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Abstract

A semiparametric model often implies an infinite variety of
restrictions that one could use to estimate parameters of interest.
The purpose of this paper is to study efficient semiparametric
estimation via linear combinations of moment restrictions. The
motivation is the parsimonious and flexible form of these estimators.
The estimators are constructed from a linear combination of moment
restrictions that is chosen to approximate the efficient score. The
necessary spanning condition for efficiency of these estimators is
discussed, and regularity conditions for asymptotic efficiency are
given. Throughout the paper a number of examples are considered,
including nonlinear simultaneous equations models (which include some
transformation models) and a conditional distribution regression
model. The paper also gives a small Monte Carlo study concerning
efficient estimation of a slope parameter in linear regression, that
shows that the estimators can perform well relative to kernel type

estimators and that the cross-validation suggestion is promising.






1. Introduction

A semiparametric model ofteﬁ implies an infinite variety of restrictions
that one could use to estimate parameters of interest. The semiparametric
efficiency bound gives the smallest asymptotic variance one might hope to
attain by using such restrictions. The purpose of this paper is to study
efficient semiparametric estimation via linear combinations of semiparametric
moment restrictions. The estima:ors considered here are m-estimators formed
by combining averages that converge to zero at the true parameters.

This study is motivated by the parsimonious, but flexible, form of these
estimators. They allow the statistician to choose the type of restrictions
used in estimation. For instance, one might use restrictions corresponding to
those that are best (in the semiparametric efficiency bound sense) for
particular parametric families of distributions. Alternatively, one might
select from low order terms in an approximating family of restrictions, such
as power series, with the goal of capturing most of the information. The
statistician also has the freedom to choose only a few restrictions, or to
allow the data to guide this choice, for example by a cross-validation method
discussed below.

After some preliminary discussion of semiparametric efficlency bounds and
m-estimatoers, the paper presents a method of combining different moment
restrictions. The linear éombination coefficients are chosen so as to provide
a best mean-square approximation to the efficient score (which appears in the
bound). In some cases these linear combination coefficients minimize the
asymptotic variance of the estimator, althougb in general they will only
guarantee that the variance is close to the efficiency bound if a sufficiently
large aumber ol a sufficlenily richh sei of mument restirictions is used.

The necessary spanning condition for efficient estimation by this method
(i.e. the meaning of "sufficiently rich") is that a linear combination of a
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sufficient number of influence functions corresponding to the moment
restrictioné can approximate the efficient score arbitrarily well in mean-
square. As discussed below, this condition is related to the characterization
of the model by the moment restrictions. Also, an easily checked sufficient
condition is given. This spanning condition is also of interest when the goal
is to find estimators with good efficiency that combine some of the
restrictions, rather than construct an efficient estimator. The estimator may
be ignoring important sources of information if the moment restrictions are
not selected from a set that satisfies the spanning condition.

The paper formulates a set of sufficient conditions for growth of the
number of restrictions with the sample size to achieve asymptotic efficlency.
They include a bound on the smallest eigenvalue of a second moment matrix and
convergence rates for sample moment matrices. The conditions allow for the
number of moment restrictions to be chosen as a function of the data, as in
the cross-validation method discussed below. Because of their generality, the
conditions are not very primitive, although it is shown in an example that
they can be verified in a straightforward way.

Approximating the efficient score by a linear combinatioﬁ of functions is
really a special case of a general efficient estimation method that employs a
nonparametric estimator of the efficient score; see Stone (1974), Bickel
(1982), Schick (1986), Severini and Weong (1987). However, this method of
estimating the score differs from that analyzed in most of the literature.
Most of the literatur. has concentrated on kernel methods for score
estimation, while the method in this paper is e=..ntially a truncated series
approximation. Indeed, the motivation for this paper given above is really
just a list of characteristics of truncated series approximations, which are
not shared by some other nonparametric estimation methods.

This paper includes a small Monte Carlo study consisting of a subset



of the experiments in Hsleh and Manski (1987), which concern adaptive
estimation of the linear regression model with disturbance that is independent
of the regresscers. It is found that the estimétors perform very well in
comparison with kernel estimators, and that the particular cross-validation
method discussed here is promising.

M-estimation based on linear combinations of moment restrictions has
previously been considered by others, including Beran (1976), Hansen (1982),
Chamberlain (1982), MaCurdy (1982), and Cragg (1983). The estimator
considered here is most closely related to that of Beran (1976) in the linear
model case he considered, although the one here applies to any semiparametric
model. Also, Hayashi and Sims (1982) and Chamberlain (1987a) have previously
formulated spanning conditions in the context of semiparametric models of
conditional moment restrictions, although the condition here is somewhat
different. For linear regression models, Newey (1988) has given sufficient
conditions for the number of restrictions to grow with the sample size to

achieve asymptotic efficiency.

1.1 Some Examples

To illustrate the usefulness of the results and for exposition, it is
helpful to consider some examples throughout the following discussion. For
simplicity, and in keeping with most of the semiparametric efficiency
literature to date, all results will be limited to the i.1.d. data case, where
z represents the data vector for a single observation.

The first example is a nonlinear simultaneous equations model with
unknown, homoskedastic disturbance distribution. This model is useful In
econometrics, e.g. for supply and demand modeling, and includes as special
cases transformation models that have long been of interest in statistics.

Let y be an s x 1 vector of dependent variables. Also, let pl(y,x,B8) be



a s x 1 vector of functions of y, a vector of exogenous variables x, ‘and
a vector of parametérs B, .such that p(z,B8) = p(y,x,B8) 1is a one-to-one

function of y. The model specifies that for the true parameter value BO,

(1.1) € = p(z,BO) is independent of x.

The nonparametric components of this model are the distributions of e and
x. No restriction is imposed on the location of €, so that all additive
constant parameters have been absorbed into e.

Transformation models are included as a special case with y and p

being scalars. In this case p(z,8) can be interpreted as the residual from

B

1

a transformation of y. For instance, p(z,8) = (y —1)//31 - x'B

2
corresponds to the Box-Cox (1964) transformation. Note that the model (1.1)
means that this is a transformation to independence, having homoskedasticity
as a particular implication.

It is known that when p(z,8) 1is jointly nonlinear in y and B, a
maximum likelihood estimator based on specifying a distribution for € may be
inconsistent; e.g. Amemiya (1977). Distribution-free estimators include the
nonlinear instrumental variable estimators of Sargan (1959), Kelejian (1971),
Amemiya (1974,1977), Amemiya and Powell (1981), the quantile estimators of
Hinkley (1977), Carroll and Ruppert (1984), and Powell (1990) for
transformation models, and the moment estimators of MaCurdy (1982), Taylor
(1985), and Ruppert and Aldershof (1989). Efficient estimation of this model
is discussed below.

The second example is a conditional distribution regression (CDR) model.
Let y be a single dependent variable and véx,B) a known regression

function. The model specifies that the conditional distribution of vy given

regressors x depends only on v(x,BO) for an unknown parameter value BO,



(1.3) yix ~ F(y!v(x,BO)),

where F(ylv) 1is the conditional cumulative distriBution function. Note
that the regression function is only identified up to location and scale.

This model is similar to regression models where both theé mean and
variance of y depend only on the regression function: e.g. see McCullagh and
Nelder (1983). Here all the conditional ﬁoments of y depend only on v.
This model has been previously considered by Manski (1988) for y a binary
variable, where it is less restrictive,

This model is invariant to transformations of y. That is, if y = t(y),
where the model for (y,x) 1is CDR with regression v(x,8), then the model
for (y,x) 1is CDR with regression v(x,B). This statement is formalized in
Appendix B in the efficiency bound context for a certain class of
transformations. Consequently, when the distribution of y has a discrete
component, y can often be thought of as being obtained by some fixed
censoring process from a latent dependent variable obeying the CDR model.

When vy is continuously distributed there is an interpretation of this

model that helps to relate it to transformation models. Suppose that Flyiv)

is continuous and one-to-one, and define € = F(y|v). This variable ¢ is
distributed as standard uniform (i.e. u(eo, 1)), independently of x. Thus,
(1.4) y = T(v(x,BO),e), € and x independent, & ~ U(0,1),

where the transformation T(v,e) = F—l(elv) 1s strictly monotonic in e but

i1s otherwise unrestricted. This model imposes weaker restrictions than one
with y = r(v(x,BO)+e) where e and x are independent and 7 and the
distribution of € wunknown. For example, if vy 1is time to failure  then thicg

model is a generalization of the semiparametric proportional hazard model of

Cox (1975), that allows for unobserved heterogeneity and non-proportiocnal
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hazards.

When -y 1s discrete this model is a semiparametric generalization of
well known models. For example, if y 1is confined to the nonnegative
integers, then it is a semiparametric version of a Poisson regression model.

The third and last example is the conditional mean transformation model

of Ichimura (1986), Chamberlain (1987b), and others:

(1.5) Elylx] = Y(v(x,BO)).

where Y(o) 1is an unknown function. This model imposes weaker restrictions

than the CDR model. It and the other models will be illustrative.

2. Preliminaries

2.1 Semiparametric Efficiency Bounds

It is helpful to briefly review semiparametric efficiency bounds, as
developed by Stein (1956), Koshevnik and Levit (1976), Pfanzagl (1982),
Begun, Hall, Huang, and Wellner (1983), and Bickel, Klaassen, Ritov, and
Wellner (1989) (BKRW henceforth). Define a parametric submodel to be one that
satisfies the semiparametric assumptions and contains the truth. Any
semiparametric estimator must have an asymptotic variance that is no smaller
than the Cramer-Rao bound for every parametric submodel, giving Stein’s

(1273) insight:

The asymptotic variance of any semiparametric estimator is no smaller than the

Regularity conditions are needed to make this statement precise. The



parametric submodels must be regular in that they are mean-square smooth (see
Appendix B), have nonsingular information matrices, and satisfy other
regularity conditions appropriate to the model. A precise definition of V
is that it is the supremum of Cramer-Rao bounds for regular parametric
submodels. The estimators must be regular in the following sense. For a
parametric submodel with Euclidean parameter vector 8 let R(8) be the
parameters of interest. A local data generating process (LDGP) is one where
the for each sample size n the data is distributed according to en’ with
Vﬁ(en—eo) bounded. An estimator B is said to be regular if for each
regular parametric submodel and LDGP, VH(B—B(BH)) has a limiting
distribution that does not depend on the sequence {Gn) or the parametric
submodel. That V is an asymptotic variance bound for regular estimators
follows from semiparametric extensions of Hajek’s (1970) representation
theorem, e.g. Begun et. al. (1983). A vector version of Theorem 2 i) of

Chamberlain (1986) is

A~

If B is regular then the limiting distribution of VH(B—BO) Is equal to the

distribution of Y + U, where Y ~ N(O,V) and U is Independent of Y.

An efficient semiparametric estimator is one that is asymptotically normal
with covariance matrix V and is regular.

The projection interpretation of the bound developed by Begun et. al.
(1983) and BKRW will prove useful here. Let the data consist of i.1i.d.
observations =z

1

parameters 6 = (B’,n’)’ and likelihood function {(zl8) for a single

'z Consider a regular parametric submcdel with

observation Zi' The q x 1 vector of parameters of interest is B and the

n parameters correspond to the nonparametric part of the model. Let S_ =

n
v

(S’,S;)’ be the score for 6 for a single observation, evaluated at the true

B
parameter values, where typically Se = alng(z|eo)/ae (see Appendix B). The
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z argument may be suppressed for notational con.:nilence, as here. Define the

tangent set J to be the mean-square closure of g x 1 linear combinations of

scores Sn for the nonparametric component:

T ={te rY . E[utuZ] <o 3B, S_, with lim, EflIt - B.S .HZ] = 0},
J nJ J—® Jd nJ

where each Bj is a matrix of constants. Consider S as an element of, and

B

9 as a subset of, the Hilbert space of q x 1 random vectors 2 with inner

product E[ninzl. If J 1is linear then the residual from the projection of
SB on T exists, and is the unique vector S satisfying
(2.1) S -Se9, E[S't] =0 forall tel7.

B
A version of Corollary 3.4.1 of BKRW (see Newey, 1990a, Theorem 3.2) is

If §(z|B) 1is regular with score SB' g is linear, and E[SS'] Is
nonsingular, then V = (E[SS'])—l.
The vector S 1is referred to as the efficient score.

It will be useful for the estimation results discussed below to report
the results of this calculation for the examples. In the nonlinear
simultaneous equations model the parameters of interest are those of the
residual p(z,B8). A parametric submodel corresponds to a parametric family of

density functiocns fl(eln)fz(xln) for (g,x) such that for some mng

fl(s|no)f2(xln0) = flo(s)fzo(x), the true density. The likelihood and score

vectors for a parametric submodel a.~ for J(z,B) = lnldet(38p(z,B)/38y}l,
(2.2) £(z10) = explJ(z,B)1f, (p(z,B)IN)E, (xIn),

SB = JB(Z,BO) + pB(z,BO)’s(e). Sn = Snl+sn2’

= = /3
Snl alnfl(elng)/an, Sn2 alnfz(xlno) n



- 1 .
where s(g) = flo(e) af(e)lo/ae and the B subscripts denotes the partial
derivative. The nuisance score Sn is unrestricted except for the additive

structure implied by independence of —e and x, giving the tangent set

(2.3) T = {tl(s)+t2(x) : E[tl(e)] = E[tz(x)] = 0}.

To avoid additional clutter it 1s here and henceforth assumed that second
moments exist whenever needed. For a q x 1 random vector R(z), the

projection Proj(R|7) of R on 9 is

(2.4) Proj(RI7) = E[R|e]-E[R] + E[R|x]-E[R].

