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ABSTRACT

There are a number of important models where estimators of parameters of
interest depend on predicted values for a conditional expectation. Examples
include the residual variance, microeconometric expectations models,
generalized least squares corrections for heteroskedasticity of unknown form,
efficient instrumental variables estimation of nonlinear models, and
estimation of Euclidean parameters of additive semiparametric regression
models. The purpose of this paper is to analyze the general asymptotic
properties of sample averages of functions of a nonparametric regression, and
show how these results are useful in these examples. The specific
nonparametric regression method considered here is series estimation, e.g.
polynomial regression. New results on expectations models, heteroskedasticity
corrected generalized least squares, and additive semiparametric regression

models are given.
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1. Introduction

There are a number of important models where estimators of parameters of
interest depend on predicted values for a conditional expectation. A
statistical example is a functional of the residuals of a nonparametric
regression, such as the residual variance. An econometric example is
microeconometric expectations models, such as those of Manski (1988).

Examples also include generalized least squares corrections for heterosked-
asticity of unknown form (HGLS), as in Carroll (1982) and Robinson (1987),
efficient instrumental variable estimators of nonlinear models, as in Newey
(1989a), and estimation of the Fuclidean parameters of the additive
semiparametric regression (ASR) model of Engle, Granger, Rice, and Weiss
(1984), as in N. Heckman (1986), Rice (1986), Schick (1986), Robinson (1988),
Chamberlain (1986), and Andrews (1988). The purpose of this paper is to
analyze the general asymptotic properties of sample averages of functions of a
nonparametric regression, and show how these results are useful in these exam-
ples. The specific nonparametric regression method considered here is series
estimation, e.g. polynomial regression. New results on specific estimation
methods include asymptotic distribution theory for estimators of microecono-
metric expectations models, a series based HGLS estimate and a proof of its
asymptotic efficiency, and a generalization of Chamberlain’'s (1986) series
estimator for ASR to nonlinear models and a proof of its asymptotic normality.

Related work on estimators of parameters of interest that depend on
series estimates of conditional expectations includes Chamberlain (1986),
Andrews (1988), and Newey (1987, 1988, 1989a). The estimators considered here
are of analogous form, although the regularity conditions are different than
those of Newey (1987, 1988) and Andrews (1988) in an important way. Because
the estimators here depend only on the regression function, and not, say, on

its derivatives, and because this regression is estimated from the same
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observations as the parameters of interest, it is possible to do without any
assumption on the magnitude of the series terms or the smallest eigenvalue of
their second moment matrix. Because of this feature, few conditions have to
be imposed on the distribution of the regressors and on the form of the
series. For example, the regressor distribution could be discrete with
infinite support. 1In this respect, the results here are like those of
Chamberlain (1986) and Newey (1989a), although the assumptions and conclusions
here are stronger than those of Chamberlain (1986). Here vn-consistency is
shown, unlike Chamberlain’s (1986) ASR results.

A fundamental theoretical result of this paper is the limiting
bdistribution of a sample average that depends on nonparametric regression
estimates. Intuitively, the form of this distribution should not depend on
the form of the nonparametric regression estimator, e.g. series rather than
kernels. Therefore, it is of some interest to discuss this result in a wider
context than series estimates. Such a discussion is given in Section 2, where
the efficient influence function is derived, in the sense of Koshevnik and
Levitt (1976) and Pfanzagl (1982), for the expectation of a function fhat
depends on unknown conditional expectation. If the distribution of the data
is unrestricted, then the efficient influence function gives the limiting dis-
tribution of any estimator satisfying certain régularity conditions; e.g. see
Bickel, Klaassen, Ritov, and Wellner (1989) or Newey (1989b) for exposition.

The remainder of the paper focuses on series estimates of conditional
expectations. Section 3 discusses series nonparametric regression and some
of its asymptotic properties. Section 4 presents general consistency and
asymptotic normality Theorems for sample averages of functions of the
predicted regression and parameters of interest, verifying the conjecture of
Section 2. Section 5 applies these results to derive asymptotic distribution

theory for the examples. Section 6 discusses possible extensions.



2. The Efficient Influence Function.

The fundamental theoretical results of this paper concern the limiting

behavior of an object of the form

(2.1) A (8) = zi’__‘la“(zi,s,é(xi,s))/n,

where z is a data observation from an i.i.d. sequence (z

i .,zn), B a

T
vector of parameters with true value BO, and é(xi,B) is a nonparametric
estimate of the conditional expectation go(x,B) = E[w(z,B,nO)lx] for a
vector of functions w(z,8,n). The estimates é(xi,B) are assumed to be
calculated from observations w(zi,B,ﬁ), Xy (i=1,...,n), where 7 is an
estimator of no. The function an(z,B,g) depends on the sample size n in
order to allow for the imposition of smoothness by trimming, which will be
useful in some of the examples. For notational simplicity, an(z,B,g) will be
taken to be a scalar in much of Sections 2, 3, and 4; results for the vector
case can be obtained by applying the scalar results to each component.

It is easy to formulate a conjecture concerning the limiting value of
An(B). As long as g(x,B) is consistent for go(x,B) in an appropriate sense,
the law of large numbers would suggest that An(B)~Kn(B) = op(l), where
Kn(B) = E[an(z,B,gO(x,B))]. However, finding the limiting distribution of
Vﬁ[An(BO)—Kn(BO)] is more difficult, because estimation of go(x,B) might
affect this distribution.

One conjecture for the limiting distribution makes use of the
semiparametric asymptotic variance bound for a functional Hy = E[a(z,go(x))],
where go(x) = go(x,Bo) and the presence of 7 1is ignored. When this
functional is pathwise differentiable in the sense of Pfanzagl (1982), and
a certain linearity condition is satisfied, then there exists a function d(z)

such that the bound is E[d(z)Z]. In the efficiency literature d is
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referred to as the efficient influence function.

There is an important result concerning the relationship of the
asymptotic distribution of an estimator ﬁ of Ho and the efficient
influence function. Suppose that p = Zigla(zi,é(xi))/n satisfies Vﬁ(ﬁ—uo)
= Zizlw(zi)/VH + op(l) for some function ¢(z) with E[y] = 0 and E[wzl <
o. Then by the central limit theorem ﬁ Wwill be asymptotically normal with
variance E[WZ]. If the distribution of the data is unrestricted and ﬁ is
locally regular, then y(z) = d(z); e.g. see Newey (1989b) for exposition.
Therefore, if the assumption of an unrestricted distribution is appropriate,
one would expect that the asymptotic variance of ﬁ is E(dZ].

The efficient influence function can be calculated by a projection
argument. Let 6 be the parameters of a smooth parametric submodel, which
is a model that passes through the truth (the true distribution corresponds to
some 90), and satisfies certain regularity conditions (including mean-square
differentiability of the square-root of the likelihood). In such a submodel
the parameter of interest u, which here is the functional E[a(z,go(x))],
will depend on 6, 1i.e. for each value of 6 it will take on a corresponding
value p(8). Let S6 be the score for a parametric submodel at the truth,
which can be thought of as the derivative of the log-likelihood for a single
observation. (Here and henceforth the =z argument may be suppressed for
notational convenience.) A pathwise differentiable functional is one where
there exists d(z) such that for all regular parametric submodels p(8) is
differentiable at 8. and au(eo)/ae = E[dSe]. Define the tangent set ¥ to

0

be the mean square closure of the union of random vectors of the form c’Se,

where c¢ 1is a conformable constant vector and S9 is the score for a regular

parametric submodel. That is

$={s: Ele®] < w, 3 cj Sy wWith lim_ El(e-c’s; )% = 0)



The efficient influence function is the projection d of d on ¥ in the
Hilbert space of random vectors with inner pfoduct <ala> = E[s2], which
exists as long as ¥ 1is linear.

When the distribution of 2z 1is unrestricted, then one would expect that
¥ ={s: E[Azl < o, E[a] = 0}; the only restriction on the form of & should
be the usual mean zero property of scores. When the tangent set takes this
form the efficient influence function is simply d =d - E[d].

To apply this calculation to the model at hand, it is necessary to find
d for the functional E[a(z,go(x))]. To do so, note that for a parametric
submodel, g(x) will depend on 6, as g(x,8) = Ee[wlx], where E9[°]
denotes the expectation for the disfribution indexed by 6. Thus, u(8)
= EB[a(z,g(x,B))]. Assuming the order of differentiation and integration can
be interchanged (e.g. see Lemma 7.2 of Ibragimov and Hasminskii (1981)),
g(x,8) will be differentiable with derivative ag(x,eo)/ae = E[wSe(wlx)’!x],
where Se(wlx) is the score for the conditional density of w given x. Let

G(x) = aE[a(z,g)Ix]/agIg=g (x)’ where g denotes a vector of real numbers,

0
being a possible value of go(x). It follows by the chain rule that

(2.2) au(eo)/ae = { 8Ee[a(z,g0(x))]/ae + aE[a(z,gO(x,G))]/ae }|9=90,

= E[a(z,go(x))SO] + E[G(x)’ag(x,eo)/ael = E[aOSé] + E[G(x)’wSe(wlx)],

where aO(z) = a(z,go(x)). Under suitable regularity conditions, there will
be a decomposition of the density into products of marginal and conditional
densities, and a corresponding decomposition of the score as Se = Se(x) +
Se(wlx) + Se(Elx,w), where Se(x) is the score for the marginal density of
x and Se(ilx,w) is the score for the conditional density of those elements

z of 2z other than x and w. Also, E[Se(Elx,w)Ix,w] = E[Se(wlx)lx] = 0,

so that E[G(x)’(w—go(x))Se(Elx,w)] = E[G(x)’go(x)Se(wa)] = 0. Furthermore,
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E[G(x)’(w—go(x))Se(x)] = 0, so that by equation (2.2),
6u(90)/69 = E[aOSe] + E[G(x)'(w-go(x))Se(wlx)]

= E[{aO + G(x)’(w—go(x))}SB].

Thus, the functional u will be differentiable with d = ao(z) +

G(x)’[w—go(x)], so that the efficient influence function is

(2.3) d =d - E[d] = ao(z)—E[aol + G(x)’[w-go(x)].

Then by the previous argument, it should follow that y(z) = d(z), i.e.,
~ _ n _
(2.4) vn(u o) = Zi=1{a(zi,go(xi)) E[a(z,go(x))]}/VH

+ Ly0yG0x) [w =g (x, ) IVR + o, (1).

In the next section it is verified that this equation does hold for series
estimates under appropriate regularity conditions, when ﬁ is not present.
In some cases the formula will have to be modified to account for the presence
of ﬁ.

The form of equation (2.4) is of some interest. If the estimation of g
did not affect the limiting distribution of ﬁ, then one would expect to
find that ﬁ was asymptotically equivalent to the first term following the
equality. The second term is an adjustment that accounts for the estimation

of g(x). Note that this second term will be zero if 0 = G(x) =

6E[a(z,g)|x]/aglg=g0(x).



3.  Series Nonparametric Regression and Its Properties.

The specific type of nonparametric regression method considered here is
series estimation. Such estimates have a long history in statistics, and have
recently received attention in econometrics; e.g. Gallant (1981). Series
estimates of a conditional expectation go(x) = E[w|x], where w 1is a scalar

for now, make use of the first K terms,

(3.1) PR(x) = (py (x),...,p (x))7,

of a sequence of functions (pl(x), pz(x), ...). For notational convenience,
the terms are restricted to be independent of K and n, although it would
be straightforward to weaken this assumption. The estimate is calculated from
observations W, and Xy (i=1, ..., n), as the predicted value obtained
from the regression of w, on PK(xi). Let P = [PK(xl),...,PK(xn)]’, where
the K superscript for P is suppressed for convenience, and let w =

(wl,...wn)'. A series estimate takes the form

(3.2) g(x) = P*(x)" (P'P) P’ w,

where B denotes a generalized inverse of a matrix B.

