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Locally Efficient, Residual-Based Estimation

of Nonlinear Simultaneous Equations

Abstract

Nonlinear simultaneous equations models are important in both statistics
and econometrics. They are useful in econometric applications, such as
estimation of supply and demand systems, and have been the sub ject of an
extensive literature. The special case where there is one dependent variable
is a transformation model that has long been of interest in statistics,
including as a special case the Box-Cox transformation.

It is well known that maximum likelihood methods for these model can be
sensitive to distributional assumption. A number of distribution free methods
have been proposed, including instrumental variables and transformations to
symmetry or homoskedasticity. This paper considers estimation when
disturbances are independent of regressors or conditionally symmetric around
zero given the regressors.

Distribution-free estimators that are semiparametric efficient for
particular parametric families are deve;oped. Each of these estimators is
residual based, being formed from a V-statistic in the independent case and an
antithetic symmetrization in the conditionally symmetric case. An empirical
and Monte Carlo transformation example is considered. In the Monte Carlo
examples these estimators perform much better than recently suggested

alternative transformations to symmetry and homoskedasticity.

Keywords: Simultaneous Equations, Transformation Models, Semiparametric

Efficiency, V-statistics, Antithetic Variates.






1. Introduction

Nonlinear simultaneous equations models are important in both
econometrics and statistiecs,. They are useful in econometric applications,
such as estimation of nonlinear demand and. supply systems, and have been the
subject of an extensive literature; €.8. see Amemiya (1985, Chapter 8). The
special case where there is one dependent variable ig a transformation model
that has long been of interest in statisticsg; €.8. see Ruppert and Aldershof
(1989) for a recent list of references.

The consistency of maximum likelihood estimators for such models can be
sensitive to the distributional assumption for the disturbances; see Amemiya
(1977) and Phillips (1982). One class of estimators that does not have this
problem are nonlinear instrumental variables estimators, as considered by
Sargan (1959), Kelejian (1971), Amemiya (1974, 1977), and Amemiya and Powell
(1981). Consistency of these estimators depends only on the disturbances
having conditional mean zero given €xogenous variables, and not on the
functional form of the disturbance distribution. For transformation models,
an analogoﬁs class of estimators based on conditional median assumptions are
developed by Carroll and Ruppert (1984) and Powell (1990). Also included
among previously Suggested distribution-free estimators are thoge of
Hinkley (1975), MaCurdy (1982), Taylor (1985), and Ruppert and Aldershof
(1989). Consistency of these estimators only depends on the disturbances
being independent of the exogenous variables and/or conditional symmetry of
the disturbances.

The efficiency of distribution-free estimators is of potential concern.
For example, some estimators of parameters of transformation models can have
large variances; see Section 6. This concern motivates the present paper.
The purpose of this paper is development of methods that efficiently use
information from independence of disturbances and eéxogenous variables and/or
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conditional symmetry of the disturbance given exogenous variables. The
estimators considered here will be efficient among the class of estimators
that use only such information, when the disturbance distribution is a member
of particular parametric families.

The relevant efficiency standard for distribution-free estimators is the
semiparametri-~ efficiency bound, general theory for which is developed in
Stein (1956), Koshevnik and Levit (1976), Pfanzagl (1982), Begun, Hall, Huang,
and Wellner (1983), and Bickel, Klaassen, Ritov, and Wellner (1989). Under
the conditional mean zero assumption, which is the assumption required for
consistency of instrumental variables estimators, Chamberlain (1987) showed
that an instrumental variables estimator with optimal instruments is
efficient; nonparametric estimation of the optimal instruments has been
considered in Newey (1987). Here, the semiparametric efficiency bounds for
nonlinear simultaneous equations model with independent or conditionally
symmetric disturbances are derived.

For each model, the form of the bound motivates the specification of a
particular class of estimators. Each of the bounds is the inverse covariance
matrix of the efficient score. In each case a distribution-free m-estimator
can be obtained by replacing the piece of the efficient score that depends on
the disturbance distribution by that corresponding to some parametric family
of distributions, estimating the remaining nuisance functions and/or
parameters, and choosing the parameters of interest to set the sample average
to be close to zero.

In the independence case, the efficient score contains a conditional
expectation. Because of the independence of disturbances and exogenous
variables, this conditional expectation can be estimated by an average over
the entire sample. An estimating equation can be obtained by averaging the

result over the sample. The resulting estimating equation has a V-statistic



form, so that it is natural to refer to the estimator as a V-estimator.
Similar estimates of conditional expectations have been used for forecasting
by Duan (1983) and Brown and Mariano (1984). Robinson (1989) has previously
suggested their use in estimation in the context of optimal nonlinear
instrumental variables.

In the conditionally symmetric case the efficient score is derived
from the score for parameters of interest by subtracting the score evaluated
at the negative of the residual, i.e. by antithetic symmetrization. When
applied to‘the score for a known family of distributions antithetic
symmetrization yields an m-estimator that is consistent under conditional
symmetry and efficient if the true distribution is a member of the specified
family. It is also possible to construct an estimator that uses both
independence and symmetry, from a V-statistic involving antithetic variates.
This estimator will be considered in less detail than the others.

The resulting estimators attain the semiparametric efficiency bound when
the distribution of the disturbances is a member of the parametric family used
in their construction. That is, when the disturbance has a particular form
they are efficient in the class of estimators that are asymptotically normal
and sufficiently well behaved under the corresponding assumption on the
disturbances. For example, if the score from a T or Gaussian distribution is
used to form the estimator, then it will be efficient under a T or Gaussian
distribution, respectively.

It is also possible to construct estimators that are efficient for all
possible distributions of the disturbances, i.e. that are globally efficient;
see Newey (1989a) for the independence case. This construction is not carried
out here. In comparison with globally efficient estimators, locally efficient
estimators like those discussed here are relatively computationally simple,

hopefully have better small sample properties by depending on fewer nuisance



parameters, and allow the investigator more control over the way residuals
affect the estimator, at the expense of giving up on asymptotic efficiency for
many distributions.

Section 2 of the paper defines the nonlinear simultaneous equations model
and discusses transformation models as special cases. Section 3 derives the
the semiparametric efficiency bounds. Sections 4 and 5 consider V-statistic
and antithetic variate estimators respectively, and a brief discussion of
how the two might be combined is also given in Section 5. Section 6 gives an
empirical and Monte Carlo example, and Section 7 offers some concluding

remarks.

2. The Models

A central feature of each model to be considered is an equation of

the form

(2.1) p(z,Bo) = g,

where p(z,8) is an s x 1 vector of residuals that depend on a data vector
z and a g x 1 vector of parameters B, with true value BO. It will be
assumed throughout that z = (y’,x’)}’, where y isan s x 1 vector of
endogenous variables and X a k x 1 vector of exogenous variables. Here
the term "exogenous" refers to the fact that each model will impose conditions
on the conditional distribution of e given x. Attention will be restricted
tp the case where the data observations zi, (i=1,...,n), are i.i.d., although
some of the results should extend easily to othef cases.

It will be assumed throughout that equation (2.1) defines a one-to-one



relationship between y and e for any realizable x and B in some set of

parameters B, so that y can be solved for via a reduced form

(2.2) y = n(e,x,B).

In the econometrics literature such a model is known as a full information,
nonlinear simultaneous equations model, where the "full information" term
refers to the fact that there are as many scalar equations in (2.1) as there
are elements of y; "limited information" models are those where there are
fewer equations in (2.1) than elements of y. The estimators considered here
only work for full information models, because of the need for a reduced form.
Of course, it might be possible to complete a limited information equation
system by adding equations, but the resulting estimators can be sensitive to
the specification of the additional equations.

Two types of restrictions on the conditional distribution of & are

considered. The first is the independence restriction

(2.3) € and x are statistically independent.

The second is the conditional symmetry restriction

(2.4) €lx 1is symmetrically distributed around zero.

These restrictions are complementary. Independence allows the shape of the
distribution of the disturbances to be very general at the expense of ruling
out heteroskedasticity in e. Conditional symmetry allows for
heteroskedasticity at the expense of imposing the symmetry restriction.

It should be noted that constant terms in p(z,B) will be treated
differently in these two cases. In the independence case it is convenient
to impose no location restriction on the disturbances, so that the constant
term is absorbed in €. In the symmetry case, the location of ¢ is
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restricted to be zero, so that it is important to include constant terms in
pl(z,B).

A special case of the nonlinear simultaneous equations model is a
transformation model, where Y consists of a single variable. A general form

for such a moael is

(2.5) h(y,Ao) = f(x.Bo) t e,

where B8 = (A,Bé)’, A is a transformation parameter (or parameters) and
h(y,A), is a one-to-one function of y for each A 1in some set of possible
values. Included as special cases are the Box and Cox (1964) transformation
of a linear model, where h(y,A) = y(A) = (yA - 1)/Xx and f(x,8) = x’BZ, the
transform both sides model of Carroll and Ruppert (1984), where h(y,A) is as
before and f(x,B) = f(x,Bz)(A) for some function f(x,BZ), as well as other
transformations considered by Burbidge, Magee, and Robb (1988). In this
example, equations (2.3) and (2.4) correspond to transformations to
independence or conditional symmetry, similar in spirit to transformations

considered in Hinkley (1975), Taylor (1985), and Ruppert and Aldershof (1989).