By ancillarity of x for g (implying E[SBIx] = 0) the efficient score is

(2.5) S =-SB - E[SBIe] = JB - E[JBIe] + {pB-E[pBle]}’s(s):

Regularity conditions for this result are given in Newey (1989a).

For the CDR model, suppose that (v,x) is absolutely continuous with
respect to the product of a dominating measure for y and the marginal
distribution for x, with conditional density fo(ylv) of y given x and
marginal density fo(x). For a parametric submodel flylv,n)f(xin), the

likelihood and scores are

(2.6) f(zle) = flylvix,B),n)f(x|n), SB = Sv-vB, Sn = Sn1+sn2'

where Sv = dlnf(y|v)/38v, VB = 6v(x,BO)/BB, Sn1 = alnf(ylv,no)/on, and SnZ
= alnf(xlno)/an. By the CDR model, Sn1 is a functional only of y and v,
and because it is a conditional score, E[SnIIX] = 0. Also, by the CDR model

it follows that for A(y,v) and B(x), E(E[Aly,v]Ix] = E[Alv] and

ElR(y) 1

e e
Ve NdNs Ly v

} = CIB{x)iv]. Il foilows that tne tangent set, projection, and

efficient score are



(2.7) J = {tl(y,v)+t2(x) : E[tllx] = 0, E[t2] = 0},
Proj(RIJ) = E[Rly,v] - E[R}v] + E[RIx] - E[R],

S = SB - E[SBly,v} = SV(VB - E[VBIv,y]) =S, (vg - Elv, iv]).

B B

Details are given in Appendix B.
For the conditional mean index model, the tangent set, the projection,

and the efficient score are shown by Newey and Stoker (1989) to be
(2.8) T = {t: E[t] =0, Ely(t-EltIx])Ix] = E[ly(t-El¢tIx])Iv] },
Proj(RIT) = R, - 0() ™ y-Y(EWR Ix] - E°IyR Iv]} + R -E(R],

- v, Iv]),

s = w(x)-l[y-Y(v)](vB 5

where Rx = E{RIx], Ry = R-Rx, w(x) = Var(y|x), and for A = Aly,x),
CEYAlv] = E[w(x)_lAlv]/E[w(x)—llVI is the conditional expectation given v
for the probability measure Prob(&) = E[u(x)-ll(S)]/E[w(x)-ll. This formula

for S verifies a conjecture of Chamberlain (1987b).

2.2 Semiparametric M-Estimators

The efficient estimation scheme considered below is closely related to a
certain type of m-estimator, which will now be discussed. Let m(z,B.,a) be
g x 1 vector of functions of 2z, B3, and a function a, such that for true

values BO and ao.

(2.9) E[m(z,Bo,aO)] = 0.

The estimators considered solve a sample moment analog of this equation,.

with « replaced by an estimator. Let a(z,B8) be a consistent (in some



appropriate metric) nonparametric estimator of a function «f(z,R), depending
on B, with a(z,BO) = ao. A semiparametric m-estimator of the parameters of

interest solves

(2100 Vim (B) = o (1), n_(8) Lion(z;.8.4(z,8))/n.

1

The general idea here is that R 1is obtained by a procedure that first
"concentrates out" the function «{z,B). An early and important example is
the Buckley and James (1979) estimator for censored regression. The estimator
B should be consistent, under suitable regularity conditions, by equation
(2.9) and consistency of a(z,B).

Choices of m(z,B8,a) and & are required for such estimators. Finding
useful & can be difficult, although well known nonparametric methods often
work. In contrast, it is easy to find m(z,B,a) satisfying equation (2.9).
For instance, by the mean zero property of scorés, m(z,8,a) such that
m(z,BO,aO) = S would do. Indeed, as in Bickel (1982), Schick (1986), and
Klaassen (1987), if & is sufficiently well behaved, then the resulting
estimator should be efficient. Other choices of m(z B8, a) may also be
desirable. It is often possible to reduce the dimensionality of a by fixing
some components of the efficient score at (possibly) false values, which
could lead to improved small sample properties. As argued in Bickel (1982),
BKRW, and Newey (1990a), if the semiparametric model can be nested within one
that is convex in a nonparametric component (i.e. for that component the set
of its values is convex and that the likelihood of a convex combination is a
convex combination of likelihoods, _hen m(z,B8,a) equal to the efficient
score with that component fixed generally satisfies equation (2.9). In
addition, one can draw on suggestions for particular models, e.g. Powell
(1984) for regression with fixed censoring.

The asymptotic variance of these estimators plays an essential role in
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the construction of efficient estimators discussed below. Well known results
apply when « 1is not present, i.e. when m(z,8,a) = m(z,8). Under regularity
conditions of Huber (1967) or Pakes and Pollard (1989), the asymptotic

variance of B is M_lE[mm’]M_l’, where M = aE[m(z,B)]/BBIB_B and m =
o

m(z,BO). When « is present, the asymptotic variance can be more

complicated. For discussion purposes, suppose ﬁn(B) is continuously

differentiable, ¢aan(so) = Op(l), aan(é)/as 2, M = 3E(m(z,B,alz,B)]1/58]

8=,

with M nonsingular for any B £, B and B £, BO' Then the usual mean

O’

value expansion gives

(2.11)  VA(B-By) = —M—1V3ﬁn(30) + o (1),

As discussed in Newey (1989b), a conjecture for the asymptotic variance of
Vﬂﬁn(Bo) can often be calculated from the pathwise derivative of the
functional estimated by ﬁn(BO) under geperal misspecification. Let F
denote a general distribution, restricted only in satisfying regularity
conditions, and let v(F) be the probability limit of ﬁn(BO) under F. As
in Pfanzagl (1982), the pathwise derivative of v(F), 1if it exists, is a
vector u(z) satisfying E[u(z)] = 0 and

(2.12) av(Fe)/ae|e=eo = Elusy],

where Fe is a regular parametric family of possible values for F and S9
is the associated score for 6. If Vﬁﬁn(Bo) is asymptotically <quivalent to

a sample average of some function of the data aud is sufficlently

well-behaved,

—_~
—-a
~

[\8}

o

(]
>
(e

AUy o TR U IRy A
YU\~ =g ui/ YL ot o0

wﬂén equations (2.11) and (2.13) are satisfied it follows by the central



such that y = n(x,p(z,8),B). Let a(z,B)

A - s u=1,
limit theorem that the asymptotic covariance matrix of B is M 1E[-uu IM .

Specific formulae for U, referred to henceforth as the influence function
(corresponding to ﬁn(Bo)), when a(z,B8) is the derivative of a density or a
conditional expectation are derived in Newey (1989b). Primitive conditions
for this pathwise derivative formula for the asymptotic variance can often be
obtained directly or from general results of Andrews (1989) and Newey (1989b),
The quantity u-m is a correction term for the presence of . Ap
important special case is that where u-m is an element of the tangent set,
referred to as the efficient-a case. In this case, uy =p - Projm|T); see

BKRW or Newey (1990a).

using a residual-based (i.e. bootstrap) estimator of the conditional
expectation. Let S(z,8) be some function of the data and parameters. Note

that since p(z,8) is 2 one-to-one function of Yy there exists T(x,e,R)

fé(n(Q,p(z,B),B),Q.BJde(i) be
the integral of §(z,BJ over the marginal distribution of X, holding
p(z,B) fixed. By independence of X and g, a(z,Bo) = E[g(z,BO)le], so
that m(z,B8,a) = S(z,8) - «(z,B) satisfies equation (2.9), Furthermore,
«(z,B) can be estimated by averaging over observations on x (i.e. by the

bootstrap), yielding a(z,8) = ijlg(n(xj,p(z,B),B),xJ,B)/n. Averaging again,

A = n x 2
(2.14) & () = £i28(z,,8)/n - Zi:12j=18(n(xj,p(zi,B),B),XJ,B)/n

Two particular types of S5(z,8) are of interest. The first type is

multiplicatively separable in functions of x and p(z,8), say S(z,8) =
Alx)r(p(z,B)) for A(x) .a matrix and r{(p) a conformable vector. Here
ﬁn(BJ is a vector of sample covariances between A(x) and rip(z,8)), so

that the solution to equation (2.10) makes use of the uncorrelatedness
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implication of independence between x and €. An advantage of this
estimator is that it does not actually use n(e,x,8), which can be hard to
compute. Included as special cases are instrumental variables estimators
(with a constant, additive parameter vector concentrated out of p(z,8)),
where r(p) = p, as well as the higher moment estimators of MaCurdy (1982),
Ruppert and Aldershof (1989), and Robinson (1989).

The second type of S(z,8) more closely mimics the score for B, taking
S(z,B) = JB(Z,B) + pB(z,B)’g(p(z,B)). where s(e) is some vector of
functions of €. As shown in Newey (1989a), the resulting estimator is
efficient if the true disturbance score is s(g), for example when s(g) = -¢
and € is N(O,1I).

These estimators can be generalized to allow for location and scale
parameters for p(z,B8). For an s-dimensional vector of location parameters u
and a positive definite scale matrix £, let 6 = (B',u’,hvec(Z)’)’, where
hvec(+) denotes the usual column vectorization of a symmetric matrix.

In equation (2.14) and the corresponding types of S(z,8), consider replacing

2y a5V (0-m)),

B by 6, r(p) by r(ch/Z(p-u)), and s(p) by (=
then the resulting é will be invariant to location and scale shifts of
p(z,B8), and its asymptotic variance will be the same as if 4 and I were
equal to their true values. For example, when s(g) = -¢ and 4 and Z are
estimated as the sample mean and variance of p(z,8), the second type of
estimator will be efficient when € 1is N(u,Z).

Because ﬁn(B) is a V-statistic, it is easy to compute directly

asymptotic variance of é By the V-statistic projection theoren, ﬁn(B)

satisfies equation (2.13) with

(2.15) u = S(z,8,) - E(S(z,8,)Ix] - ElS(z,8,) le] + E[S(z.8)1.

~ -1 -
The asymptotic variance of 3 will then be of the M Eluu’]M L form



discussed above.

In the CDR model semiparametric m-estimators can be formed by mimicking
the form of the efficient score and using a nonparametric estimator of the
expectation conditional on v(x,B). Let s(y,v) be some function and let

«(z,B) = E[vB(x,B)Iv(x,B)]. By the CDR restriction (which implies

E[%ty,v)lx] = Els(y,v)Ivl]), vB(x,BO)-a(z,BO) = vB—E[vBIV} is uncorrelated

VB(X,B)[S(y,v(x,B))—a(z,B)] satisfies

equation (2.9). Furthermore, «(z,8) can be estimated by a nonparametric

with s(y,v), so that m(z,B,a)

regression a(z,B) (e.g. kernel regression) of v_(x,8) on v(x,B8).

B

Averaging gives

. -~ -— n - ~ -
(2.16) mn(B) = Zi=1[vB(xi,B) a(xi,B)]s(yi,v(xi,B))/n.

A conjectured form of the asymptotic variance of B follows from the
results of Newey (1989b) on estimators that depend on preliminary
nonparametric regressions. Noting that am(z,BO,aO)/aa = -s(y,v), it follows

by &(Z,BO) a nonparametric estimator of the conditional expectation of vB

given v that

(2.17) u=m+ E[am(z,BO,a)/aalv]Ia=E[v

{v ~Elv_iv]}
g B

(vl "B

= (vB-E[vBIV]}{s(y,v)—E[slv]).

It is interesting to note that if s(y,v) equals the true conditional
score, then E[s|v] = 0, implying that u equals the efficient score. As
one might expect, it follows from this that B will be efficient, as will be
further discussed below. QOther, feasible choices of §(y,v) will be also
discussed below.

In the conditional mean transformation model it is difficult to mimic the

efficient score. A more ad-hoc approach is to use an estimator similar to

18-



that for the CDR model. The conditional mean restriction Elyl|x] = E[y|v]
means that A(x)-E[A(x)|v] will be uncorrelated(with y for any vector of
functions A(x). Following the previous discussion, let «(z,B) =
E[A(x)|v(x,B8)] and m(z,B,a) = [A(x)-a(z,B)ly. Averaging, and applying the

same asymptotic distribution argument as above, gives
- _ n .
(2.18) mn(B) = Zi=1[A(x) a(zi,B)]yi/n‘

u = {A(x)-E[Alv]Hy-Elylv]}.

In contrast with CDR estimator discussed above, this estimator allows for
any function of X to be interacted with y (i.e. A is not restricted
to the form of VB times some function of wv). This change is important for
efficiency reasons. Intuitively, the conditional variance of y can depend

on x and not just v, so that the "weighting" for an efficient estimator

requires this extra flexibility.

3. Combining Moment Restrictions

The efficient estimation scheme considered here is m-estimation based on
a linear combination of different m(z,B,«) functions. The motivation is
that if the functions are selected from a sufficiently rich set and the linear
combination chosen judiciously, then the resulting estimator should be close

to efficient. To describe such estimates, let there be gq x 1 vectors

(3.1) mk(z,B,a), E[mk(z,BO,aO)] =0, (k =0, 1, ...,

as in Section 2. A single moment vector can be formed from a linear

combination of the first X vectors,
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(3.2) [(La”)@Iq]m(z.B,a), m(z,B,a) = (mo(z,B,a)’,...,mK(z,B,oz)')’

»

.Wwhere 7y = (11,...,7K)’ for some constants 7k’ a K subscript on m and
¥ 1s suppressed for notational convenience, and ® denotes the Kronecker
product. The first coefficient is constrained to be 1 for parsimony reasons
that are further discussed below. If « 1is replaced by &(Z,B) as described

in Section 4, and ¥ is replaced by some estimate ¥, then a sample moment

vector can be formed as

(3.3) ny(8) = L2, ((1,3)el Im(z,,8,&(z;,8))/n.