The presence of the generalized inverse allows for perfect multicol-
linearity among the columns of P. One generalized inverse corresponds to the
deletion of redundant columns of P and running the regression on the
remainder, as is done by some regression software. It should be noted that
g(x) of equation (3.2) may not be invariant to the choice of generalized
inverse, although é(xi) will be.

One example of g(x) 1is based on power series. Let the dimension of x
be r. Lét A denote an r-dimensional vector of nonnegative integers and

A A

let xA = (xl) 1---(xr) " denote a product of powers of the components of x.
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A basis sequence for power series would take the form

A(m)

(3.3) pm(x) = x (m=1, 2, ... ),

with distinct A(m). A more robust alternative, which puts less weight on

outlying observations in x, can be obtained by weighting by a function w(x)

that is small for large values of x and/or replacing each component Xy of
x with a one-to-one, bounded function v(xg), such as V(XZ) =
exp(xe)/[1+exp(x£)]. For v(x) = (v(xl),...,v(xr))’ the resulting sequence is
(3.4)  p () =edlvx* ™), m=1, 2, ).

Trigonometric series are another example. Here x may have to be transformed
to lie in (0,27)". See Gallant (1981) for formulas.

The asymptotic distribution results to follow will make use of a
convergence rate for the average distance between the estimated and true
sample regression values. To obtain such a convergence rate it is essential
to impose an approximation rate for the the conditional expectation go(x) by

the series terms.

Assumption 3.1: There exists =m, such that (E[Igo(x)—PK(x)’jtKlZ])1/2 =

K
O(K_c) as K — w.

Primitive conditions for this assumption will entail restrictions on the
support of x and smoothness conditions on go(x). . In the univariate x
case this assumption will hold for power series if the support of x 1is a
compact interval and go(x) is ¢ times continuously differentiable; see
Powell (1981, Theorem 3.2). A literature search has not yet revealed an
analogous result for the multivariate case. Nevertheless, if go(x) is
restricted to be analytic with geometric order bounds on the magnitude of
derivatives, then an elementary Taylor expansion argument can be used to
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obtain an approximation rate. Let v = v(x) and x—l(v) denote the inverse
function. Denote the partial derivatives of a function f(v) on the range of
v(x) by

A AL A A A
Df(v) = (4 /8v, 7).+ (8 r/avr’)f(v),

where A = (Al,'~~,kr) is a r-vector of nonnegative integers. The order of
the derivative is |A| = z%illxel. Also, let O0O(K) = maxm<KlA(m)l denote the
maximum order of the power series terms included in PK(x). The following

result appears as Lemma 3.2 of Newey (1989a):

Suppose that O(K) = 0(a(K)) and that there is a set € such that for all

g(x) e g gqlv) = w(x—l(v))—lg(x_l(v)) can be taken to have a compact convex

domain V(g) containing the support of v(xi). Also suppose that there

exists bounded V 2 uge§V(g) that w(v) 1is bounded and there exists C such
A , A Al

that for all A, D"g(v) exists and sngegsupveV(g)lD g(v)] = C'"'. Then

. 4 Koo veo 27,172
llmK—emK supgeginf"K{E[(g(xi) P (xi) nK) 1} =0 for all ¢ > O.

Primitive conditions for an approximation rate for Fourier series follow
from Corollary 1 of Edmunds and Moscatelli (1977). If the support of x 1is a
compact, convex subset of (O,2n)r, and go(x) is d times continuously
differentiable, then Assumption 3.1 will be satisfied for ¢ = (d/r) - € for
any € > 0. |

In what follows, Assumption 3.1 wili be taken to be a primitive
condition, rather than one of these other smoothness hypotheses. This feature
of the paper will allow the results to apply to different types of series and
under more general approximation theorems than those currently available.

Assumption 3.1 delivers the following convergence result for é(xi):



Theorem 3.1: If Assumption 3.1 is satisfied and E[lwlq] <w for q > 2 then

~ 2 2-v)/ -2
(3.6) L7180 80201 %/m = 0 (2 ) 4 0, (K25,

Furthermore, if Var(wilxi) is bounded then the (2-v)/v = (2/v)-1 term can

be replaced by -1.

All theorems are proven in the Appendix. The two terms following the equality
in (3.6) correspond essentially to variance and bias. In the case where

n1/(2§+1)

Var(wilxi) is bounded, choosing K(n) = balances the two terms,

yielding the best convergence rate n‘ZC/(2§+1)

for I,0 [8(x,)-g(x,)1%/n
that is obtainable from equation (3.6).

The asymptotic distribution results also make use of a convergence rate
for Zizluin[é(xi)-go(xi)]/n’ where E[uin|X1] = 0. For brevity, details are
reserved to the appendix.

Series estimates depend on the choice of the number of terms K, so
that it is desirable to choose K based on the data. With a data-based
choice of K, series estimates have the flexibility to adjust to conditions
in the data. For example, one might choose K by delete one cross
validation, by minimizing the sum of squared residuals Zizl[wi-é_i(xi)lz,
where é_i(x) is the estimate of the regression function computed from all
the observations but the ith. The results to follow will allow for K to be

data-based in the following way:

Assumption 3.2: K = K(zl,...,zn,n) satisfies K—l = op(n_w) and K = op(nr),

and ¢ > 1 in Assumption 3.1.

The values of ¥ and T will be specified in the results to follow. The
¢ > 1 hypothesis is useful for obtaining a convergence rate for the series

bias under random choice of K; see Lemma A.5 of the Appendix.
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There is reason to think that cross-validated & can automatically
satisfy the growth rate hypotheses in the results to follow. - If the rate of
Theorem 3.1 is the best attainable, and cross-validated K behaves
approximately like the optimal one when Var(wilxi), is bounded, as is true
for kernel nonparametric regression, see Hardle et. al. (1988), then K
converges to zero at the same rate as 1/n2c+1, implying Assumption 3.2 is

satisfied for

(3.7) ¥ = 1/7(28+1) - €, T = 1/(2¢+1) + e,

for any € > 0. These values will lie within the bounds imposed in the
Theorems of Sections 4 and 5 if ¢ 1is sufficiently large and high enough
order moments are bounded. Of course, this discussion is speculative, since
K has not yet been shown to satisfy Assumption 3.2, and verification of this

conjecture is beyond the scope of this paper.

4, Asymptotic Distribution Theory for Regression Functionals

A series regression estimator for the functional in equation (2.1) can
constructed as follows. Let P be as defined above for a possibly random K
= K, Qi(B) = W(zi,B,ﬁ), and w(B) = (GI(B),...,Gn(B))’. The estimate

é(xi,B) considered here takes the form

(4.1) glx,,B) = pK(xi)'(p'p)‘p'Q(B).

Note that this estimate involves no sample splitting. All the observations,
including the ith, are used in the computation of é(xi,B), and the same

data that appear in An(B) are used in the estimation of g. The results
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depend on the absence of sample splitting. The use of an in sample regression
estimate allows on to use simple properties like Theorem 3.1, that do not
require nonsingularity of P‘P. Also, if the estimate of the functional
depends on different data than é(x,B), then the limiting distribution of
An(Bo) could be different if G(x) = 0.

In order to present results it is necessary to introduce some regularity
conditions. The following condition imposes smoothness restrictions and
dominance conditions on w(z,B8,73). Let g8 B, and 7 subscripts denote
partial derivatives with respect to each of these arguments, and for a matrix

B let UBN = [trace(B’B)]./2.

Assumption 4.1: There are q > 2, dw(Z)’ € > 0, and neighborhoods B, N
of BO’ M respectively such that for B, B € B and n € N,
E[Hw(z,B,nO)Hq] <o, lw(z,B,n)ll = dw(Z)’ w(z,B,m) 1is continuously
differentiable in =7 with uwn(z,B,n)n =d (2), Iw(z,B,n)-w(z,B8,0)l =

,.‘ € ~ o~ ~ € ,~ € 2
dw(z)HB-BM , Hwn(z,B,n)-wn(z,B,n)H = dw(Z)("B-B" +in-nil "), E[dw(z) ] < o,

Also, Vﬁ(ﬁ-no) = Op(l).

In addition to deriving the asymptotic distribution of VH[AH(BO)—KH(BO)]

it will be useful to have conditions for the uniform convergence result

(4.2) supBEBIAn(B)—Kn(B)I = op(l), Kn(B) is equicontinuous.

Such results are used to show consistency for estimators of parameters of
interest and for asymptotic variances. Here a pair of uniform convergence
results will be given, one that restricts w(z,8,7) to be independent of B
and the other of which relaxes this restriction at the expense of stronger
smoothness restrictions on an(z,B,g). These results both use the following

condition. Let s denote the dimension of w.
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Assumption 4.2: B is compact, for each B e B, E[|an(Z.B,gO(X,B))Il+E] =

0(1) for € > 0, and an(z,B,g) is continuously differentiable in g € R>.

The first uniform convergence rate depends on the following hypothesis:

Assumption 4.3: w(z,B,7) does not depend on B and there exists djn(Z)’ J

=123, r>0, v >2, r, e >0, such that for all B e B, Hag(z,B,g)H <
n ~ n ~ €

dln(Z) + dzn(z)ugu, la (z,B,gO(x))—a (z,B,gO(x))1 = d3n(z)"B-B" ,

’

2,,172 _ r v/ 1w r _
(E[dln(z) 1) = 0(n), (nE[dZn(z) 1) = 0(n ), E[d3n(2)] = 0(1).

The growth rate conditions for moments of dominating functions given here
will have an impact on the allowed growth rates for K. Also, it should be
noted that a strong condition is imposed on the magnitude of ag(z,B.g) in
this Assumption, namely that HaZ(z,B.g)H grows no faster than linearly in
lgll. This Assumption rules out some functional forms, e.g. an(z,B,g) cannot
be a cubic function of g. Nevertheless, it would be possible to modify the
results to apply to a larger class of functions by imposing a boundedness
constraint on é(xi,B) that is relaxed as the sample size grows, which is
done below for estimation of asymptotic standard errors. Such a
generalization will not be given here, because of the additional notational
complexity it would require and because it is not needed for the examples.
Similar remarks apply to the other hypotheses of this Section.

The following result is a uniform convergence Theorem.

Theorem 4.1: Suppose that Assumptions 4.1 - 4.3 are satisfied, Assumption 3.1
is satisfied for go(x) equal to each element of E[w(z,no)lx], and
Assumption 3.2 is satisfied for max{r,r’'}/(g-1) =y <r =1 - 2/q -

2max{r,r’}. Then equation (4.2) holds.

It should be noted that the conditions on ¥ and T 1implicitly impose
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restrictions on q, r, r’, and €. Positivity of T implies r, r’ < 1/2,
and q > 2. For 7 to be smaller than I, ¢ must be large enough relative

’

to r and r’. It is possible to weaken the growth rate conditions under
further hypotheses. If var(w|x) is bounded then T can be set equal to its
limit as q goes to infinity. If E[dln(z)zl is bounded then r can be set
equal to 0, and if d2n(z) is bounded then r’ can be set equal to zero.
If all these conditions hold, and in addition with probability approaching one
K € K(n), where the number of elements of X(n) is uniformly bounded, and

E[Hgo(x,B)’-PK(x)’nKHZJ = o0(1) for each B rather than the stronger

Assumption 3.1, then the conditions on K can be weakened to

(4.3) K5 w R-= op(n).

Similar remarks also apply to the other results of this Section.
The following condition allows w to depend on B at the expense of

strengthening other conditions.

Assumption 4.4: There exists djn(Z)’ J=12, C, € >0 such that for each
B e B, Ilag(z,B,g)ll = d, (2) + Cigh, |a"(z,B,g)-a"(z,8,8)| =

~ 2
{d2n(z)+CllgIl2}llB—Bll€, E[dln(z) ] =0(1) and E[d2n(z)] = 0(1).