3. The Semiparametric Efficiency Bounds

It is helpful to briefly review semiparametric efficiency bounds, as
developed by Stein (1§56), Koshevnik and Levit (1976), Pfanzagl (1982),
Begun, Hall, Huang, and Wellner (1983), and Bickel, Klaassen, Ritov, and
Wellner (1989) (BKRW henceforth). Define a parametric submodel to be one that
satisfies the semiparametric assumptions and contains the truth. Any
semiparametric estimator must have an asymptotic variance that is no smaller
than the Cramer-Rao bound for every parametric submodel, giving Stein’s
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(1956) result:

The asymptotic variance of any semiparametric estimator is no smaller than the

supremum of the Cramer-Rao bounds for al] parametric submodels, denoted V.

Regularity conditions are needed to make this statement precise. The
parametric submodels be regular in that they are smooth in the mean-square
sense (see the Appendix), have nonsingular information matrices, and satisfy
other regularity conditions appropriate to the model. A precise definition of
V. is that it is the supremum of Cramer-Rao bounds for regular parametric
submodels. The estimators must be regular in the following sense. For a
parametric submodel with Euclidean parameter vector 8 let B(8) be the
parameters of interest. A local data generating process (LDGP) is one where
the for each sample size n the data is distributed according to Gn, with
VH(Bn-eo) bounded. An estimator B is said to be regular if for each
regular parametric submodel and LDGP, VH(&-B(Gn)) has a limiting
distribution that does not depend on the sequence {Bn} or the parametric
submodel. That V is an asymptotic variance bound for regular estimators
follows from semiparametric extensions of Hajek’s (1970) representation
theorem, e.g. Begun et. al. (1983). A vector version of Theorem 2 i) of

Chamberlain (1986) is

If B is regular then the limiting distribution of VH(B—BO) is equal to the

distribution of Y + U, where Y ~ N(O,V) and U is independent of Y.

An efficient semiparametric estimator is one that is asymptotically normal
with covariance matrix V and is regular.

The projection form of the bound developed by Begun et. al. (1983) and
BKRW will prove useful here. Let the data consist of i.i.d. observations

+Z_ . Consider a regular parametric submodel with parameters @ =

Z,, ...
1’ n
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(B’,n’)’ and likelihood function {(z|8) for a single observation C The
9 X 1 vector of parameters of interest is B and the N parameters
correspond to the nonparametric part of the model. Let SG = (Sé,S%)’ be the
score for @ for a single observation, evaluated at the true parameter
values, where typically S6 = Blni(zleo)/ae (see the Appendix for a precise
definition). The =z argument may be suppressed for notational convenience,

as here. Define the tangent set J to be the Mméan-square closure of q x 1

linear combinations of scores 817 for the nonparametric component:

T={terl: BB <o 3B, S . with lin,_ Elit - BS_1%] = o},
J nJ J—@ J nJ

where each Bj is a matrix of constants. Consider SB as an element of, and
J as a subset of, the Hilbert space of q x ! random vectors . with inner
product E[niaZ]. If T 1is linear then the residual from the projection of

S on J exists, and is the unique vector S satisfying

B

(3.1) SB-S €7, E[S't] =0 for all ¢ e 7.

A version of Corollary 3.4.1 of BKRW (see Newey, 1990a, Theorem 3.2) is

If {(z|B) is regular with score S J is linear, and E[SS’] is

B’
nonsingular, then V = (E[SS’])-I.

The vector S is referred to as the efficient score.

It will be useful for the estimation results discussed below to carry
through this calculation for both the independence and symmetry cases. In
both cases the parameters of interest are those of the residual p(z, B).

A parametric submodel corresponds to a parametric family of density functions
fle,xIm) (with respect to a carrier measure) for (ei,xi) such that
f(e,xlno) is the true density for some ny and f(e,xIn) satisfies the
restrictions implied by independence and or symmetry. In the independence
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case fl(e,x|n) = fl(eln)fz(xln), under conditiona] Symmetry f(-e,x|y) =
fle,xIn), and under both fl(-elh) = fl(eln). The likelihood and score

vectors for a parametric submodel] are
(3.2) {(zle) = ldet(ap(z,B)/ay)l'f(p(z,B),xln),

SB = JB(Z.BO) + pB(z,BO)’s(e,x), Sn = 8lnf(e,xlno)/an,

where J(z,8) = lnldet(ap(z,B)/ay)l, s(eg,x) = fo(c,x)—lafo(e,x)/ae, and the
B subscripts denote the partial derivatives,

Independence of € and x implies a restriction on the form of the
Scores, and hence on the tangent set. By independence, S77 = Sn1(8)+Sn2(x),
where Sn1 is the score for the marginal density of ¢ and SDZ is that
for the marginal density of x. This should be the only restriction on the

scores, except for the usual mean zero Property, so that we expect the tangent

set to be

(3.3) J = {tl(e)+t2(x) : E[tl(e)] = E[tz(x)] = 0}.

To avoid notational clutter it ig here and henceforth assumed that second

moments exist whenever needed. For a 9 X 1 random vector R(2) 1let

(3.4) R = EIRIe]-E[R] + E[R|x]-E[R].

Note that R ig an element of 7, and independence of € and x implies
E[(R-R)“¢] = 0 for any element ¢ of g, 1t follows that R = Proj(R|7),
the projection of R on 7. Thus, since x is ancillary for B, implying

E[SBIx] = 0, the efficient score should be

(3.5) § = SB - Proj(SBIV) = SB - E[SB|€] - E[Sle] + 2E[S,] =5 - E[S lel

B B B




= JB - E[JBle] + {pB-E[pslc]}’s(c).

The following regularity condition is useful in making this resujt
rigorous. Let a subscript on an expectation denote the expectation as a

function of the true parameter value.

Assumption 3. 1: £(z1B) is smooth with SB given In equatijion (3.2), plz,B)
is continuously differentiable in B in a neighborhood N of BO‘
supNHpB(z,B)H = M(z) satisfies EB[M(Z)ZJ continuous, with probability one

p(o,x,Bo) is a one-to-one function and 6p(2,BO)/ay iIs nonsingular.

Theorem 3. 1: Suppose that e and X are independent, Assumption 3.1 is
satisfied, each parametric submodel] correspond to a density f(e,x|n) =
fleln)f(xIn) such that fleln) and f(x|n) are smooth, and E[SS’]) js

nonsingular for S from equation (3.5). Then S is the efficient score.

This result verifies a conjecture of Newey (1990a).

Consider next the conditional symmetry case. Here, since the density is
an even function of &, the score is also an even function of €, 1.e.
Sn(-e,x) = Sn(s.x). Since this is the only restriction implied by conditional

symmetry, we expect the tangent set to be

(3.6) T = {tle,x) : t(-e,x) = t(e,x), Elt(e,x)] = 0}.

For a g x 1 random vector R(z) = R(y,x) = R(n(s,x,Bo),x) let

(3.7) R = [R(z) + R(n(-e,x,Bo).x)]/Z - E[R].

By construction and symmetry (which imply E[R(n(-e,x,Bo),x)] = E[R]), R is
an element of the tangent set. Symmetry also implies E[(R-R)‘¢) =
E[{R(z)-R(n(-e,x,Bo),x)}’t}/z = 0, since {R(z)-R(n(—e,x,Bo),x)}'t(e,x) is
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an odd function of e. Thus, the efficient score should be

(3.8) )

[SB(Z) - SB(n(—e,x,BO),x)]/z

{JB(Z) - JB(n(-e.x,BO),x)

+ {pB(z) + pB(n(-s,x,Bo).x)}’s(e,x)}/z.

The following result makes this calculation rigorous.

Theorem 3.2: Suppose that e is symmetrically distributed around zero
conditional on X, Assumption 3.1 is satisfied, and E[SS’] is nonsingular

for S from equation (3.8). Then S Is the efficient score.

By combining the preceding calculations is is possible to obtain a result
for the case where both independence and symmetry hold. The tangent set,

projection, and efficient score for this case are

(3.9) T = {tl(e)+t2(x) : E[tl(e)] = E[tz(x)] = 0, tl(—e) = tl(e)}.
R = E[R|x]-E[R] + (E[R{e] + E[Rlc]le=_€)/2 - E[R],
S = Sgl2) - (ElSgle] + Elsglell ___)/2,

a result verified in:

Theorem 3.3: Suppose € and x are independent, ¢ is symmetrically
distributed around zero, Assumption 3.1 are satisfied, each parametric
submodel corresponds to a density f(e,x|n) = f(eln)f(x|n) such that
fleln) and f(xin) are smooth, and E[SS’] is nonsingular for S from

equation (3.9). Then S is the efficient score.
To show that an estimator is efficient in the sense discussed above,
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which includes regularity of the estimator, it is useful to impose on each
parametric submodel the additional regularity condition of continuity of
2

] at 8.. The following result verifies that this additional

EG[HSH 0

regularity condition does not change the bound in any case discussed above.