An estimator might then be obtained as the solution to equation (2.10), and

its asymptotic variance calculated in the way described in Section 4.

3.1 Approximating the Efficient Score

To motivate the choice of linear combination coefficients, it is useful
to work with a particular expression for the asymptotic variance of B. Under
appropriate regularity conditions specified in BKRW or Newey (1990a, Theorem
2.2), if VB(B—BO) = -M‘lzizlui/fﬁ + op(l), then E[ut’] =0 for all t in
the tangent set J and M = -E[uSé]. Furthermore, as long as the hypotheses

of the projection interpretation of the bound are satisfied, S = S_-t.for

in J, so that

(3.4) M = —E[uSB] + E[ut’] = -Elus’],
-1 ’ -1, ’ -1 ’ ’ -1
M "Eluu’ IM = (E(us’1) "Efuu’]1(E{Su’]) .
The first equality in (3.4) is a semiparametric version of the well known
generalized information matrix equality. It is a generalization of 4 result

used by Beran (1976). An implication of the second equality is that when u
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is close in mean square to S, then the asymptotic variance of B will be
close to (I-Z[SS’])_1EI[SS'](EI[SS’])—1 =V, the semiparametric efficiency
bound. This observ.:tion motivates an estimation scheme where the linear
combination coefficients are chosen so as to approximate the efficient score.

Suppose that the entire vector m(z,B,®) satisfies an equation like
(2.13),

n _ ~ _
Zi=fn(zi,80,a(zi,30))/fﬁ =7,

n
i=

u./vYa + o (1).
171 p

A conjectured form for u« can often be computed as in Section 2. For a

positive definite matrix Q let

(3.5) 7 = argminyE[{S-[(l,y’)@Iq]u)’Q(S-[(l,?')@Iq]u}].

That is, 7 minimizes the expected squared distance between the difference of
the efficient score and linear combinations of the moment functions, where @
measures the distance. By Q positive definite, [(1,7’)®Iq]u will be close
to S in mean square, and an m-estimator with m(z,B8,a) = [(1,?’)®Iqhn(z,3,a)
will be close to being efficient, when the expected distance in equation (5.4)
is small.

The matrix Q 1is present to allow flexibility in the definition of
distance between the efficient score and the moment functions. One way to
choose Q 1is so that the distance measure is invariant to parameterization
of B, e.g. Q equal to the asymptotic variance of a preliminary estimator.

Equation (3.4) can be used to estimate y. Let U correspond to m

w’
so that u = (uo,..,uK) , and let U = [ul,...,uK], so that [(1,7% )@Iq]u =

uO+U7. Then the solution of (3.5) is

(3.6) 7 = (E[U’QU])—1(E[U’QS]-E{U’QUO]).

By equation (3.4) the kth element of E[U’QS] is E[uéQS] =

a e~



trace(QE[Sué]) = -trace(QMé), where Mk = aE[mk(z,B,a(z,B))]/BBIB=BO. This

result allows estimation of ¥ by replacing the population moments that

A

appear in equation (3.6) with estimated sample moments. Let Q be an

estimate of Q and let ﬁk be an estimate of Mk’ (k=0,1,...,K). If mkn(B)
= Zlnl k( , B, a(z ,B))/n 1is continuously differentiable in B then ﬁk =
amkn(B)/aBIB=B should do, where B 1is an initial estimate. Otherwise it may
be necessary to resort to a numerical derivative (e.g. see Newey, 1990b).

Also, let W s (k=0,1,...;1i=1,...,n) be estimators of U, - When uk =m.
ﬁki = m(z B,a(z ,B)) should do. Otherwise, the form of ﬁki will depend on
the form of u.; e.g. see the examples discussed below. Then for Oi =
[uli""’uKi]’ an estimator of ¥y is

(3.7) 7 = —[Zl 1UlQU /nl” {(tr[QM tr[QMK]) + 1UlQuOi/n}.

An estimator with this linear combination vector can be calculated as in
equation (2.10) using the sample moments ﬁn(B) calculated as in equation
(3.3).

It is both theoretically and computationally convenient to work with a

one-step version of this estimator. The one-step estimator f solves a

linear apptox1mat10n mn(B) + (MO+Zk_ 7k k)(B B) of equation (2.10):
(3.8) B =B - (AL 5 87 R (B)
: 0 ~k=1k k ’

Here, as in other contexts, this one-step estimator will have the same
asymptotic properties as a consistent estimator solving J:ﬁn(B) = op(l%

It is impor*tant to note that the asymptotic distribution of B should be
unaffected by estimation of ;, if % is consistent for ;. This feature
is just the well-known fact that the estimation of linear combination

coefficients does not affect the limiting distribution of m-estimators (e.g.

Hansen, 1982), which results from Zizlmizi,BO,&(zi,BO))/VH being bounded in



probability.
3.2 Minimizing the Asymptotic Yariance

An interpretation of 7 as minimizing the asymptotic variance matrix is
available when [(1,7’)®Iq]nl consists of an unrestricted matrix linear
combination of a single vector. Suppose that X = qr for a positive integer
r and m(z,B8,a) = (O,vec(g(z,B,a)’@Iq)’)’ for some r x 1 vector g, so
that [(1,7’)®Iq]ndz,8,a) = (g(z,B.a)’®Iq)7 = I'g(z,B,a) for T such that ¥y
= vec(l'). Suppose that ug satisfies equation (2.13) for g(z,8,a) and ug
replacing m(z,8,a) and u. Then the objective function in (3.5) is

trace{QE[(S-Fug)(S-Fug)’]}, and the first-order conditions for its

minimization are E[(S-Fug)ué] = 0. Let G = 3Elg(z,B,al(z,B))]1/58]

Solving for T and assuming equation (3.4) applies to g,
(3.9) T =ESuIEL ™ = -6 (Elu u 1)L
g g g g8
By Theorem 3.2 of Hansen (1982), T is a matrix of linear combination

coefficients that minimizes the asymptotic variance of an m-estimator based on
moment functions TIg(z, B8, «).

Of course, given functions as specified in equation (3.1), it is always
possible to construct an unrestricted moment vector, leading to an estimator
. With no larger asymptotic variance. The reason that other cases are
considered here is that it is often possible ‘o reduce the dimension of Y by
choosing a restricted form for m(z,B,x), without affecting the ability to
approximate the efficient score. As discussed below, this is possible in the
first two examples. It is plausible that this increased parsimony could
result in improved finite sample properties. The first cocefficient in the

linear combination of equation (3.2) is restricted to be one for similar
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reasons. In the nonlinear simultaneous equations model this restriction gives

a useful way of accounting for the Jacobian term in the efficient score.

3.3 Cross-Validated Number of Moments

The estimator B depends on the choice of {mk(z,B,a)} and the number
of terms K. The nature of (mk} is specific to particular models, and will
be discussed below for the examples. Choosing X 1is a generic problem, that
is important for implementation. Here a cross-validated choice of X will be
discussed. The asymptotic theory will allow for this (or other data-based)
choice of K. Its properties will be evaluated in the Monte Carlo example.

A cross-validated choice of K can be based on the distance measure used

in calculation of the coefficients y. The mean-square approximation depends

on the linear combination uO+U7 through the terms
(3.10) -2E[(uO+U7)’QS] + E[(uO+U7)’Q(uO+U7)]

= 2(trace (@M, 2 My )] + El(uy+Us) Qlug+Us) ],

where the constant term E[S’QS] has been omitted and the equality uses
equation (3.4). Note that it would not be useful to choose K to minimize
this function by replacing unknown quantities with the estimates discussed
above; for each K, ¥ minimizes the result, while increasing X corresponds
to relaxing a zero restriction on the next higher-order coefficient, leading
to a decrease in this object. Intuitively, the choice of ¥ as the
minimizing coefficient biases the _stimate downward.

One way past this difficulty, which has proven fruitful in other
contexts, is delete-one cross-validation. To describe how this idea might

-~

apply here, let 0, Mk' and &ki be the estimates considered above, and

vIT n - ~ ~ -
suppose that Mk = Zi=1Mki/n for some Mki (for example, Mki
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am(zi’s’&(zi’B))/aB|B=B In the differentiable case). Let j_. denote 7

with the ith observation excluded from the averages, i.e., for ﬁk,_l =
Zj:iﬂki/(n_l)
(3.11) 7, = -[zj$103©0j/(n—1)]"1 .

(erlQMy 1ot 17+ L5210508, 7 (0-1).

Replacing in equation (3.10) the expectations with the ith observation, Q

by 4. 7 by ';—i’ and averaging gives,
{3.12) CV(K) =
— n ANg ¢ K Axgs 2 - S rAT T
= Zi=1{2[trace(QMOi+zk=1QMki7k,-i)] + (uOi+Uiy_i) Qluy, +U;7_, ) i/n.

One cross-validation method chooses K to minimize CV(K).

The formal motivation for this procedure is‘similar to that of
cross-validation in other nonparametric regression contexts. By dropping the
ith observation in computation of the linear combination coefficients one
éource of bias in the distance estimator is removed. It would be interesting
to give a precise justification for this procedure, say, by showing that it
can guarantee that the distribution of the resulting estimator of parameters
of interest converges to its limit as fast as possible. Such a result is
beyond the scope of this paper, although the following general reasoning
suggests that it is plausible: Under regularity conditions, the rate of
convergence of the nonparametric estimator [(1,}’)®Iqhi(2,&(z.8)) to the
efficient score S, which should be less than Vvn, should be the determining
factor, since the bound V is a parameter that should be Vﬁ—consisteﬁtly

-1

estimated by (ﬁ,+Y,K.§,H,) . Also. it is plausible that rracg-validation
u

3
AL K K

could give the best rate.

°

One could also use the bootstrap to choose K, 1in a way analogous to the

-~



window width choice suggested by Hsieh and Maﬁski (1987), by minimizing some
measure of the magnitude of a bootstrap estimate of the variance matrix of B.
This procedures appears to be computaticnally more expensive than the one
suggested above. Also, the conjectures in the previous paragraph suggest that
cross-validation on the efficient score estimate might be closely related to
the properties of B, as is the bootstrap variance estimate, and as turns

out to be the case in the Monte-Carlo example.

3.4 Examples

In each of the examples, m(z,B,a) as discussed in Section 2 can be
combined to form estimators. In the nonlinear simultaneous equations example,

quantities required for the one-step estimator can be calculated as

(3.13)  m (2,8,&(z,8)) = § (z2,8) - ijlgk(n’(xj,p(z,ﬁ)'s),XJ,B)/H'
gki = amk(zi,B,&(zi,B))/aBIB, ﬁk = 21:1ﬁki/“’
PN TR SIS I Mt e

where B is a preliminary estimator and éfj = gk(n(xj’p(zi'é)‘é)'XJ'B)-

The functions §k(z,B) can be chosen to be either of the two types

discusséd in Section 2. The first type, where §k(z,B) =

/2[

Ak(>~:)rk(ﬁ'._1 p(z,8)-ul) for {Ak(x),r (p)) and preliminary location and

k
scale estimates £ and ﬁ, has the advantage that the reduced fornm n{e,x,B)
is not required for its computation, but the disadvantage that it does not use
much of the model structure. This disadvantage will be reflected in the fact

that approximation of the efficient score requires approximation in both the

£ and x dimension. The second tyce, with
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(3.14) S (z,B) = J_(z,B),

0 B
_ ya~1/2,~ o=1/2 A
Sk(z.B) = pB(z,B) z sk(z (p(z,B8)-ul),
requires w(e,x,B8), but has the advantage of imposing enough structure that

only approximation in the ¢ dimension will be required for efficiency.
Each of these types of estimators depend on certain functions, Ak and

T in the first case and §k in the second. One possible choice of these
functions are as basis sequences, such as polynomials. To avoid conditions on
the existence of higher order moments, one could use polynomials in some

bounded, one-to-one functions of the components. To be specific, let t(-)

denote a one-to-one, smooth univariate function, such as <t(-°) =

exp(+)/[1+exp(+)]. For a vector ¢ with dim(Z) components, let po(c) =
(r(cl),...,r(cdim(c))) , A(g) = (A1(Z),...,Adim(c)(£)), (8=1,2,...), be
. A (8)
vectors of nonnegative numbers, and pO(C)A(E) = Hd32§q)[r(cj)] ] . For
the second type of estimator one could choose
~ _ A(lk/s + 11) _
(3.15) sk(p) = ek_(s[k/s])po(p) , k=1, 2, ...,

where e, is the s-dimensional unit vector with 1 in the ith pesition and
zeros elsewhere, and [a] denotes the largest integer less than or equal to

a. The unit vector e is present in order to make possible the

approximation of each element of the vector s(eg). One could choose
Ak(x)rk(p) similarly, with p re.laced by (x’,p’)’ and s by q. In
either case, if {A(&)} °s chosen to so that {po(q)A(E)} forms a complete

sequence, in metrics discussed in the next Section, the resulting estimator
could be approximately efficient.
Such a power series works well in the Monte Carlo example below, where ¢

is a scalar. However, when ¢ has several components one could get a large
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number of terms, even with small polynomial orders, which should adversely
affect finite sample performance. An alternative procedure, that is more
parsimonious, is to choose §k(p) from among a small number of location
scores for different possible distributions for €. For example, one might
choose §k(p) = Ek(p’f-lp)i-lp, corresponding to densities depending only on
p’i—lp, with El = 1 corresponding to the normal distribution and higher
orders corresponding to thick-tailed and asymmetric alternatives to the
normal. With such an approach one could only hope to be approximately
efficient if the true density depended only on p’E-lp, but with typical data
set sizes and multivariate systems, efficiency for such a reduced.dimension

class of densities may be all one can hepe for.