Theorem 4.2: Suppose that Assumptions 4.1, 4.2, and 4.4 are satisfied, that
for every B € B Assumption 3.1 is satisfied for go(x) equal to each
element of E[w(z,B,no)lx], and Assumption 3.2 is satisfied for 0 < y < T =

1 - 2/q. Then equation (4.2) holds.

The following condition is helpful in deriving an asymptotic distribution

result for Vﬁ[An(Bo)—Kn(Bo)].
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Assumption 4.5: E[lan(z,BO,gO(x,Bo))12+€] =.0(1) for € > 0, and there

exists d, (z), d

in (z), v>2, v >1, r, r' >0 such that for B € B,

2n
an(z,B,g) is continuously differentiable in g e Rs, Hag(z,B,gO(x,B))H <

n ~y_.n ~ ~ s
dln(Z)’ Hag(z,B,g) ag(z,B.g)H = d2n(z)ug gl for g eR

1/v’/

v, 1/v _
, (E[ndln(Z) 1) =

o(’), and (nE[dZH(z)"']) - om").

When G(x) 1in equation (2.4) is not equal to zero, an additional
condition is important for obtaining an asymptotic distribution result for
- n_ n . .
VH[An(BO) An(BO)]. Let ag = ag(z,go(x)), where for notational convenience
dependence on BO is suppressed here (e.g. go(x) = go(x,BO)) and in what
follows, and let Gn(x) = E[aglx].

1%

Assumption 4.6: E[IG™(x)n %] = 0(1) for v, > 2q9/(q-2) and q from

G

Assumption 4.1. There exists € > 1 and iK such that

(E[nc”(x)'—PK(x)'?zKuZ])1/2 = 0k5) uniformly in n.

Note that this condition is not restrictive if G™(x) = 0 for all n large
enough. The discussion of primitive conditions for the approximation rate for
go(x) also apply to the approximation rate for G (x). Note in particular

that the Taylor theorem approximation result is uniform in a class of
functions, implicitly allowing dependence on n.
The following Theorem gives an asymptotic representation result for

VH(An-An). Let g, = go(xi), g = g(xi), and w, = w(zi,no).
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Theorem 4. 3: Suppose that Assumptions 4.1, 4.5, and 4.6 are satisfied, that
Assumption 3.1 is satisfied for each element of E[wilx], and Assumption 3.2
is satisfied with max{4r,2r’+1}/4(&-1) = ¥ <T =1/2 - max{1/q + r,2/q + r'}.
Also suppose that either Gn(x) =0 for large enoughn or 7y =

max{[([/2)+(1/q)1/(£-1), 1/[2(€+¢-2)]1}. Then
(4.4) VAlA K ] = Zizl{an(zi,gi)-E[an]}/Vﬁ + ZizlGn(xi)’(wi—gi)/VH
+ E[Gn(x)'wn(z.nO)JVH(ﬂ-nO) + o (1).

Similarly to Theorems 4.1 and 4.2, the conditions on ¥ and T implicitly
impose restrictions on q, r, r’, ¢, and £&. If dZn(z) is bounded,

'

then r can be taken equal to zero in the conditions for ¥ and T. If the
conditions are changed as discussed following Theorem 4.1, except that
Assumption 3.1 is maintained, and Var(aglx) is bounded, then the rate

conditions for K can be weakened to

(4.5) I'=172, 7 = max{1/4,1/4£,1/2(C+€)}, &, € > 1/2.

This result verifies the conjecture for the limiting distribution of
An given in the last section for the case where n is not present and
an(z,B,g) does not depend on n. When Gn(x) #0 and 7 is present,
equation (4.3) contains an additional term that is a correction factor for the
estimation of 1.

The last result of this Section concerns consistent estimation of the
asymptotic variance of An' which may be required for asymptotic inference
procedures. It is necessary to give a separate result because the asymptotic
variance is more complicated than Kn’ so that consistency of the estimated
varlance cannot be shown by applying Theorem 4.1 or 4.2. Also, it is

appropriate to here let an(z,B,g) be a vector, so that the Theorem concerns
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consistency of an estimate of the asymptotic variance matrix.
In general it is necessary to be more specific about the properties of 7
in order to estimate the asymptotic variance An. The following assumption is

useful in this respect:

Assumption 4.7: There exists wn(z) such that E[Hwn(z)H2+E] <o for e€>
- ~ _wh .
0, E[wn(z)] =0, and vn(n ng) Zi=1wn(zi)/VH + op(l). Also, there exists

N n - 2, _
wni such that zi=1"wni wn(zi)u /n = op(l).

This Assumption specifies wn(z) to be the influence function for =%, and

ﬁni to be a consistent estimator of this influence function. The consistency
condition for @ . means that Z.n @ W’ ./n will be a consistent estimator
n1 i=1"9i"ni

of the asymptotic variance of 7, and will also be useful for showing
consistency of the asymptotic variance estimate for An.
Assumption 4.7 and Theorem 4.3 lead to a formula for the influence

functioﬁ of An. If Hn is bounded then it follows that
-y _ n ,n
(4.6) VO(A -A ) = F,_ ¥ (z, )/ + 0, (1),

V' (2) = a"(z,8,(x)) - Ela"] + G"(x) lw-g, (x)] + H ¥, (2).

The asymptotic variance of An will be Zn = E[wn(z)wn(z)’], which can be
estimated by the sample second moment of an estimator of the influence
function.

A trimmed estimator of go(xi) is useful for constructing a consistent

estimator of this influence function. For a scalar g

A 4, g>aA
T(g)l=4{g lgl =A
-A, g < -A

Also, for a vector g, let tA(g) be the vector of functions of

corresponding components (e.g rA(gl,gz) = (rA(gl),rA(gz))). In some places
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in the influence function the estimator of go(xi), will be taken to be
é? = tA(éi), where éi is calculated from equation (4.1) with w(z,ﬁ,ﬁ)
replacing w(z,m) and B an estimate of BO. Note that the influence
function implicitly depends on BO’ so that the presence of Q is essential.

The estimate @? of wn(zi) is constructed as follows. Let

an, _ K s tmrpy—= D K P
A n an ~ A _ n A aA ~ PO
Hy = Ly Giv (20 B)/n, &y = av(z,,8,8)), W, = w(z,,B,n),

where (°)£ denotes the Zth row of a matrix. Then for @ni from

Assumption 4.7, the estimator of wn(zi) and corresponding estimator of Zn

are

AN _ An n ~n Al ~  ~A A A & n
(4.7) wi = a; Ej=laj/n + Gi(wi gi) + Hnwni' S = Z._lw

In cases where Gn(x) is known to be zero, the estimate takes the same form
. N ~
with G, =0 and H = 0.
i n
The following pair of regularity conditions are useful for showing

consistency of fn. Recall that s 1is the dimension of go(x).

Assumption 4.8: There exists d, (z), d

3n (z), v, > 2, r, >0, such that for

3 3

n n
B € B, sup"g"SSAHag(z,B,g)H = d3n(z), sup"g"S"go(x)"Hag(z,B,g)H = d4n(2)’

v 1/v r
(Elndy () D % =0 ®), Eld, (2°Y T2 2001) for g from

4n

Assumption 4.1.

Assumption 4.9: VH(E—BO) = op(1) and there exist e > 0, dBn(z), such that

~ n ~ n < = o€
for B, Be B, Ila (z.B,go(x))-a (z,B,go(x))H < dBn(z)HB BI -,

Hag(z,é,go(x))-ag(z,B,gO(x))H =d n(z)ué—ﬁue, Eld n(z)2] = 0(1).

B B
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Theorem 4.4: Suppose that A = A(n) — o, Assumptions 4.1, 4.8, and 4.9 are

satisfied, Assumption 3.1 is satisfied for each element of Elw(z,B )ix1,

0’ "o
Assumption 3.2 is satisfied with r3/(§-1) =y <Tl=s 1—2r3—2/q and Gn(x) =

0. Then

N -nsn,

(4.8) AT A

/n - E[w?wi'] = o, (1).

If GMx) #0 but in addition, for some 1/2 >t > 0, A(n) = O(nt),
E[dw(z)l/t] < o, Assumptions 4.5 - 4.7 are satisfied, and
max{(t+r')/(C-l),t/(€~1),l/vG(C-l)} =y <l = 1-2max{t+r’+1/q,t+r,1/VG+1/q},
then equation (4.8) holds. Furthermore, if the smallest eigenvalue of

E[w?w?'] is bounded away from zero, then

n ~N-n, -1/2 T d
(L,_1¥%;¥;"/n) VilA_(8,) A (By)] — N(0,1).

5. Examples

In this Section the results of Section 4 will be used to develop
asymptotic distribution theory for a number of examples. The examples are
estimating the residual variance from a nonparametric regression, estimation
of microeconometric expectations models, correcting for heteroskedasticity of
unknown form, best nonlinear two stage least squares, and estimation of

additive semiparametric regression models.
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5.1 Estimating the Residual Variance

In some circumstances the residual variance

(5.1.1) 6% = Elw - g,(x)}?]
may be of interest, where w 1is a scalar. It can be useful in evaluating the
fit of a nonparametric regression. A pair of residual variances could be used
to compare the fit of two nonparametric regressions. For inference purposes,
it is important to have an asymptotically normal estimator of the residual
variance, and a consistent estimator of its asymptotic variance.

A series éstimator of the residual variance from a nonparametric

regression of w on x 1is given by

(5.1.2) &2

_ n Y 3

= Zi=1(wi gi) /(n-K),

where éi is calculated as in equation (4.1). A consistent estimator of the
asymptotic variance of &2 can be formed by using the trimmed estimator of
Y discussed in Section 4. Let € = W78 g, = wi—rA(éi), Q= Var(ez) =

1
Ele?] - (E[e?])%, and

(5.1.3) & =x"&m- gl Em

Theorem 5.1: Suppose that there exists q > 4, 0 < t < 172, such that
Ellw]) < o, A{n) — o, and A(n) = Op(nt). Also suppose that Assumptions
3.1 and 3.2 are satisfied, with 0 < max{l/q + ¢, 174}y/(C-1) = y <

' = min{1/2 - 2/q, 1 - 2t - 4/q}. Then

(5.1.4)  VR@E2 - ¢2) 4, N(O, Q), Q-2 q.

It is interesting to note that estimation of go(x) does not affect
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the asymptotic distribution of 32, which has the same asymptotic

n 82
i=171

distribution as } /n. This result is not surprising, being familiar from
parametric médels, and is expected because of the form of the efficient
influence function in equation (2.4); note that G(x) = E[ag(z,go(x))lx] =
E[-2(w—g0(x))|x] = 0. Indeed, it has been shown by Yatchew (1988) that this
result holds quite generally.

It might also be of interest to consider other functionals of
nonparametric residuals. For example, a sample cross product
Zigl(wi-éi)B(Xi)/n might be used to test whether E[w|x] = E[w|X]. The
asymptotic distribution of such functionals will be more complicated than that
of &2, generally involving the correction term in equation (2.4) for the
estimation of go(x). Nevertheless, Theorem 4.4 could be used in the

construction of a consistent estimator of the asymototic variance of such

functionals. For brevity, details are omitted.

5.2 Estimation of A Microeconometric Expectations Model
Consider the model

(5.2.1) E[p(z,go(x),Bo)IX] =0,

where p(z,g,B8) is residual that depends on g € R° and parameters B, go(x)
= E[w|x] for vectors w and x of observed variables, and X is a vector
of exogenous variables that includes x. This model can be motivated by
economic models of individual decision making, where go(x) is an expectation
of an uncertain outcome on which the decision is based. For example, Manski’s
(1988) dynamic discrete choice models are more complicated versions of one

with
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(5.2.2) p(z,g,8) =y - @(f(X)’B1 + go(x)’Bz),

where y € {0,1} 1is a decision variable and &(o) is the standard normal
cumulative distribution function. This model is a probit model with
conditional expectations as regressors. Another example is a microeconomic

risk model of the form,

(5.2.3)  p(z,8,8) =y - £X)'B) ~ (g,4(x), [g,0 (x)~{g,, (x)}?] )8,

where gjO(X) = E[wjlx], (J=1,2). This is a model with a conditional
variance regressor. For example, vy might be an indicator for fixed or
variable rate telephone charges, w the amount of phone use, and equation
(5.2.3) a linear probability model for choice of rate type for a risk averse
individual.