Theorem 3.4 For each of Theorems 3.1 - 3.3, if EB[HSHZ] is continuous at

BO’ then the conclusion of the Theorems are unchanged if the parametric

submodels are restricted to those with Ee[HSHZI is continuous at 60.

4, V-Statistic Estimation for the Independence Case

The type of estimators to be considered in this paper satisfy a general

estimating equation of the form

(4.1) m_(8) = o_(1/vRd),
n P

where for each @, ﬁn(e) is a statistic. The idea is that it is known that
ﬁn(eo) = op(l), and 0 is being chosen so that ﬁn(s) is close to the
true limiting value of zero. Here @ 1includes the parameters of interest g
as well as additiénal nuisance parameters.

A choice of ﬁn(e) with high asymptotic efficiency is motivated by the
form of the efficient score. The idea is to base an estimating equation on a
sample average of the efficient score score for some particular parametric
families of distributions of €. For reasons to be discussed below, the
consistency of such an estimator should not depend on the assumption about the
distribution, and the estimator should be efficient when the true distribution
is a member of the class, because it is based on the efficient score.

The justification of this procedure arises from the fact that the
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efficient score has mean zero, suggesting that an estimator could be based on
the sample average of the efficient score. Of course, the form of some
components of the efficient score may not be known, so that estimation of
these components would be required for such an m-estimator. Rather than
following this procedure, which could be complicated and involve a
proliferation of nuisance parameters, one might fix some components of the
efficient score at known values. The convex model results of Bickel (1982),
BKRW, and Newey (1990a) provide conditions under which such a procedure is
valid. As defined by Bickel (1982), a convex model is one where the
nonparametric components are taken from a convex set. BKRW showed that if the
model is convex, then when the efficient score is evaluated at some false
distribution it retains the zero mean property. Newey (1990a) extended this
result to show that the same conclusion holds componentwise in nonparametric
components. Thus, when a model is convex in some nonparametric component,
that component in the efficient score can be replaced by a fixed value without
affecting the mean zero property.

Consider the efficient score, in equation (3.5), for the independence
case. Replacing the true lqcation score s(e) by a known, parametric

function s(e,n) gives

(4.2) m = §(z,90) - E[Slel, $S(z,0) JB(z.B) + pB(z,B)'§(p(z,B),n),

where 6 = (B’,n’)’. Note that E[m] =0 holds by the definition of m, a
result that follows from convexity of this model in the density function of
E. |

To construct a feasible estimator, it is necessary to estimate the
conditional expectation in (4.2), and to choose a value of the nuisance
parameters 7n. The literature on residual based prediction for nonlinear

simultaneous equations models, e.g. Duan (1983), Brown and Mariano (1984),
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Robinson (1989), suggests a useful estimator of this conditional expectation.
Because of independence of exogenous variables and disturbances, the
conditional expectation can be estimated by averaging §(Z,BO) over all the
sample values of x holding p(z,BO) fixed. This fact suggests that this
Same average with BO replaced by B might be used in the construction of an
estimator. Such an average can be constructed via the reduced form mn(e,x,p).
Recall that z = (y',x')’ = (n(p(z,B).x,B)’,x;). Substituting for z in

S(z,8) and averaging over x gives

(4.3) EtSlp(z,8)] = ijlg(n(p(z,ﬁ),xj,B),xj,B)/n.

Let 7 be nuisance parameters corresponding to, say, location and scale of
€, and let o6 = (8',7n')’. Substituting E for E(Sle] in equation (4.2),
averaging, and adding equations for estimation of the nuisance parameters

gives

A - nan 2 ~ _ ~ , ,
(4.4) mn(e) = Zi=12j=1b(zi,zj,9)/n » blz,z,8) = (bl(z,z,G) yx(z,8))",

bl(z,E,e) §(z,0) - S(n(p(z,8),%,8),%,8)

JB(z,B) - JB(n(p(z,B),x,B),x,B)

+ [pB(z,B)- pB(n(p(z,B),Q,B),i,B)]’§(p(z.B),n),

where the elements of ﬁn(e) corresponding to x(z,8) are sample averages
used in the estimation of the nuisance parameters 7. Here ﬁn(e) ié a
V-statistic (e.g. see Serfling, 1981), so that a natural name for this
estimator is a V-estimator.

Detailing a specific example may help in understanding the nature of this
estimator. Consider the transformation model of equation (2.5), with
f(x,8,2) = x’Bl. Let h-l(o,k) denote the inverse of the transformation
function, and let g = (u,wz)’, s(e,n) = -(e—u)/oz, and x(z,0) =
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(h(y,A)—u—x’Bz,oz-[h(y,A)-u-x'ﬁzlz)’. Then for JA(y,A) =

hyk(y,l)/hy(y,l), with subscripts on h denoting partial derivatives, and

uij(B) x382 + p(zi.B) = (xj-x.l)’B2 + h(yi,A), the estimating equation {(4.1)

with ﬁn(e) as in equation (4.4) is

n - -1
(4.5) Lio{ 3,y om - nglJA(h (u; ;(8),3),2)/n y/n

_ n 2 - n -1 Ay S, 2 &y A A ~2
Zi=1{ hk(yi,k)/n Zj:lhx(h (uij(B),A),A)/n }[h(yi,A)—p-xiBZJ/no

= o_(1/vn),
p

Zizl(l,xi’)’[h(yi,i)-ﬁ-xiézl/n = op(l/VE),
&% - £ Ihiy., D-i-x'B.1%/m = o (1¥R),

i=1 i i72 p
where the subscripts on h denote partial derivatives and the second equality
follows by combining terms correspending to estimating equations for 32 and
K. With the exception of the first equation, these equations are the usual
likelihood equations for (quasi) maximum likelihood estimation of
transformation models with normal disturbances. The first corresponds to the
likelihood score, e.g. including a Jacobian term, but its validity does not
depend on the distribution having any particular form.

Throughout this paper the Gaussian score is used mainly for illustrative
purposes. In practice, for robustness reasons it may be desireable to use a
bounded function of the disturbance in the estimator, as will be described
below.

To relate this estimator to previous results, it may be helpful to point
out the way in which other estimators can be formulated as V-estimators.

Of course, since means are V-statistics, any m-estimator is also a
V-estimator. For example, instrumental variables estimators correspond to

choosing
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(4.6) b(z,z,8) = Alx)[p(z,8) - 7],

where A(x) 1is a (g+s) x q matrix of instrumental variables and g
parameterizes Ele]. M-estimators such as those of MaCurdy (1982), Taylor
(1985), and Ruppert and Aldershof (1989) correspond to replacing pl(z,g) by
some vector of functions r(p(z,8)) and n by corresponding mean parameters.
Robinson (1989) has previously suggested a V-estimator that is not a simple
m-estimator. This estimator has the form of the instrumental variables
estimator corresponding to (4.6), only A(x) is replaced by a residual-based
estimator of the optimal (asymptotic variance minimizing) instruments. An
iterative version of Robinson’s (1989) two-step estimator could be obtained
from the solution of equation (4.1) with 7 = (', hvec(Z)’)’, where i and
Z parameterize the mean and covariance matrix of €, respectively, hvec(-)

denotes the usual vectorization of a symmetric matrix, and
(4.7) b(z,2,6) = (b,(2,2,8)’,%(2,0))"
by (2.2,6) = [py(n(p(Z,8),%,8),%,8),-11"S  p(z, 8)-u]

x(z2,8) = hvec(T - [p(z,B)-ullp(z,B)-ul’).

Although this estimator has a nontrivial V-statistic structure, it does not
correspond to subtracting an residual-based estimate of a conditional
expectation, and so is quite different than the one proposed above.

In comparison with these other estimators, one expects high efficiency
efficiency for R obtained with b(z,z,8) as specified in equation (4.4), at
least for some distributions, because it more closely matches the efficient

score. For example, consider n = (u',vech(Z)’)’ and
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-z Ne-p),

(4.8) s(e,m)

x(z,8) ( (p(z,B) ~ u)’, hvec(g - lp(z,B)-ullp(z,8)-ul" )" )’

As discussed below, the V-estimator obtained via equation (4.4) will be

an efficient semiparametric estimator under normality, i.e. when the
disturbances are normal it will be efficient in the class of estimators that
do not depend on the distribution of the disturbances. More robust and/or
partially adaptive alternatives could be obtained by applying existing ideas
to the choice of s(g,n) and estimating equations for 1n. It should be
possible to make the efficiency of the estimator less sensitive to the true
distribution by replacing - l(e-u) by £20057 2 (e-p)),  where wio)
is a bounded function, and replacing x(z,8) by'corresponding location and
scale estimating equations; see Huber (1981). Also, one might enlarge the
class of distributions for which the estimator is efficient by including in 7
and x(z,7m) shape parameters and corresponding estimating functions.

