 20,000
simulations based on the asymptotic distribution (8). The remaining entries,
corresponding to the finite sample cases, were obtained by directly simulating te

from (6). For each cases, 5,000 replications of a unit root process with i.i.d. N(0,1)
innovations were used.



Table 5 : Full Sample Unit Root Tests with Changing Mean
a) "Additive Outlier Method"

Regressions : y, = [ + WU +5, 5§, = a*i't + 2:li(=1c=i‘A5'1: + e’%‘

Series

at t

Interest Rate 103  0.079 0.03 5.56 9.45 3 0.632 -2.68
Unemployment Rate 163 4.77 40.23 247 12.54 6 0.875 -3.87*
Terms of Trade Index 84 0.412 16.59 -0.37 -12.73 1 0.498 -5.25%*
"Phillips-Perron Statistics": (=1 {=6 (=12 (=18 (=24
Interest Rate  Z(&) -69.32*  -90.09* -114.12* -128.55* -141.97*

yA t&) -7.35* -7.87* -8.51* -8.90* -9.25%
Unemployment Z(&) -18.83* -21.82* -16.76 -12.50 -11.08
Rate Z t& -3.05 -3.28 -2.87 -2.47 -2.32
Terms of Trade Z(& -35.57*  -27.41* -21.26* -19.69* -16.93
Index Z ta) —4.64* —4.23* -3.92* -3.86* -3.78*

b) "Innovational outlier method"

Regression : y, = 4 + 7DU, + &D(TB)t +ay, ; + Z]i‘zléiAyt_i + &

t

Series k i t i ¥ t 5 d t a ts,
Interest Rate 2 0.003 0.01 278 310 0.130 0.05 0.530 -3.71*
Unemployment 9 0.538 3.74 0.284 3.19 0.079 0.25 0.886 -3.84*
Rate

Terms of Trade 8 0.173 2.57 -0.162 -2.69 -0.424 -3.87 0.652 -2.46
Index

Note : A stared entry indicates a statistic significant at the 5% level.
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