These models are microeconometric because of the hypothesis that the data
observations are independent. This restriction means that each zi is best
interpreted as an observation for an individual economic unit, and not as an
observation for a single time period. Of course, panel data is allowed, where
zi includes data observed at different time periods. For stationary panel
data, go(x) could be interpreted as an expectation given "lagged" variables
x. It should be noted that the expectation go(x) is stationary across
individuals, a strong assumption that may not be satisfied. See Manski (1988)
for further discussion.

Functional form misspecification of go(x) could cause inconsistency of
estimators of B. Also, when p(z,g,8) is nonlinear in g, as in the above
examples, it is not possible to substitute w for go(x) and estimate by
instrumental variables, i.e. to use "errors-in-variables" methods. Because of

these features, use of a nonparametric estimator of go(x) is potentially

important. At the same time, nonparametric estimation of go(x) will require
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that the econometrician observe all the variables in X, Which is not
required by errors in variables methods.

The type of estimator considered here is two-step instrumental variables
(IV) estimator, where the first step consists of nonparametric estimation of
go(x). Let B(X) denote a vector of functions of X, let éi be a

series estimator of the elements of go(xi) as in equation (4.1), and define

m (8) = L,%B(X,)p(z,,8;,8)/n.

A nonlinear IV estimator of BO can be obtained as the solution to

(5.2.4) B = argminBeBSn(B), Sn(B) = mn(B)'Wmn(B),

where ¥ 1is a symmetric, positive semi-definite matrix.

For regression models such as those of equations (5.2.2) and (5.2.3),
two-step nonlinear least squares or maximum likelihood estimation is also
possible. The paper focuses on IV, even for these cases, for the technical
reason that less stringent smoothness conditions for p(z,g,B) as a function
of g are required for IV than for other methods. It is possible to
weaken these hypotheses if a trimmed estimator of go(x) is used throughout,
which is not done for reasons discussed following Assumption 4. 3.

Estimation of the asymptotic variance of B and of an optimal ¥ will
require an estimator of the asymptotic variance of Vﬂmn(Bo). In general,
estimation of go(x) will have to be accounted for, which can be done by
applying Theorems 4.3 and 4.4. Note that for this model, af(z,B,g) =
B(X)p(z,8,B), so that G(x) = E[B(X)pg(z,go(x),Bo)lx]. Since 7 1is not
present, it will follow by the conclusion of Theorem 4.3 that the influence
function for Vﬁmn(Bo) is y(z) = B(X)p(z,go(x),Bo) * G(x) [w-g (x)]. Let Gi
be the estimate of G(xi) constructed as the predicted values from a

regression of B(Xi)pg(z,éi,é)' on P, and let é? be the trimmed estimator
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described in Section 4. Then the estimate of the influence function and

asymptotic variance ZE = E[yy’] of Vﬂmn(BO) described in equation (4.7) is

A

- A 2 A A - o
(5.2.5)  ¥; =B(X,)p(z,8;,8) + G (w-g), £=7120d/m

By the usual method of moments calculation (Hansen, 1982), the asymptotic

1

variance of B will be Q = (M/9M) M’WZWM(M’WM)-I, where M =

E[B(X)pB(z,go(x),Bo)] = plim(amn(BO)/aB) and ¥ = plim(¥), which can be

estinated by @ = (/¥R IENH W], where § = om_(B)/op.
The following result gives the regularity conditions that are sufficient

for Theorems 4.3 and 4.4 to apply to this problem.

Theorem 5.2: Suppose that 1i) Bo iIs an element of the interior of B,

which is cohpact and convex; ii) ¥ =¥ + op(l), ¥ is nonsingular, and
E[B(X)p(z,go(x),B)] #0 for Be B B = BO; iii) E[B(x)pB(z,gO(x),BO)] has
full column rank and £ Is nonsingular; iv) plz,g,B) is twice continuously
differentiable in g and B; v) E[iwl9] < « for q > 4 and there exists

d, (z), dgj(Z)’ vj z 2, j=1,2,3, v, > 2, v

B B B 1
(1/v + 1/q})‘1 = 2q/(q-2), such that for all B e B,

> 2vB/(vB-2), v, = ZVB/(vB—Z),

B + max{l/vl,l/v2

up(z,go(x),B)H, Hpﬁ(z,go(x),B)H, HpBB(z,gO(x),B)H = dB(z), Hpg(z,g;B)H,
< < B
HpBg(z,g;B)H = dgl(Z) + dgz(z)ﬂgu, Hpgg(z,g.B)H = dg3(z), E[IB(X) 1

E[dgj(Z) 11 < o, j=1,2,3; vi) Assumption 3.1 is satisfied for each element

1,

of E[wlx] and Assumption 3.6 for G(x) = E[B(X)pg(z,go(x),Bo)’Ix]; vii) A(n)

— o, A(n) = O(nt), and Assumption 3.2 is satisfied with 0 < (1/q + 1/vB + ¢

+ maxjs3{1/vj} +1/4)/(¢-1) = g < T = 1/2 - 2/q - 1/vB -t - maxjs3(1/vj}, 0

= max{t/(€-1), (I'/72 + 1/q)/(€-1), 1/2(Z+£-2)}; Then

vi(B-8,) -5 N(O,Q), O -Bq
For the above examples, it is easy to give conditions for the dominance
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hypotheses of this result. For equation (5.2.2), it suffices to take

2 2 _ _ _
dB(Z) = C(1 + I£(X)0”™ + Hgo(x)N ), dln(Z) = Cle(X)m, d2n(z) = d3n(z) = C,

for some constant C, so that v, and vy can be set as large as desired in

the gamma rate conditions. For equation (5.2.3), it suffices to take

dB(Z)

i J

C(1 + ne(X)n + Hgo(x)uz), dln(Z) = d2n(z) = d3n(z) = C, so that the
v = 1,2,3 conditions can be ignored in the hypotheses of this result.
Concerning efficiency of ﬁ, it follows by Theorem 3.2 of Hansen (1982)
that the choice of ¥ that minimizes the asymptotic variance of é is ffl.
An analogous minimum chi-square two-stage estimator was discussed by Hansen
(1985). Little more is known about the efficiency properties of B, although
one could derive the semiparametric efficiency bound for this model. Also, it
is plausible that the bound should be approximately attained if a sufficient

number and variety of functions of X are used in forming the instruments,

although verification of this conjecture is beyond the scope of this paper.

5.3 A Series Correction for Heteroskedasticity of Unknown Form

Consider the linear regression model

(5.3.1) y = x’BO + €, Ele|x] =0, E[czlx] = 02(x).

An asymptotically efficient, linear (in y) estimator of B is the HGLS
estimator of BO’ which is weighted least squares with weights 1/@2(x).
Carroll (1982) and Robinson (1987) have considered HGLS with 02(x) replaced
by kernel and nearest neighbor estimators respectively. Here, a HGLS
estimator with a series estimator of 02(x) Wwill be given and asymptotic
efficiency (in the GLS sense) shown.

To guarantee scale equivariance of HGLS it will be helpful to consider

estimation of go(x) = @2(x)/¢0, where ¢O = E[ez]. A series estimate of
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go(xi) can be constructed as follows. Let 7 = (8’,4)’, wiz,n) =
(y—x’B)2/¢, and let 7 be the ordinary least squares (OLS) estimator of
Ny i.e. B 1is OLS and é = Zigl(yi-xié)z/(n—r), where r is the dimension
of x. Estimates éi are then obtained from equation (4.1). Note that
because w(z,7m) is linear in 1/¢, the resulting estimate is the same as a
series estimate of wz(x) from a regression of the squared residuals on the
series terms, divided by 3. If a power series is used, then leading linear
and quadratic terms would correspond to White’s (1980) squared residual
regression test for equality of the usual and heteroskedasticity consistent
OLS variance estimators.

Because the estimates need not be positive, and for technical reasons
involving the nonlinearity of the function 1/0, the asymptotic theory here
requires that éi be modified to be positive. Let ra(o) be a continuously
differentiable function with derivative that is Lipschitz uniformly in 8,

such that ra(o) =z 3 and ta(g) =g for g = 258. An example is

3, g=0
(5.3.2) () ={ &l1+ (22821, 0<g =25
8, g > 23

An estimate of go(xi) = oz(xi)/¢o which is constrained to be positive is
given by éf = ra(éiL

The weighted least squares least squares estimator with weights 1/§? is

(5.3.3) B = (5.2 x x 787 L

Asymptotic efficiency of B will require letting & approach zero as the
sample size grows. Note that in the limit as & — O the presence of $
Will not affect the estimator; its sole purpose is to make B scale
equivariant.

Under the following conditions, é is asymptotically efficient.
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Theorem 5.3: Suppose that 1i) Elxx’] and E[xx’/cz(x)] are finite and
nonsingular; 1ii) E[{Hxﬂz/wz(x)}1+€], E[Hx"p], Eljel9] < w, for €>0, p, g
> 4; 1ii) Assumption 4.2 is satisfied for gO(x) = 62(x); iv) 6 = 8(n) =

-1

o(1) such that &(n) = O(nt) for t > 0; v) Assumption 4.3 is satisfied

for (2/p + 1/q + 2t + 1/4)/(Z-1) s ¥y < T = 1/2 - S5/q - 2/p - 3t. Then for

Q = (Elxx’'/e2(x)1)"L,

(5.3.4) fﬁ(é-po)i,n(o,m, 3(Zir__llxixfl/éfn)_l—l>n.

The conclusion of this theorem also gives a consistent estimator of the
asymptotic variance of fB. The hypotheses of this result are stronger in some
respects than those of Carroll (1982) and Robinson (1987), but are weaker in
one way. The moment conditions imposed by I' > 0 are more severe than they
impose, requiring q > 10. The conditions can be relaxed if Var(ezlx) is
bounded, in which case I = 1/2 - 1/g - 2/p - 3t will suffice. Also,
primitive conditions for iii) lead to smoothness restrictions on oz(x),

which are not required by Robinson’s (1987) result. The hypothesis that is

weaker is that 02(x) does not have to be bounded away from zero.

5.4 Best Nonlinear Two Stage Least Squares

Consider a model of the form

(5.4.1)  Elp(z,8y)Ix] = 0, Elp(z,8,)°Ix] = o2,

where p(z,B) 1is a residual and B 1is a vector of parameters of interest.
There are many important examples of this type of model in econometrics and
statistics. Nonlinear instrumental variables (IV) estimation of B was
considered by Kelejian (1971) and Amemiya (1974). Amemiya showed that the
best choice of instruments, in terms of minimizing the asymptotic covariance
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matrix of an IV estimator, are D(x) = E[pB(z,BO)Ix]. Newey (1989a) gave
one-step best IV estimators that use nearest neighbor and series estimates of
D(x). Here a corresponding fully iterative efficient estimator is presented
and its asymptotic efficiency proven.

One way an efficient estimator might be formed is to use as instrumental
variables a set of nonlinear functions of x that becomes richer as the
sample size grows. Such é set of instrumental variables is given by PK(x).
Let p(B) = (p(zl,B),...,p(zn,B))’. The nonlinear two stage least squares

estimator with PK(x) as instrumental variables is

A . _ , r " _ n - 2
(5.4.2) B = argmlnBeBSn(B), Sn(B) = p(B)'P(P'P) P'p(B) = Zi=1g(xi’B) ,

where é(xi,B) is the series estimator of the conditional expectation of
p(z,B) given X and the last equality follows by P(P‘P) P’ idempotent.
The previous results can be used to specify a growth rate for K such that

this estimator is a best nonlinear instrumental variables estimator.