To make asymptotic inferences concerning the parameters it is necessary
to construct an estimator of the asymptotic variance of 6. As usual, the
asymptotic variance will be of the form M_IQM-l’, where M =
plim[aﬁn(eo)/ael and Q 1is the asymptotic variance of Vﬁﬁn(eo); an

1 1,

estimator M (M can be constructed from corresponding estimators M and

Q. As estimator of M can easily be constructed as

(4.9) M= aﬁn(é)/ae.

Estimation of Q 1is more difficult, but can be carried out via V-statistic
theory. The V-statistic projection theorem (e.g. Serfling, 1980) and

E[b(zl’ZZ’GO)] =0 give
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A - n
(4.10) vam_(8,) = Lioquy/vn + o, (1),

[~
1]

E[b(zj,zi,eo)lzi] + E[b(zi,zj,eo)lzi], 1= 3.

Thus, by the central limit thecrem Q = E[uiuil. Since the observations are
independent, the conditional expectations in (4.10) can be estimated by

replacing 6 by 6 and summing over all the other observations. Then Q

0

can be estimated as the sample average of the estimates of ui. yielding

2 n -~ -, A n - ~
(4.11) Q= Zi=1uiui/n, u, = Zj=1[b(zi’zj’e) + b(zj,zi,e)]/n.

It is difficult to be fully primitive concerning regularity conditions at
the level of generality considered here. The following assumption gives a set
of identification and dominance conditions, verification of which may require
substantial work in particular models. For a matrix A let [lAll =

[trace(A’A)]l/z, and let the dimension of 6 be p.

Assumption 4.1: i) 90 is an element of the interior of some compact set @;
ii) 60 is the unique solution of E[b(zl’ZZ'e)] =0 for 8 €8 iii)

b(zl,zz,e) is twice continuously differentiable on ® with probability one

and there exists B(z,Z) such that for all e €0, Ilb(zl,zj,e)u2 = B(zl,zj),

2

2 ‘
uab(zl,zj,e)/aeu = B(Zl’zj)’ a b(zl,zj,e)k/aeae I = B(zl,zj), E[B(zl,zj)]

<aw, (j=1,2; k = 1,...,p); iv) M and Q are nonsingular.

Under this regularity condition a V-estimator has the usual properties:
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Theorem 4.1: If Assumption 4.1 js satisfied then with probability approaching

one there exists a unique solution 8 of Ziflzjflb(zi,zj,é)/nz =0 over ©
such that
(4.12)  VAG-0,) L neo, Mla !, Wl ey gyl

It is useful to note that the asymptotic variance of B 1s unaffected by

estimation of the nuisance parameters, leading to a simplification in the

~

variance formula. Let M, M, Q, and Q be partitioned conformably

8.7), eg M =

with b(z,2,6) in equation (4.4) and o 1

E[abl(zl,zz,eo)/asl.

Corollary 4.2: If b(21'22'9) is given in equation (4.4), and satisfies

Assumption 4.1, and s(e,n) is differentiable in 7, then

), ala mol 2y wTlg ol

d "1 -11
) = N(O, M_.Q. M 11%11M14 11%11711

(4.:3) vn(B-8 11711711

0

As promised, the estimator 3 is semiparametric efficient if the true
disturbance score is a member of the parametric family s(e,n) and n is a

consistent estimator of the true nuisance parameters.

Theorem 4.3: Suppose that Assumptions 3.1 and 4.1 are satisfied and that
EB[B(zl,zz)] is continuous in a neighborhood of BO. If s(e) = §(c,no)

then the asymptotic variance of B equals the semiparametric bound.
Furthermore, B is regular if E [HSHZI is continuous at BO and parametric

B

submodels are restricted to those with EB[HSHZJ continuous at eo.

As noted in Theorenm 3.4, continuity of Ee[nsuzl is a regularity condition

that does not affect the form of the bound.
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5. Antithetic Variate Estimation for the Symmetric Case

Motivated by efficiency considerations similar to those for the
independence case, an estimating equation can be obtained from the efficient
score by replacing the unknown disturbance score by a known function.

Consider the efficient score in equation (3.8). Replacing s(e,x) by a known
function s(e,x,n) that is an odd function of € given x and n, and

replacing o by 6 gives

0

(5.1) m = §(z,90). S(z,0) = [JB(z,B) - JB(n(—p(z.B),x,B),x,B)]/Z

+ [PB(Z.B) + pB(n(-p(z,B),x,B).x.B)]’§(p(z,B),x,n)/2.

Note that this procedure has the effect of making S(z,8) an odd function
of p(z,B) given x, so that E[m] = 0. Averaging over the sample and
adding equations for estimation of n gives

- - n - b= ’ IAAY4
(5.2) mn(e) = Zi=1b(zi,9)/n, b(z,8) = (S(z,0)’,%x(z,8))

]

Here the solution to equation (4.1) is an m-estimator based on an antithetic
variate symmetrization of a function of the data (and parameters).

Detailing a specific example may help in understanding the nature of this
estimator. Consider the transformation model as in Section 4, and let 7 =
cz, s(e,x,n) = -c/vz, and x(z,8) = 02 - [h(y,A)-x’B]Z. Then for JA(y,A)
as before and ui(B) = xiBz - p(zi,B) = inﬁz - h(yi,k), the estimating

equation (4.1) with ﬁn(e) as in equation (5.2) is
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- -1 AL &L A
(5.3) Loyl dy (v, Aim - Iy (b7 (B), 0,8 pran
= Lo U v Am + by 7w, (3),30,8) 3 (ho A)-x’B.1/2n62
i=1 AT 2 i s A, i xiBZ] 2ne
= o (1/vn),

n sy A _
Zi=1xi[h(yi,k)-x182]/n = op(l/VH),

&% - Lioy th(y; D)-x:4,1%m = o (1Y),

With the exception of the first equation, these equations are the usual
likelihood equations for quasi maximum likelihood estimation of a
transformation model with normal disturbances. The first equation includes a
Jacobian term, as do likelihood equations, but unlike the corresponding
likelihood equation its validity depends only on conditional symmetry, and not
on the distribution having any particular fornm.

These estimators are related to previously suggested estimators in the
sense that they are based on odd (antisymmetric) functions of the distufbances
given x. For example, Taylor (1985) and Ruppert and Aldershof (1989) have
considered estimators based on the cubed residual.

As shown below, this estimator will attain the semiparametric efficiency
bound for the conditionally symmetric case if the true disturbance score is

§(e,x,no) where Ny is the limit of ﬁ. For example, consider n = vech(ZI),

(5.4) s(e,x,n) = —z-le, x(z,08) = hvec(T - p(z,B)p(z,B8)").

The corresponding estimator obtained via equations (5.1) and (5.2) will be
efficient under normality and homoskedasticity of e. More ;obust and/or
partially adaptive estimators could be obtained by applying well known ideas
to the choice of s(e,x,n) and x(z,8). For example, some

heteroskedasticity might be allowed for by specifying Z to be a function of
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X and unknown parameters, and replacing x(z,8) by squared residuatl
estimating equations for these parameters. More robust versions could also be
obtained by applying ideas of Carroll and Ruppert (1982).

These antithetic estimators are m-estimators of the Huber (1967) form so
that asymptotic inference procedures can be carried out in the corresponding

way. The asymptotic variance of 6 will be of the form

1,

(5.5) Ml y - E[ab(z,0,)/36], @ = Elb(z,0,)b(z,0,)" ],

which can be estimated by replacing expectations by sample averages and true

parameter values by estimates, as

r=laa~-1, o n A A n A 2.,
MM ", M= Zi=16b(zi,9)/69/n, Q = Zi=1b(zi,6)b(zi,9) /n.
As in Section 4, a high level set of regularity conditions can be
specified. Here these are of a standard type, because the estimator 6 is

Just an m-estimator.

Assumption 5.1: i) 60 is an element of the interior of some compact set @;
ii) 60 is the unique solution of E[b(z,8)] =0 for 8 e @ iii) b(=z,8)

is continuously differentiable on a neighborhood N of eo with probability
one and there exists B(z) such that for all 6 € @, Hb(z,O)M2 = B(z) and
for all @ € N, 18b(z,0)/881 = B(z), EI[B(z)] < o.

iv) M = E[Bb(z,eo)/ael and Q = E[b(z,eo)b(z,eo)’] are nonsingular.

Theorem 5.1: If Assumption 5.1 is satisfied then with probability approaching
" one there exists a unique solution 8 of Zizlb(zi’e)/n =0 over ® such

that

(5.6) Vﬁ(é-eo) -5 N(o, M-lnM-l’), M P M taM”

=22~




As in Section 4, the asymptotic variance of the estimator of the parameters
of interest simplifies. Let M, ﬁ, Q, and § be partitioned conformably
with b(z,8) 1in equation (5.2) and 6 = B',n"), e.g. Mll =

E[abl(zl, 90)/681.