In the CDR example, the quantities required for the one-step estimator

can be calculated as

(3.16) mk(z,fa,&(z,/a)) = [vB(x,B) - &(x,fs)];k(y,v(x,ﬁ)),

-~ ~ ~ - n -~
Ms Bmk(zi.B,a(zi.B))/aﬁlé. M = Zi=1Mki/n’

(o)
1]

i [vB(xi,B) - ai]{sk(yi,vi) - E[sklvi]h

where &i = alx,,B), v. v(xi,B), mk(zi,B,&(zi,B)) is assumed to be

differentiable, and E[gklv] is a nonparametric regression of §k(yi,Qi)) on

PN

vi evaluated at v.

One could choose §O = 0 and §k a power series for k = 1. For
example, if y 1is confined to the nonnegative integers, with small values of
y most 1'kely, then one might choose to use nonnegative integ- powers of
T(v) and ffactional integer powers of <t(y) in such a power series. In any
such power series, terms that depend only on v should be excluded, because

the population residual §k(y,v)-E[§ vl is identically zero, causing a

k
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potential singularity in the calculation of 7.

It is also possible to use more of the structure of the model in the
specification of §k. An example is §k(y,v) = 51nf(y|v)/8v for fixed
f(ylv) among possible conditional densities for y. Also, if y has
separate discrete and continuous components, one might treat them differently
by specifying §k(y,v) to be nonzero for only one of the components.

In the mean transformation example, the quantities required for the

one-step estimator can be calculated as

(3.17) mk(z,B,&(z,B)) = (A (x) - &k(x,B)]y,

~ -~ A~ _ n -~
M s amk(zi,B,a(zi,B))/aBIB, M o= Zi=1Mki/n'

S

Ui

[Ak(xi) - ocki]{y.l - E[ylvi]},

where &k(x,B) is the nonparametric regression estimate of A(x) on vix,3),
assumed to be differentiable, &ki = &k(xi,é), Gi = V(xi,é), and Elylv] is
a nonparametric regression of y; on Gi evaluated at wv.

One could choose Ak(x) as in equation (3.15), with p replaced by x
and s by q. Any basis sequence that is complete for g x 1 vector
functions of X 1in a metric discussed below will yield an approximately
efficient estimator. One could be more parsimonious by taking Ak(x) =
VB(X,B)'pE(V(X,B)), which would lead to efficiency if the conditicnal

variance of y given x depended only on wv.
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4, The Spanning Condition

The fundamental necessary condition for combining moment functions to
lead to efficiency is that finite linear combinations of corresponding {uk}
can approximate the efficient score S arbitrarily well in mean square. A

precise statement is

Spanning Condition: S e U,

2

K o X : K =
U=A{u: 3 {7kK}k=1,K=1 with llmK_amE[Hu—uO Zk=17kKuk“ 1 =0}

There are useful geometric, dual sufficient conditions for spanning when
Uy = 0. Let ¥ = {a: E[a] = 0} and let 7 and U’ bpe the orthogonal
complements of J and U in ¢ for the inner product E{oiozl,
respectively, e.g. gt = {o € #: Ela’t]l =0, YVt e T},

Theorem 4.1: Suppose that uy = 0. If u=g9* or U = J then the spanning

condition is satisfied.

Proof: Note that since U and J are mean square closed by definition, U
=gt if and only if ut = 7. Then recall from Section 2.1 that S e 9L, so

that the conclusion that U = F*+ implies spanning is trivial. .

The second condition U’ = J can be interpreted as a condition that the
moment restrictions used in estimation characterize the semiparametric model.
There is a precise interpretation for the case where « 5 not present, where
me = U for all k. Consider a smooth likelihood £(zln), passing through
the truth at Ny with scor Sn at Ny but not necessarily obeying the
restrictions of the semiparametric model, and let EW[.] denote the
expectation with respect to this density. Here "moment conditions

characterize the semiparametric model" Wwill be taken to mean that En[mk] =
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C in a neighborhood of 17 for each k implies Sn e J.

0
Theorem 4.2: Suppose that uO = 0, mk = u (k z 1), bounded functions are
. 1 . .
dense in U™, and limit attention to parametric families where En[mimk] is
bounded in a neighborhood of Ny The moment conditions characterize the

semiparametric model if and only if Uyt = J.

Proof: Note that U™ 2 7 follows by U ¢ gt (see Section 2), so that here
ut =g can be taken to be equivalent to ut ¢ 7. For the "only if" part, let
B be the dense set in the hypotheses. For b(z) € B, let {(zln) =
£O(z)I1+n’b(z)]. [t is straightforward to check that {(z|n) 1is smooth with

- . L - ,
Sn = b(z) (e.g. see BKRW). Then if b(z) € U, En[mk] = E[mk] + E[mkb(z) In

= 0, so that b(z) € T follows by the moment characterization hypothesis.

Thus B £ 7, implying ut ¢ 7 by B dense in ut and 7 closed. For the

“if" part, suppose that the parametric family satisfies En[mk] = 0. By
differentiation and Ibragimov and Hasminski, 1981, Lemma 7.2, E[mkS;] =0 so
Sn € Ul € 7, giving moment characterization. .

This result may not be useful for verifying spanning when the denseness
hypothesis is difficult to check.

In general, where a may be present, ut = J 1is simply a local version
of this characterization statement. If one thinks of a4 € ¥ as indexing a
direction of departure from the truth, and o € Ul as the directional analog
of the moment condition then U' = 7 means that the only directions of
departure allowed by the moment condi*‘sns are those allowed by model.

When restrictions are imposed on the form of the moment functions, these

results may not be useful for checking the spanning condition. There is

another sufficient condition that is often useful.
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Theorem 4.3: If there is a set of random vectors ‘“%}ZZO such that
{ae—E[ae]-PrOJ(aeIY)} c {O}u{uk} and there exists {7£L} with

limL E[HSB-aO—ZQilyELaZHZJ = 0 then the spanning condition holds.

. . _ . K 2
Proof: Consider Yk such that for € = SB N Zk=17kKak’ E[”EKH ] — 0.
Let Eé = ae—E[ae]-Proj(aelﬂ). By linearity of projections and E[SBJ = 0,
- K - _ _ . (o 2y . . 2
S aK-Zk=17kKak =& E[ek] PrOJ(eKlﬂ), so that by E[IProj(s|T)I"] = E{I1°]
2 _ 2
and “E[Ek]ﬂ = E[Hek" 1,
(4.1) EUIS-3,-F, 17, 3, 1%] = Elle,-Ele, 1-Proj(e. |T)12]
0 “k=1%%K"k K k K
2 2 . 2,y . 2
= 3(E[HGK” ] + ”E[Ek]ﬂ + E[HPFOJ(Exlg)” 1) = 9E[HEK” ] — 0.

Thus, S 1is in the closed linear span of {Eé}n The conclusion then follows
by the inclusion hypothesis {Ei} < {O}u{uk}, implying that the closed linear

span of {Eé} is a subset of . .

This result is useful because S and the influence functions uk are often

more complicated objects than S and a when « 1is present, making it

B &
easier to check the approximation hypothesis for SB. The first hypothesis
allows {az} to include some values where ae—E[aZ]—Proj(aelﬂ) =0, e g 2,

a constant vector. Such values can ease the task of verifying the

approximation of S but are important to exclude from the estimation

Bl
procedure to avoid singularity in the calculation of the linear combination
coefficients 7.

The hypotheses state that included in {u,} are objects of the form

k
ae-E{agl—Proj(aZI?), which has an interesting interpretation. For such U,
if mk = ag-E[agl, then one has the efficient-q case of Section 2, where
uk—mk = —Proj(mklﬁ). Theorem 4.3 therefore says that in efficient-« cases,
spanning holds if {ag} can approximate SB. [t is also interesting to note
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that the efficient-a case is not necessary for the spanning cdndition, as
shown for the conditional mean transformation model below.

Theorem 4.3 is useful for checking the spanning condition in the first
two examples. Let a sequence {be(z)} be complete with respect to a
distribution P(z) if for any q(2) with [iq(z)i%dP(2) < = there exisic
d

{7£L} with limL_ewIHq(z)—{kilynge(z)HZdP(z) = 0. Also, let {e.}

171i=1

denote the set of all unit vectors with dimension d.

Corollary 4.4: For the nonlinear simultaneous equations model, the spanning
condition is satisfied if mk(z,B,&(z,B)) is specified as in equation
(3.4.1), with either i) {5 (z,8)} = {A (X)r, (p(2,8))}  and {A (x)r, (&)} v
{rk(e)} v {Ak(x)} V) {ei}iil is complete with respect to the distribution of
(e,x); 11) {5 (z,8)} = {Jg(z,8)} v lpg(z.8)’s, (p(z,8))}, O < E[HpBHZJ < o,
and either a) {§k(s)} is complete with réspect to the distribution for e

IX]+E[p_ ] = 0

with Prob(eeA) = E[HpBH21(A)]/E[Hp H2] or b) pB—E[pBlsl—E[p 3

B B

and {§k(e)} v {ei}ii1 Is complete with respect to this distribution.

Proof: By equation (2.4), u, = Sk-E[Sklel—E[Sklx]+E[Sk] =
Sk-E[Sk]-PrOJ(Sklﬂ). In case i), let {ae) = {Ak(x)rk(e)} v (rk(c)} v {Ak(x)}
v {ei}, and note that the first hypothesis of Theorem 4.3 is satisfied by
rk(e)-E[rkIe]-E[rklx]+E[rk] = Ak(x)—E[AkIe]—E[Aklx]+E[Ak] =
ei—E[eilsl-E[eilx]+E[ei] = 0, while the second hypothesis holds by

completeness. In case ii), let {ag} = {ék(z,BO)} in subcase a), and

{a,} = {§k(z,Bo)} U {pze.} in subcase b). The first hypothesis of

B
Theorem 4.3 holds in both subcases, by pB-E[pBICJ-E[pBIx]+E[pB] = 0 in the
. L 2,
subcase b). The second hypothesis follows by E[MSB—aO Z£=1y£LaB“ ] =
, <L _ - 2, 2 ~L 2
E[HpB[s(e) Z£=17£LS£(€)" ] = E[”pB” lIs(e) Z%=178LS£(€)” ] and completeness. =

Note the dimensionality reduction for the second type of §k(z,B) is evident
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in this result. The second type only requires approximation of functions of

€, while the first requires approximation of functions of both e and x.

Corollary 4.5: For the CDR model, the spanning condition js satisfied if
mk(z,B,&(z,B)) Is specified as in équation (3.4.4), 0 < E[MvBHZJ < o, and
there s {b, (v)} such that {§k(y,v)}-u {6, (v)} is complete with respect to

the distribution for (y,v) with Prob((y,v)’eA) = E[HVBHZI(A)]/E[HVBHZJ.

Proof: Let {ag} = {vsgk(y,v)} v {vak(v)}. For aE = vsgk(y,v), uk =
Vﬁgk-E[vﬁgk] - {E[vB[vlgk- E[vBlv]E[gklv] + vBE[§klv]—E[vB§k]} =2, - Ela,] -
Proj(azlﬂ), while for a, = vak(v), aE-E[ag]-Proj(aeli) = vak(v) -

E[VBIY,V]bk(V) + E[VBfV]bk(v) - vak(v) = 0, so that the first hypothesis of
Theorem 4.3 is satisfied. To see that the second hypothesis holds, note that
—— -3 -vL 2y
for {dy(y,v)} = {sk(y,v)} v {b (v)}, E[HSB a, ZQ=17eLa£” I =
L 2, . 2 L 2
E[Hvﬁ{s(y,v) Z&=17iLd£}" ] = E[HvBH H{s(y,v) Z%=172Ld£}u ] — 0 by

completeness. g

More primitive conditions for completeness are readily available for the
power series choices for {§k(€)}, (Ak(x)rk(e)}, and {§k(y,v)} discussed
in Section 3; see equation (3.15). Suppose that in each case, the

coefficient vector sequence (A(E))ezl is selected from the nonnegative

dim(X)

integers and ordered according to ¥ =1

AJ(E). Then from Gallant (1980,
Theorem 3) and Newey (1988a, Theorem 3.1) it follows that in each case a
sufficient condition for completeness is the existence of the moment

. . -1/2 -1/2
generating function of po(q), where ¢ equals I (e-p), (x,Z (e-un)),
or (y,v) respectively, for the distribu .ions that appear in the respective
completeness conditions. Thisg condition is automatically satisfied if po is

bounded. Far example, 2 suflicient conaition for ii) a) of Corollary 4.3 is

existence of some C > 0 such that
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(4.2) E[exp{CHpO(Z~1/2(e-u))H}] < o,

In the mean transformation ﬁodel the first hypothesis of Theorem 4.3 is
not satisfied, i.e. u, # mk—E[mk]-Proj(mklg), except in the special case
where Var(yl|x) depends only on v. An intuitive explanation for this
feature is that Ely|v] is pointwise inefficient as an estimator of E[y|x]
under the conditional mean transformation model. It is easy to show that
Elw(x)ylvl/E[w(x)|v] with w(x) = 1/Var(y|x) 1is more efficient at a
particular value of wv.

Despite the fact that this is not an efficient-a case, the spanning

condition can be satisfied.

Theorem 4.6: For the conditional mean transformation model, the spanning
conditi&n is satisfied if mk(z,B,&(z,B)) iIs specified as in equation
(3.4.5), E[y2] < w, Var(ylx) > 0, and there is (bk(v)} such that {Ak(x)}
v {bk(v)} is complete with respect to the distribution for x given by

Prob(xeA) = Elw(x)1(A)]/Elw(x)].