Theorem 5.4: Suppose that 1) BO is an element of the interior of B,

which is compact and convex; 1ii) Elp(z,B)Ix] # 0 for B e B, B = Bo; iii)
EID(x)D(x)"] is nonsingular; 1iv) p(z,B) is twice continuously
differentiable and there exists q > 2, € > 0, df(z), dg(z) such that for B,

BeB, Iplz,B)l = df(z). log(z,8)11 = df(z), (z,B)I = dg(z),

"Pgg
upBB(z,é)—pBB(z,B)u = dg(z)HE—BHE, E[df(z)q] < o, E[dg(z)z] < w; v) For

each B € B, Assumption 3.1 is satisfied for go(x) equal to each element of

g(x,B) = E[(p(z,B),pB(z,B)’)'Ix]; vi) Assumption 3.2 is satisfied with 0 < y

<T =(q-2)/2q. Then for &° = 1.% p(z,,%n and a = 2(EDGIDx)' 1L,

1

VA(B-8,) = N(0,2), $%(pg(B)'P(P'PY P o (B)/m] Tt 2 g,

Pg

The conditions could be weakened somewhat at the expense of additional

-28-



notational complexity, e.g. by dropping convexity of B and allowing a number
of the dominance conditions to hold only in a neighborhood of Bo. The
regularity conditions are similar to those of Newey (1989a), although the
identification condition here is weaker; it is the minimal restriction that
the conditional expectation of the residual equals zero only at the truth. It
is also straightforward to obtain an analogous result for the case where
p(z,B) 1is a vector, i.e. for systems of nonlinear equations. To avoid

additional notational complexity this result is not considered here.

5.5 Additive Semiparametric Regression

Consider a model of the form

(5.5.1) 'y = £(X,B,) + hy(x) + ¢, ElelX] =0, E[c?[X] = o2,

where f(X,B) 1is a known function of exogenous variables X and Euclidean
parameters B8 and ho(x) is an unknown function of a subvector x of X.
This is a nonlinear version of the partially linear model of Engle, Granger,
Rice, and Weiss (1984), where f(X,B8) 1is linear in B. Estimators for the
partially linear model have been considered by N. Heckman (1986), Rice (1986),
Schick (1986), Robinson (1988), Chamberlain (1986), and Andrews (1988).

One way an estimator of B8 might be formed is by a nonlinear 1¢ast
squares regression of y on f(X,B) and a set of nonlinear functions of x
that becomes richer as the sample size grows. The idea is that the rich set
of functions should provide a nonparametric correction for the presence of
ho(x). This estimator is analogous to Chamberlain’s (1986) estimator for the
partially linear model. Such a rich set of functions is given by PK(x). Let
wiB) = (yl-f(Xl,B),...,yn—f(Xn,B))’. The nonlinear least squares estimator of

B for a regression of y on f(X,8) and PK(x) can be obtained as
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(5.5.2) B = argminBeBSn(B), Sn(B) = w(B)' .[I-P(P’'P) P’ ]w(B)

n o 2
= Ly W(z,B)-g(x,8)]%,

where é(xi,B) is the series estimator of the conditional expectation of
y-f(X,B) given Xy and the last equality follows by P(P'P) P’ idempotent.
The objective function Sn(B) is the sum of squared residuals where the
coefficients of PK(x) have been concentrated out. The previous results can
be used to specify a growth rate for K such that this estimator is

v¥n-consistent and asymptotically normal.

Theorem 5.5: Suppose that 1i) BO is an element of the interior of @B,
which is compact and convex; 1ii) f(X,B8)-E[f(X,B)]|x] = f(X,BO)—E[f(X,BO)Ix]

for Be B, B =# BO; iii) Elvar(f (X,Bo)lx)] iIs nonsingular; 1iv) f(X,B) is

B

twice continuously differentiable and there exists q>4, € >0, df(z), d;(z)

such that for B, B e B, |f(X,B8)| = df(z), £ (X,B)Il =

f
B(X'B)" = dl(Z)’ "fBB

f 2y < qf = o€ f,._\q f,.2
dz(z), MfBB(X,B) fBB(X,B)H = dg(Z)"B Bl -, E[dl(z) ] € o, E[dz(z) ] < o,
Ellel9] < o, E[Iho(x)lq] < o V) For every B € B, Assumption 3.1 is

satisfied for go(x) equal to each element of E[(ho(x),f(X,B),f (X,B) ) |x1;

B
vi) Assumption 4.3 is satisfied for 174(g¢-1) = ¥ < T = (q-4)/2q. Then for

o2 = S (8)/(nR) and @ = ¢*{E[Var (£ (x,BO)Ix)]}_l,

B

1

VR(B-8,) - Neo, ), &Z[WB(E)’{I—P(P’P)—P’}W (B)/ml”t 2, q

B

The conditions could be weakened somewhat, along the lines discussed for

Theorem 5.3. Also, if Var(f(X,BO)Ix) and Var(f (X,BO)IX) are bounded,

B
it can be shown that q > 4, T = (q-4)/2q can be replaced by q > 2 and
I' = (q-2)/2q respectively.

For the partially linear model, this result gives Vﬂ-consistency of

Chamberlain’s (1986) series estimator (which he did not show) under stronger
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conditions than he imposed. This estimator is asymptotically equivalent to
Robinson’s (1988) kernel based estimator. It is of interest to note that the
conditions imposed on the distribution of X; are quite weak; X, is not
required to be continuously distributed, and could even be discrete with
infinite support.

As far as efficiency of B is concerned, for the partially linear model
Bickel, Klaassen, Ritov, and Wellner (1989) have shown that Q is the
semiparametric efficiency bound for ¢ normally distributed. If e is
nonnormal and/or heteroskedastic, then the estimator need not be efficient;
see Chamberlain (1987) for the form of the efficiency bound in the
heteroskedastic case. Also, if heteroskedasticity is present, the estimator of
the asymptotic variance given in the statement of Theorem 5.4 will be
inconsistent. It is possible to develop a heteroskedasticity-consistent
estimator by using Theorem 4.4. For brevity, this construction will not be

discussed here.

-31-



6. Extensions

It is easy to relax the identically distributed assumption, which was
made here mainly for notational convenience. All of the theorems remain true
if the identically distributed assumption is dropped, but all of the
conditions on existence and boundedness of moments are replaced by boundedness
of average moments of a slightly higher order. Relaxing the independence
assumption while retaining the generality of conditions on the series appears
to be much more difficult

The general results of Section 4 should be applicable to a number of
examples in addition to those in Section 5. It should be possible to combine
the HGLS and best nonlinear instrumental variables to construct estimators
like those of Newey (1987), that efficiently estimate parameters of
conditional moment restriction models. Another example where the results may

be useful is Rilstone’s (1989) semiparametric missing data model.
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Appendix

Throughout the appendix C and e will denote (generic) positive
constants that can be different in different uses. Also, H will denote a

q, 1l/q
e]) 2

reference to the general Holder inequality E[HiillYell = “t:1(E['Ye|
for Z&ill/qe =1, and M, €, and J to the to the Markov, Cauchy-Schwarz, and
triangle inequalities, respectively.

Some Lemmas will be useful in proving Theorems 4.1 - 4.4. These Lemmas
concern the behavior of various objects for fixed B, and it is convenient to
drop the B argument for their statements and proofs. Also, it is convenient

to take w and g to be scalars; corresponding results for the vector case

follow by applying the results conclusions to each component. Let

(A. 1) w, = w(zi,no), w, = w(zi,n), g; = go(xi), g = g(xi).
w = (wl,...,wh) , W = (wl,...,wn) , g = (gl,...,gn) , g = (gl,...,gn) ,
K _ , K _ K K., _ K
Pi - (pl(xi),---,pK(xi)) ’ P - [Ply y Pn] ’ P - P ’

~

. K, .2 - _ K~ =
T € argmlnnE[(gi Pi )71, g =P Mg 8 = 8p.

These Lemmas will take as hypotheses Assumptions 4.1, 4.2 and the following

condition:
Assumption A.1: i) ﬁ—l = op(g—l), and K = op(b) for increasing b = b(n)
and b =b(n) — o; ii) ;s (i=1,...,n) are i.i.d. random variables

\ _ 2 . X
satisfying E[uinlxi] = 0, E[uin] is finite.

Lemma A.1: There exists nonrandom K, K such that K=K =K with

~1 1

probability approaching one, K =o0(b"), and K = o(b).

Proof: Follows as in Lemma A.S8 of Newey (1989%a). =

-33-




Lemma A.2: Iw-wll = Op(IL
Proof: Follows from Assumption 4.1 as in Lemma A.9 of Newey (1989a). =

Lemma A.3: For identically distributed random variables m

}1/r)'

1’ - Map and

r
any r > 0, maxlﬁisnlminl = Op({nE(Iminl

Proof: By the Boole and Markov inequalities,

r.1/r
(A.2) Prob(maxiSnlminl > {nEllminl } C)

= noProb(Iminlr > nE[lminerr]) < 1,c". "

Let u = (u .,unn)’ and let Q = P(P’P) P’ denote the matrix of the

in’"’
orthogonal projection onto the space spanned by the columns of P.
Lemma A.4: For any r > 2, IQull = op(bl/z{nE[ugn]}l/r

is uniformly bounded, then I1IQull = op(bl/z).

), and if E[u? [x. 1]
in'7i

Proof: Take K as in the conclusion of Lemma A.1, and let

(A.3) p; = (py (%) oupg(x ), P =1[p,...p 1", T =PFEP) P.

By independence of the observations, uln""'uln are independent conditional
on X = (xl,...,xn), implying E[ulX] = 0 and Var(ulX) is a diagonal
matrix with ith diagonal element E[u?nlxi]. Then by Lemma A.3 applied to
mo. = E[u?nlxi] and the Liapunov inequality

(A.4) ELQuI®IX] = E[u'QuIX] =T, ™ 9. Elu, u, |X]

i,J=171] in " jn

n - 2 2 =
Zi=1QiiE[uin|xi] = maxiﬁnE[uinlxi]trace(Q)

I

r/2,,2/r

Op((nE[(E[u?nlxi]) 132/ T)rank (@) = Op({nE[ugn]}Z/r

Jrank (P)

2/r 2/1‘b

1A

r = _ r
Op({nE[uin}} )X = op({nE[uin]) ).
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It follows by the conditional version of M and bounded convergence that Ilﬁull2
2/r

~

= op({nE[ugn]} b). Let 1 be the indicatbr function for the event K = K,

and note that for T =1, Q- Q is positive semi-definite, so that TIQuli® =

TIqui? = IQui®.  Then since 1-1 = 0 with probability approaching one, lIQuli®

2/r

= (1—T)||Quu2 + TuQuu2 = (1—T)||Qu||2 + mjuu2 = op({nE[u‘i"n]} b). The

conclusion for the case where E[u%nlxi] is bounded follows analogously, with

a fixed upper bound replacing {nE[uin]}Z/r. =

Lemma A.5: lg-gh = op(Vﬂh—c+1), and if there is X(n) such that the number
of elements of K(n) is uniformly bounded and K € K(n) with probability

approaching one then lig-gll = op(VﬁQ—c).