22,

Corollary 5.2: If b(z,8) is given in equation (5.2), and satisfies

~

Assumption 5.1, and S(e,x,n) is differentiable in w, then

), Hola, mcle 2y wtlg ol

~ d -1 '1, ’
(5.7 VH(B-By) — N(0, M[\Q .M 1111 1111M

1171111

As promised, the estimator B is semiparametric efficient if the
true disturbance score is a member of the parametric family s(e,x,n) and n

is a consistent estimator of the true nuisance parameters.

Theorem 5.3: Suppose that Assumptions 3.1 and 5.1 are satisfied and that
EB[B(Z)] is continuous in a neighborhood of By If s(e,x3 = §(e,x,no)

then the asymptotic variance of 3 equals the semiparametric bound.
Furthermore, 3 is regular if E [HSH2] is continuous at BO and parametric

B

submodels are restricted to those with Ee[HSHZI is continuous at 90.

It also possible to construet an estimator that uses both independence
and symmetry, by combining the previous estimators in a way analogous to that
in which the efficient scores are combined. Let s(e,n) be an odd

function of € given 1. Consider a V-estimator‘with
(5.8) b(z,2,8) = (bl(z,E,G)’,x(z,el)’.
b,(z,z,0) = JB(z,B)'- pB(z.B) s(p(z,8),n)
- [JB(n(p(z,B),i,B),§,B) - pB(n(p(z,B),i,B),i,B)]’§(p(z,B),n)]/2

- Ugln(-p(2,8),%,8).%,8) + pB(n(-p(z,B),i,B),i.s)1'§(p(z.s),n)1/z.
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This estimator mimics the form of the efficient Score. It will be consistent
when the distribution of e is independent of x and symmetric around zero,
and attain the bound from Theorem 3.3 when the true score is a member of the
assumed family §(e.n) and the nuisance parameters are estimated

consistently. For brevity, formal results are omitted.

6. A Box-Cox Example

An empirical and Monte Carlo example may provide some information
concerning the performance of the estimators in practice. The model
considered was the Box-Cox version of the equation (2.5) transformation model.
The data was the Engel curve data described in Kéenker and Bassett (1982),
which consists of 224 observations on household income and expenditure. The
object of the empirical and Monte Carlo exercises was the determination of a
relationship between income and expenditure. To this end, the dependent
Variable of the Box-Cox model was specified to be the level of food
expenditure and the regressors to be equal to a constant and the natural log
of income. Also, in keeping with this objective, and to avoid the usual
difficulty of interpreting parameters of transformation models, results for
the regression coefficients are not reported. Instead, we consider the income
elasticity of expenditure, which is defined as the derivative of a location
measure for the conditional distribution of the natural log of income with
respect to log-income, evaluated at the mean of log income. The location
measure chosen here is the conditional median, which is convenient for
transformation models, because it ig equivariant with respect to monotonic

transformations. For the Box-Cox model the conditional median elasticity is
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(6.1) e = 822/[1 + A‘(Q'Bz)].

assuming that the disturbance hag conditional median zero. The empirical and
Monte Carlo results were found to be insensitive to the assumption of
conditional median zero (adjusting for the true median of the disturbances
only affected the results in the fourth decimal place), so that for
convenience the zero conditional median assumption was imposed in the
elasticity estimation.

Table One reports several different estimates, corresponding to the
V-statistic and antithetic variate estimators as well as others. The "log
regression" rows are from a regression of the log of expenditure on the log of
income. The other rows are obtained from various Box-Cox estimators. Each of
these estimates was computed by concentrating out the regression and variance
parameters by least squares regression of h(yi,A) on xi, which is taken
throughout to include a constant, and using the resulting estimates BZ(A),

02(A) to solve for A from a scalar equation of the form

(6.2) I

The rows labeled "QMLE" are for the Box and Cox (1964) quasi maximum

likelihood estimator where

n(z,,8,,6%) = In(y) - hy (y. 2+ [h(y, \)-x"8, 1 /c°.

The rows labeled "V-stat" and "Antithetic" took m to be the estimate of the
Gaussian efficient score for 2 under independent and conditionally symmetric
disturbance respectively, as described in Sections 4 and S. For the rows

labeled "IV," m was specified as
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ﬁ(z,A,BZ,vz) = (x'BZ)Z[h(y,A)-x’BZJ,

which gives an nonlinear instrumental variables estimator in the class
considered by Amemiya and Powell (1981). The algorithm for solving equation
(6.2) was a grid search over (-.31,1.2] for Changes of sign of the left-hand
side of equation (6.2) followed by Newton-Raphson (with numerical derivative).
This algorithm never failed to produced a unique root. For the antithetic
estimator, it was necessary to reduce the grid to [-.31,.8], because the
symmetrized reduced form n(-p(z,8),x,B8) was not well defined for some
observations for larger values of . Throughout, computations were performed
via GAUSS on a microcomputer.

As in Newey (1987), the choice of covariate (x’BZ)2 is motivated by
efficiency considerations. From Amemiya (1974) it is known that the optimal
(asymptotic variance minimizing) function a(x) in a choice of m as
a(x)[h(y,A)-x'BZ] is E[hA(y,AO)Ix] + A+ x’B for any constant A and
vector B. If the disturbance has conditional mean zero and constant

conditional variance, then for AO = 0,

‘ = 2 _ , 2 2
(6.3) E[hA(y,AO)lx] = E[{In(y)}°Ix]1/2 = [(x BZ) + 081/2.

so that (x’BZ)2 is optimal. Furthermore, it appears that (x’BZ)2 is an
approximately optimal instrument for many cases where Ao # 0. For example,
for (A,Bé) = (.23,-11,3.7), ¢ distributed as N(0,.36), and x
distributed as N(6.7,.19), which (except for the normality assumption)
correspond to the IV values in Table One, the ratio of asymptotic standard
error for the optimal IV estimator of A to that of the estimator with
instrument (x’BZ)2 is .98.

It should be noted here, and in the context of the Gaussian cases

discussed below, that, strictly speaking, the Box-Cox model is not well
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defined for Gaussian disturbances, because of the Positivity constraint on vy.
However, for the Engel data and the parameter configurations considered here,
a violation of the Positivity condition requires that either log income or the
disturbance is 8 standard deviations below their respective means. Thus,
violation o. ‘le positivity constraint is a very unlikely event, and ignoring
this constraint, as was done here, will have little affect on the results.
Table One reports specification robust asymptotic standard error
estimates, calculated from the Huber (1967) type formulae discussed earlier,
except for the QMLE and V-stat standard error estimates. A numerical problem
was encountered in calculating the QMLE and V-stat standard error estimates.
The derivative matrix of the sample moments is ill-conditioned, with small
changes in its elements leading to large changes in its inverse, and thus in
the associated standard error estimates. To circumvent this problem the
standard errors for QMLE and V-stat were estimated by the bootstrap. The QMLE
standard error was the Monte Carlo standard error of the estimates from 224
replications of 224 observations drawn randomly from the empirical
distribution of (yi,xi). The V-stat standard eérror was calculated in the
Same way, except that to lower computation time only 75 replications were
used. Resampling from the empirical distribution of the entire vector would
seem to be an appropriate method for obtaining specification robust standard
eérror estimates. The other estimators did not suffer from this numerical
problem, suggesting that it may be related to the fact that A is near zero.
The estimates of 2 in Table One vary substantially across the different
methods, with the IV and antithetic estimates being greater than the others.
There is much less variation in the elasticity estimates, although the IV and
antithetic variate estimates appear to be slightly higher than the others.
Motivated by the nonlinearity of the model, the Monte Carlo design was

based on the empirical example. Because there are few invariant features of
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the model, a comprehensive design would be quite large, and is beyond the
scope of this paper. A design based on an empirical example at least gives
some information concerning how the estimator might perform in an application
of interest.

Both independent and conditionally symmetric disturbance distributions
were considered. In each case the number of replications was 200. Table Two
reports results for the independence case. Here the sample size was taken to
be 75, in order to facilitate repeated computation of the V-statistic
estimator. For each replication the regressor observations were drawn as an
i.i.d. sample from the empirical distribution of the 224 data observations.
In one case the disturbances were Gaussian, and in the other, labeled
"Empirical e" in the table, they were drawn from the empirical distribution
of residuals calculated using the true values given at the beginning of the
table. These true values were a value for A corresponding to the IV
estimates of Table One and a value for Bz and oi obtained from a least
squares regression of h(y,A) on x in the data. The IV estimate was chosen
as the true value because its consistency only requires a conditiona] mean
Zero disturbance, so that it would be consistent under either independence or
conditional symmetry. An additional estimator, labeled "Heterosked" in Table

Two, was also computed. It has

ﬁ(z.l,Bz.vz) - (x’BZJ{[h(y,A)—x’BZJZ - %y,

and corresponds to a transformation to homoskedasticity as in Ruppert and
Aldershof (1989). The use of x’BZ a8s a co-variate is motivated by similar
considerations to the choice of (x’BZ)2 as the IV co-variate; note that at
% =0 El8{Inly,M)-x'8,1% - ¢%}/3(2, 82, 0%) |x] = El(2el1n(y)1%, -2x" ¢, 1) |x]
= (ZE[83](x'32)2+4o§(x’32),0',—1) = (40§x’32,0’,-1) if € 1is independent of

X and symmetric around Zero. The numbers reported in both Tables Two and
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Three are the Monte-Carlo estimates of bias (BIAS), standard error (STE),
root-mean square error (RMS), median (MED), and median absolute error (MAE)
for each of the estimators discussed above.