Proof: The conclusion will follow from Theorem 4.1 by showing ut ¢ g (as
noted above U' 2 7 holds automatically). Consider ¢ e UL, implying that

for n = y-Elylx] = y-Elylv],

(4.3) 0 = E[{Ak-E[AkIv]}'nt] = E[{Ak-E[Ak!v]}E[n{t—E{tIX]}lx]]

1/

- E[w(x)l/Z{Ak-E[Aklv]}’fz(x)], A(x) = Elo(x) Y n{e-EttIx] Y Ix].

By the Cauchy-Schwarz inequality, llfL(x)II2 = w(x)_lE[n2|x]-E[Ht—E[tIx]HZIXJ =

E[thzlx], implying E[Hn(x)uzl < w. Then for {ag(x)} = {A_(x)} v {b_(v)},
by E[w(x){w(x)cl/za(x)}zl < » and the completeness condition, there exists
-1/2

such that Elw(x)lw(x) n(x)—zgtlyELag(x)nz] =

T
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E[Hn(x)-Z&ilzeLw(x)I/Zae(x)ﬂzl -— 0, so that by the Cauchy-Schwartz

inequality, equation (6.3), and aﬂ a function only of v if a2 * Ak for
some A,

_ «L 1/2 _ ,
(4.4) 0 = z&=1ygLE[w(x) {a2 E[aglv]} n(x)]

E[{zkilyeL“(X)l/zag'E[zg2175L“(X)1/233|V]}“(X)]

2y

— E(lln(x)-Elr(x)]v]l

Thus, ~(x) 1is a function of only v, which implies t € J, by the form of

the tangent set in equation (2.8). =

As for the other examples, a primitive completeness condition when Ak(x)

consists of a power series is that E[exp{CHpO(x)H}] < ® for some C > O.

5. Asymptotic Efficiency

When the spanning condition is satisfied, the moment estimator will te
close to being efficient for K large enough, an approximate efficiency
result. Full asymptotic efficiency requires a specification of a rate of
growth of K with the sample size so that the bound is achieved
asymptotically. This section provides such conditions.

The following result is a useful intermediate one. Let A(B) denote the

smallest eigenvalue for a symmetric matrix B and

i
g

A = [Mé,...,Mé]’, M
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Lemma 5.1: Suppose that Vvhl-glI = Op(l), and there exists e, A, and v =

v(K) such that for nonrandom K=K(n) - o 1) Q is positive definite, K

=00, s = o(whV), E[Ial®™S] = o(,4% Ay

), I/A(E[U'U]) = 0(™Y). ii)
A -€ P -€ Ay n - 2 -€ Av
- = - = - =
nQ~Q Op(n ), =Ml Op(n vy, Zi=1”ui u, 1=/n Op(n vo),
A Al A e - -€ Ap ~ =N - -€ Av.
VHMnn(B):nn(BO) M(B=B) I Op(n =077, vaim_ (8,) Lizq4y/nill = 0 (0 "™,
1ii) M = -E[mS’] for the efficient score S; iv) There exists %K such

K’)@Iq)uﬂzl = 0o(1); V) K is chosen to be K, a (possibly)

that E[IS-((1,%
random function of sample size, such that K -2 « and there exists nonrandom
Kn such that K = Kn with probability approaching one, and
v(Kn)ln[V(Kn)]/ln(n) — 0 vi) Either K e Kn with probability approaching
one and the number of elements of Kn iIs bounded, or

ZKZI{E[HS—((1,§K')@Iq)uuzl}l/z is finite. Then B is well defined with

probability approaching one and

(5.1) VR(E-8,) -5 N0, 1), k_,a)‘lmziglaiazl/nm' (i~ 2y oy

Furthermore, if for every regular parametric submodel EQ[HSHZJ Is continucus

in a neighborhood of 6 then B is regular.

This result specifies an upper bound on the growth rate for K that gives
efficiency under certain boundedness and rate of convergence conditions.
These conditions are not very primitive, which is to be exXpected, since they
will depend on specifics of particular nonparametric estimation methods for
the nuisance functions «. When the nuisance function is finite dimensional,
it is possible to give more primitive conaitions; see Newey (1989c¢). In any
case, this Lemma helps to simplify the task of verifying that a particular
estimator is asymptotically efficient, as in the nonlinear simultaneous
equations example below.

The v term in this result is an index for the order of the moment
functions, such as the maximum included power for power series. Indeed,
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the conditions of Lemma 5;1 are designed so as to apply as easily as possible
to power series. In particular, one of the more stringent and difficult to
check conditioné is the eigenvalue bound in i). One result that is useful for
power series is the eigenvalue bound of Newey (1988a), which requires that the
distribution have a continuous component. A lower bound on the eigenvalue of
a second moment matrix of such a multivariate power series that includes
powers of individual components up to v is cv-Av for constants ¢ and A,
motivating the form of the bounds and rate conditions given in Lemma S.1.

An important feature of this result is that X can be data based. This
feature allows for K to be chosen, say, by the cross-validation method
discussed earlier. However, it should be noted th;t an approximation rate
hypothesis is imposed in the more interesting case where K is allowed to
vary freely between upper and lower bounds, requiring that the remainder in
the spanning condition g0 to zero fast enough that the infinite sum in
condition v) is finite. A literature search has not yet revealed useful
primitive conditions for thisg approximation rate, except under restrictive
conditions such as boundedness of the random variables of power series and
continuous differentiability of the efficient score in these variables (e.g.
see Powell, 1981).

Lemma 5.1 is useful for showing efficiency of the estimators discussed in
the examples. For brevity, only the simultaneous equations example will be
discussed here. In particular, the second type of estimator will be
considered, where the moment functions are formed as in equations (3.13) and
(3.14). To give primitive regularity conditions, it is hecessary to specify
the sequence {§k(p)} of approximating functions. Here power series in

bounded, monotonic functions will be considered, as in:
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Assumption 5.1: {§k(p)} satisfies equation (3.15), where po(p) =
(t(pl),...,r(ps)), T(p) 1is one-to-one with positive, bounded derivative
and bounded second derivative, and A(Z) are distinct vectors. Also, for

s ) .
v(K) = 1 + maxms[K/s]+le=1AE(m) and v(K) equal to the maximum integer v

A(m), [K/s]+1
m=1

such that {po(p)A:Zeilk2 = v} < {po(p) } , v(K) — = and there is

Cv(K)

C > 0 such that K = Q(v(K) ).

This assumption states that {sk(p)} is a power series in a function =<(-),
such as 7t(+) = exp(+)/[1+exp(+)], such that all possible nonnegative integer
powers are included, and that the highest order included term does not grow
too fast relative to the number of terms. If the power series terms are
ordered in the natural way, with all terms of a given order included before
the next highest order, then K = sv(K)®, which satisfies the assumption.

The next assumption imposes sufficient conditions for the eigenvalue

hypothesis in Lemma 5.1 1i).

Assumption 5.2: The density of € 1is bounded away from zero on an open set

and either 1) p,-Elp,le] 1s a function only of x with
B B

E[{pB—E[pBle]}{pB-E[pBISI)’] nonsingular, and {ei}ii1 excluded from

{§k(p)}; or 2) there are vectors (¢=1,...,s), such that

Peg’ g

dlag[plB""’psB]’ for each £, some element of p&S is not

multiplicatively separable in a function of X and ¢, 1is bounded, and has

cenditional variance given € that is bounded away from zero.

This assumption is somewhat restrictive. The leading examples where 1) is

satisfied are models where y enters linearly and has constant coefficients,

(5.2) plz,B) = B(B)y - f(x,B), BO = B(BO) nonsingular,

for which pB(Z’BO) igs linear in & with constant coefficients. Part 2)
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requires that each element of B8 enter only one residual, as well as a
restrictive boundedness and conditional variance condition. The first of
these conditions can be circumvented if p(z,B) = p(z,2(B)), and p(z,Z)
satisfies the assumptions. . Here the above procedure can be used to form an

efficient estimator é of co, and then an efficient estimator of BO

-1
S

where ﬁc is an estimator of the asymptotic variance of ¢), ora linearized

constructed by minimum chi-square (i.e, B = argminB[E-c(B)]'? (Z-¢(B)]
version. The boundedness condition in 2) may require the strong restriction
that x and ¢ are bounded, and the conditional variance condition may also
restrict the range of ¢. It would be possible to relax these conditions if
it was possible to relax the conditions of Lemma A.2 in Appendix A.

The following pair of assumptions imposes dominance conditions that are

used in verifying conditions i) and ii) of Lemma S.1:

Assumption 5. 3: p(zi,B) is twice continuously differentiable on a

neighborhood # of BO. Also, there exists Bi = B(zi) such that E[Bi] < @
2 2

and for all B € #; Hp(zi,B)H , HpB(zi,B)H , HapB(zi,B)/GBH = Bi'

“2+s
B

J _ _ P -
®. Also, bij(B) = JB(zi,B) JB("(xj'p(Zi'B)'B)‘xj’B) and bij(B) pB(Zi’B)

Assumption 5.4: There is e > 0 such that E[HJBH2+GJ <o and E[lp I <
- pB(n(xj,p(zi,B),B),xj,B) are twice continuously differentiable on a
neighborhood ¥ of BO. Also, for i # j there exists Bij = B(zi,zj) such
J 2 J 2
that E[Bij] < o and for all B e ¥; ”bij(B)“ , uabij(s)/asu R
2. J

2 o} 2 P 2 2.p ... 2 P 2 -
a bij(B)/aB i, ”bij(B)" , Hobij(B)/BBH , lta bij(b//aﬁ I, ”bij(B)” Bi = Bij

for Bi from Assumption 5. 3.

For an example, consider the linear regression model Yy = x'8 + g, where
-B)  is nonevictent and . VB = y=xX'A, [z, = -x, b, = X, ~X,
J(z.8 is non elz,5) y-x'f th B) lJ(B) 17X

Here assumptions 5.3 and 5.5 require E[qu4] < w, E[ezl < o It is possible
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to relax these assumptions by using the special structure of this model: see
Newey (1988a). In general, it is possible to relax the assumption about the
existence of second moments of p(z,B8) if preliminary estimates of location
and scale are not used.

The next Assumption imposes smoothness conditions that are useful for
verifying Lemma S.1 iii). Let f(e) denote the density of «:
Assumption 5.5: {(z|B) = exp(J(z,B))+f(p(2,B)) is mean-square in a
neighbérhood N of Bo and E[{supﬂubiz(B)NZ}IB] and E[{supNHbTZ(B)HZ}lB]

are continuous on .

The final condition imposes convergence rates for initial estimators.

are positive definite, and for

), nﬁ-uon = op(n‘l/‘l'e).

0
~-1/4~-€
n

Assumption 5.6. Vn(R-B) = Op(l). Q and £

~ - ~
some € > 0, IQ-Qll = 0 (n 7), Iz=z I = 0 (
3-q o 0 5

Theorem 5.2: Suppose that Assumptions 5.1-5.6, and Lemma 5.1 v) and vi) are

satisfied. Then equation (5.1) holds.

Lemma 5.1 is also useful for showing asymptotic efficiency of
semiparametric estimators for other models. Examples are given in Newey

(1988b, 1989c, 1990b).

6. A Sampling Experiment

To obtain information concerning the small sample performance of the

patimatar 2 gamnli ment wWaz carried out.  Tie experiment concerned

jatad
the simplest special case of the nonlinear simultaneous equations model, which

is the linear regression model. The same regression design, sample size, and

N0



a subset of the distributions in Hsieh and Manski (1987) were considered. The
model was yi = BOxi + ci, with xi a binomial random variable and Prob(x.l
= Q) = Pr‘ob(xi = 1) = 1/2. The distributions for €, were standard normal,
variance contaminated mixture of normals with relative scale of nine, being
.IN(0,9) + .9N(0,1/9), bimodal symmetric mixture of normals, being .SN(-3,1)
+ .5N(3,1), lognormal, being exp(u) where u is distributed as standard
normal. The sample size was 50.

The estimator of BO considered was essentially the linearized
semiparametric m-estimator for the nonlinear simultaneous equations model of
Section 3, applied to this regression model, with moment functions chosen as
in equations (3.13) and (3.14). The preliminary estimator B of B was
chosen to be the least squares estimator form a regrgssion of y; on
(1,xi)’, and the location and scale estimators were chosen to be the constant
ﬁ and residual standard deviation ¢ from this regression. The matrix Q
was chosen to the the sample variance of X, - The approximating functions

were

(6.1) 5.0 =15, k=1, 2, ...), () = p/lirlpl).

The function T(p) 1is bounded and continuously differentiable with bounded
Lipschitz derivative. Although this function does not satisfy the twice
differentiability hypothesis of Assumption 5.1, it is possible to weaken this
assumption to allow the first derivative to just be Lipschitz. This function
was used to make the results comparable with Newey (1988a).

Because the estimator diff.red slightly from that described in Section 3,
a brief description is appropriate. Also, this description may help to
iliustrate the previously described calculations for a particular example.’

K

For p(p) = (x(p),...,T(P))’", &. = (y.,-x

‘B-p)/e,  let
i i 18 /o ¢
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(6.2) m (2.8,&(2,8)) = -(x-%)6 " te ((y-x’ B-p) /) K,

Mes

- —vvia k=1, .2 22 & _ ma
(xi-x)(xi—x) kr(Ei) T (61)/0 . M o= Zi=lei/n’

u

sk wn _,a .k, oA
Ki -(xi-x){t(ii) - Zj=lt(€j) /n}/c.

These objects are exactly those described in eq. (3.13), except that the
additional term -(xi—§)§’kr(§i)k-?r’(éi)/&z has been added to ﬁki' This
change makes the calculations somewhat easier, without affecting the
efficiency result; note that 2121{-(xi-§)§’kr(éi)k—lt’(éi)/52}/n should

converge to zero by independence of x and €. The estimator was constructed

from equation (6.2), as in equations (3.13) and (3.14). For ﬁi =

A 2 Ky, o~ o . K-1., on - .