Proof': Let -E, K be as in the conclusion to Lemma A.1. Let K =
{K,K+1,...,K}, so that 1K =1 with probability approaching one, where 1K

is the indicator function for the event K e K. Also,
(A.5) El1,lig-gll] = E[1,0max,,Ig -gll = ¥ Elig,-gl]l =¥, (E[lg —g||21)1/2
) X X K=K K K K K

_ = 20,172
= VHZK(E[(gKi gi) D A

Also, by Assumption 4.2 and the definition of ;K’

= 2,172 ® S 32172 o -
(A.6) VAL, (El(g,;-2,)°N"? = v ke (L (B; =871 7% < /AR %k

< ovnk ¢t - ot

It then follows by M that 1Kll§-gll = op(\/ff_b_c). The first conclusion then
follows by the fact that 1_1K = 0 with probability approaching one. The
second conclusion follows by taking X = K(n) and replacing eq. (A.6) with
- 2,,1/2 - 2.,172 R - 2
VHZK(E[(gKi—gi) 1) = CVH(E[(gEi gi) 1)7"%,  which holds by E[(gKi gi) 1

monotonically decreasing in K and the number of elements of X being
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bounded. »

Lemma A.6: For r > 2, |u'(g-g)| = op(Vﬁb-c+1{nE[u§n]}1/r). If E[u?nlx]

Is uniformly bounded then {nE[uzn]}l/r in the conclusion can be replaced by

1, and if there is X(n) such that the number of elements of K(n) is
uniformly bounded and K € K(n) with probability approaching one then -+1

can be replaced by -{. The same conclusions holds for lu’Q(g-g)].

Proof: Arguing as in the proof of Lemma A.5, it follows by Lemma A.3 that
(A7) Ell,lu (g-g)1IX] = L E[Iu’ (g,-g) | IX] = T, (Ellu’ (8,-g) 12 1x1) /2
) X K K K K

— , , ~ 1/2 2 1/2  —
= ZK((gK-g) Efuu IX](gK-g)) = maXiSn(E[uinlxi]) ZKHgK—gH

1/r

H

r —
Op({nE[uin]} )ZKHgK-gH.
The conclusion for [u’(g-g)| then follows by arguing as in the proofs of

K [PK(xl)...,PK(xn)]’ and q = PR KK

Lemmas A.4 and A.5. Let P

Then by QK idempotent,

’ - - 2 - (o —a)’ 7 5 -
(A.8) Ellu QK(gK g)I7IX] = (gK g) QKE[uu IX]QK(gK g)
2 - 2 2 — 2
= maxiSnE[uinlxi]"QK(gK gln- = maxiSHE[uinlxi]HgK—gH ,
so that the conclusion for |u’Q(g-g)] follows by an analogous argument. n

Lemma A.7: For r > 2, lg-gl = op(bl/z{nE[lwin]}l/q) + op(VHg'<+1). If
E[w?lx] is uniformly bounded then {nEZ[Iwilq]}l/q in the conclusion can be
replaced by 1, and if there is K(n) such that the number of elements of
K(n) 1is uniformly bounded and K € K(n) with probability approaching one

then -{+1 can be replaced by -C.

Proof: Note that g = Qg by Q the projection matrix for P and g a
linear combination of P. The conclusion then follows by Lemmas A.2, A.4
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(with u = w-g), and A.5, since by J and Q idempotent, lig-gh = NQ(w-w)il +

IQ(w=g) Il + IQ(g-g) Ik + Ng-gll = Nu-wll + IQ(w-g)ll + 2ig-gl. w

Lemna A.8: For v > 2, Iw(gg)l = o (BnElu! 1}*VinEriw, 1911179 4
op(Vﬁg_c+1{nE[u§n]}1/v). If E[w?lx] is uniformly bounded then
{nI-I[IIwillq]}l/q in the conclusion can be replaced by 1, if E[u?nlx] is
uniformly bounded then {nE[ugn]}l/v in the conclusion can be replaced by 1,
and if there is XK(n) such that the number of elements of K(n) is uniformly

bounded and K € X(n) with probability approaching one then -{+1 can be

replaced by -C.

Proof: The conclusion follows from Lemmas A.2, A.4, A.5, and A.6, since by

J and €, and Q idempotent,
(A.9) lu’ (g-g) | = | QWw-w)| + |u’Q(w-g)| + lu’Qg-g) 1 + |u’(g-g)|

< IQuitiw-wil + HQuiliQ(w-g) il + |u’Q(g-g)| + lu’ (g-g) 1. =

Lemma A.9: For An(x) suppose that there exists € > 1 and nz such that

for A? = An(xi), (E[(An PK ng)zl) O(K_E) uniformly in n. Then

n , n.~ - _ -€E+1.1/2 q,,1/q -E-L+2
Zi=1Ai(wi gi)/VH = op(g b (nE[HwiH 1) ) + op(Vﬁb ).

If E[w?lx] is uniformly bounded then {nE[IIwiIIq]}l/q in the conclusion can
be replaced by 1 and if there is K(n) such that the number of elements of
K(n) 1is uniformly bounded and R e K(n) with probability approaching one
then -&+1 and -£+1 can be replaced by - and -£€ respectively.

Proof: Let A = ( o

Al,...,Az)’, A= Png, and note that by Lemma A.5 applied
to A, lA-All = op(VEg'E+1). Also, P’(w-g) = 0 holds by orthogonality of

least squares residuals. The conclusion then follows from Lemmas A.2, A6

(with u = w-g), and A.7, since by 7 and §,
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(A.10) |A" (W=g) | = | (A-K)’ (W-g) | = WA-AN (IW-wli+lig-gil) + [(A-R)’ (w-g)|. m

Proof of Theorem 3.1: The conclusion follows immediately from Lemma A.7 and

5,0 (8,-8,1%/n = 13-g1?mn. =

Proof of Theorem 4.1: By a Taylor expansion and Assumptions 4.2 and 4.3,
(A.11) la(z,B,g)-a(z,B,g)| = Iag(Z,B.E)'(§°g)I = [dln(z)+d2n(z)H§H]H§-g"

= [dln(z)+d2n(z)(u§u+ugu)]u§-gn,

where g, é, é € RS, g 1is the mean value, and the final inequality follows
by g on the line joining g and & Let K (8) = ziglan(zi,ﬁ,go(xi))/n.

By Q idempotent and Assumption 4.1, ngil = Hdwu Wwith probability
approaching one, for dw = (dw(zl),...,dw(zn))’. Then by € and M, eq. (A.11),

Lemma A.3, and Lemma A.7, with b=n? and b =nl,

(A.12) supﬁeﬂlAn(B)-Kn(B)l =< C(HdlH+maxlsisnd2n(zi){Hde+HgH})Hé-g"/n

0_(n" + n" )0 (1)o_(nl/2*1/a1/2 | ~w(E-1)y | )
P P P P

where d

1 (dl(zl)""’dl(zn)) . Also, by Assumption 4.3,

~ ~ ~ < ~_ E
(A.13) 1A (B)-A_(B)] = (F (z,)/n)IB-BI".

n
i=1d3n

A = A A (B)-A < A (B)-A < B3-g1<
Then by An(B) = E[An(B)], IAn(B) AL (B)] = E[IAn(B) AD(B)IJ < E[d3n(z)]HB Bl
= CHE—BHE, so that Kn(B) is equicontinuous. Also, by Assumption (4.2) and

Markov’s weak law of large numbers,

(A.14) IKD(B)-KH(B)I = op(l), for each B e B.

It then follows by eqs. (A.13) and (A.14) and Corollary 1 of Newey (1989c)
that suPBeBIAn(B)—An(B)I = op(l). The conclusion then follows from eq.
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(A.12) and 7. =

For the proof of Theorem 4.2 the g8 argument will be explicitly stated for

the objects of eq. (A.1); e.g. g(B) = (é(xl,B),...,én(x,B))’.

Proof of Theorem 4.2: Note that by Assumptions 4.2 and 4.4, eq. (A.11) holds
with d2n(z) there replaced by C. Note that Assumption 4.1 implies
Elig, (x, £)1%] = Eliw(z,8,7)1] = Eld_(2)°] and Eliig, (x, B)-g, (x, 8)1°] =
E[uw(z,é,no)~w(z,3,no)u2] = E[dw(z)zlﬂé-ﬁuze. Then for B, B € B, it follows

by Assumption 4.4 that
(A-15) IR, (B)-K (B)] = El1a"(2,B,g)(x, B))-a"(2,B, 8, (x,8)) ]

* Ella"(2,B,8,(x,8))-a" (2,8, g, (x,8))]

172 172

< {(E[dln(z)zl) +C:«[dw(z)2]) }(E[dw(z)zl)l/zué—aue

+ (E[dZn(z)]+CE[ug0(x,B)u2])né-suE = CIg-gis.

Thus, Kn(B) is equicontinuous. Similarly, by lig(B)Il = Hde with
probability approaching one and 1g(B)-g(B)Il = NQIWw(B)-w(g) 1N = Mw(B)-w(g)I =

Ildwllllﬁ—BllE with probability approaching one, and by Assumption 4.4,
(A.16)  |A (B)-A_(B)] = ZizlIan(zi,E,é(xi,E))—an(zi,E,é(xi,B))l/n
* Loy la" (2, B E(x 8)-a (2,8, E(x,.8)) I/n
= {(d, I + cid 1)nd_i/n}ug-gnc

n 2 ~ € _ = o€
+ {Zi=1d2n(zi)/n + CHde /nHiB-BI~ = Op(l)ﬂB Bl ~,

where the Op(l) term following the last equality is independent of B8.
Let Kn(B) = 2121an(zi’3’g0(x1’5))/n' By Assumption 4.2 and Markov’s law of
large numbers, Kn(B)—Xn(B) = op(l) for each B € B. Also, it follows by
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Assumptions 4.1, 4.2, 4.4, and Lemma A.7 that for each B € B,

(A.17) 1A (B)-R_(B)] = {id, n + cug(B)i + Clig(B)I) }Ig(B)-g(B)I/n

1A

2 1/ ~
{hdy i+ chd i+ (g2 Eld (%1%, 1)) 11z (8)-g (8) I/m

0, (1)IE(B)-g(B)I/VA = op(nr/z’“l/cl‘l/2 + n70&1)y 0, (1).

Then by 7, IAn(B)—Zh(B)I = op(l). The conclusion then follows by Corollary 1

of Newey (1989c). ™

Proof of Theorem 4.3: Consider first the scalar w and g case. A Taylor
expansion give;

(A.18) ziglan(zi,gi)/va = zlnl ?/ R W

n . n . n,, - _
Loy lag(Zy08y)-ay, 16 g IVR = Ty + Ty 4 T

n n

where éi lies between éi and 8y 3 = an(zi,gi), and agi = az(z

irgi)'
It follows by Lemmas A.3 and A.7 with b= n? and b = nr, Assumption 4.5,

and the conditions on ¥ and T that

A2
(A.19) IT2| < (maxlsiSndzn(zi))Hg-gH /vn

op({nEleH(z)”'J}l/”')[op(nr+2/q'1/2)+op(n‘27‘<‘1)+1/2)]

s - - - 7
= op(nr +I'+2/q-1/2 +n 27(L~1)+1/2+r

) =0 (0(1)) = o_(1).
P P

n

Also, note that for G2 = E[an.lx.], G.
i gi i i

- cyea n .n.~ =~
(A.20) T, = Zl 1(a G;)(g;-g; )V + F,_ G (g, W )/va 4

n _n,~
zl 1Gi(w ~g; J/vn + * LG (wy-w, )/vn = Tyy + Ty Ty * Ty

By Lemma A.8, with u, = an. - G?, and Assumption 4.5,
in gi i
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(A.21) IT (nr+r+1/q—1/2) + o“(n—W(C-1)+r

11 ) = op(O(l)) = op(l).

n = - = = i
Note that if Gi = 0, then le = T13 T14 0, so that the conclusion

follows from eqs. (A.20) and (A.21). For the other case it follows by Lemma

A.9 with A? = G? and Assumption 4.6 that

(A.22) T 5 = © (n

. . -W(E-l)nr/2+1/q) + op(n—7(6+§—2)+1/2)

= 0'p(1).

174
Next, note that E[HG?H G

] is bounded by Assumption 4.6, so that for n e
n, n n 1+C .