The Table Two results for A in the Gaussian case show the expected
pattern, with QMLE having smaller variance than V-stat, which in turn has
smaller variance than IV. It is interesting to note that the V-stat variance
is quite close to that of the QMLE, and substantially less than that of the IV
estimator. An analogous ranking holds for Antithetic in relation to QMLE and
IV, but Antithetic has higher variance than V-stat. It should be noted that
the efficiency bound calculation does not imply a ranking of the asymptotic
variances of Antithetic and V-stat, because the models are not nested.

Two other features of the Gaussian results are the tiny biases of the
estimators of A and the tiny difference in performance of the elasticity
estimators. The elasticity efficiency rankings are similar to those for A
by the differences across estimators are much smaller. Also, Homosked
performs poorly in comparison with the other estimators. Its standard error
is substantially larger than that of V-stat and it has a very large bias.

This bias is not an artifact of computational error. Modifying the computer
program by simply changing the number of observations to 450 wipes out most
of the bias.

The Table Two results for the empirical disturbances case show a similar
pattern to those for the Gaussian case, except that Antithetic performs worse,
including the presence of some bias in the estimate of A. The QMLE estimator
also exhibits evidence of bias. For the IV and V-stat estimators, efficiency
rankings like those of Table 3 hold, but the efficiency gains from V-stat are
smaller.

Table Three reports results for the conditionally symmetric case. The

number of observations given here corresponds to the 224 of the empirical
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example. The Gaussian data was generated exactly as for the independence
case. The other data generation process, labeled "Empirical Antithetic g,
was conditionally symmetric and possibly heteroskedastic, and corresponded to
drawing each observation pair (xi,ei) at random from a distribution of
2x224 = 448 points consisting of the original data points and corresponding
points with the residual replaced by its negative. An additional estimator,

labeled "Sym" in Table Three, was also computed. It has

n(z,2,8,,0°) = [(h(y, A)-x8,1°,

and corresponds to a transformation to symmetry as in Taylor (1985) and
Ruppert and Aldershof (1989).

The Table Three variance results for A in the Gaussian case show the
expected pattern, with QMLE having smaller variance than V-stat, which in turn
has smaller variance than IV. However, there is evidence of bias in the QMLE,
suggesting that the QMLE bias is a nonmonotonic function of the sample size
(compare with the Table Two Gaussian results). The properties of the
elasticity estimators are like those of Table Two. Also, the Sym estimator
has a much larger variance than the others. Even the elasticity estimates for
Sym are substantially less efficient than for the other estimators.

The Table Three results for the empirical disturbances case show a
similar pattern to those for the Gaussian case, except that QMLE is much more
7biased. There is even a moderate amount of bias in the elasticity estimator.
One might conjecture that heteroskedasticity in the disturbances of the
empirical distribution is the source of this bias. This conjecture was
checked by running a regression of the squared residuals uz,'with parameters
set at the population values of Table Three, on 1, log of income 1n(I),

and ln(I)Z. The estimate was,
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0% = 13.25 - 2.181n(D) + .33+ (1n(1)12, F(2,222) = 18. 77,
providing evidence of heteroskedasticity.

In Table Three, the efficiency improvement over IV for the Antithetic
estimator is smaller than the corresponding improvement for V-stat in Table
Two. The Table Three Antithetic root-mean square error was about 10 percent
smaller than that for IV, while the Table Two V-stat root-mean square error

was about 25 percent smaller.

7. Conclusion

This paper has presented estimators for nonlinear simultaneous equations
models with consistency properties that do not depend on the form of the
disturbance distribution and that are efficient when the true disturbance is a
member of a specified parametric family. Models with independent and/or
conditionally symmetric disturbances were considered. In each case the
estimator is residual based, being obtained from a V-statistic in the
independence case and antithetic residuals in the symmetric case.

For the special case of transformation models, the estimators here
correspond to efficient transformations to homoskedasticity or symmetry, as
recently considered by Ruppert and Aldershof (1989). In the Monte Carlo
study, Gaussian efficient transformations perform much better than some
previously suggested. It also would be interesting to investigate the finite

sample properties of robust versions of these estimators.
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Appendix: Proofs of Theorems

The following notation and terminology will be useful. Mean-square
(m.s.) continuity of functions of 8 will taken to be continuity in e for
the mean~square error norm. Similarly, m.s.-differentiability will mean
Frechet differentiability in this norm. Also, throughout ¢ and C will
denote generic positive constants that need not be the same in different
expressions. The conditions for smoothness and regularity of parametric
submodels are like those of Ibragimov and Hasminskii (1981, Ch. 7), which
reference is referred to as IH henceforth. Suppose that ?e = {f(z]8) : 8 €
@} 1is a family of densities £(z|6) with respect to some measure, and let

dz denote integration with respect to that measure.

Definition A.1: ?9 is smooth if @ is open and i) {(z|@) is continuous on ©
a.s.; 1ii) £(ZIIE))1/2 is m.s. differentiable with respect to 6 on © with
derivative y(z,8), i.e. Iuw(z,a)ﬂzdz is finite on ® and for each 6 and 9i -
8, .ruz(z|ei)1/2-e(z|e)1/2-¢(z,e)'(ei-e)lzdz/nei-enz — 0;  1ii) Y(2,0) is m.s.
continuous. Also, for smooth ?9 the score is defined by S9 =
2+1(§(z10)>0)4(2,8)/4(218)"/% and the information matrix by I8,S4b(z10)dz. P

e

1s regular if it is smooth and the information matrix is nonsingular on ©.

See IH for further details.
The following pair of Lemmas are useful for proving Theorems 3.1 - 3.4,

They are proved in Newey (1990b) as Lemmas C.4 and C.6, respectively.
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Lemma A.1: Suppose {(z|B) is smooth, with score SB at Bo. Fof 8 =
(B'.m")", let A&(z,8) be bounded, bounded away from zero, cont inuously
differentiable in an open ball © containing 90 = (Bé,o’)’, with
W6a(z,8)/881 = b(z) for o e ®, such that fb(z)zi(le)du exists and is
continuous on ®, A(z,8,0) =1, and fﬂ(zIB)A(z,e)du = 1. Then {(z]|g) =
£(zIB)A(z,8) is smooth with score Se = (Sé,A;)’ at 90, where An =

1(£(ZIBO)>O)6A(2,60)/6n.

Lemma A.2: Consider vectors of random variables Y, X, and Z = (¥,x)’.
Suppose that s(Z) and (ql(Z),...,qm(Z)) have finite variance, E(s(Z)q(Z)'|X] =
0, and El[q(Z)q(Z)’|X] is nonsingular (a.s.). Then there exists {sK(q,I)}Kzl
such that Elsy (¥,0)q(2)17] = 0, ENs(Z)-s, (¥, 2))%] o, sg (4, %) is bounded,
and the partial derivatives of sK(q,I) with respect to y of all orders are
bounded. Furthermore, if s(Z) and q(Z) are even functions of a subvector Y of
Y and the conditional distribution of 9 given the other components of Z is

symmetric around zero, then sK(q.I) can be chosen as an even function of 4.

The following Lemma and the hypotheses of Theorem 3.1 are useful for verifying

the form of the tangent set conjectured in the text. For now, let z = (e, x).

Lemma A.3: If f(e|n) and f(xIn) are smooth with scores Sn(e) and Sn(X)
respectively, then fl(eln)fi(xln) is smooth with score Sn(z) =

10 fleln)f(xin) > 0){Sn(e) + Sn(x)}.

Proof: Consider y(e,n) = f(eln)l/zsn(e,n)/z and y(x,7n) =
-1/2f(x|n)1/25n(x,n)/2. A standard result is that the m.s. derivative of the
root-density is zero at n if the density is zero at n (e.g. see the
appendix of BKRW), so that these are the m.s. derivatives of the respective

densities. By the Cauchy-Schwartz and triangle inequalities, the Fubini
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theorem, and [Sf(xI7)dx = 1, it follows that SE i 2ye, 5y -

£0xIm %006, )12z = ZIHf(xIﬁ)1/2-f(x|n)l/zuzdx-fuw(c,n)uzdz .

2SUy(e, n)- w(e,n)uzde, so that m.s.-continuity of f(xln)l/zw(e,n) follows
by m.s.-continuity of f(xln)l/2 and yl(e,n). Similarly, f(eln)l/zw(x,n) is
m.s. -continuous, so that by the triangle inequality y(z,7n) =

f(sln)l/zf(xln)l/zsn(z,n)/2 = f(xln)l/zw(e,n)/z + f(eln)l/ZW(x,n)/Z is also.