(r(Ei)....,r(ii) ), dp, = T (si)(l....,xr(gi) Y/ /o, p = Zi=1pi/n, b, =

(x,-%)'Q(x,-x) = (x,-x)'(T.2 (x.-X) (x .-%)’/n] }(x.-X), the linear combination
i i i J=1""] J 1

parameters ¥ and the estimator take the form

1

al>
1}

na- ~ —= .~ = ,.=lan
(6.3) —(Zi=1wi(pi—p)(pi—p) ] Zi:lwidpi’

w
i

o = S\ ~r 2 -1 = - ~ys 2
B+ [L,2, (%, =%) (x,=K)’ (dp{F) 17 L, 2, (%, =R (p,=P) 7}

This estimator differs from that of Newey (1988a), which does not include y
in the calculation of %, and replaces Zigl(xi—i)(xi—Q)’(dﬁig) by
~(7,2, 1(h, )’ 51%/m1E, 2 (x, 0 (x,-%)’ in the calculation of .

Before describing the results, it is useful to note some facts about this
estimator. Because of the use of preliminary estimators of location and
scale, the ratio of its mean-square error rei. 'ive to ordinary least squares
in the simulations is invariant to location and scale of e. Also, because of
the.use of powers of an odd function, é—BO is an odd function of the
(el—uo,...,en—po)’. Therefore, when the disturbance is symmetrically

distributed around Mo each estimator will be symmetrically distributed

—an-



around BO’ which occurs for each of the first three distributions: The
estimators also appear to be unbiased for all the distributions. In
calculations not reported here it was found that the average deviation of the
estimators from BO was much smaller than the mean-square error.

Computations were performed using GAUSS on a microcomputer, with 500
replications. Table One reports the root mean square error (RMSE), relative
to ordinary least squares, of the estimator for K e {1,...,5}, as well as
that for the cross-validated choice K described in Section 3. The
distribution of K in the simulations is also given.

The RMSE results here are much like those for the similar moment
estimator considered in Newey (1988a), and, except in the normal case, are
much better than those for the kernel-based adaptive estimator given in Hsieh
and Manski (1987). The cross-validated choice of K performs quite well. In
each case there is only a few percentage points loss in efficlency from using
the cross-validated choice rather than the (nonfeasible) value of K that
minimizes the mean-square error. Also, cross-validation seems to be quite
good at avoiding disasters; for the location mixture, cross-validation never
chooses K to be 1 or 2, for which the performance of the estimator is

very poor. These results seem quite promising.
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Appendix A: Proofs for Section S

Throughout, ¢ and C will denote generic, positive constants that can
be different in different uses. First, a simple but useful Lemma on

convergence rates of regression coefficients will be given.

A -

Lemma A.1: Suppose 2, G, £, G are random submatrices of Zn’ Gn’ Zn, Gn’

respectively, with Zn' Gn nonrandom, such that ) HZn-ZnH = Op(EZn)'
MGn-GnH = Op(eGn); ii) HGnH = O(AGn), HZnH = O(Azn)' Zn positive
1

semi-definite, A(Z )"" = 0(A, ), dim(X ) = OCA, ). Then if e_ A = o(1),
n An n an Zn An
a=1la -1 1/2 1/2 -1
- )
g "G-Z "Gl =0 (Adn An G ) + Op(Adn AknEZn”Zn GnH,
_ 1/2 2
- Op(Adn AhneGn) Op(AdnAhnAGn Zn)

Proof: - Let A, A, in’ An denote the smallest eigenvalues of s, Z, in’

and Zn respectively. Note that by [A(A)-A(B)| = HA-BI,

[1-A /A | = A=A |/2_ =1 -SI/A_ =0 (e_ A ) = o (1),
n n n n n n ' n n P Zn An P

so that with probability approaching one inz CAn. Also, by the submatrix

assumption A = An ahd X = Xn’ and in particular & is positive definite
with probability approaching one. Then by Al = dimkA)l/Zi(A), where A(A)
is the maximum eigenvalue of a symmetric matrix A, by 2A(A) = l/A(A_l)

for a positive definite matrix A, and the Cauchy~-Schwartz and triangle

inequalities,

1 1, = S |

17l - s7lan = 127 GGy + 18 s e = a8 MG-GIl + 12~ (=-5) "
< 18" tcné=gn + i=-Smns gy = aim Y237 E g 1+ oy -5 s lam
n n n n

1A

din(g_ )1/2 [o (gq) * O, leg 1T L

.~



172,-1 -1
= Op(A A )[Op(EGn) + Op(eZnHZ Gl ]

dn n
_ 1/2 172 -1
- Op(Adn AAnEGn) * Op(Adn AAnEZn“zn Gn")’

giving the first equality of the conclusion. The second equality follows by

1 Yiimz )Y 2uc 0 = 0t AL ). m
n n dn

-1 -
HZn Gn” = HZn anicn

MG It = a(s )~
n n

Proof of Lemma 5.1: The n argument will be suppressed where convenient.
By K 25 o there exists nonrandom K such that K = K with probability
approaching one and K — wo. Let K = Kn denote the upper bound specified in
iv). In the case that the number of elements of K 1is bounded it can be
assumed without loss of generality that the smallest element of K goes to
infinity and that the largest element is less than or equal to X. For the
other case specified in v), let K = {K,K+1,...,K}. Note that in both cases
K € X with probability approaching one. Therefore, it suffices to show that
the result holds when K 1is always an element of X. (Define a new estimator
:qual to B if K e X, and equal to the estimator for some choice of K e X
if K & X; B and this new estimator are equal with probability approaching
one, and therefore have the same asymptotic properties, so that it suffices to
consider just the new estimator. Similar logic applies to the asymptotic
variance estimator.)

Some additional notation is useful in what éollows. For any giQen K

let 7 be obtained from eq. (3.5) and L = (1,?’)®1q. Also, let

n - , = _
u = zi=1ui/n Q= Elw'], Q=7

T = E(U'QuU), £

il
™M
pte

and let a subscript denote the same matrices calculated at the subscript value

~

of K. For 7y as specified in v), let S

LKu, and S [(l,gK’)®Iq]u.

K K
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Let A(+) denote the largest eigenvalue of a symmetric matrix.

Next, by iii), 7% minimizes E((S=((1,5")el Ju}’Q(S-((1,5"Je1)u}]

over 7, so that E[IS-5.1°] = (1/A(Q)E[(S-5.)Q(s-5 )] =
(1/AQ@EN(S-8,)7Q(S-8, )1 = (R(Q)/AQ)IEMS-3,1°]. Then by v) and R — =,
(A. 1) Ly (ElIs- s 121y CZK{E[HS-§KH21}1/2 = o(1),

and for n large enough,

(A.2) maxKE{HS—§KH2] = max, {E[IS-5,I 213172 < 7 AELISS, 212 < 5.

By iv) and Jensen’s and Cauchy-Schwartz inequalities,

2

(A.3) ILgh + v U = max I-E[S, S’ 1+E(SS* 11l = Cmax, E[IS ~S1°] = o(1),

K

_1 < , _
"LﬁQﬁLﬁ -V "Il = max HE[SKSK] -E[SS‘ Il = o(1),

Also, by the Markov and Cauchy-Schwartz inequalities, E[SK] and E[S] = 0O,

and independence of the observations it follows that

n - n -
(A.4) uzl -1 Kl/\/H - zt=lsi/»/8u = TuEioq gy S.l)/»/ﬁu
_ n _ 2,,1/2, _ o214 172,
= Op(ZK{E["Zi=1(SKi S_N/VHH P77 = op():K{E[nsK SHETIH ) op(lL
Next note that by v), for any ¢, C > 0, for v = v(K),
-c Cv =
(A.5) n v = exp{-Cln(n){c/C - (vin(v)/1ln(n))]} = o(1).
By Lemma A.2 of Newey (1988a), i), and eq. (A.5),
(A.6) -0l = akmax, ~( =0 (" f )% =0 (™)
) QK Qi qnma JE QK JE p p '

By i), ii), (A.S5), and the triangle, Cauchy-Schwartz, and Markov inequalities,
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A S n Iy YR ‘_
(A.7) I82=~C 1l = Zi=1”uiKuiK U, guizl/n

1A

=y =Mllw,=l/n

n - 2 n -
Li=gtg = wgh/n * Lo upruigtivig

- Av n - 2 172 =« n 2
v o+ (Zi=1”uiK—uiE" /n) (Zi=1“uiK” /n)

1A

0 (n
p

-C - Av,1/2
) v

3 _ -c
= Op(n + Op([n ] )Op(tr(Qﬁ)) = Op(n ).

A ~-C
where tr denotes the trace. It follows that ”QK—QE” = Op(n ). Each
element of ZE and Zﬁ consists of a sum of g elements of (IK®Q)QK and

(1goQ)%. Then by Qi = dim(R)X(Q) = qKtr(Q) = oY),

(A.8) nik--zin = cn(IZ@i)ﬁE - (I1eQg) Qi

1A

CHIK®QHHQK-QKH + H(IK®Q)—(IK®Q)HHQKH = CK(HQHHQK—QKH+HQ-QHHQKH)

0o W0 (0% + 0 (™Ho™) =0 (7).
P P P p

Similarly,
A Al ¢ - ] s = -C
(A.9) H[tr(QMI),...,tr(QMK )1 [tr(QMl),...,tr(QMK )1 Op(n )
n A, an _ , _ e n . _ -€ Cv
”Zi=1UiKQUOi/n E[UK QuO]H = Op(n )zi=1” = Op(n v,
-1 Cv .
Then by A(ZK) = 0(v™"), Lemma A.1 gives,

C

(A.10) Hﬁ-LﬁH Op(n—cVCv) = Op(n- ), HLﬁH = Clyll = Op(vcu).

Then by M a subma‘rix of ﬁz,

(A. 11, N - LpMal = uﬁ—r_ﬁnuﬁt-mﬁu + III:—LKII gl + ULy ll,?t—;ngll

- -C e "o cy Y =
= Op(n )(mnz MKH + HMKH) + Op(v )mnK ﬂKH op(lL

It follows similarly that ILQLY - LﬁQRLﬁ’" = op(l). Then by eq. (A.3), the
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triangle lnequality, and continuity of the matrix inverse at nonsingularity,

(A.12) nii" - v = op(l), QL - vi = op(l).

Next, note that by the Markov and Cauchy-Schwartz inequalities,

_ 172, _ Cv
(A.13) ‘/H”“nz” o ({E[nllu. —II ]} ) = Op({tr(QE)} ) = Op(v ).

Then by the triangle inequality, and by, e.g. ﬁh(Bo)—u a subvector of

nk
mnK(BO)-unK’

A A A n -1 -
(A.14) vailm (B)-L;_,S,/n+V (B-BI I
= lILlI\/H(Ilmn(B)—mn(BO)—MK(B"BO)ll+llmn(BO)-unKII)

-1 A n
+ IL- LKH nilu ~H + HLMK+V HVHHB-BOM + VHHLKunK—Zi=1Si/nH

1A

Cv ~ PO - R
Op(v )VH(mnnK(B)ﬂnnK(Bo)-Mi(B-Bo)H+HmhK(BO)-unKH)

-C o n
+ Op(n )‘/H”“nﬁ” + IILMK+V Livang- Byl + “"LZ“nK'Zi=1Si/““

A

(HLKH+HL LK") nim —(B)-m. (BO)—ME(B_BO)}“

+ nf_-Lﬁu(\/ﬁumnK-(Bo)u + ||,nEn»/Hn;§—BOu) + op(l) = op(l).

It then follows

A~ =1an - n N
(A.15) Vol (L) “Lm_(8) - [-VE _4S; + (B-By) 1

-1

IA

“n aAn s aAn oA -1
L vivaENLm () + wvinta (B)-1, 2 S /nsv™ (B-g )

iA

op(l)»/r?nﬁﬁz (B)- Zl ) “1g- By )u+uz /vl +\/Hll[§—80|l]+op(1_) = o (1),

Then by equation (A.14) and the definition of B it follows that

A -



(A-16)  Vn(B-B;) = Vi(B-g,) - »/H(m)'lmn(é) = VE,2,S VA + o (1).

The first conclusion now follows by the Lindbergh-Levy central limit thecren.
The second conclusion follows by eq. (A.12). The final conclusion follows by

Theorem 2.2 of Newey (1990a)

The following Lemma is useful for proving the eigenvalue hypothesis for the

nonlinear simultaneous equations example.

Lemma A.2: Suppose & and x are Independent, g(e,x) is bounded,
Prob(g(e,x) = 0) = 0, E[g(s,x)zlc] Zc >0, and for all a(x)b(e),

Prob(g(e,x)=a(x)b(e)) < 1. Then inf{a(e):5[62]=1}E[Var(6(c)g(s,x)lx}] > 0.