N, IIGi w(zi,no)ﬂ = HGinw(zi) and E[{HGinw(Zi)} ] is bounded for some

C >0, so that by Markov’s law of large numbers, ZiglG?wn(zi,no)/n -

E[G?wni] = op(l). Then by a Taylor expansion,

(A.23) T G?(Gi-wi)/va - E[G?wn(zi,no)]VH(ﬁ-no)

— n
24 Z1=1 i

[zizlc’i‘{wn(zi,ﬁ)—wn(zi,no)}/nwa(ﬁ—no) + o (1)

n ~ e ~ _
{Op(E[Gidw(zi)])Hn-nu Vﬁun-nou + op(l) = op(l)

where 7 denotes the mean value. The conclusion then follows by eqgs. (A.20)

- (A.23). The conclusion for the vector g case then follows in this exact

way by applying the above argument to a expansion in the vector g(x). n

Proof of Theorem 4.4: By J (in 22) and @,

n,-n_n?2, n N on-n - (-M_en n 2
(A.24) Zi=1”wi yiI%/n = C{Zi=lll(ai Ej=1aj/n) (ai Zj=1aj/n)n /n

n o ean.~ ~A _ n. 2 A le D oam M 2
+ Zi:l"Gi(wi gi) Gi(wi gi)u /n + HHnH Zi=1"wni wniu /n

~ 2« N n 2 -
+ IIHn HnH zi=1uwniu /n} = T1 + T2 + T3 + T4,

- - - . n _ A _ A A
where T2 = T3 = T4 =0 if G (xi) = 0. Let g; =1 (gi). Note that < (o)

is uniformly Lipschitz, so that HIA(é)—rA(g)H = Clig-gll. Then by a Taylor
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expansion, Assumption 4.8, Lemma A.3, and Lemma A.7,

n ~n_n 5 A2, _«n,n 5 SOy 2A_ AL 2
(A.25) Zi=llla1 a (zi,B.gi)H /n = Zi=1uag(zi.3.gi)(gi gi)u /n

2 2r 5*T+2/q-1 + n2F327(Z-1)

= C[max1<i< 3n(z ) lig-gl“/n = o (n ) = op(l),

where the intermediate value E? lies on the line joining é? and g?.

Note that gA =g, for gl =CA and that HgAH = Jig.l. Then by another
i i i i i

Taylor expansion, Assumption 4.8, A — o, and M and ¥,

(A.26) Zigl[an(zi,é,g?)-an(zi,é,gi)lz/n

1A

n n 2, A 2
Ei=lsupBeB,Hgﬂsngiﬂuag(zi’ﬁ'g)" Ilgi giN /n

A

n 2 2
Czi=1d4n(zi) Hgiu 1(HginCA)/n

2q/(q-2),,(q-2)/q o q9,,279
op({E[d4n(z) 1} {E[1(ugiu_CA)ugiu 1} )

Op(O(l)) = op(l),

where the next to last equality follows by A — o and Assumption 4.1. In

addition, it follows by Assumption 4.9 that with probability approaching one,

- 2
(a.27) 1,7 a"(z;,B,g)-a11%/m = (7,° gn(Z;) %/nl - B, I1° = 0,(1)o (1)

op(l).

Then by eqs. (A.25) - (A.27) and 7 and € T, = 5" 1a"a™%/n op(1), o

that in the G™(x) = case,

(A.28) g2 uwn ¢nu2/n = o (1).

Next, let C? be the matrix with £ row (é?)e =

PK(xi)'(P'P)—nglpK(xj)(aZ(z,B,gj))e. By Q idempotent, a Taylor expansion,
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and Assumption 4.5,

n 2 n n 5 5 y_. N A 2
(A.29) Zi NG G 1°/n = 21=1uag(z,8,gi) ag(z,B,gi)H /n

- 2i¢n &2
< [maxlsisndZn(zi) ]Ei=1llgi giH /n

-0 (n2r +I'+2/q-1 . n2r -2y(¢-1)

) = op(l).

Note that 5? is a series conditional expectation estimate of G? for
= gn = n,_ « _.h
wn(z,n) = ag(z,B,gO(x)) and 7 = 8. Note that Hag(z,B,go(x)) ag(z,B,gO(x))H

O(nr), and

B 5 B 2 n v,,1/v
= dZn(z)HB Bll, E[dZn(Z) ] bounded, (nE[Hag(z,BO,gO(x))H 1)
Assumption 4.6 correspond to Assumptions 3.1 and 4.1 applied to wn(z,n). It

then follows as in Lemma A.7 with q = v that

(a.30) L2 n&7-611%/n = op(nr+2r—1+n-27(g_1)) = o (1).

Then by eqs. (A.29), (A.30), 97, E[dw(zi)l/t] < w, Lemma A.2, and A = O(ntL

n AN N, .~ A2 2. .2 n , an _n 2
(A.31) 21=1"(G1—G1)(wi g /n = C(maxlsisndw(zi) +A )Zi=1IIGi G I%/n

= o (n2b¥2r/4T2/q-1 | 2teer -20(8-1)y op(n2t+r+2r—1+n2t—27(§—1))

op(lL

Also by 7, Lemmas A.2 and A.3, and a Taylor expansion, it follows that with

probability approaching one,

(A.32) Z HG [(w gi) (w -8; )M /n

1A

n2, ~ 2 ~ 2
Cmaxlsisn"Gi" {liw-wil"/n + Cllg-gl“/n}

2/v r+2/q-1, -27(&-1)

Op( G)[O (n~ ) + op(n )]
= o (n2/V*T+2/a-1, 2/v ~27(L-1)

) = o _(1).
P P
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Also by Ve > 2q/(q-2), E[HG "2q/(q 2)] is bounded. Then by # and ¥,

n n, A 2 n n, 2 2
(A.33) Zi:l"Gi(gi gi)u /n =< Zi=1"Gi" Hgin 1(HgiH>CA)/n

_ n,2q/(q-2);, (q-2)/q 7,274, _
= Op({E[HGi" 1} {E[HgiH>CANgi" 1} ) = Op(l).

T2 = op(l) then follows by eqs. (A.31) - (A.33) and 7.

Next, note that with probability approaching one,
n P 2 n 2 - 2 A 2, _
Zi=1nwn(zi,3,n) wn(zi,BO,no)H /n = [Zi=1dw(zi) /nl (B Byl ™ +lim nG ") =
0p(1)o,(1) = o (1). Also note that by v > 2 and Eld_(z)°] finite there

exists C > 0 such that E[IIGn(x)’wn(z,B nic < E[{IIGn(x)lldw(z)}1+C] is

0' o
bounded. It then follows by Markov’s weak law of large numbers, eqs. (A.29)

and (A.30), and 7 and € that

(A.34) HHn—HnH = Z 1IIG w (z, ,B ) G w (z. ,B Ji/n

0’ Mo

+ "Zl 1len(zl,Bo,nO)/n - HI

A

(zi 1HG G I /n) Hd Il/vn

+ (zizluG?NZ/n)l/Z(zi Hw (z, ,B,n) w (z, ,B

2 1/2
0’"0)" /n) + op(l)

op(l).

Since E[Hwn(z)ﬂzl is bounded, it follows that T. = o (1). Also, by H
n 4 p n

bounded and eq. (A.34), uﬁnuz = Op(l), so that T3 = op(l). Therefore, by
eq. (A.24) and J, it follows that eq. (A.28) also holds for the case where
GM(x) # 0. The first conclusion then follows by T and M as well as Markov’s

law of large numbers, since
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a n  snsn, .n.n, n nn, _ n,.n,
(A.35) £ -Z It = zi=1uwiwi Wi I/n + u21=1wiwi /n E[wiwi M/n

1A

n n, .-n ,n n -~n n 2
221=1"¢1""¢1 wiu/n + zi=1uwi—wiu /n + op(l)

IA

Z(Zigluw?nz/n)1/2(zi:1u$?—¢?u2/n)1/2 * op(1) = o (1).

Next, note that by Assumptions 4.1 and 4.5 - 4.7 and 7, there exists e >
0 such that E[N¢?H2+€] is bounded. The second conclusion then follows from
Theorem 4.3 by application of the Liapunov central limit theorem and Slutzky’s

theorem. ]

Proof of Theorem 5.1: Consider a(z,g) = (w-g)z, so that ag(z,g) = -2(w-g).
Note that 7 is nonexistent, so that Assumption 4.1 is satisfied for q as
given in the statement of Theorem 5.1. Also, Assumption 4.5 is satisfied
by q9 >4, with v=gq, r = 1/q, and d2n(z) bounded. By the remarks
following Theorem 4.3, r’ can be taken equal to zero in the hypotheses of
Theorem 4.3, so that the conditions on y and I are y =
max{1/q,1/4}/(¢-1), T = 1/2 - max{1l/q + 1/q, 2/q + 0} = 1/2 - 2/q. It then
follows by Theorem 4.3 that VH[Zigl(wi-éi)z/n - 02] 25 N(0,Q). Furthermore,
by the hypotheses on T, Vﬂlzigl(wi-éi)z/n - &2] = VOl (n-R)/n - 1]6° =
(-RVR)G2 = op(l), giving the first conclusion.

Next, Assumption 4.8 is satisfied with d3n(2) = |w| + CA, v3 = q, ry =
1/q + £, and d4n(z) = |w| + lgo(x)l, since E[d4n(z)2q/(q—2)] =
E[(Iw] + |g0(x)|)2q/(q'2)] is finite by implying 2q/(q-2) < q (which is
implied by q > 4). The conditions on ¥ and I' in the hypotheses of Theorem
4.4 then become 1y = (1/q + t)/(g-1), r=1 - 2(l/q +t) -2/q=1 - 2¢t -

4/q. The second conclusion then follows by Theorem 4.4. ]

Proof of Theorem 5.2: First, B = BO + op(l) will be shown. By v),

Assumption 4.1 is satisfied with dw(Z) = 0. Consider af(zg,B) equal to an
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element of B(X)p(z,g,8). By iv) and v) and ¥, Assumption 4.2 is satisfied for

€ = 2. By a Taylor expansion and convexity of B,

(A.36) Ia(z,B,gO(x))—a(z,B,go(x))I = IaB(Z,B.gO(X))’(B-B)I < HB(X)HdB(z)HB-B"-
Then by v) and ¥, Assumption 4.3 is satisfied for djn(Z) = HB(X)Hng(zL
Jj=1,2, d3n(z) = HB(X)HdB(z), r=0, r’ =1/v' = 1/vB + max{l/vl,l/vz}. It

follows by vii) that y > r’/(&-1) and T < 2(1/2 - 1/q - r’). Then by the
conclusion of Theorem 4.3 applied to each element of B(X)p(z,g,B8), mn(B)
converges uniformly in probability to m(B) = E[B(X)p(z,go(x),B)], which is
continuous. It then follows by a standard argument (e.g. see Hansen (1982))
that S,(B) converges uniformly in probability to S,(8) = m(B)’¥m(B), which
is continuous in B, and has a unique minimum at BO by ii). Consistency of
B then follows by Lemma 3 of Amemiya (1973).

Next, it follows by v) and the identical argument to that given above
with a(z,B,g) an element of B(X)pB(Z,g,B)' that Mn(B) = an(B)/aB
converges uniformly in probability to M(B) = E[B(X)pB(z,g,B)’], which is

continuous in B. Then by Lemma 4 of Amemiya (1973), for any B = B. + op(l),

0

(A.37) Mn(B) =M+ op(l).

Next, let a(z,B,g) be an element of B(X)p(z,g,B) again. By ¥ and vB >

2vB/(vB-2) there exists € > 0 such that the first hypothesis of Assumption
4.5 is satisfied. Also, by v), a Taylor expansion argument like eq. (A.36),
and ¥, the other hypotheses are satisfied with dln(Z) = HB(X)H(dl(z) +
dz(z)ugo(x)ﬂ), d2n(z) = d3(z), r=1/v = 1/vB + max{l/vl,l/v2 +1/9q}, r’ =
1/v = 1/v3. Also, by Hag" < HB(X)H(dl(z) + dz(z)Hgo(x)H), Assumption 4.6 is
satisfied with Vg = V. Furthermore, by vii), the hypotheses on ¥y and T

of Theorem 4.3 are satisfied, so that by its conclusion applied to each

element of Vﬁmn(BO),
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(A.38) Vﬁmn(Bo) = Zizlwi/VE. Y, = B(Xi)p(zi,gi.Bo) * Glxy) v, -g, 1.