The fact that y(z,7n) is the m.s.-derivative of f(g|q) follows similarly:
fl[f(enﬁ)f(xlﬁ)l1/2-[f(e|n>f(xln)ll/z-w(z,n)'(ﬁ-n)lzdz/nﬁ-nuz

< 4I|f(x|5)I/Z—f(xln)l/z-w(x,n)’(ﬁ-n)lzdx/uﬁ-nuz

‘ 4f|f(e|5)1/2-f(e1n)1/212de-f|w(x,n)'(ﬁ—n)yzdxxuﬁ-nuz

. zflf(elﬁ)l/z-f(eln)l/z-w(e,n)'(ﬁ—n)lzde/uﬁ-nuz. .

Proof of Theorem 3.1: Since S was shown in Section 3 to be the residuals of
the projection of SB on 7 of eq. (3.3), by the projection interpretation
of the bound it suffices to show this set is the tangent set, as claimed, and
to verify regularity of £(zIB). First note that {(z|B) 1is smooth by
hypothesis. Nonsingularity of its information matrix will follow from
nonsingularity of E[SS’], since as noted in Newey (1990a, Lemma Al), EI[st')
=0 for s satisfying eq. (3.1) and all te?7, implying positive
semi-definiteness of E[SBSé]-E[SS’]. Then by smoothness (implying continuity
of the information matrix as a function of the parameters), there will be a
neighborhood of BO for which {(zIB) is regular.

Next, to verify the form of the tangent set, consider a smooth parametric
submodel. To calculate the score for 1w, it suffices to fix B at BO when
calculating the score for n. Then by a change of variables (y,x) — (e,x)
(recall ¢ = p(z,Bo)), the likelihood can be written as fleln)f(x|n). By

Lemma A. 3, ASn = ASn(c) + ASn(x) € 7, by the mean zero properties of scores,
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so the tangent set is a subset of T by T closed.

Next, to show that any element of J can be approximated arbitrarily
closely in mean square by the score for a regular parametric submode],
consider a submodel of the form f(ziB)a(z,8) for A(z,8) =
[1+n'h1(p(z,B))]°[1+n’hz(x)] where h, and h. are bounded, E[hl(e)]=0,

1 2

E[hZ(x)]=O, and hl(e) is continuously differentiable with h e(c) bounded.

1
That this is a probability density for 7n close enough to zero follows by the
mean zero assumption and independence. By hypothesis, A(z,8) is
continuously differentiable, with o0A(z,8)/86 = [n’hle(p(z,B))pB(z,B).
hl(p(z,B))’[1+néh2(x)] + hz(x)’[1+n’h(p(z,B))]]' bounded by CHpB(z,B)H on a
neighborhood of 90. Then by Lemma A.1, f(zl6) is smooth with Sn =
h1(8)+h2(X). Further, by Lemma A.2, for any ¢ = tl(e) + tZ(x) there exists
hy(e). hy(x) such that ElNt,(e)-h (e)1%] and ELIE, (x)-h, () 1°]  is

arbitrarily small, implying that E[Ht—SnHZI can be made arbitrarily small. =

Proof of Theorem 3.2: As in the proof of Theorem 3.1, it suffices to show
that 7 of equation (3.7) is the tangent set, as claimed, and to verify
regularity of {(z|B). Regularity of {(z|8) follows as in the proof of
Theorem 3.1. Next, consider a parametric submodel with score Sn for the
nuisance parameters. Let f(e,xIn) denote the density of (e,x). Because
f(-e,xIn) = f(e,xln), it follows by taking an almost sure convergent
subsequence of a meéan-square convergent difference quotient that Sn(-e,x) =
Sn(e,x), so that the tangent set is a subset of 7. To show that any element
of J can be approximated arbitrarily closely in mean Square by the score for
a regular parametric submodel, consider a submodel of the form f(z|B)A(z,9)
for A(z,8) =1 + 9'h(p(z,B),x) where h 1is bounded, Elh(e,x)]=0, h(-g,x)
= h(e,x), and h(e,x) is continuously differentiable in ¢ with bounded
derivative. It follows from Lemma A.1, as in the proof of Theorem 3.1, that
this is a smooth parametric submodel, with score h(e,x). That such h(e, x)
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can approximate any element of T follows from Lemma A, 2, [

Proof of Theorem 3.3: The logic of the proof is analogous to those of
Theorems 3.1 and 3.2. Regularity of $(zIB) follows as there. The fact that
any linear combination of scores are elements of T follows by -vmbining
arguments the arguments of each proof. Consider parametric submodels of the
form in the proof of Theorem 3.1, where hl(e) is restricted to a vector of
even functions. It follows as in the proof of Theorem 3.1 that the resulting
submodel is regular, with Score in J. The fact that such scores can provide
an arbitrarily good approximation then follows from Lemma A.2 by the same
argument as in the proof of Theorem 3.1.

For this case, it remains to verify that the projection has the form
given in eq. (3.9). Note that R is an element of 7 by construction.
Thus, it suffices to show that R-R is orthogonal to 9. By symmetry,
Ela(e)] = Ela(-€)] for any af(e). Then for any ¢t = t(e) + t(x) e T, it

follows by t(-€) = t(g) that

E[(R-R)‘¢] = E({R-E[RIx]-(E[R|e] + E[Rle]le=_e)/2)’t] =

E[{R-E[RIx]}"t(x)] + E[R-(E[R|e] + E[Rle]le=_e)/2}’t(e)]

E[{R-E[Rlel} t(e)]/2 + E[{R—E[Rlclle=_€}’t(e)]/2

{E[R’t(e)] - E(E[Rle]l t(-e)]}/2

{E[R"t(e)] - E[E[RIe]’t(-€)]}/2 = 0. =

Proof of Theorem 3.4: It suffices to show that the tangent set remains
unchanged when continuity of Ee[HSHZI is imposed. Furthermore, since
imposing this restriction can only shrink the tangent set, it suffices to

show that Ee[HSHZJ is continuous at 90 for the class of parametric
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submodels that were used above to approximate the elements of the tangent
set, each of which satisfy the hypotheses of Lemma A.1. For a parametric

submodel as in Lemma A1,

(A.1) |EgLiSH%] - EgUISi®11 = Jusi|a(z,0) - 11¢(z1g)dz.

Consider 6 — 90. By continuity of A(z,8) at 90 and regularity of

2(zI1B), 1S1%|A(z,8) - 11{(z18) — 0 for o — 8y, while by boundedness of

A(z,8) and continuity of EB[HSHZI at BO, "SHZIA(Z,B) - 1]8(z|B) =

cusi®e(zig) and rcusn?e(z18)dz = CEB[HSHZI — CE(1S1%]. Then by the

dominated convergence theorem of Pitman (1979), Ee[HSHZJ - E[MSHZ].
= CHnHEB[HSMZJ, by hl' h2 bounded. Thus, continuity of EB[HSHZJ at 60 =
141.

(B.,0)’ follows by continuity of EG[HS ]

B

The following Lemma is a standard one on the behavior of an estimator obtained

from equation (4.1), and so its proof is omitted.

Lemma A.4: Suppose that i) 90 is an element of the interior of a compact,

convex set 8; ii) supeeeﬂﬁn(e)-mo(e)u = op(l); iii) mo(e) 0 has a unique

solution on © at eo; iv) mo(e) is continuous on ©; v) ﬁn(e) is
continuously differentiable on a neighborhood N of 90; vi) for any @8 = eo
+ op(l). om (8)/80 = M + op(l); vii) M is nonsingular; viii) Vﬁmn(so) =
Ziglui/VH + op(l). E[ui] =0 and E[uiu;] is nonsingular. Then with
probability approaching one there exists a unique solution 6 of &n(e) =0

satisfying Vﬁ(é-eo) -5 N(o, M-IE[uiui]M-l').

Proof of Theorem 4.1: The proof of the asymptotic distribution result
consists of a verification of the hypotheses of Lemma A.4. Note i) holds by

Assumption 4.1. For ii) and iv), note that ﬁn(e) = 21:12J:1b‘21'2 ,e)/n2 =

J
Up(8) + T () for U (o) = 21212J>1[b(zi,zJ,9)+b(zJ,zi,9)]/n(n-1) and T_(6)
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= ﬁn(e) - Un(e). Note that Un(e) is a U-statistic with kernel
[b(zi'Zj’e)+b(zj’zi'9)]/2' Then it follows from Assumption 4.1 by the
U-statistic uniform convergence result of Newey (1989b), Corollary 4.2, that
supeeelUn(e)—mo(e)i = op(l) for mo(e) = E[b(21,22,6)+b(22,21,8)]/2 =
E[[b(zl,zz,e)], and that mO(B) is continuous, giving iv). Also, by
Assumption 4.1 and the Markov inequality, supeeeuﬁn(e)u s Ziglzjng(zi,zj)/nZ
= Op(l), so that supg _olIT_(8)I = |1-(n2/n(n-1))lsupeeenan(e)u +
Zing(zi,zi)/n(n—l) = op(l), so that ii) holds by the triangle inequality.
Note that iii) and v) hold by hypothesis. Also, by an argument exactly like
that just used to show ii), it follows that 8ﬁn(9)/69 converges uniformly

in probability to E[8b(z 8)/388] on a neighborhood of @, which is

1’ %2
continuous. Then vi) follows by a standard argument, while vii) holds by
hypothesis. As noted in the text, viii) holds, with u, given in eq. (4.9),

by the V-statistic projection theoren, giving the final hypothesis for the

asymptotic distribution result.