Proof: Proceed by showing the contrapositive: Suppose the infimum is zero
and let {52(8)} be a sequence such that E[Var{ag(e)g(e,x)lx}] — 0, 1i.e.
Sz(e)g(e,x) - E[Se(e)g(e,x)lx] —2', 0. Consider a subsequence where this
convergence is almost sure. Apply Alagolu’s Theorem, on the usual Hilbert
Space of functions of ¢ with finite mean square, to find a further
subsequence where 52(8) converges weak-* (in the function space sense) to
some d&(e). This means that E[ae(e)r(e)] — El8(e)r(e)] for any r(e)
with E[r(e)Z] < @, so that for almost all X, ae(x) = E[ég(e)g(c,x)lx] =

fae(e)g(s,x)f(s)ds — J3(e)gle,x)f(e)de = Els(e)gle,x)Ix] = a(x). It follows

that 62(5) = [se(s)g(e,x)]/g(e,x) SELLEN a(x)/g(e,x). Since ég(e)b is a
function only of &, so is its almost sure limit, i.e. a(x)/gle,x) = 5(¢)
for some &(e). Consider the events A = {a(x) # 0}, B = {b(e,x) =0}, A =

{8(¢) = 0}). Then by independence, 0 = Prob(AnAnB)

Prob(Ana) =

Prob(A)Prob(a), implying Prob(A) = 0 or Prob(a) 0. If prob(a) = 0,

then gl(e,x) = a(x)/8(e). Thus, it suffices to show Prob(A) > 0. Suppose
Prob(A) =0, 1i.e. alx) = 0. Then a,(x) =25 0, while by boundedness of

4



g(e,x) and independénce, Iae(x)l2 < CE[Gg(e)ZIx] = CE[62(8)2] = C, so that

by the dominated convergence theorem, E[ae(x)zl —> 0. Therefore,

{E[{éz(e)g(e,x)—ag(x)}zl}1/2

172 _

= {E[{8,(e)g(e,x) 1211172 - {Ela,(x)°1}1/2 =

2.,1/72 172

{Ela,;(x)°]} /% = c{E[GE(e)ZJ) - o(1) = c-o(1),

2
contradicting the starting hypothesis of the proof. Therefore, Prob(A) > O

{E[ée(e)zE[g(e,x)zlell}

under this hypothesis, implying Prob(A) = 0, implying g(e,x) = a(x)/d(g). =

The following Lemmas are useful for verifying the convergence rate
hypotheses. Let ¥y be a vector of parameters with corresponding true value
ER and estimator %, and bij(y) = b(zi,zj,z) a matrix function of a pair of
observations, with dimension that can depend on the sample size. Also, let

bij = bij(y), bij = bij(yo), b = E[blzl, and for i = j, b.'= Elb .lzi],

2 - - ~
Lemma A. 3: "Zijbij/n - Zi(bi.+bei)/n + bll = Op(E[IIb1

2,..1/72
2“ 1) /n).

1ll]/n +

(E[llb1

Proof: This Lemma is a V-statistic projection result, proved as follows:

First, consider the case with b = 0. Note ~at

2 - = _ = = 2
uzijbij/n LB, +b /nll = IZ; 0y 575y o ;)/n%ll
< IY. .. (b, .-b. b .)/n%I + IT. (b, . =B, =B .)/n%ll = T, +T
125 °137°1.7° i1l 1R 12
Note E[TZ] = (E["bllu + 2E[Hb12H])/n. Also, for 1i=]j, k#l let Vijxd =
E[(bij—bi.—b.j? (bkﬂ_bk.-b.ﬂ)]' By i.i.d. observations, if neither % nor ¢
is equal to i or j, then vijke = 0. Also for ¢ not equal to i or J.
V..., = El(b, -b. )’ (b,,~b, )] = E[E[(b, .-b, )’ (b. b, Jz,,z,]]
ijie ij 1. ig "i. i3 i i T, HA
= E[(bij-bi.) (E[biﬂlzi’zj]—bi.)] =0 = vijj@

. Ko 2



Similarly, vijkl =0 if k equals neither i nor j. Thus,

2, _ 4 _ 4
E[TI] = Zi:jzktevijkﬂ/n = zi¢j(vijij+vijji)/n
_ 2_ T T 42 4 _ T _F 42 =2
= 2(n n)E["blz b1. b.2" I/n” = E[Hb12 bl. b.ZH Io(n ™),
~ = 172 -1, _ 2,,1/2 -1
and Tl = Op({E[Hblz bl. ]) ) = Op({E["blz 1} n ). The

conclusion then follows by the Markov and triangle inequalities. Finally, the

conclusion when b # 0 follows by replacing b.,,, b, , b by b, .-b, b, -b,

ij i. L1 ij 7 Ti.
b 1—5, respectively in the above argument, and noting that WGl = E[”b12”] =
2..1/72 . . . - 2,,1/2
{E[Hblzﬂ 1} » which implies E[llb11 bil] = E["bllu] + {E[”b12” 1} and
{E[IIb 1_5”2]}1/2 = 2{E[ub12u2]}1/2. N

Lemmma A. 4: Suppose ¥ SN 70 and there is a neighborhood X of 70 and
B(z,z) such that for Bij = B(zi,zj) and y € ¥, bij(y) is continuously
differentiable and supﬂﬂabij(y)/ayu = Bij' Then

2 -
ZlJle/n - Bl

< o 2..1/2
< Op((E[Blll/n}+E[812])H7 Tl + Op(E[Hbllnl/n + (E[Hblzn 1) /vn).

Proof: By a mean-value expansion,

2 2 - 2, 0~
nzlJle n - L by y/nh = IL; 580y (3)/8/n N 13-y i

< 2 v = A‘
= (T, /n") iy 70” = Op(E[Blll/n + E[BIZJ)”? 70”.

1J ij

where ¥ is the mean value, the inequalities hold with probability

approaching one, and the last equality follows by the Markov inequality.
2 — - - — — — -
- = - . *b + Ny, (b, .)/n -
Also, ”Zijbij/n bll ZlJbl /n Zi(bl. b.l)/n + bl Zl(b1.+b.1) n 2bll

by the triangle inequality. Thus, the soncl cllcws by Lemma A.3 and

E0NE; (B, +b [ )/n - 2B0] = {(ELIE, +6 1128 = oelis. 0213 V205) o
i 71 i 1. 7. 12
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Lemmma A.5: Under the hypotheses of Lemma A.4,

Zi"Zj[bij(§)+bji(§)]/n - (5, +6 )1°/m
< op({E[Bfll/n>+E[B§21)u;—qonz + Op(E[Nb11H2+Hb12H2]/n),
Proof: First, note that
(A.17)  T.IT.[(b. .($)+b.. (3))=(b. +b. )1/al’/n = 4T, b, .(3)-b, 1%/n°
14 ij Jji ij i ij i ij

- 20~ 2,2
L; 5190, (/8717 15-5,1%/n

1A

2 2, .~
(zijBij/n iy 70”

2

1A

< 2 A-
= Op({E[Blll/n} + E[Blzl)H7 70”,

where 7 is the mean value and the last two inequalities follow as in the

proof of Lemma A.4. Also note that E[szblj/n -b HZ] <

1.

= 2 20, . = 2
CE(NL j,q (by ;=) )/nii") + CElNb, -6, 1%1/n = CE(EINL;,, (b, ;-B) 1/ni%Iz )] +

117 1. 1j "1, 1
2 = .2 = 2 2 2 2 _
CE[IIbMH +|Ib1.ll I/n = E[E[nblz-bl_u Izlll(n—l)/n + O(E[Ilbllll +l|b12H 1/n) =
2 2 . - 2. _
O(E[ub“u +Ilb121I l/n). Similarly E[”Zjbjl/n - b ] =
O(E[Hb11H2+Hb12H2]/n). It then follows by i.i.d. observations that

(A.18) E[ziuzj[bij+bji]/n - (Bi.+5_i)n2]/n

%] = O(E[b, 1o, _1%1/n).

= CELIT b, /n - B 1 12

2 -
I°1 + EDE by, /n - B

Egqs. (A.17)-(A.18) and the triangle inequality give the conclusion. =

Proof of Theorem S$.2: The proof proceeds by verifying the hypotheses of

(B’,ﬁ’,vec(z—l/z)’)’, = (B

Lemma 5.1. Let 7y

plz.y) = Y %0(2,8) -4 €= plz,7,) = £, 2 (e=py). Let u_ = v, -Elv, |x]

-1/2, ~

far v = [(n =FlAa I£lY’'Y g {£), Tat
for v, oSN N L S AR K 5
First, the smallest eigenvalue hypothesis of Lemma 5.1 will be shown.

Let p(€) = (1,...,r(El)v)’®---®(l,...,T(ES)V)’ and p(£) equal the same
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vector except that the first element (i.e. 1) is excluded. By Assumption
5.1, U 1is a submatrix of U = (V-E[VIX])(I@Z—l/Z'), where V =
p(é)’@(pB—E[pBIE])’, with p(€) = p(£€) under Assumption 5.2 i) and p(€) =

p(€) under Assumption 5.2 ii). Then, by I@Z—l/2 nonsingular,

(A.19) A(E(UUD) = A(EIU'T]) = cA(E({V-E[VIx]} {V-E[VIx]}]),

Now, in case i), V-E[V|x] = {p(&)-E[p(&)]}’®(pB-E[pBIE])’, so that by eq.

(A.19) and Lemma A.1 of Newey (1988a),

AE[UYUL) = At Var(p(E))@E[{pB~EﬁpBl€]}{pB-E[pBlE]}’] )

v

ceA(Var(p(g))) = cA((-E[p(£)], DE[B(E)P(E) 1 (-E[P(£)], 1))

-Cv

v

CA(E[P(E)p(&)' 1IA(L + E[P(E)IEIP(E)]) = cv

Next, under Assumption 5.2 ii), note that the smallest eigenvalue is invariant
with respect to permutations of corresponding rows and columns, so that by
eq. (A.19), it suffices to find a bound for the smallest eigenvalue of
EH{V-E[VIx]}' {V-E[V|x]}], where ¥ = (pB-E[pBIE])'®p(E)’. By Pg block
diagonal, this is a block diagonal matrix, with s blocks, so that it
suffices to find a bound on an arbitrary, say the first, diagonal block. This
block is B = ijlE[Var{p(E)(plBj -E[plBJIEJ)Ix}], where m 1is the dimension
of plB' Suppose, say, that plBl is the element of pl(3 satisfying the
hypotheses of Assumption 5.2 ii). Then for WAl = 1 and gle,x) = p’Bj

-E[pIleil. Lemma A.2 gives
A’BA = E(Var{A’p(€)gle, x)|x}]

EL p(&) Y IEIVar{{A p(&)/EL A p(£) 121 2hg (e, %) |3} ]

v

AEIp(£)p(E) 1)e = cv V.
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Next, the rest of hypotheses i) and ii)} of Lemma 5.1 will be verified.
Note, by Assumption 5.1, that §k(p) is twice continuocusly differentiable in

p, and that for a matrix R and vector g,

(A.20) Hgk(Rp—u)H = IpO(Rp~u)A([k/S]+1)l = ¢,
183, (p)/8p1l = na[po(p)A([k/51+1)/apu < v’ naék(p)/apu2 < v2c.
Let
bgj(z) = Iz, B)-Jg(r(x | p(z,,B),B),x.B),
bfjcz) = [pB(zi,B)-pB(n(xj,p(zi,B),B),xj,B)]’2-1/2’§k(p(zi.7)),
L) = (bfj(&),...,b§j(7))'.

Note that bii(7) = 0. It is easy, but tedious, to check that it follows from
Assumptions 5.3 and 5.4 that bij(y) is twice continuously differentiable in
7y and that for a bounded, convex neighborhood # of 70, such that the

coordinate projection for B 1is contained in the neighborhoods of Assumptions

5.3 and 5. 4,
(A.21) Wb, (1)1% = c(xk+1)B. .c¥ = c-v VB, .
ij i] ij
I8b, (7)/871% = Cov™V(B, +B, B.), 8%, (7)/37°1 = C-v"V(B, +B, B.).
1] 1) 1J 1 1] ij "1ij°1
For the partitioning 7 = (71,7&)’, with 7= B, note that
- - 2 A - -
lnn(B) = Zijbij(B,yz)/n .Uy = Zj[bij(y)+bji(y)]/n,
- “~ A _ - 2 o '
M= &nn(B)/aB = Zijabij(z)/aﬁ/n , M= E[ablz(yo)/asl.
By eq. (A.21) IHIl = E{Nob, ,(y.)/8B1] =1 + c-uC”E[B +B B, ] = O(VCV) while
) ) 12°°0 12 71271 '
by eq. (A.20), for € from Assumption 5.4 and l°le = (E[H°H2+E])1/(2+E),
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=172

ful _ = ju.|_ + “max fu, | o= 4(]J, ] _ + KmaxlsksKlpBZ

€ O'e TS M =k=K'"k'e g'e sk(éj)lE = C(lJ

VIpBIE) = O(vcv), giving 1). Next, by Assumption 5.6, Lemma A.4 (with
the object in the lemma equal to abij(y)/aﬁ here), and eq. (A.21),

N _ Cv ~ - Cv ~ 1/2
(A.22) IH-H1 = Op(v E[812+81281])H7 1l + Op(v {E[B12+312B1]} /vn)

|

B e

Also, by Assumption S.6, Lemma A.S5, eq. (A.21), and reasoning similar to that

Cv_-c

for eq. (A.22), Zin H&i—uiuz/n = Op(v n ). Also, by a mean value expansion

=1
with mean value B, \/Huﬁzn(B)-ﬁzn(Bo)—M(B—Bo)u = \/Hu[aﬁzn(é)/aB—M](é-Bo)n =
v —-C
n

|1ar?zn(f§)/aB-M]¢H||1§-Bou = uaﬁzn(E)/aB—mopcl) = op(vC ), where the last

equality holds by eq. (A.22) with B substituted for JB. Also,

~ ‘ n - 2 _ n
(A.23) \/Humn(BO) zi___lui/nu_Mﬁltzijbij(zo)/n Lioquy/ni

- 2, _
+ \/Humn(BO}) ZlJle )/ath = T, + T,
and T1 = O (van-c) by Lemma A.3, Assumption 5.6, and eq. (A.21), and Uy
C L .0 _
Elb (vo)+b (70)12 1, for Jj# i. Also, note that obij(a'o)/aa'2 = 0 and

S . . . . , o) ,
for k=1, 8bij(70)/672 is a linear combination of bij(BO) ®sk(Ei) and
bgj(Bo)®ask(Ei)/BE®(E;,1)’, each of which have expectation zero

independence of & and x; e.g. for j # i, E[bTZ(BO)’®Sk(El)]

E[E[bp (By) es, (£)12,11 = El{pg-Elpgleltes (£)] = 0. Thus, for B =

- .k o L
E[ab (70)/67212 ] and b.i = E[abji(y )/67212.], (j = 1), E[bi.] = E[b
= 0. Furthermore, by eq. (A.21), E[Hab (70)/872H2] = O(vcv). implying
E[HBi +b i!I2] = O(VCV). Then by a second order mean-value expansion,

[ S P



2 ~ - 2 ~ 2
(A.24) TZ = Vﬁﬂzijabij(yo)/ayz/n Helly ?O” + Vﬁnzijabij(y)/aqz/n I Hy-qon

” 2 1/4-¢
”ZijObij(7O)/672/n HOp(n

1A

- 2 -2€
)+ Zijuabij(y)/ayn/n Op(n )

Hzijabij(70)/672/n2—zi(51.+5 )/nuop(n1/4'e)

1A

.1

+ UL, (B, +B )/mi + Op(n-cvcv)

2..1/2, -c - _
Op({E["Bbij(vo)/avzﬂ 1) n 7) + Op(n v = Op(n v,

Lemma 5.1 ii) now follows by egs. (A.23) and (A.24).
Turning to Lemma 5.1 iii), let blZ(B) = blZ(B,yzo). It follows by

Assumptions 5.3 and 5.4 and Bartle (1966, Corollary 5.9) that E[b ]

12(8,720)

V17881 = M. Also, blZ(B) is

is differentiable in B8 and JE(b 8
0

12 B 750

continuous in B,

and by Assumption 5.5 and %k(p) bounded, for B € #, HblZ(B)HZ <

' J 2 P 2, _ 5 = . : :
C(supNHblz(B)H o+ supNHblz(B)H ) = 812, and E[BIZIB] is continuous in B.