The convergence in distribution result now follows by a standard Taylor
expansion argument, vis; eq. (A.37), ii), and iii) imply that for B = BO +
o, (1), [Mn(é)'\ianté)]'1 = ot s o (1), while the central limit theorem
and eq. (A.38), Vﬂmn(Bo) = Op(l), so that since BO interior and #
consistent implies 0 =(1/2)asn(é)/as = Mn(é)'@mn(é) with probability

approaching one, expanding mn(ﬁ) around BO and solving for B,

(A.39)  VR(B-g,) = [Mn(B)'\mn(E)1‘1Mn(é)'®\/ﬁmn(so) + o (1),

1

= (M'WM)-lM’WVHmn(BO) + op(l) 2,5 N(0, (M'9M)” M'WEWM(M'WM)-I),

where the second equality follows by Mn(é)’@ =MV + op(l) and Slutzky’s
theorem.

" Next, since [Mn(B)’@Mn(E)]_an(é)’@ = (M’WM)-lM’W + op(l) follows as
above, to finish the proof it suffices to show that 5 =3 + op(l), via
Theorem 4.4. By v), Assumption 4.8 is satisfied with d3n(z) =

HB(X)H[dl(z)+d2(z)A(n)], d4n(z) = HB(X)H[d1(2)+d2(z)ug0(x)H], r, = 1/v3 + ¢

3
= l/vB + max{l/vl,l/vz} + t. Also, since VH(B—BO) = Op(l) holds by eq.

(A.39), Assumption 4.9 is also satisfied by v). Noting that the gamma

conditions are satisfied by v), the conclusion then follows by eq. (4.8). =

Proof of Theorem 5.3: Note Vﬁ—consistency of m follows by the usual
argument for OLS. For w(z,n) as specified in the text and go(x) =
02(x)/¢0, note that for an compact neighborhood N of (Bé’¢0) on which ¢
is bounded away from zero, Assumption 4.1 is satisfied with q = q/2, dw(Z) =
C(Ie|2+HxH2). Also note that Assumptions 3.1 and 3.2 are satisfied. First

A A n , A0 _
it will be shown that R =R + op(l) for R = Zi=1xixi/gin, R =
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¢E[xx’/02(x)]. Assume for the moment that X is a scalar, and let an(z,g) =

xz/ra(g) Note that E[Han(z,go(x))ul+€] = E[{Hx"z/oz(y } ] = 0(1), by
-1 -1 n .2, -2_8

T (go(x)) = go(x) . Also, Hag(z,go(x))ﬂ = Ix“/[t (go(x))] Tg(go(x))ﬂ =

1x1%56™2. Thus, Assumption 4.3 is satisfied with lIxI2s 2 =4, (2), v=po,

= 2/p + 2¢, d2n(z) =0, and d3n(z) = 0. Note that
(A. 40) ¥ =2 2(¢8 + 1/p)/(Z-1) = r/(C-1)

Frs1-4/q-4/p-4=1-2/q-2r=2(1/2 - 2/q - 2/p - 2t).

It follows by Theorem 4.1 that ﬁ—E[xz/tS(go(x))] = op(l). Furthermore, by
the dominated convergence theoren, E[XZ/Ta(gO(X))] - R =o0(1), so that R =
R + op(l) follows by €. The same conclusion also follows in the vector x
case by applying this argument to each element of R. Next, it will be shown
that 2121x1 i/givﬂ 21 1%1€; /giVﬁ + op(l). Take a"(z,g) = xe/ta(g), and
note that it follows as above that Assumption 4.5 is satisfied with dln(Z) =
Ciixll (1572, d, (2) = Clixiie]8 >, v=p = pq/(p+q), r =1/v + 2t = 1/p +

/g + 2t < r’ =1/p + 1/q + 3t. Note that

v

(A.41) ¥ z max{1l/p + 1/q + 2¢,1/2p + 1/2q + 3t/2 + 1/4}/(C-1)

=1
1A

1/2 - 2/q - ' =1/2 - 5/q - 1/p - 3t.

Then by Theorem 4.3, it follows that Z %1 /g e = Zlnlxle /giVﬂ + op(l).

Note also that ta(go(x)) z go(x) so that by the dominated

convergence theorem

-1,2

(A.42) E[eruz{ts(go(x))-1—g0(x) 4]

ElixiZe?(x){1 - [go(x)/ra(go(x))]}Z/go(x)}zl

¢gE[{HxH2/02(x)}{1 - [go(x)/ta(go(x))]}zl = o(1).
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’

Then by independence of the observations and E[elxi] =0

E[<zi:1xiei[ra(gi)'l-gi'llxva}zl = o0,(1). It then follows by the Chebyshev
. n ~d ~ . n

and triangle inequalities that Zi=1xiei/giVH = Zi=1xiei/giVH + op(l). The

conclusion is then immediate from the usual least squares calculation. |

Proof of Theorem 5. 4: First, B = Bo+op(1) will be shown. Let w(z,8) =
p(z,B) and a(z,g) = g2. Assumption 4.1 follows by iv), since a Taylor
expansion gives Iw(z,B)-w(z,B)I = HpB(z,B)Hué—BH < df(z)NE—BH. Also,
Assumption 4.4 holds with dln(Z) = d2n(z) = 0, and Assumptions 3.1 and 3.2
hold by v) and vi). Then by Theorem 4.2, eq. (4.2) holds for An(B) = Sn(B),
Kn(B) = E[{E[p(z,B)lx]}zl. Then B = Bo+op(1) follows by B compact,
Kn(B) having a unique minimum (of zero) at B, and Lemma 3 of Amemiya
(1973).

Next, suppose for the moment that B is a scalar and consider

(A.43) azsn(s)/asz/zn = Pg(B) Qo (B)/n + p(B) Qo (B)/n

BB

_ e - 2 n -
= Zi=1g2(xi,B) /n + Zi=1g1(xi,B)pBB(zi,B)/n,

where él(x,B) corresponds to w(z,8) = p(z,8), gz(X,B) to w(z,B) =
pB(z,B), and the second equality follows by Q idempotent. It follows
analogously to the proof of consistency of B that eq. (4.2) holds for An(B)
= 508,0¢.8%n and E_(8) = EHELpg(z,8)1x1}°].  Also, for a(z,8,g) =
gopBB(z,B), Assumption 4.4 is satisfied with dln(z) = dg(z) and d2n(z) =
dg(z)z, so that by Theorem 4.2 eq. (4.2) holds for An(B) =

21:1é1(x1'3)p33(21'3)/n’ Kn(B) = E[Elp(2z,B)Ix]p__(z,8)]. Therefore, by

BB
eq. (A.43) it follows that for any B = Bo+op(1),
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2¢ (3 2
(A.44) d Sn(B)/aB /2n = E[D(x)D(x)’] + E[E[p(z,Bo)lx]pBB(z,Bo)] + op(l)

= E[D(x)D(x)’] + op(l)-

Consider

= ’ = n -
3Sn(30)/38/2VH = PB(BO) QP(BO)/VH = Zi=1g(xi)P(Zi.Bo)/VH,

where g(x) 1is the series estimate of D(x) corresponding to w(z) =

pB(z,BO). For af(z,g) = gop(z,Bo). Assumptions 4.1, 4.5, and 4.6 are

satisfied with d (z) = dp(z)+dp(z), Var(a_(z,g.(x))) = Var(p(z,B8.)Ix) = o2
W 1 2 g “ 8o 0

bounded, and agg = 0. It then follows by Theorem 4.3 and the remarks

following Theorem 4.3 that

(A.45) 85, (By)/9B/2/n = ;7 D(x,)p(z,,B,) /¥ + o, (1).

Both of egs. (A.41) and (A.45) can also be shown to hold in the vector g8
case, by analogous arguments for each element of the Hessian and gradient.
Then by BO an interior point, BSn(é)/GB = 0 with probability approaching
one, so that by the usual Taylor expansion argument and the Lindbergh-Levy

central limit theorenm,

(A. 46) VR(@—BO) = [azsn(é)/aszl'1VHasn(BO)/aB + op(l)

1

= (EDGIDG)' 7L 2 Dix, )p(z,,8,) /¥R + o (1)

1

— (EIDGID(x)" 1) N0, eEID(x)D(x)’ 1) & N(0,Q),

where B is the mean value, giving the first conclusion. The second
conclusion follows from consistency of B and Theorem 4.2 épplied to w(z,B)

= pB(z,B) and af(z,g) = gz, as in the argument for eq. (A.44). n
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Proof of Theorem 5.5: First, B = Bo+op(1) Wwill be shown. Note that for
w(z,B) =y - f(X,B), Elw(z,B)Ix. = ho(x) + E[f(X,BO)Ix] - E[f(X,B)Ix], so
that Assumption 3.1 holds by v). Then it follows exactly as in the proof of
Theorem 5.4 that eq. (4.2) is satisfied for An(B) = w(B)'Qw(B)/n, An(B) =
E[{Elw(z,8) x]1}°]. Also, by iv) eq. (4.2) holds for A_(8) =

w(B)'w(B)/n, An(B) = E[w(z,B)Z]. Therefore, Sn(B) converges uniformly in

probability to the continuous function

(A.47)  S,(B) = Elw(z,®%] - E[{Ew(z,8) [x]}?] = El{w(z, B)-Elw(z,8) |x]}3]

El{e + £(X,8,)-E[£(X,B,) Ix] ~ (£(X,B)-EL£(X,B)[x])}?]

o + E[{£ (X, B,)-E[£(X,B,) Ix] - (£(X,B)-EL£(X,8)Ix1)}?1,

which has a unique minimum at Bo by ii), giving consistency of B.

Next, suppose for the moment that B is a scalar and consider

azsn(B)/aBZ/Zn = w_(B) (I-Q)w

f B(B)/n + wiB)' (I-Q)w

BB(B)/n.

It follows as in the proof of Theorem 5.4, and by a standard argument

for the terms not involving Q, that for any B =B + op(l),

(A.48)  &°s_(R)/08%/2n = Elfgfg) - EIE[f IxIELEgIxI ] + EL(y-D)fg,) -
E[E[(y-f)lx]fBB] + op(l) = E[Var(fle)] + E[COfBB] + op(l)
= E[Var(fBIX)] + op(l).

where f = f(z,BO), fB = fB(z,BO), and fBB = fBB(z,BO). Consider

(A. 49) asn(BO)/aB/ZVH =w (BO)’(I—Q)W(BO)/VH

B8

— n _A _A
= Zi=1[w2(zi) g2(xi)][w1(zi) gl(xi)]/VB,
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where él(x) and éz(x) are the series estimates corresponding to wl(z) =
y-f and wz(z) = -fB respectively, and the last equality follows by I-Q
idempotent. For a(z,gl,gz) = [wz(z)-gzl[wl(z)—gll Assumptions 4.1 and 4.5
are satisfied with dw(Z) = df(z)+lho(x)|+|€|, agg is bounded and v =

q, r =1/q. It then follows by Theorem 4.3 and the remarks following it that
— n — —
(A.50) 85, (By)/8/2VA = T, [w, (z,) 8, (x ) 11lw, (z;)-g, (x)1/VR + 0,(1).

Both of egs. (A.48) and (A.50) can also be shown to hold in the vector B
case, by analogous arguments for each element of the Hessian and gradient.
The first conclusion then follows by arguing analogously to the proof of
Theorem 5.4. The second conclusion follows from consistency of é, uniform
convergence in probability of Sn(B)/n to SO(B), SO(BO) = cz, K/n = op(l),

and eq. (A.48). n
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