~

To show consistency of the variance estimator, note that M = M + op(l)
follows by the definition of M in eq. (4.8), consistency of 8, and vi) of
Lemma A.4, so that ﬁ_l = M—1 + op(l) follows by nonsingularity of M and
the Slutzky theorem. Therefore, by the Slutzky theorem, it suffices to show

consistency of {. By the law of large numbers, consistency will follow by

A n ’

Q Zi=1uiui/n
n - 2

Zi=1"ui uiu /n

~ _«n
and u, = Zj=laij/n’

op(l), which in turn can be shown to follow from

op(l). Note that for aij = b(zi.zj,eo) + b(zj,zi,eo)

n 2 = v N s ~ 2 =D g~ 2
(A.2) zi=1"ui_ui" /n = 2(T1+T2), T1 = Zi=1"ui u, I1%/n, T2 Zi=1uui u, I”/n.

With probability approaching one 6 1is an element of any convex
neighborhood of 90, so that by n mean value expansions, the Markov

inequality, and consistency of 8,
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=72 3 -0 1%pm =0 n = ry A_ 2
T, = Zi=1"ui u I%/n Zi=1ﬂzj=1(6[b(zi,zj,91)+b(zj,zi.Bi)]/ae/n}(B GO)H /n

A

non 2,2, 4 2 _ -
4[Zi=lzj=lB(zi’zj) /n ]HQ-BOH = Op(l)op(l) = op(l),

where §i denote the mea- vilues, which each lie between ) and so. Also

note that by the i.i.d. assumption and E[Haijnzl = 2E[B(zi,zj)] < o,

- ~ 2
E[T2] = E[E[llu1 4 i=lz, 1]

< n - - 2 2 -
= E[ 4E[H2j=2(alj E[aljlzll)/(n 1) '21] + 4E[Mallu lzll/(n 1)
2
+ 211-[n/<n-1)1lzj;‘lz-:[ualju lz,1/n |

2 2 _
= 6E[Ha12u + uallu 17(n-1) = o(1),

so that T2 = op(l) follows by the Markov inequality. Thus, it follows by

eq. (A.2) and the triangle inequality that Xizluﬁi-uiﬂz/n = op(l). n

Proof of Corollary 4.2: Note that by independence and differentiability of

s(e, ),
(A.3) M12 = E[abl(zl,zz,eo)/an] = E[{pB(zl)—pB(n(el,xz),xz)}’6s(el,no)/an]

= E[{pB-E[pBle]}'as(e.no)/an] = 0.

The conclusion then follows by a partitioned inverse argument like that of

Ruppert and Aldershof (1989). [

Proof of Theorem 4. 3: Let b(zl,zz,B) = b(zl,zz,B.no) and note that by
Assumption 4.1, b(zl,zz,B) is continuously differentiable in B and
Hab(zl,zz,B)/aBMZ, Hab(zl,zz,B)/aBH = B(zl,zz) + 1. By Lemma A.3 and
Assumption 3.1, f(zllﬁ)f(zztB) is smooth. Differentiating the identity
EB[b(zl,zz,B)] =0, 1it follows by Lemma C.2 of Newey (1990b) that
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My = -E[b(zl,ZZ,BO)(SB(21)+SB(22)}’] = -E[E[b(zl,ZZ.BO)Izlls (21)’]

B

- E[E[b(zl.zz,Bo)IzZJSB(zz)] = -E[uSé].

Also, note that for §(s,no) = s(g), §(z,BO) = S;. Furthermore, by the

B
definition of b(zl,zz,B), E[b(zl,zz,BOJIZI] = SB-E[SBIC] and
E[b(22’21’30)|21] = E[SBI~E[SBIX], so that u = SB-E[SBIC]-E[SBIx]+E[SB] =

S. The conclusion then follows by Corollary 4.2, which gives equality of the

asymptotic variance of B and M;iQIIMI; = (E[ss'17!. u

Proof of Theorem S.1: Standard, and so omitted.

Proof of Corollary §.2: By s(e,x,m) an odd function of € given x and
n, 8s(e,x,n)/dn is also an odd function. Then by pB + pB(n(-c,x),x) an
even function of e, ab1(z,eo)/an = [pB + pB(n(-e,x),x)]'a§(e,x,n)/an is an
odd function. Therefore, by symmetry, M12 = E[abl(z,eo)/an] = 0, so the

conclusion follows as in the proof of Corollary (4.2). ]

Proof of Theorem 5.3: Let b(z,B) = b(z.B,no) and note that by Assumption
41, b(z,#) is continuously differentiable in § and Ib(z,g)I2,
H6b(z,B)/881 = B(z)+1. By regularity of f(z|B), Lemma C.2 of Newey (1989b)

can be applied to the identity E_[b(z,8)] = 0 to obtain M =

B 11
-E[b(z,BO)Sé]. Furthermore, by b(z,Bo) and ¢ € 7 odd and even functions
of e given x, respectively, E[b(z.BO)t'] = 0. Therefore, Mll =

-E[b(z,BO)S’]. Furthermore, note that b(z.BO) =S if §(e,x,no) = s(e, x),

so that the conclusion follows as in the proof of Theorem 4. 3. u
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Table One

Enge! Data Results

A Elasticity 05

Log Regression 0 . 847821 .018803
(.026499)

QMLE . 091999 . 853324 . 060726
(.090887) (.022995)

IV . 231016 . 859298 . 363120
(.122779) (.022390)

V-Stat -.005792 . 847477 .017474
(.096701) (.022865)

Antithetic . 249620 . 862951 . 468415
(.116062) (.023395)

Numbers in parentheses are

estimated standard errors.
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Table Two

Estimator Performance Under Independence, with 75 observations.

A= .23, B, = (-10.855,3.73109)" 0‘5 = .599269.
BIAS STE RMS MED-BIAS MAE
Gaussian e.
A
QMLE .0116 . 1407 . 1412 . 0105 . 0883
Iv . 0081 . 1860 . 1862 -. 0022 .1168
V-Stat -.0023 . 1439 . 1439 -. 0021 . 1025
Antithetic -.0076 . 1619 . 1621 -.0083 . 1013
Homosked . 2356 . 1602 . 2849 .2244 .2244
Elasticity
QMLE -.0018 . 0441 . 0442 -. 0002 . 0279
v -.003s . 0453 . 0455 -. 0021 . 0303
V-Stat .0011 . 0441 . 0441 -.0027 . 0306
Antithetic . 0004 . 0437 . 0437 -. 0037 . 0330
Homosked . 0302 . 0492 . 0577 . 0230 . 0363
Empirical e.
A
QMLE .0217 . 1410 . 1426 .0196 .0871
1v . 0023 . 1785 . 1786 -.0178 .11058
V-Stat -. 0001 . 1451 . 1451 -. 0002 . 0864
Antithetic . 0420 . 1811 . 1859 . 0340 . 1053
Homosked .2414 . 1831 . 3030 . 2209 . 2209
Elasticity
QMLE . 0015 . 0463 . 0463 -. 0003 . 0305
Iv -. 0004 . 0471 . 0471 -.0021 . 0292
V-Stat -.0003 . 0468 . 0468 -. 0026 - .0315
Antithetic . 0024 . 0463 . 0463 -.0012 . 0273
Homosked . 0258 .0513 .0574 .0198 . 0362
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Table Three
Estimator Performance Under Symmetry, with 224 observations.

A =23, BZ = (-10.855,3.73109)", oi = .599269.

BIAS STE RMS MED-BIAS MAE
Gaussian ¢
A
QMLE . 0683 .0733 . 1002 . 0707 . 0740
Iv ~. 0079 . 0966 . 0969 -. 0066 . 0629
Antithetic =. 0055 . 0905 . 0906 -. 0098 . 0637
Sym . 0286 .3184 . 3196 .0470 . 2257
Elasticity
QMLE . 0086 . 0233 . 0249 . 0098 .0163
IV . 0001 .0238 . 0238 -.0010 .0165
Antithetic . 0003 . 0237 . 0237 . 0002 .0155
Sym . 0057 . 0439 . 0443 . 0040 . 0302

Empirical Antithetic ¢

A

QMLE -. 2057 . 0875 .2235 -. 2119 . 2119

1v . 0158 . 1399 . 1407 . 0067 . 0835
Antithetic . 0126 . 1249 . 1256 . 0109 . 0788

Sym . 0169 .2191 .2197 .0113 . 1508

Elasticity

QMLE ~.0272 . 0244 . 0365 -. 0257 . 0267

Iv ~-.0018 .0216 . 0216 -.0012 .0141
Antithetic -.0019 . 0220 . 0220 -.0011 .0149

Sym . 00Q7 . 0385 . 0385 . 0022 . 0244
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