Furthermore, by {(z|B) smooth, so is @(zllB)ﬁ(zle), with score

SB(21)+SB(22). Then by Lemma C.3 of Newey (1990b),
M = -E[blz(BO){SB(21)+SB(22)}’]
= —E[{E[blz(Bo)121]+E[b21(30)|21]}SB(21)’] = -E[uSé] = -E{uS’],

where the last equality follows by eq. (2.3).
Finally, Lemma S.1 iv) holds by Corollary 4.4 and the remarks that follow

it, while the remainder of the conditions of Lemma S.1 hold by hypothesis. n
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Appendix B: Efficiency Bound Theorem for CDR Model

First, mean-square (m.s.) smoothness will be defined. . M.s. continuity
and (Frechet) differentiability of functions of 6 are these properties for
the mean-square norm on the space of measurable functions. The following
condition for smoothness and regularity of parametric submodels is like
Ibragimov and Hasminskii (1981, Ch. 7), referred to as IH henceforth. Suppose
that ?9 = {{(z|8) : @ € @8 1is a family of densities {(z|6) with respect to

some measure, and let dz denote integration with respect to that measure.

Definition B. 1: ?9 is smooth if ® is open and i) f(z]8) is continuous on @

a.s.; ii) £(z|8)1/2 is m.s. differentiable with respect to 6 on ® with

derivative y(z,8), i.e. Iuw(z,e)ﬂzdz is finite on 8 and for each 8 and ei —
8, [18(z10,)"%-(z10) %y(z,8)" (8,-0)1%dz/10 ~01% — 0; 111) ¥(z,0) is m.s.
continuous. Also, for smooth ?9 the score is defined by S8 =
2-1(#(zle)>O)W(z,9)/#(2!9)1/2 and the information matrix by ISBSéﬁ(zle)dz. ?e
is regular if it is smootﬁ and the information matrix is nonsingular on 8.
See IH for further details.

To emphasize that the CDR model and the form of its efficiency bound are
invariant to transformations of the dependent variable, such a transformation

will be explicitly considered here. Let <(y) equal the identity map on a

set Y and t(Y°) be discrete, and suppose that

(B. 1) y = r(y‘), y‘lz ~ F(y‘lv(x,BO)L

This specification includes a number of models of interest, such as ordered

»
choice and regression with fixed censoring. Suppose that (y ,x) is

*
absolutely continuous with respect to the pradnect of some measure for v

*
(e.g. Lebesgue measure) and the marginal distribution for x. Let fo(y fv)

*
be the conditional density of vy given x, and fo(x) the marginal density
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. *
of x. Suppose that for v € R, fo(y [v) gives a smooth parametric model

*
for densities for y with parameter v and score sv(y ,v). Let Sv =

» *
E[sv(y ,v)ly,v] be the score with respect to v for y (= t(y )), a well
known conditional expectation formula for the score for the observed data in
terms of the latent density (e.g. IH, Theorem 7.2). The following result

proves the validity of the ef. .cient score formula in equation (2.7).

Theorem B.1: Suppose 1) v(x,B) is continuously differentiable in 8 in a neigh-

borhood N of BO a.s.-x%, supNHv (x,B)II = M(x) satisfies E[M(x)Z] < +o;

8

ii) The parametric submodels correspond to a family of latent densities
»*
f(y*lv(x,B).n)f(xln) where f(y |v,7n) is smooth with bounded information for

v € R and f(y*lv(x,BO),nl)f(xlnz) is smooth in the separate 7 arguments;

1" M2

iii) E[SS’] is nonsingular for S given in equation (3.10). Then the S is the

efficient score. Furthermore, if E [HSHZJ is continuous at BO then this

B

conclusion remains true for the class of parametric submodels such that

EG[HSHZJ is continuous at 90.

Proof: Proceed by verifying the hypotheses of the projection result cited

following eq. (2.1). First, to show smoothness of {(zl|B), let z = (y ,x).
E

By ii), fo(y Iv)fo(x) is smooth with bounded information, so by Newey (1990b,

» »
Lemma C.5), fo(z iB) = fo(y Iv(x,B))fo(x) is smooth with score sva. It

then follows as in the proof of Theorem 7.2 of IH that {£(z|B) 1is smooth with

score E[s v_ly,x] =S v
\'4 \'4

B B’
Next, consider a parametric submodel as spe.. . fied in the statement of the

-

Theorem. By 1i) and Newey (1990b, lLemma C.S), f(y '""‘x,8),7n) 1is smooth in

= (s v

B and 7m, with score s91 v B’Snl

). By Lemma 7.2 of IH and 1 =

» »*
Jf(y {v,n)dy , differentiation of this identity with respect to v and 79
gives E[Sle] = 0 and E[snllx] = 0. It also follows by taking an almost

sure convergent subsequence of the mean-square convergent sequence in the
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definition of the score that s, and sn1 debend only op y‘ and v. Then
since the conditional distribution of y* given x depends only on v, and
s, depends only on y‘ and v, Sv = E[svlz] and Sn1 = E[snllz] will
depend only on y and v, and by iterated expectations E[Sle] = E[évfx] =
0 and E[Snllx] = 0. Now, for the latent model f(yilv(x,BO),nl)f(xlnz), it
can be shown that by these results and an almost-sure subsequence argument
that the score s for n is a function

nl’ n2 2
*
only of x, and E[snzl = 0. Then by the chain rule {(z [8) 1is smooth with

that the score for nl is s

score sn for mn satisfying sn = s ,+5 Furthermore, it follows as in

nl "n2°
the proof of Theorem 7.2 of IH that {(zle) is smooth with score for 7

[z] + SHZ' Then it follows from the above noted

properties of the two terms in Sn that any conformable linear combination of

given by Sn = E[snlz] = E[snl
the score for n will be an element of 7.

Next, to show that any element of I can be approximated arbitrarily
closely in mean square by the score for a regular parametric submodel,
consider a submodel with £(Z*IB,n1.n2) = f(z‘IB)A(z‘,B,nl,nZ) and A(z',e) =
[1+nih1(y*,v(x,B))][1+néh2(x)] where hz(x) is bounded, E[hz(x)] =0,
hl(y‘,v) = a(y',v) - Ja(t,v)f(t|v)dt, and a(t,v) is bounded and
continuously differentiable in t and v with bounded derivatives. By
smoothness of f(ylv) and Lemma 7.2 of IH, hl(y‘,v) is continuously
differentiable in v, with derivative a, - E[avlv] + E[asv!v], where a, =
aa(y‘,v)/av and s, is the score for fo(y*lv). This derivative is
dominated by C(1+E[Hsvnlv] = C(1+{E[s;svlv]}1/2), which is bounded by
boundedness of the information .atrix for f(y.lv). Let f(yilv,n) =
fo(y‘lv)[1+n’h1(y*,v)]. By Newey (1990b, Lemma C.4), f(y‘lv,n) is smooth on
v € R and a bounded set for 7 containing =m, = 0. Also, by boundedness of

0

hl and its derivative with respect to v, the information matrix for

-
f(y lv,m) will be bounded, so that this conditional density family satisfies
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the hypotheses of the theorem. Also, by Newey (1990b, Lemma C.4),

* *
f(z IB,nl,nz) is smooth with score hl(y ,v) for =m, -and hz(x) for

772-

*
It then follows as in the previous paragraph that f(z {8) 1is smooth with Sn

1

»
= E[hl(y yVIily, vl + hz(x). Let ¢ = tl(y,v) + tz(x) be an element of J and

*
consider € > 0. By Newey (1990b, Lemma C.6), there exists a = a(y ,v)

» * »
such that for tl tl(t(y ), v)), E[Htl-aﬂzl < € implying

(B.2) E[l!tl—E[a!Y.v]llzl < E[E[IltI—allZIy,v]] = E[Ilt:-allzl < e.

- » *»
Then by hl(y ,v) = a(ly ,v)-Elalv] and E[tllx] = E[tllx] =0

(B.3) E[Htl-E{hlfy.V]HZ] = ZE[Htl-E[aly.v]HZJ + 2E[HE[aIv]H2]
* 2 *» 2
< 2e + 2E[HE[E[t1-a|x]|v]H ] = 2¢ + E[Htl—an ] = 4de,
Since by Newey (1990b, Lemma C.6) there exists h2 such that E[th—hznzl =

€, the triangle inequélity and € arbitrary imply ¢ 1is an element of the

mean~-square closure of the set of scores, and hence is in the tangent set.
Next, to verify the projection formula in eq. (2.7), let R =

E(Rly,v]-E[R]v] - E[R|x]-E[R]. Note that for any A(y,v), by the

distribution of y given x depending only on v,

(B. 4) E{A(y,v)Ix] = E[A(y,Vv)IVv].

Thus (for A = E[Rly,v]), it follows that R € 7. Also, note that for any

vectors t = t(y,v) and A = A(x), by eq. (B.4), E[{E[Aly,Vv]-E[Alv]}'t]

EfA"t] - E[E[A’ |v]E[t]v]] = E[A’E[t|x]] - E[A’E[t{v]] 0, so that

(B.5) E{A(x)ly,v] = E[A(x)|V].

For U = R-E[RI[x], it follows by eq. (B.5) that R-R

U-E[Uly,v] + E[R].

Thenvby equation (B.4) and E[Ulv] =0, for any t e 7,



(B.6) E[(R-R)’t] = E[(U-E[U]y,v])’¢t] = E[E[Uly,v]'tz(x)]
= E[E[E[Uly,v]!x]’tz(x)] = E[E[Ulv]’tz(x)] = Q,

Thus, R-R is orthogonal to 9, proving R = Proj(R|7).
To verify the formula for S, recall from above that E[Sle] = 0,
implying E[SB|X] = 0, while E[VBIy,v] = E[vBIv] follows by eq. (B.5).
To verify regularity of {(z|B), recall from above that £(zIB) is

smooth, to that it remains to show that the information matrix is nonsingular

on an open set containing Bo. It follows as in eq. (B.6) that E[St’'] =0
for all t € 7. Therefore E[SBSB] - E[SS’] is positive semidefinite, so a
nonsingular information matrix on some neighborhood of BO follows by
nensingularity of E[SS’] and continuity of the information matrix for smooth
models.

For the second conclusion, it suffices to show that Ee[HSHZ] is

continuous at 60 for the class of parametric submodels that were used above
to approximate the elements of the tangent set. For this class of parametric

submodels it follows by h1 and hz bounded th;t

(B.7) 1£(z 10)-£(z 1B)] = £(z 18)|1-a(z",0) | = CE(z" I8)imi

1A

*
Cf(z IB)ImN, implying

IA

for lmll small enough, implying [f(z|@)-f(z|8)]

2 2 2
E_[usH - E_ (IS = ClinllE_[HSH
9[ ] B[ 11 n B[ ]
Thus, continuity of EG[HSHZ] at 60 = (35,0)' follows by continuity of
2
EB[HSH ] at BO. ]
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Table 1: Root-Mean Square Errors Relative to OLS and the
Distribution of Cross-Yalidated Choice of K.

Gaussian

cv K=1 K=2 K=3 K=4 K=5

RMSE 1.05 1.03 1.06 1.08 1.11 1.12
Freq K .73 11 .09 .04 .03

cv K=1 K=2 K=3 K=4 K=25

RMSE .43 .51 .46 .41 .42 .45
Freq K .26 .22 .35 .14 .03
Lognormal

Ccv K=1 K=2 K=3 K=4 K=25

RMSE .35 .69 .41 .34 .34 .42
Freq K .00 .18 .29 .35 .18

Gaussian Location Mixture

cv K=1 K=2 K=3 K=4 K=5

RMSE .40 1.53 1.32 .36 .38 .41
Freq K .00 .00 .74 .18 .08
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